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lunata), short-haired bumblebee (Bombus subterraneus), pool frog (Pelophylax 

lessonae) and cirl bunting (Emberiza cirlus) translocations as case studies  

 

Abstract: 

Exposure to parasites in conservation translocations increases the risks to recipient and 

translocated populations from disease, and therefore there has been interest in implementing 

biosecurity methods.     Using four case examples we described how biosecurity was applied 

in practical translocation scenarios prior to and during a translocation and also post-release. 

We implemented biosecurity, including quarantine barriers, at specific points in the 

translocation pathway where hazards, identified by the disease risk analysis, had the potential 

to induce disease.   Evidence that biosecurity protected translocated and recipient 

populations, included an absence of mortality associated with high risk non-native parasites, 

a reduction in mortality associated with endemic parasites, the absence of high risk 

pathogenic parasites, or associated diseases, at the destination; and the apparent absence of 

diseases in closely related species at the destination site.   The biosecurity protocols did not 

alter the level or duration of translocated species confinement and therefore probably did not 

act as a stressor. There is a monetary cost involved in biosecurity but the epidemiological 

evidence suggests that conservation translocation managers should carefully consider its 

use. Breakdowns in quarantine have occurred in human hospitals despite considerable 

investment and training for health professionals, and we therefore judge that there is a need 

for training in the objectives and maintenance of quarantine barriers in conservation 

translocations. Biosecurity protocols for conservation translocations should be continually 

updated in response to findings from disease risk analysis and post-release disease 

surveillance and we recommend further studies to evaluate their effectiveness. 
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Introduction 

Conservation translocations, defined as the intentional movement and release of a living 

organism where the primary objective is improving the conservation status of the target 

species, and/or to restore natural ecosystem functions or processes (IUCN 2013), are known 

to increase the risks to recipient and translocated populations from disease because of the 

increased probability of contact between hosts and novel parasites (Davidson and Nettles, 

1992), stressor effects on animals as a result of the move to a new environment (Dickens et 

al., 2010) and exposure to parasites or non-infectious disease agents during transit or in the 

destination environment (Kock et al., 2010).  When novel parasite – host interactions occur as 

a consequence of translocation the impact on populations can be severe, as illustrated by the 

squirrelpox viral disease outbreak in the UK (Sainsbury et al., 2008).  Free-living wild animals 

are known to have been exposed to novel parasites  as a consequence of conservation 

translocations, for example Batrachochytrium dendrobatidis was introduced into the free-living 

Mallorcan midwife toad (Alytes muletensis) population with animals from a captive-breeding 

facility where there were no quarantine barriers between species from different geographical 

locations (Walker et al., 2008).  Likewise stressor associated infectious disease in 

conservation translocations has led to severe disease outbreaks, for example with cirl 

buntings (Emberiza cirlus) (McGill et al., 2010).  

 

Given that a component of the increased risk from disease in translocations stems from 

exposure to parasites (defined as viruses, bacteria, fungi, protozoa, helminths and 

ectoparasites) there has been considerable interest in setting up biosecurity protocols when 

undertaking translocations (Kirkwood and Sainsbury, 1997; Kock et al., 2010; Woodford and 

Kock, 1991) but the details of specific protocols have not been published.   Ballou (1993) 

noted the importance of quarantine prior to reintroduction to reduce the risk from disease and 

advocated the removal of animals from planned reintroduction if quarantine facilities were 

absent.  Woodford (2000) described the principles of quarantine and screening protocols prior 

to translocation, and set out recommended screening tests and methods for different taxa, but 

did not specifically explain how a quarantine barrier should be set up to achieve the aims.  

 



In this paper we describe four cases where biosecurity has been set up by the Disease Risk 

Analysis and Health Surveillance Project (DRAHS), a collaboration between the Zoological 

Society of London and Natural England, for the purpose of reducing the risk from disease in 

translocation for conservation purposes.   The four cases were translocations of the cirl 

bunting (Emberiza cirlus), Fisher's estuarine moth (Gortyna borelii lunata), short-haired 

bumblebee (Bombus subterraneus), and pool frog (Pelophylax lessonae) and they illustrate 

how the principles of biosecurity can be applied in practical translocation scenarios, not only 

prior to translocation but also during a translocation and post-release. For most translocations 

considered by DRAHS a disease risk analysis (DRA) has been undertaken (Sainsbury and 

Vaughan-Higgins, 2012), followed by the writing of a disease risk management and post-

release surveillance protocol (DRM PRHS) in which detailed biosecurity recommendations 

are made.  This protocol is then used to monitor the effects of translocation on translocated 

and sympatric species at the destination. Disease risk management (DRM) of hazards 

identified in the DRA potentially includes: (i) biosecurity including quarantine, (ii) preventive 

medication  (iii) screening for parasites (iv) vaccination, and (v) therapeutic elimination of 

parasites but in this paper we describe only biosecurity, through quarantine, measures in 

detail. 

 

Here we define biosecurity as the implementation of management methods to reduce the 

probability of negative effects on ecosystems from biological organisms (including parasites) 

which break ecological or geographical barriers and build up in the environment of 

translocated animals. The purpose of biosecurity in translocations monitored by DRAHS has 

been to reduce the risk from disease from parasites and we have targeted it at hazards, of 

several different categories (source, destination, carrier, transport and population; Sainsbury 

and Vaughan-Higgins 2012), at the location in the translocation pathway at which they act.  

Using the hazard identification system proposed by Sainsbury and Vaughan-Higgins, (2012) 

we have systematically identified the points in the translocation pathway at which biosecurity 

was assessed as paramount to prevent (i) transfer of parasites across barriers and (ii) build-

up of parasites in the environment during the translocation. Building on the OIE (2010) 

definition, we define quarantine as an area where wild animals are maintained in isolation, 

http://web.oie.int/eng/normes/mcode/en_glossaire.htm#terme_animal


through the use of a barrier, with no direct or indirect contact with animals on the other side of 

the barrier, to reduce the likelihood of transmission of parasites across the barrier while the 

animals are undergoing observation and, if appropriate, screening, testing and / or treatment 

prior to, during or after translocation.  

 

Case histories 

The cirl bunting is rare and range restricted in England, and bred only in south Devon until a 

reintroduction , as defined by IUCN (2013), to Cornwall was carried out between 2006 and 

2011.  The reintroduction pathway involved the annual capture of 75-80 free-living cirl bunting 

chicks from the remnant Devon population and captive-rearing for reintroduction as fledglings 

into Cornwall, England (Figure 1).  A DRA, undertaken prior to the first translocation, 

predicted that the greatest risk from disease to the project stemmed from the plan to rear the 

buntings from six day-old chicks to approximately 35 day old fledglings in a zoological 

collection.  The DRA advised that the captive rearing facility should be sited distant from the 

zoological collection to reduce the risk of disease from four groups of non-native (alien) 

parasites (source hazards: namely poxviruses, Borrelia spp, Mycoplasma spp and Chlamydia 

spp) potentially present in the zoo and, as a result, a new captive-rearing facility was set up at 

a remote location close to the destination reintroduction site behind a quarantine barrier 

(McGill et al., 2005;  Fountain et al. 2016). Aviculture staff were managed by the zoo but 

based at the remote location.   All fieldworkers, avicultural, and veterinary staff in contact with 

cirl buntings were dedicated to the programme and did not handle non-native bird species or 

visit zoos or other non-native bird collections, to reduce the possibility of non-native 

pathogens infecting cirl buntings.   

 

Further disease risk management measures included maintaining a quarantine barrier at all 

stages of transport and rearing because the buntings were held in close proximity to each 

other (a maximum of 40 buntings were present in the rearing facility at one time) and 

therefore a build-up in parasites in the environment was predicted (McGill et al 2006) and a 

concomitant disease outbreak had occurred in a trial reintroduction  (McGill et al 2010).  

Since translocation acts as a stressor on animals leading to immunosuppression (Dickens et 

http://web.oie.int/eng/normes/mcode/en_glossaire.htm#terme_animal
http://web.oie.int/eng/normes/mcode/en_glossaire.htm#terme_animal


al., 2010), a build up in parasites in the cirl bunting’s environment was believed to have 

precipitated disease in the trial reintroduction.  For example, all transport vehicles used to 

collect chicks from Devon and transport them to Cornwall were clean and not previously used 

for the transport of birds.  Chicks were transported in disposable cardboard or polystyrene 

boxes which were discarded after single use.  In the rearing facility, each brooder, canary 

cage, and pre-release aviary was an individually quarantined rearing unit, for example each 

brooder was placed on a separate table with its own labeled equipment and tools. Staff 

washed their hands in F10 disinfectant and changed into dedicated clothing (aprons) for each 

quarantined rearing unit.  A change of boots and use of a disinfectant foot dip was mandatory 

on entry and exit of the brooder facility, the canary cage facility, and for each individual pre-

release aviary.  All working surfaces were cleaned daily with F10 disinfectant.  All waste at 

every stage of rearing was kept separate and disposed of using clinical waste protocols.   

 

To minimize the likelihood of zoonotic infection, for example from Campylobacter spp, bird-

dedicated areas were in quarantine from the human inhabited part of the captive-rearing 

facility: the barriers provided clear separation.  The biosecurity protocols were communicated 

through a DRM protocol document, with hard copies distributed and discussions held 

annually at a pre-season meeting in conjunction with a site visit and updated 

recommendations from previous years explained.  Analysis of reintroduction success reported 

no detected mortality associated with non-native infectious agents (Fountain et al., 2016) 

which the biosecurity was designed to prevent.  Cirl bunting mortality was associated with a 

wide variety of infectious agents, causing disease secondary to apparent 

immunosuppression, e.g. Isospora spp (McGill et al., 2010), and Campylobacter spp already 

harboured by the birds (native parasites and carrier hazards).  The pre-release mortality rate 

was highest in 2007 (42.5%; n = 26/73;  Fountain et al., 2016) and as a consequence  

quarantine and hygiene guidelines and their execution were reassessed and made more 

stringent  where it was judged appropriate by veterinarians with expertise in wild animal 

management (Molenaar and Sainsbury 2008) and in the four subsequent years of rearing the 

mortality rate was markedly reduced (19.5%; n = 50/257) (Fountain et al., 2016). 

 



(Insert Figure 1 here) 

 

A similar biosecurity protocol (including quarantine barrier) was established when Fisher’s 

estuarine moths (Gortyna borelii lunata) were captive bred for reinforcement, as defined by 

IUCN (2013).  The Fisher’s estuarine moth is a rare and highly threatened species, and 

captive breeding for release commenced to minimise the need for translocation from the 

small and vulnerable wild population in the north-east of Essex and in Kent, England. The 

dedicated captive breeding facility was sited at the perimeter of a zoological collection which 

housed non-native species of invertebrates (including some Lepidoptera) (Figure 2).   

Quarantine of the captive breeding facility was implemented to prevent infection of the moths 

with potentially non-native parasites harboured by the invertebrates in the zoological 

collection and transfer of these parasites to the wild.  Quarantine included a disinfectant 

footbath, dedicated boots and clothing, the wearing of disposable gloves, and the use of 

dedicated tools.  Staff caring for the moths had no contact with non-native invertebrates in the 

zoo and serviced the moths on arrival each day prior to servicing the zoo collection.  Signage 

was added to denote and explain the quarantine barrier.  There has been no known mortality 

associated with non-native infectious agents detected to date. 

 

 (Insert Figure 2 here) 

 

In 2012 the reintroduction (IUCN 2013) of the short-haired bumblebee (Bombus 

subterraneus) from the source environment, Sweden, to the destination environment 

Dungeness in England commenced (Figure 3).  Habitat loss and subsequent resource 

depletion were the primary factors implicated in the loss of the species in the UK. 

Approximately one hundred queens were wild caught in April/May each year between 2012 

and 2015 and transferred to a University facility in England to allow for screening of 

potentially non-native parasites prior to transit to the destination site.  Biosecurity was 

implemented through quarantine to (i)  prevent escape of any non-native parasites into 

England before and during screening because three medium risk and nine low risk source 

hazards were identified in the DRA, (ii) to assist in the detection of an unknown source hazard 

TRANSPORT TRANSPORT 



which might cause disease in the bumblebees before release and (iii) to protect the 

bumblebees, and destination ecosystem, from parasites harboured by non-native 

invertebrates housed in the University.  Quarantine measures included the disinfection of all 

equipment, clothing, boots and vehicle internal surfaces prior to departure from Sweden to 

the UK; disinfection of all equipment, clothing and surfaces in contact with bees after arrival in 

England; eliminating contact between staff servicing the bumblebees in England and non-

native invertebrates two weeks prior to, and during, quarantine destruction of all materials in 

contact with the bumblebees on arrival in England; a barrier surrounding the University 

enclosure of bumblebees which dedicated staff crossed only if wearing boots, gloves and 

overalls and through a disinfectant footbath;  use of dedicated labelled tools in quarantine; a 

locked quarantine door with appropriate signage; disposal of quarantine waste by 

incineration; a sealed door to prevent ingress of insects;  a strip of insect trap tape (chemical- 

and attractant-free) placed around the internal aspect of the door and; disinfection of all 

surfaces, enclosures and tools at the end of quarantine, and any remaining food incinerated.    

.    Bumblebees which harboured four potentially non-native parasites, Apicystis bombi, 

Crithidia bombi , Nosema bombi and and Sphaerularia bombi, were sacrificed during 

quarantine (see Brown et al., 2016) and there is no evidence that these parasites have been 

introduced to England.  No disease attributable to known and unknown source hazards or 

non-native parasites has been detected.   

 

(Insert Figure 3 here) 

 

Pool frogs (Pelophylax lessonae) reintroduced (IUCN 2013) to England from Sweden 

between 2005 and 2008, were moved directly to the destination from the airport and were 

released immediately (screening of source and destination populations had been carried out 

prior to reintroduction and informed the DRA) (McGill et al., 2004) (Figure 4).  Quarantine 

during transport included the use of dedicated, clean tools and enclosures, not previously 

used for animal transport.   A quarantine barrier was implemented in the field at the 

destination site to (i) prevent or reduce the probability of exposure of the pool frogs to 

parasites (destination hazards) in England analysed as representing a high disease risk 



namely ranaviruses and Batrachochytrium dendrobatidis  and (ii) reduce the rate of spread 

from the release site of any unknown non-native parasites harboured by the pool frogs and / 

or to assist in the detection of disease associated with these non-native parasites by 

temporarily confining the released pool frogs.   The release ponds were surrounded by an 

amphibian-proof fence 0.5m high which remained in place for the first year of the project.  

There was controlled vehicular entry to the site and staff wore dedicated boots, overalls and 

gloves (which had not been used to study amphibians at other sites).   All tools, including 

veterinary equipment, and nets were new or disinfected and not used for any other species 

and stayed on site in a lockable box where possible.  Any equipment or materials leaving the 

site was disinfected to reduce the probability that novel infectious agents introduced with pool 

frogs would spread. Clinical waste, including gloves, was incinerated.   Post release health 

surveillance on pool frogs and native amphibians (common frogs (Rana temporaria), common 

toads (Bufo bufo), great crested newts (Triturus cristatus) and smooth newts (Lissotriton 

vulgaris) was undertaken between 2006 to 2012.  No cases of infection with ranaviruses or 

with Batrachochytrium dendrobatidis, both of which are widespread in England (Teacher et 

al., 2010; Smith, 2014), or disease associated with these agents, has been detected in pool 

frogs or native amphibians on site, and no diseases associated with non-native infectious 

agents, introduced with pool frogs, have been detected.  The mean and range, in brackets, of 

pool frogs and native amphibians examined per annum between 2006 and 2012 was: mean 

24 (range 1-55) pool frogs; mean 25 (range 0 -62) smooth newts; 23 (0-42) great crested 

newts; 9 (1-20) common frogs; 31 (29-34) common toads. Therefore the results of post-

release health surveillance and screening provided no evidence that the quarantine barrier 

had been broken during this post-release period. 

 

(Insert Figure 4 here) 

 

Discussion 

Here we have shown through examining four real conservation translocation cases  how we 

have used targeted implementation  of  biosecurity to reduce the risk from disease  at the 

points in the translocation pathway where specific hazards (source, carrier, destination, 



population and transport), identified by the disease risk analysis, had the potential to induce 

disease.   While in the cirl bunting, short-haired bumblebee and Fisher’s estuarine moth 

examples the major objective was to prevent the introduction of non-native infectious agents 

(source hazards) to the destination environment (from either zoological collections or natural 

source sites), the primary purpose in the pool frog translocation was to prevent contact with 

population hazards (ranaviruses and Batrachochytrium dendrobatidis) which could have an 

effect on population size at the destination. Other biosecurity objectives included (i) to reduce 

the potential for build-up of parasites in the environment of stressed animals at high density 

(cirl buntings), (ii) to minimize the likelihood of zoonotic infection (cirl buntings), (iii) to detect 

an unknown source hazard before release (bumblebees) or after release (pool frogs) , (iv) to 

reduce the rate of spread from the release site of any unknown non-native parasites 

harboured by the translocated animal and / or to detect disease associated with these non-

native parasites (pool frogs) and (vi) to prevent contact with non-native infectious agents 

present in the translocation pathway (bumblebees and pool frogs). 

 

The hazard categories described in the disease risk analysis, using the method described by 

Sainsbury and Vaughan-Higgins (2012), can be used to determine the best location for 

quarantine barriers to prevent the spread of parasite hazards to susceptible populations 

(either translocated animals or recipient populations).  In the cirl bunting example, the DRA 

explained that source hazards (infectious agents in non-native birds in the zoological 

collection) represented the highest risk from disease to the translocation and therefore the 

rearing location was moved from the zoo to the release location to create a quarantine barrier 

between the zoo and reintroduction site.   No diseases attributable to source hazards were 

detected in the cirl buntings and therefore the transfer of the cirl buntings to a new location 

was apparently successful in preventing disease.  In the bumblebee reintroduction, a barrier 

was set up to prevent release of source hazards from quarantine and to reduce the probability 

of contact with non-native invertebrates and their potential source hazards.  Bumblebees 

were sacrificed to prevent release of source hazards and since the epidemiological sensitivity 

of one diagnostic test (faecal screening for Sphaerularia bombi infection at 14-21 days post-

capture) detects 100% of infections (Vaughan-Higgins et al 2015), we know that this 



biosecurity method was successful.  At the pool frog reintroduction site a field quarantine 

barrier was established which attempted to reduce contact with destination hazards 

(ranaviruses and Batrachochytrium dendrobatidis).  These destination hazards (either 

infection or disease) have been absent from native amphibians and pool frogs at the 

reintroduction site, a sign that the quarantine barrier has apparently achieved its purpose.  

 

On the basis of our understanding of epidemiological principles, we would expect biosecurity, 

largely through quarantine barriers, as illustrated above, to protect translocated and recipient 

populations and we have presented evidence to support this.  For example an absence of 

mortality associated with high risk non-native parasites (cirl bunting, Fisher’s estuarine moth 

and short-haired bumblebee projects), a reduction in mortality associated with endemic 

parasites (cirl bunting project), the absence of high risk pathogenic parasites (destination 

hazards), or associated diseases, at the destination (pool frog project); no diseases in closely 

related species at the destination site (pool frog project). We know of no other studies which 

have evaluated the ability of biosecurity to prevent transfer of infectious agents between 

populations in wild animal translocation scenarios.  We recommend that simple biosecurity 

protocols are always set up for conservation translocations whatever the result of a disease 

risk analysis because severe disease outbreaks have occurred in association with previously 

unknown parasites, including the two mentioned above (squirrelpox and Bd-associated-

disease), and the risk of those parasites could not have been assessed pre-translocation, a 

consequence of our poor understanding of wild animal parasites. 

 

Biosecurity protocols may risk stress or injury to animals through close confinement and there 

is a monetary cost involved (Dickens et al., 2010, Ewen et al., 2012).  All the biosecurity 

methods we employed were relatively simple and practical to implement with minimal cost 

other than staff wages  Importantly, we did not change animal management methods through 

implementing biosecurity or quarantine:  the management methods would have been used in 

the same way in the absence of biosecurity.  We merely placed our quarantine barrier and / 

or biosecurity around existing management protocols; the measures did not increase the level 

or duration of confinement.  Therefore we not believe the biosecurity or quarantine methods 



had any influence on stress levels in the species translocated in these four cases.  The 

example noted above in which Bd was introduced to the Mallorcan midwife toad population 

illustrates the potentially disastrous consequences of not carrying out biosecurity, and 

supports its use, including quarantine, in all translocations.   

 

Yet, even when the identity of an infectious agent and the epidemiology of the disease is 

known, breakdowns in quarantine can occur.  This has recently been illustrated in the Ebola 

haemorrhagic fever outbreak in West Africa.  Despite considerable investment in barrier 

quarantine techniques, highly trained health professionals became infected and developed 

Ebola fever when there was contact with the external surface of quarantine suits (Chiappelli 

et al., 2015, WHO, 2014). Investment in biosecurity techniques for wild animal translocations 

has understandably not reached the level used in the control of fatal infectious human 

diseases.    Although the stringency of biosecurity will depend on the mode of transmission 

and pathogenicity of the disease agents of concern, the Ebola example suggests that training 

in biosecurity in wild animal translocation will be important to try to ensure it is sufficiently tight 

to prevent disease outbreaks, at least for highly contagious agents.  Breakdowns in 

quarantine, such as in the Ebola fever outbreak, imply that instruction of staff in implementing 

biosecurity for translocation programmes is crucial. We advocate further studies to evaluate 

the effectiveness of biosecurity to prevent transfer of infectious agents during conservation 

translocations to assess whether improvements in techniques are required.   

 

Currently, given the evidence available, we advocate the use of ‘best practice’ biosecurity 

protocols, communicated effectively through detailed workshops and written documents, and 

to improve on these techniques where evidence is available and costs allow. PRHS has a 

role to play in assessing the effectiveness of biosecurity through the detection of infectious 

agents which break the barrier and are introduced to destination sites and the results should 

be included in reviews of biosecurity protocols. Instruction in barrier techniques and 

communication between stakeholders including veterinarians, pathologists, parasitologists, 

animal care staff, ecologists and volunteers is advocated while evidence on their 

effectiveness is gathered.  It may be possible to develop risk-based approaches where the 



investment in barrier techniques is dependent on the results of a disease risk analysis, 

although in wild animal translocation for conservation the number of unknown parasites 

harboured by the many species will likely hamper such an approach.   
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Figure 1.  Points in the translocation pathway where quarantine barriers were placed, using 
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case example of the translocation of the pool frog from Sweden to the UK.  
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