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Abstract
Life on Earth is incredibly diverse. Yet, underneath that diversity, there are a number of constants and highly
conserved processes: all life is based on DNA and RNA; the genetic code is universal; biology is limited to a
small subset of potential chemistries. A vast amount of knowledge has been accrued through describing and
characterizing enzymes, biological processes and organisms. Nevertheless, much remains to be understood
about the natural world. One of the goals in Synthetic Biology is to recapitulate biological complexity from
simple systems made from biological molecules – gaining a deeper understanding of life in the process.
Directed evolution is a powerful tool in Synthetic Biology, able to bypass gaps in knowledge and capable of
engineering even the most highly conserved biological processes. It encompasses a range of methodologies
to create variation in a population and to select individual variants with the desired function – be it a ligand,
enzyme, pathway or even whole organisms. Here, we present some of the basic frameworks that underpin
all evolution platforms and review some of the recent contributions from directed evolution to synthetic
biology, in particular methods that have been used to engineer the Central Dogma and the genetic code.

What is directed evolution?
Directed evolution is a well-established approach for
optimizing and engineering novel functions in both nucleic
acids and proteins. It has been remarkably successful in
isolating novel ligands and catalysts based on the natural
biopolymers and it is an essential tool for exploring the
potential of xenobiotic polymers – probing the boundary
conditions of life itself. Directed evolution is usually
compared with Darwinian selection because of similarities
in their underlying principles: genetic diversity leading to
diversity of phenotype, a link in selection between phenotype
and genotype recovery and amplification of the selected
genotypes.

Those simple principles hide a myriad of methodological
details and caveats that must be considered in directed evol-
ution experiments, including: library quality, evolutionary
landscapes and evolvability, sequence spaces and selection
methodologies. The only reasonable conclusion is that a
range of tools are required to allow for flexibility in the
evolution starting point (e.g. de novo compared with starting
in the functional vicinity of the function sought), objective
(e.g. from increased thermostability to the expansion of the
substrate range beyond natural compounds), scale (e.g. from
selection of a ligand to the evolution of an entire organism)
and system (e.g. in vitro to a eukaryotic host).
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Compared with rational design, a key advantage of
directed evolution lies in the impact of knowledge gaps (or
uncertainty). For rational design to be most effective, an
accurate and complete understanding of the target system (the
system to be modified) is required. Incomplete or incorrect
understanding of the target system leads to a high failure rate
of designs. Although failed designs can be used to improve
understanding of the system being designed and of the design
tools themselves – establishing a design, test, build and learn
cycle characteristic of synthetic biology (see [1–4] for general
reviews of synthetic biology) – this can be a lengthy and costly
process.

On the other hand, evolutionary approaches can, at least
in principle, bypass any knowledge requirements. Directed
evolution relies only on a cycle of introducing diversity into
a population followed by the partitioning of that population
to isolate the desired function. Theoretically, any population
can be systematically optimized towards the desired function
by repeating cycles of directed evolution. In practice however,
the number of variants in the population can rapidly escalate
beyond the sampling capacity of any selection methodology.
In addition, as a given functional variant becomes rarer in a
population, there is a greater burden on the selection method
to isolate them. Consequently, all available knowledge of
the target system is considered when designing the directed
evolution strategy to minimize the number of variants and
maximize its likelihood of success.

The field of directed evolution has greatly expanded in the
last 20 years and it would be impossible to discuss or even
acknowledge all of our colleagues who have contributed to
it in this brief review. We apologize to those whose work
we have not been able to include and we highlight other
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Figure 1 Principles of selection in directed evolution

The goal of all selection (and screening) platforms is to partition a potentially large population (shown in grey as the bulk

diversity) by function (phenotype) ensuring the recovery of the genetic information that accounts for that phenotype. Strong

phenotype–genotype linkages allow efficient isolation of mutants with the desired function (green). Breakdown of that

linkage results in false negatives (variants that have the desired function but that are not efficiently recovered – yellow) and

false positives (variants that are recovered independently of the desired function – blue), which are integral aspects of all

selection strategies.
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excellent recent reviews covering different aspects of directed
evolution, including library design and diversity creation
[5–8].

Here, we focus on presenting a sample of the diverse array
of selection methodologies developed to date and how they
may be used to alter the core of biology: changing the genetic
code, changing genetic materials, changing the very chemistry
of life, as well as establishing independent systems that
can coexist with nature (orthogonal systems). Modification
of those processes critically change biological function and
have been described as unnatural molecular biology [4] or
xenobiology [9,10]. Beyond improving our understanding of
life and its origins, these modifications can be applied to novel
biocontainment strategies [9–11], therapeutic agents [12,13]
and protein engineering [14].

A strong phenotype–genotype linkage is at
the heart of directed evolution
Partitioning of a diversified population is, as mentioned
above, a key part of the evolutionary process and the point
at which the ‘fittest’ are selected, where fitness is used as a
quantitative description of the ability of a particular variant
to perform the function being selected. This process of

separating variants can be done by serially probing individual
variants (screening) or by probing populations in parallel
(selection). Both partitioning strategies use a measure of
function (phenotype) to separate the population in a way
that allows recovery of the genetic information (genotype)
that encodes for the function – establishing the phenotype–
genotype linkage. Breakdown of that linkage results in false
negatives and false positives that undermine the evolutionary
process, as illustrated in Figure 1.

False negatives are variants with the desired function
that fail to be recovered during selection, undermining the
evolutionary process. The loss of such variants can occur at
any step along the selection process: whether through poor
expression (in the case of a protein) or lower stability of
an enzyme variant, due to errors or high variation in the
quantification of function, or through stochastic recovery in
selection.

False positives, or variants that are recovered but that
do not display the desired phenotype, are the result
of two distinct processes: one random and non-specific
(background), the other the result of a viable alternative
phenotype that, although not desired, can be efficiently
recovered (parasites). Background is usually generated
by the partitioning process itself in selection, where
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non-specific interactions, e.g. DNA binding to nitrocellulose
filters during aptamer selections [15], result in a sample
of the population being recovered and taken forward to a
subsequent selection round. By itself, background has little
impact on the evolutionary process since further rounds
of selection can be carried out until the desired function
dominates the population. However, in methodologies prone
to false negatives, the level of background recovery can have
a significant impact on selection.

Parasites can inflict terminal damage to a directed evolution
experiment by outperforming variants that display the desired
phenotype – usually as a consequence of selection pressures
rewarding phenotypes other than only the desired ones, or
by parasitic variants outperforming the population during
amplification (e.g. Spiegelman’s Qβ serial dilution [16] or
phage variants with high replication kinetics [17]). The impact
of parasites in directed evolution is summarized by the maxim
‘you get what you select for’ that permeates the field [18].

The three populations (false negatives, parasites and
background) are present in all selection and screening
methods and this simple framework, shown in Figure 1, is
a powerful tool to describe, analyse and design selection
platforms – ensuring that selection pressures being used,
maximize recovery of the desired mutants while taking steps
to minimize or bypass the emergence of parasites.

Although a large number of selection platforms have been
developed, they can be grouped into four categories: in vivo,
in vitro, display systems (or ex vivo) and in silico. Each
category has characteristic strengths and limitations that are
the result of constraints imposed by where selection is carried
out. In silico directed evolution, relying on computational
tools to systematically generate, screen and optimize the
biological function sought, is an emerging field with great
potential but beyond the scope of this review [19–22].

The remaining three approaches have been remarkably
successful at engineering individual biopolymers, gene
circuits and genomes. In targeting core biological processes
for modification, our knowledge and understanding of the
systems being engineered is incomplete and limiting, making
directed evolution an enabling technology and a powerful
tool in the biologist’s arsenal.

In vivo directed evolution
Directed evolution using in vivo selection platforms
is possibly the strategy closest to natural evolutionary
processes: the cell itself provides the physical link between
genotype and phenotype, imposing the constraint that the cell
must remain intact and metabolically active during key stages
of selection (Figure 2). Because the entire cellular genome
can contribute to a phenotype, in vivo selection strategies
can be particularly efficient at evolving complex phenotypes
(or those that require multiple steps to be observed) with
diversity targeted to particular genes of interest or potentially
to the entire organism genome.

Traditionally, genomic mutations have been introduced
stochastically through mutagenic compounds, stressors or

by inducing a higher mutation rate in the host [23].
However, some strategies are available to improve targeting
and efficiency of the mutagenic process. The multiplex
automated genome evolution (MAGE) process developed by
Wang, Isaacs and colleagues exploits the ability of the phage
lambda Red system [24] to facilitate recombination of single
stranded DNA oligos with bacterial genomes [25]. It was
originally validated by introducing variation to 24 genetic
components involved in the heterologous production of
lycopene, generating a library of over 109 variants partitioned
by directly quantifying the synthesis of lycopene in colonies
[25]. More recently, it has been used to systematically remove
amber stop codons from the Escherichia coli genome [26,27],
prior to re-introducing them to encode the incorporation of
a non-canonical amino acid (ncaa) [26,27] – expanding the
genetic code and creating a powerful approach towards the
containment of genetically modified organisms.

Large-scale genome engineering can also be carried out
by recombinases, which predictably and efficiently generate
insertions, deletions and inversions. However, these enzymes
usually require large (all longer than 30 base pairs) recognition
sites that are naturally rare in the genome. Additional sites
can be introduced in the genome, as is being done on
an unprecedented scale in yeast [28–30], or by modifying
recombinase target recognition [31,32].

As diversity is introduced in the system, selection begins
and enrichment can be achieved by differences in cell survival,
growth and replication rates or by partitioning the population
based on the activity of a reporter gene (e.g. flow cytometric
sorting using fluorescent reporters).

In vivo selection platforms have been successfully used in
replacing natural amino acids for non-canonical ones, as well
as in replacing natural nucleobases with unnatural ones in a
bacterial genome. Serial passaging, in which a growing culture
is diluted at an arbitrary cell density, has been successfully
used by Budisa and colleagues to completely replace L-
tryptophan with L-β-(thieno[3,2-b]pyrrolyl)alanine in the E.
coli proteome [33]. Turbidostats, automated platforms that
regularly adjust the rate of culture dilution based on culture
density, have also been successfully used to adapt organisms
to grow in substrates not naturally used in the starting
organism. Using a dual turbidostat platform, Mutzel and
colleagues [34] systematically evolved thymine auxotrophic
E. coli strains that could thrive on chlorouracil, replacing
thymine in its genetic material – a demonstration that genetic
information storage itself can be changed if sufficiently
small steps can be taken. The dual turbidostat effectively
avoided biofilm-forming variants, a known parasite in
continuous culture methods, but the method was still
vulnerable to parasites that could synthesize thymine through
uncharacterized salvage pathways, potentially reducing the
selective pressure of the system. Indeed, Mutzel and
colleagues identified a novel salvage pathway through tRNA
U54 methyl transferase (trmA) that could provide up to 10 %
of the genome’s thymidine. Deletion of trmA, reduced the
remaining genomic thymidine levels to below 1.5 %, the limit
of detection in that particular approach.
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Figure 2 In vivo and ex vivo directed evolution

Both strategies use the cell (or phage particle) as the physical linkage between genotype and phenotype through the

directed evolution process. Ex vivo platforms tend to focus diversity (a) on to a single target gene, whereas in vivo platforms

can extend that to metabolic pathways or even whole genomes. Once generated, the diverse repertoires are partitioned

(b) with active (blue) variants preferentially recovered over inactive variants (orange). Partition by phenotype is linked to

genotype recovery and amplification (c) which can take place in a single step if cells are still viable (as is the norm for in vivo

methodologies). Alternatively, as shown for the ex vivo selection (light green boxes), genotype recovery and amplification

can be separated, introducing different limitations to the process. The amplified recovered genotypes are the starting point

of a subsequent round of selection.

Another approach to reduce the emergence of parasites
is by combining selection strategies that differ in their
vulnerabilities to parasites, such as those commonly used in
the directed evolution of orthogonal aminoacyl tRNA syn-
thetases (aaRSs) [35,36]. Orthogonality between endogenous
aaRSs/tRNAs and the aaRS/tRNA pair being introduced
is essential for the efficient, site-specific incorporation of
ncaa, and has been successfully obtained by a combination
of positive and negative selection steps. Positive selection
requires ncaa incorporation at an amber stop codon placed in
a selectable marker gene (e.g. antibiotic resistance marker) to
ensure survival. A second selection step, a negative selection,
omits the ncaa and requires that no other amino acid is
incorporated at the same codon in a gene coding for a toxic
product (e.g. a nuclease), which would lead to cell death [36].
Parasites that may bypass the positive selection by allowing
the misincorporation of any natural amino acid are penalized
in the negative selection. Similarly, inactive variants that may
become parasites of the negative selection are then penalized
in the positive selection – thus increasing the power of the
methodology.

Biological logic circuits can also be implemented to
enhance in vivo selection platforms, either by monitoring
the overall state of the cell [37] or by responding to
one or multiple inputs relevant to the selection process.
These circuits can be single component circuits as recently
reported by Baker and colleagues for the in vivo selection
of progesterone synthesis in yeast [38]. The progesterone
biosensor was the fusion of an unstable domain to a reporter
or selectable marker: progesterone binding stabilizes the
protein allowing reporter expression – fulfilling its biosensor
role.

A more complex circuit was developed by Chou and
Keasling for the optimization of lycopene production [39]. By
coupling detection of a lycopene biosynthetic intermediate
with DNA polymerase III repression, the circuit could
couple low lycopene production with the host mutation rate.
Increasing levels of lycopene, detected by the red colour of
isolated colonies was used to guide selection towards higher
producers in repeated rounds of selection.

Logic circuits do not need to be directly linked to
the phenotype under selection. Ellington and colleagues
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[40] established a selection platform, compartmentalized
partnered replication (CPR), based on a logic circuit in
which the output is the expression of the Thermus aquaticus
thermostable DNA polymerase (Taq). After selection, cells
are compartmentalized and successful circuits use the
expressed Taq to amplify the genes of interest in an emulsion
PCR reminiscent of compartmentalized self-replication [41].
As with other techniques that use PCR to amplify selected
information, directed evolution is confined to the region
bound by the final PCR.

In vitro directed evolution
In vitro directed evolution is characterized by the use of
selection platforms that either bypass living cells entirely (a
fully in vitro system) or that rely on living hosts simply for the
maintenance or heterologous expression of the biopolymers
to be selected (a partially in vitro platform). It can be used
to isolate biopolymers that would otherwise be toxic to
a host or that function in conditions incompatible with
biology, such as in the presence of denaturants, solvents
or extreme temperatures. By carrying out selection outside
biology, at least some of constraints of in vivo selection
platforms can be bypassed, such as toxicity and bottlenecks
in host transformation. Fully in vitro systems allow cells to
be bypassed altogether, and with them the limit of transform-
ation efficiency and recovery (typically ∼ 108 CFU (colony
forming units) per transformation), enabling libraries of 1014

to be achieved and increasing the available sequence search
space.

In vitro selection allows us to explore and potentially
recapitulate processes thought to have occurred early in life
– abiotic processes in which a single molecule retains both
genotype and phenotype – through the directed evolution
of nucleic acid ligands (aptamers – recent review here
[42]) and enzymes (NAzymes). Systematic evolution of
ligands by exponential enrichment (SELEX) [43] is well
established allowing not only directed evolution of functional
RNA molecules [44–46], but also functional DNA [47–
49] and synthetic nucleic acids (XNAs) [50–53]. Notably,
SELEX is a potential misnomer because initial libraries are
sufficiently large as to include all possible variants. Since it
remains technically difficult to prove an isolated functional
molecule was not present in the starting library, isolation of
a functional nucleic acid can be the result of selection only
- and not directed evolution since no evolution would be
required (where possible that distinction is maintained in the
text). In most cases, selection involves isolating functional
nucleic acids, converting them to DNA (to allow efficient
amplification by PCR), and the regeneration of the functional
nucleic acid repertoire for further rounds of selection.

Variations of SELEX allow the RNA or XNA reverse
transcription to DNA to be bypassed, enabling functional
nucleic acids based on chemistries that are not viable genetic
materials (or for which no efficient reverse transcriptase is
known). In these DNA display methodologies, the genotype
(encoded in the DNA) remains physically attached to the

functional nucleic acid. Recovery of functional molecules
therefore retrieves the encoding DNA – the important
phenotype–genotype linkage.

Liu and colleagues have extended DNA display technology
to enable selection of small molecules and peptide nucleic
acids in vitro [54–56] and even clusters of carbohydrates
[57,58]. In addition, DNA display methods have also been
developed for the evolution of proteins, particularly nucleic
acid processing enzymes where function can be linked to
binding or modification of the relevant genotype [59–62].
This can be extended to other functions but generally rely
on fusions that enable a covalent link between enzyme being
tested and its genotype [63].

Genotype display, however, need not imply DNA,
with alternatives developed for linking mRNA (genotype)
to function (phenotype). In mRNA display platforms, a
covalent link is made between the protein (selected for
phenotype) and its encoding mRNA (genotype) during
in vitro translation [64]. This platform has been widely used
for the isolation of protein binders from in vitro translated
protein libraries, including selecting for de novo functionality,
such as a protein capable of ATP binding [65]. Seelig and
Szostak [66,67] demonstrated that an RNA ligase could be
obtained, by mRNA display, from a naı̈ve library without
prior knowledge of mechanism or sequence landscape –
highlighting the power of directed evolution. mRNA display
has also been combined with the incorporation of unnatural
amino acids and click chemistry to create libraries of
glycopeptides, containing multiple Man9 glycans bound to
a translated peptide. Variants capable of binding with high
affinity to the HIV neutralizing antibody 2G12 have been
efficiently selected by this method with possible relevance
for HIV vaccine development [68].

It is also possible to link protein and mRNA non-
covalently, such as in ribosome display – where a stalled
ribosome works as an adaptor, linking mRNA to the
displayed protein. Ribosome display has been successfully
applied to the selection of ligands to different molecular
targets [69–72], and more recently to the selection of catalysts
[73–75].

An alternative strategy for in vitro selection is to co-
isolate genotype and phenotype in cell-like compartments,
termed in vitro compartmentalization (IVC), through the
use of emulsions. Typically, water-in-oil emulsions do not
allow significant exchange of components and hence are
used to isolate genotype and phenotype inside individual
compartments, ensuring a robust phenotype–genotype
linkage [76]. Notably, compartmentalization can be achieved
through other means, such as eutectic phases [77].

A number of emulsions have been explored for directed
evolution with some stable even in extreme reaction
conditions, such as the high temperatures required for
emulsion PCR and for the selection of thermostable enzymes
[41,76]. Emulsions can be made in bulk [76,78], resulting
in a polydisperse emulsion (where compartments have a
distribution of sizes), or in microfluidic devices where
compartment size can be tightly regulated – a monodisperse
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emulsion [79]. Compartment size variation can impose
experimental constraints: bulk emulsions, requiring less
specialized equipment, are easier and faster to make than
an equivalent emulsion made with microfluidic systems.
However, compartment size variation may affect platforms
where selection is carried out near the KD of the target
enzyme, and where the signal generated in a compartment
is used to partition the population, since reporter signals can
depend on compartment size and concentration [80] – these
can undermine platforms using bulk emulsion with higher
rates of false negatives and false positives.

Emulsions have become the basis of several selection
and screening strategies. Microfluidics platforms have
been developed to introduce single cells (or beads) per
compartment [81,82] with compartments being individually
sorted [83–85], fused, split, stored and disrupted [86] –
providing a more versatile range of methods than it is possible
in bulk emulsions. For instance, Chaput and co-workers
developed a microfluidic-based platform for the selection
of polymerases that employs an optical detection of the
enzymatic activity followed by fluorescence-associated cell
sorting (FACS) enrichment [87].

Holliger and colleagues, in developing compartmentalized
bead tagging (CBT) [88], demonstrated that it is possible to
change the contents of the compartments in a bulk emulsion.
In CBT, ribozyme genes were bound to paramagnetic beads
and transcribed in vitro in a first emulsion. The transcribed
ribozymes were ligated to the bead, allowing the first
emulsion to be disrupted without breaking the phenotype–
genotype linkage (between gene and ribozyme). Recovered
beads could then be re-emulsified for ribozyme selection in a
second bulk emulsion.

In addition to recapitulating processes from early biology,
such as RNAzyme-based RNA replication, in vitro selection
platforms have also been used to expand the Central
Dogma. Holliger and colleagues, used an IVC selection
strategy termed compartmentalized self-tagging (CST) to
isolate thermostable DNA polymerase variants capable of
synthesizing a number of different XNAs [50]. Together with
a rationally designed reverse transcriptase, this demonstrated
that the natural nucleic acids are not unique in being able to
store genetic information. Although the polymerases isolated
could synthesize XNAs, they retained DNA polymerase
activity limiting their use towards introducing XNAs
in vivo.

Compartmentalized systems have few but significant
advantages over other in vitro selection platforms. The
added compartmentalization minimizes cross-reactivity (or
cross-catalysis) that can negatively affect in vitro platforms
creating phenotype–genotype linkages on inactive variants.
In addition, compartmentalization allows for changes in
the topology of selection that make the platform more
robust (Figure 3). For instance, in ribosome display a single
mRNA molecule is linked to a single protein (a one-
to-one mapping). Any RNA degradation or amino acid
misincorporation destroys the phenotype–genotype linkage
of that molecule (creating a false negative). On the other hand,

in compartmentalized systems, multiple enzymes can act on
multiple substrates to create a robust phenotype–genotype
linkage (a many-to-many mapping) such that degradation of
one substrate, catalyst or one molecule of the genotype does
not undermine the phenotype–genotype linkage. Robustness
in one-to-one platforms is achieved through redundancy in
the initial library whereas a many-to-many selection strategy
can achieve a significant level of robustness even in low
redundancy repertoires.

Ex vivo directed evolution
Ex vivo selection, more commonly referred to as surface
display, groups platforms and methodologies in which the
biopolymer under selection (usually a protein) is accessible
(i.e. outside) but still attached to a host, be it a bacteriophage
or whole cell (Figure 2). Like in vivo platforms, a key
advantage of ex vivo systems is that selection can be carried
out using live hosts (or infective viable phages), bypassing
costly intermediate steps and streamlining the evolution
process. Crucially, ex vivo platforms bypass the challenge
of bringing reagents (or targets) into the host, and extend the
reaction conditions available for selection; though the latter
is still limited to conditions that do not disrupt the host or the
link between displayed biopolymer and host, both of which
would undermine the phenotype–genotype linkage.

Phage display, in which gene fusions allow the display of
a protein on the surface of a phage particle, is the earliest
and by far the most successful ex vivo platform developed
to date [89]. It has been extensively used in the development
of antibody-based therapeutics [90] as well as for isolating a
range of other ligands and enzymes [90–93].

Being a mature technology has allowed researchers to
probe its shortcomings and biases in a series of carefully
controlled experiments [17] showing, for instance, that
abundance does not correlate with binding affinity in
phage display selections. This can be rationalized by
conceptualizing partitioning as the result of two selective
processes: binding and amplification [17]. The latter is
also effectively a selection step, and isolated variants with
low amplification kinetics will be selectively lost (false
negatives). A subsequent deep sequencing analysis quantified
the diversity drop from a 106 library to enrichment of
∼150 clones, which dominated 20 % of the selected library
[94]. Some of those biases can be avoided by the use of
emulsions or droplet PCR [95–97] or careful functional
variant identification (via deep sequencing, [94]). Further, the
use of bioinformatics analyses or selection databases [98–100]
may allow the exclusion of parasites. Akin to the development
of orthogonal aaRSs by multiple selections that differ in
how they can be exploited by parasites, such problems can
be circumvented by the use of different hosts (e.g. M13
compared with lambda) for each round of selection.

Currently, bar a few exceptions, surface display methods
remain an under-exploited technology in the directed
evolution toolbox for synthetic biology. For instance, phage
display has been used to engineer thermostable DNA
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Figure 3 In vitro selection

Platforms for in vitro selection can be broadly divided by the available redundancy of phenotype and genotype linkages. In

a number of selection strategies, the link is unique – a lone genotype molecule is linked to a lone molecule that may have

the phenotype being selected (a). Compartmentalization strategies enable redundancy in the system with one-to-many

[redundant genotype to lone phenotype (b) or lone genotype to pooled phenotype (not shown)] and many-to-many

[redundant genotype to pooled phenotype (c)] mappings between phenotype and genotype available.
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polymerases with extended substrate spectra [101–103], novel
ligands using expanded genetic codes [104] and even to test
the impact of the correlation between chemical diversity in
the genetic code and fitness [105]. Key to those developments
is the ex vivo localization of the biopolymers being selected,
which enables their access to non-biological materials (e.g.
xNTPs, oligonucleotides).

Ex vivo selection, however, extends much further than
bacteriophages with display platforms established for Gram-
negative and Gram-positive bacteria [106–108], as well as
alternative platforms such as display on the surface of Bacillus
subtilis spores [109]. Display platforms in eukaryotic cells,
both yeast and cultured mammalian cells [110–112] have
also been demonstrated and are of particular interest as they
allow the incorporation of post-translational modifications
in the passenger, particularly relevant to therapeutic antibody
engineering.

Common to current ex vivo platforms is that display is
achieved through gene fusion between a protein that naturally
localizes to the surface of the host and the protein of interest
(or passenger). This imposes some of the key constraints of
the technology: the protein of interest and its fusion partner
have to remain active once fused and be successfully exported
to the host surface. For instance, export to the host surface

is generally not an issue in display platforms based on lytic
bacteriophages (e.g. T7), as the phage capsid is synthesized
and assembled in the bacterial cytoplasm where most proteins
fold efficiently. However, the fused host-selection protein
cannot significantly affect the capsid assembly process or the
function of the capsid in virulence; the latter is a constraint if
phages are being recovered by infection of a susceptible host.

The use of cells, or other sizeable particles such as
liposomes or other double emulsions [113,114] and beads
[88,115,116], enables the partitioning of the population
by FACS [90,117]. Although FACS is a high-throughput
screening tool rather than selection, it provides an un-
paralleled level of flexibility, allowing display levels to be
normalized and quantification of multiple parameters of a
population. It also enables methods for coupling enzyme
function to fluorescence. A particularly powerful method was
developed recently in which hydrolase function on the cell
surface is linked to the covalent attachment of biotinylated
tyramide via horseradish peroxidase [118,119]. The success
of this technique to quantitatively couple catalytic activity
to fluorescent labelling for evolution [120] suggests that
tools such as this one will be invaluable to allow the more
widespread adoption of cell display for enzyme engineering
for a wider range of functionalities [121].

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence
4.0 (CC BY).
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Directed evolution as a tool for synthetic
biology
Despite the diversity and versatility of selection platforms
available, novel ones are regularly being developed –
delivering custom solutions to ever growing challenges. As
molecular biology methods and technologies develop, novel
strategies to diversify and partition a biopolymer population
become available, increasing experimental control, through-
put and pace.

Directed evolution performs the design, build and test
cycle of synthetic biology on a scale that is unnatural in
engineering: it would be the equivalent of building millions
(or even trillions) of slightly different machines (e.g. watches)
in search of a specific improvement (e.g. more precise time
keeping). On an engineering scale, such approach would be
prohibitive, if even possible. However, on a biological scale,
millions are still small numbers, barely able to cover the
immediate sequence neighbourhood of even a small protein.

Directed evolution has successfully been used to isolate
novel and optimize existing function on natural and synthetic
biopolymers. But its key strength lies on how it deals with
uncertainty. Even in the absence of complete understanding of
complex biological systems, directed evolution is a powerful
tool to re-engineer even the most central truths of life on our
planet – that life is based on DNA and RNA, and that life
requires (or is optimal with only) 20 amino acids.
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