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ABSTRACT
Accurately characterizing the redshift distributions of galaxies is essential for analysing deep
photometric surveys and testing cosmological models. We present a technique to simultane-
ously infer redshift distributions and individual redshifts from photometric galaxy catalogues.
Our model constructs a piecewise constant representation (effectively a histogram) of the
distribution of galaxy types and redshifts, the parameters of which are efficiently inferred
from noisy photometric flux measurements. This approach can be seen as a generalization
of template-fitting photometric redshift methods and relies on a library of spectral templates
to relate the photometric fluxes of individual galaxies to their redshifts. We illustrate this
technique on simulated galaxy survey data, and demonstrate that it delivers correct posterior
distributions on the underlying type and redshift distributions, as well as on the individual
types and redshifts of galaxies. We show that even with uninformative priors, large photo-
metric errors and parameter degeneracies, the redshift and type distributions can be recovered
robustly thanks to the hierarchical nature of the model, which is not possible with common
photometric redshift estimation techniques. As a result, redshift uncertainties can be fully
propagated in cosmological analyses for the first time, fulfilling an essential requirement for
the current and future generations of surveys.

Key words: galaxies: distances and redshifts – galaxies: statistics – cosmology: observations –
large-scale structure of Universe.

1 IN T RO D U C T I O N

Testing cosmological models using the distribution of galaxies has
become a routine operation thanks to large galaxy surveys such as
the Sloan Digital Sky Survey (SDSS; Gunn et al. 2006) and the
Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS;
Heymans et al. 2012). Ongoing and upcoming imaging surveys, for
example the Dark Energy Survey (DES, 2012-; Abbott et al. 2005)
and the Large Synoptic Survey Telescope (LSST, 2020-; Abell et al.
2009) will probe even larger volumes and will allow us to constrain
the large-scale properties of the Universe at unprecedented accuracy.
This will prove essential for testing our understanding of gravity,
dark matter and dark energy, as well as for searching for new physics
in unexplored regimes (e.g. Albrecht et al. 2006; Peacock et al. 2006;
Weinberg et al. 2013).

The redshift distributions of galaxies are essential ingredients
for exploiting photometric survey data. They are needed to con-
front measurements of the clustering and cosmic shear of galaxies
with theoretical predictions. The accuracy of these distributions is
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critical since any mischaracterization can translate into significant
biases in the cosmological parameters inferred from data (see e.g.
Cunha et al. 2012; Hildebrandt et al. 2012; Benjamin et al. 2013;
Huterer, Cunha & Fang 2013; Bonnett et al. 2015). Currently, all
methods for estimating redshift distributions rely on the availabil-
ity of redshift estimates for all galaxies in the sample of interest.
This is problematic because such estimates can suffer from system-
atic errors or increased sensitivity to prior information and training
data, which significantly affects the quality of the redshift distribu-
tion estimates (e.g. Hildebrandt et al. 2012; Sanchez et al. 2014).
The method proposed in this paper addresses these issues by simul-
taneously inferring the redshift distributions as well as individual
redshift estimates.

Three broad classes of methods are available to estimate red-
shifts from noisy photometric fluxes or magnitudes: template-
fitting, machine-learning, and clustering methods. Template-fitting
methods (e.g. Benitez 2000; Feldmann et al. 2006; Brammer, van
Dokkum & Coppi 2008) assume that each galaxy belongs to a
type whose rest-frame luminosity density (simply called ‘spec-
tral energy density’ or ‘spectrum’ below) is known. It can be
taken from a library of spectral templates constructed from data
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or simulations. Redshift estimates are then obtained by predicting
photometric fluxes as a function of redshift and comparing them
with the observed fluxes. The second widespread class of methods
involves fitting the flux–redshift relation directly using a flexible
model, via machine learning techniques such as neural networks or
decision trees (e.g. Collister & Lahav 2004; Kind & Brunner 2013;
Sadeh, Abdalla & Lahav 2015). The third approach, sometimes re-
ferred to as ‘clustering redshifts’, delivers redshift estimates by ex-
ploiting three-dimensional spatial information, e.g.via reconstruc-
tion of the three-dimensional density field or cross-correlations of
various galaxy catalogues (e.g. Matthews & Newman 2010; Jasche
& Wandelt 2012; Choi et al. 2015). The lack of training and val-
idation data at high redshift and faint magnitudes (where most of
the cosmological information is) significantly hinders these three
approaches. In addition, photometric calibration and distortions due
to instrumental effects or observing conditions affect the quality of
the measured fluxes, and hence the redshift estimates (e.g. Leistedt
et al. 2015). For these reasons, photometric redshift estimation is
a major challenge in the exploitation of photometric surveys. Re-
cent comparison of methods and requirements for modern surveys
can be found in e.g.Hildebrandt et al. (2010), Cunha et al. (2012),
Newman et al. (2013), Sanchez et al. (2014), Abate, Newman &
Schmidt (2014), Schmidt, Newman & Abate (2014).

Recent surveys such as CFHTLenS and DES obtained red-
shift distributions by stacking the individual redshift posterior dis-
tributions obtained with some of the methods described above
(Hildebrandt et al. 2012; Bonnett et al. 2015). Despite its simplicity,
this approach does not yield uncertainties on the redshift distribu-
tion estimates. Nevertheless, it is becoming increasingly important
to propagate redshift uncertainties in cosmological analyses (as in
the recent analysis of DES Science Verification data, Abbott et al.
2015). In this paper, we present a technique for inferring redshift
distributions through a hierarchical Bayesian model which provides
full posterior distributions on the redshift distributions as well as
on the individual redshift estimates. This approach can be seen as a
generalization of template-fitting methods to the estimation of red-
shift distributions. We use the library of templates from Coleman,
Wu & Weedman (1980) and the type-redshift-magnitude likelihood
function implemented in the BPZ method (Benitez 2000). BPZ was
one of the main codes used to produce redshift distributions esti-
mates through stacking of the individual redshifts for CFHTLenS
and DES (Hildebrandt et al. 2012; Bonnett et al. 2015). As high-
lighted above, the common stacking approach is highly sensitive to
the priors on the redshift and type distributions, which are usually as-
sumed to have restrictive analytical forms and calibrated on training
data shallower that the full samples of interest. Our model relaxes
these assumptions in several ways since it infers redshift distribu-
tions from the full data set under consideration using a hierarchical
probabilistic model. The posterior uncertainties in the individual
redshift estimates are shrunk thanks to the addition of distribution
information, and this shrinkage also includes the uncertainties in
these distributions.

We describe our model for the redshift distributions in Section 2,
and describe its mapping on to photometric survey data in Section 3.
We extend our formalism to support arbitrary selection effects,
including tomographic redshift bins, in Section 4. The framework is
demonstrated on simulations in Section 5. We conclude in Section 6.

2 PO P U L AT I O N M O D E L

Let us consider a catalogue of galaxies with intrinsic properties
type t, redshift z, and apparent magnitude m in some reference

photometric band. The properties of these galaxies are assumed to
be drawn from a unit-normalized distribution p(t, z, m|galaxy, sur-
vey), where the form of the distribution is explicitly dependent on
the abundance of the sources as a function of redshift and intrin-
sic properties (as determined by e.g. their luminosity function and
the comoving volume per unit redshift), and the characteristics and
selection effects of the survey under consideration. For concision
we adopt the more compact notation p(t, z, m) for this distribution,
but it is important to keep in mind that it depends on particu-
larly survey-specific effects, a point which is explored further in
Section 4.

Rather than attempting to model either the galaxy population
or the observational selection effects in detail, we adopt a piece-
wise constant representation of p(t, z, m), parametrized by a set of
coefficients {fijk}, such that

p(t, z, m|{fijk}) =
∑
ijk

fijk

(zj,max − zj,min) (mk,max − mk,min)

× δK
t,ti

�(z − zj,min) �(zj,max − z) �(m − mk,min) �(mk,max − m),

(1)

where δK denotes Kronecker’s delta and � the Heaviside step func-
tion. This corresponds to a mathematical description of a three-
dimensional histogram, where the probability of finding an object
in the bin labelled ijk is fijk. The type-, redshift- and magnitude-bins
are indexed with i = 1, . . . , Nt, j = 1, . . . , Nz, and k = 1, . . . ,
Nm, respectively. The redshift bins have bounds (zj,min, zj,max) and
the magnitude bins (mk,min, mk,max). This model does not formally
require the bins to be contiguous or of equal size, but they should
not overlap. In practice they should simply tile the redshift and mag-
nitude ranges of interest and we will adopt contiguous, equal-size,
bins so that the histogram can be interpreted as a piecewise constant
approximation of p(t, z, m), such that

fijk ≡
∫ zj,max

zj,min

∫ mk,max

mk,min

p(ti , z, m) dz dm. (2)

An example of this 3D histogram representation with Nt = 3
and Nz = Nm = 15 is shown in Fig. 1. It is constructed from
the priors p(t, z, m) implemented in the BPZ code, which are
parametrized with p(t|m) = ftexp [ − kt(m − 20)] and p(z|t, m) ∝
zαt exp{−[z/zmt (m)]αt }. The parameters ft, kt, zmt and αt are taken
from table 1 of Benitez (2000) and correspond to the E/S0, Sbc, and
Irr templates from Coleman et al. (1980), shown in Fig. 2. In what
follows we will sometimes refer to the type-redshift and redshift
distributions (with other parameters marginalized over); these can
be written as p(t, z|{∑kfijk}) and p(z|{∑ikfijk}), respectively.

3 IN F E R E N C E M E T H O D O L O G Y

We now turn to the problem of inferring the parameters {fijk} from
a set of Ngal galaxies, the properties of which are denoted by {tg,
zg, mg} with g ∈ {1, . . . , Ngal}. We first consider the ‘noiseless’
case where these properties are assumed to be known for all objects
(Section 3.1) before treating the more general case where the indi-
vidual galaxies’ properties must be inferred simultaneously with the
distributions of interest from noisy photometric data (Section 3.2).
In both cases we use a uniform (maximally uninformative) prior on
the coefficients {fijk}, i.e. subject to the constraints 0 ≤ fijk ≤ 1 for
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Figure 1. Marginal and conditional distributions describing the binned ver-
sions of the target distribution p(t, z, m), parametrized by {fijk}. We aim to
estimate these distributions using noisy photometric observations.

Figure 2. Galaxy spectral energy distributions and filter response curves
used in this work. The spectral templates are taken from Coleman et al.
(1980) and are normalized to 1 at λ = 7500 Å. The filters are the SDSS
ugriz photometric bands (Fukugita et al. 1996).

all ijk and
∑

ijk fijk = 1, which is a Dirichlet distribution, given by

p({fijk}) = (Nt Nz Nm − 1)! δD

⎛
⎝1 −

∑
ijk

fijk

⎞
⎠

×
Nt∏
i=1

Nz∏
j=1

Nm∏
k=1

�(fijk), (3)

where δD(x) is the Dirac delta function. A summary of our notation
is provided in Table 1.

Table 1. Summary of our notation.

z Redshift
m Apparent magnitude in the reference band
i Index of galaxy type ti
j Index of redshift bin with bounds (zj,min, zj,max)
k Index of magnitude bin with bounds (mk,min, mk,max)
Nt Number of types
Nz Number of redshift bins
Nm Number of magnitude bins
g Index of galaxy
Ngal Total number of galaxies in the sample
nijk Galaxy count in the ijk-th type-redshift-magnitude bin
{nijk} Set of all galaxy counts nijk, summing to Ngal

fijk Fractional galaxy count in the ijk-th bin
{fijk} Set of all fractional bin counts fijk, summing to 1
zg, tg, mg Properties of the gth galaxy
{zg, tg, mg} Set of properties of all galaxies in the sample
Lν, t Spectral template of the type t
b Index of photometric band
Nb Number of photometric bands
Wb b-th photometric filter
Fb(t, z) Noiseless photometric flux (type t, redshift z, band b)
{F̂b}g Nb observed photometric fluxes of the gth galaxy
{F̂b,g} Observed photometric fluxes for all Ngal galaxies

3.1 Noiseless case

In the noiseless case a set of sufficient statistics for the full list of
galaxy properties, {tg, zg, mg}, is the numbers in each of the type,
redshift and magnitude bins, which is given by

nijk =
∑

g

δK
tg ,ti

�(zg − zj,min) �(zj,max − zg)

× �(mg − mk,min) �(mk,max − mg). (4)

The likelihood of the binned data is given by a multinomial distri-
bution,

p({nijk}|{fijk}) = Ngal!
Nt∏
i=1

Nz∏
j=1

Nm∏
k=1

f
nijk

ijk

nijk!
. (5)

Combining the above prior and likelihood leads to a posterior that,
like the prior, is a Dirichlet distribution, which reads

p({fijk}|{nijk})

= (Ngal + Nt Nz Nm − 1)! δD

⎛
⎝1 −

∑
ijk

fijk

⎞
⎠

×
Nt∏
i=1

Nz∏
j=1

Nm∏
k=1

�(fijk) f
nijk

ijk

nijk!
. (6)

Thus, inferring the parameters {fijk} when the types, redshifts and
magnitudes of the sources are known is possible, thanks to the an-
alytic posterior distribution that only requires the bin counts {nijk}.
Before we map this formalism to photometric galaxy survey obser-
vations, we make three important remarks.

First, in the limit of uncorrelated bins and large bin counts {nijk},
the marginalized mean and variance on fijk both reduce to nijk/Ngal,
which is the classical approximate histogram estimator. However,
this estimator fails in the regime of strong inter-bin correlations or
quasi-empty bins. This is illustrated in Appendix A.

Second, the equations of this section imply an important prop-
erty of the Dirichlet model: it is agnostic to the nature of the bins,
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i.e. to their size or physical interpretation. These are only needed
for the calculation of the number counts nijk. This is a manifes-
tation of the categorical nature of the model: objects drawn from
N categories follow a multinomial distribution, and the posterior
distribution on its parameters is a Dirichlet distribution. In prac-
tice, the only consequence of this property is the insensitivity of the
model to the nature of the binning or the order of the labelling ijk,
as all the previous equations could have been casted with a unique
categorical label � ≡ ijk. The Dirichlet posterior would then read
p({f�}|{n�}) ∝ ∏

� f
n�
� /n�!. Yet, the explicit three-dimensional for-

malism above will prove essential for the clarity of Section 3.2,
where types, redshifts and magnitudes are distinct physical quanti-
ties in the hierarchical model, and are marginalized over separately.

Third, prior knowledge about the correlations between bins can be
incorporated by considering a prior p({fijk}) following a generalized
Dirichlet distribution. In this case, the posterior distribution on {fijk}
is also a generalized Dirichlet distribution, and the model is no
longer agnostic to the nature and order of the bins. We do not
consider this case in this paper but we highlight that this extension
does not affect the methods presented below. In particular, in the
limit of a large number of galaxies or weak priors on the inter-
bin correlations the generalized Dirichlet distribution reduces to a
standard Dirichlet case.

3.2 Inference using photometric data

In this section we no longer assume that the types, redshifts and
magnitudes of the objects are known. These must now be inferred
simultaneously with the underlying distributions, using only noisy
photometric observations.

3.2.1 Likelihood

In imaging surveys, the main observable1 is the photon flux mea-
sured in Nb bands indexed by b = 1, . . . , Nb,

Fb(t, z) = 1 + z

4πD2
L(z)

∫ ∞

0

dν

ν
Lν,t [ν(1 + z)] Wb(ν), (7)

where Lν,t(ν) is the rest-frame luminosity density of the extragalac-
tic source of type t as a function of frequency ν (see e.g. Hogg
et al. 2002). Wb(ν) are functions characterizing the response of the
photometric filters. Fig. 2 shows the three spectral templates as well
as the photometric filters used in this paper. The templates are the
E/S0, Sbc, and Irr templates from Coleman et al. (1980) as pack-
aged by BPZ (Benitez 2000), while the filters are the SDSS ugriz
photometric bands (Fukugita et al. 1996) including the effects of
extinction and airmass.2 Magnitudes in the AB system are related
to flux densities via

mb(t, z) = −2.5 log

[
Fb(t, z)∫

gν(ν) Wb(ν) dν/ν

]
, (8)

with gν(ν) = 3631 Jy. Finally, we take the reference magnitude m
to be the i band magnitude.

1 Morphological information about sources is also potentially important: it
enables numerous cosmological studies and improves the quality of star–
galaxy separation and redshift estimation. However, we focus on magnitude
information here in order to exploit widely used libraries of spectral tem-
plates, which typically do not use morphological information.
2 http://classic.sdss.org/dr7/instruments/imager

Figure 3. Tracks of the three templates shown in Fig. 2 in the space of
SDSS colours as a function of redshift.

Figure 4. Graphical representation of the hierarchical model, following the
notation summarized in Table 1. Dots, circles and shaded circles indicate
fixed quantities, parameters to be inferred, and observed quantities, respec-
tively. Arrows express dependence and boxes replication. Ngal galaxies with
fluxes measured in Nb photometric bands are modelled using a set of Nt

spectral templates Lν,ti (ν). The distribution of the intrinsic galaxy proper-
ties (type, redshift, and magnitude in the reference band) is parametrized
with {fijk}.

For a given galaxy g, noisy measurements of its photometric
fluxes are available,

{F̂b}g = (F̂1,g, . . . , F̂Nb,g), (9)

with errors σF̂1,g
, . . . , σF̂Nb,g

. We define a multidimensional Gaus-
sian likelihood function in flux space,

p({F̂b}g|t, z, m) =
Nb∏
b=1

N
[
Fb(t, z); aF̂b,g, σ

2
F̂b,g

]
, (10)

whereN (x; μ, σ 2) denotes the standard normal distribution of mean
μ and variance σ 2, evaluated at x. Note that this likelihood does not
depend on m, and that a is the (arbitrary) template normalization,
which we marginalize over analytically following Benitez (2000).
A different form could be adopted (e.g.in colour space, provided
the correlations between colours sharing a common band was in-
corporated), with no impact on the methods and conclusions of this
paper.

As each spectral template Lν,t is redshifted and integrated in
the photometric bands, it forms a set of tracks in flux–redshift or
colour–redshift space, shown in Fig. 3 for the templates and filters
considered here.

3.2.2 Efficient parameter inference

The population model and the flux–redshift likelihood can be com-
bined into the hierarchical model shown in Fig. 4. The observed
quantities of this model are the set of Nb × Ngal fluxes, denoted by
{F̂b,g}. The parameters of interest are the Ngal triplets of intrinsic
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parameters {tg, zg, mg} as well as the population parameters {fijk}.
The full, joint posterior distribution on these parameters reads

p({tg, zg, mg}, {fijk} | {F̂b,g})

∝ p({fijk})
Ngal∏
g=1

p({F̂b}g|zg, tg,mg) p(zg, tg,mg|{fijk}). (11)

Unlike the noise-free case of the previous section, the implied
normalized posterior does not have an analytic form.

It is possible to directly draw samples from this posterior using a
two-step Gibbs sampler because the conditional posterior distribu-
tions can be easily sampled. At a given Gibbs iteration, a sample of
{fijk} is drawn from p({fijk}|{tg, zg, mg}, {F̂b,g}). The latter follows
the Dirichlet model of equation (6), where the number counts {nijk}
are calculated from the triplets {tg, zg, mg} of the previous Gibbs
iteration. Then, {tg, zg, mg} are updated using the newly drawn
{fijk} by looping over galaxies and updating each triplet (tg, zg, mg)
using

p(t, z, m|{fijk}, {F̂b}g)

=
∑
ijk

fijk × p({F̂b}g|t, z, m)

(zj,max − zj,min)(mk,max − mk,min)

× δK
t,ti

× �(z − zj,min)�(zj,max − z)

× �(m − mk,min)�(mk,max − m). (12)

As for a classical Gibbs sampler, alternately drawing {fijk} and
{tg, zg, mg} from the previous conditional distributions allows one
to explore the full joint posterior distribution of interest.

If one is not interested in the properties of individual galaxies
{tg, zg, mg}, but only in their distributions described by {fijk}, then
a significant speed up can be achieved by binning p({F̂b}g|t, z, m)
in the second step of the Gibbs sampler, i.e. by using a binned
likelihood

p({F̂b}g|ijk) =
∫ zj,max

zj,min

∫ mk,max

mk,min

p({F̂b}g|ti , z, m) dm dz. (13)

This is because the Dirichlet model only requires the bin counts
{nijk}, and those can be updated directly by drawing bin locations ijk
from the binned likelihood p({F̂b}g|ijk), bypassing the parameters
{tg, zg, mg}.

4 SELECTION EFFECTS, REDSHIFT
TO M O G R A P H Y

4.1 Background

One interesting extension of the formalism presented above is the
inclusion of selection effects. An example common to all photomet-
ric surveys is the existence of a detection probability characterizing
how objects have been added to the sample (including the com-
pleteness of the survey) for which the redshift distribution must be
estimated. In the example presented in Section 5, we will include
this effect via a magnitude limit in the reference band (magnitude
limits are not applied to the other bands). This is directly captured
by our formalism because the reference magnitude itself is a di-
mension of the distribution p(t, z, m) and thus parametrized by
{fijk}. However, any selection effects not directly involving type,
redshift or reference magnitude will not be captured in the previous
formalism.

A concrete example is the introduction of a second magnitude
limit in another band, which would occur if galaxies had to be
simultaneously detected in two bands in order to be retained in
the sample. This selection effect would naturally get imprinted in
the redshift distributions in a non-trivial way (correlated with type,
redshift and reference magnitude). Another common example is
the splitting of a main galaxy catalogue into redshift bins, which
is of interest to study the redshift evolution of galaxy clustering or
cosmic shear observables (e.g. Benjamin et al. 2013; Bonnett et al.
2015; Crocce et al. 2015; Leistedt et al. 2015). In this section we
show how to deal with such survey-related selection effects.

4.2 General framework

In our hierarchical model, an extra parameter per object must be
introduced to support selection effects in general. We denote this
parameter by s, and without loss of generality assume that it depends
on the observed fluxes {F̂b}. Our distributions and observations are
now conditioned on s, and the full posterior distribution is

p({tg, zg, mg}, {fijk} | {F̂b,g}, {sg})

∝
Ngal∏
g=1

p({F̂b}g|zg, tg, mg, sg) p(zg, tg, mg|{fijk}, sg) p({fijk}|sg).

(14)

The motivation for adopting this form is the following: s indicates
whether or not an object is included in the sample of interest. All
objects in the sample have the same value of s. Therefore, we are
truly interested in inferring the parameters {fijk} describing p(t, z,
m|{fijk}, s), which is modelled as a piecewise function as above.
In other words, the formalism of the previous sections can be used
to estimate {fijk} with no other changes than using the modified
likelihood function p({F̂b}|z, t,m, s). The latter can be expressed
in terms of our original likelihood via

p({F̂b}|s, t, z, m) = p({F̂b}|t, z, m) p(s|{F̂b})
p(s|t, z, m)

, (15)

where we have omitted the g subscripts for conciseness. The first
term of the numerator is the original flux–redshift likelihood, while
the second term describes the selection effect under consideration.
The denominator can be expressed as a marginalization over possi-
ble fluxes of these two terms,

p(s|t, z, m) =
∫

p(s|{F̂b}) p({F̂b}|t, z, m) dF̂1 . . . dF̂Nb
. (16)

Carrying out the inference with p({F̂b}|s, t, z, m) instead of
p({F̂b}|t, z, m) will produce posterior distributions on the parame-
ters {fijk} that describe p(t, z, m|{fijk}, s), the distribution of interest
with the selection effect included.

4.3 Illustration

In order to understand the effect on our likelihood and gain intuition
we now consider a simplified example. Let us assume that instead of
observing fluxes {F̂b}, we were directly observing a noisy redshift
estimate ẑ with error function p(ẑ|z) = N (z; ẑ, σ 2

ẑ ).
Further, our selection effect is to retain objects for which ẑ is in

some range [zmin, zmax]. In other words we have the top hat function

p(s|ẑ) = �(ẑ − zmin) �(zmax − ẑ). (17)
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Figure 5. Type-redshift distributions with marginalization over the reference magnitude. The solid lines show the input true distributions while the distributions
obtained with the inferred parameters fijk are shown as violin plots, i.e. box plots whose profiles represent the distribution of parameter values. The bottom
panels show the difference and demonstrate that the model not only recovers the input distributions but also provides meaningful error bars. This is illustrated
in further detail in Fig. 6.

Using the previous expressions, our likelihood function condi-
tioned on s reads

p(ẑ|s, z) = p(s|ẑ) p(ẑ|z)

p(s|z)
, (18)

with

p(s|z) =
∫

p(s|ẑ) p(ẑ|z) dẑ. (19)

Importantly, because N (z; ẑ, σ 2
ẑ ) = N (z − ẑ; 0, σ 2

ẑ ), we can also
write p(s|z) as a simple convolution of the selection effect with our
error function. In our case this is a top hat smoothed with a Gaussian
error function.

Returning to working with fluxes {F̂b}, since our likelihood is
a multidimensional Gaussian the distribution p(s|t, z, m) can also
be seen as a multidimensional convolution. The main difference is
that p(s|{F̂b}) may take a more complicated form than a top hat.
In particular, the case of redshift tomography can be implemented
by selecting galaxies whose maximum likelihood redshift estimate,
denoted by zML({F̂b}), is in a range [zmin, zmax]. In this case we
have

p(s|{F̂b}) = �[zML({F̂b}) − zmin] �[zmax − zML({F̂b})]. (20)

As a result, p(s|t, z, m) is a multidimensional convolution of the
Gaussian likelihood function with a complicated domain defined by
p(s|{F̂b}). However, depending on the form of the selection effect
and the likelihood function, it might also be possible to draw from
p({F̂b}|s, t, z, m) directly. Both p(s|t, z, m) and p({F̂b}|s, t, z, m)
can be pre-computed for each object prior to inferring the distribu-
tion parameters {fijk}.

5 D E M O N S T R AT I O N O N SI M U L AT I O N S

We now present an illustration of our methodology on simulations
of photometric data. Because they do not affect the features of our
method, we adopt simple galaxy and noise distributions and do not
include selection effects other than a single magnitude limit in the
reference band.

We start by drawing Ngal = 104 i-band magnitudes from a realistic
magnitude distribution p(m) with a 5σ magnitude limit of 24, which
is shown in the top right panel of Fig. 1. This is achieved by drawing
a large number of objects according to p(m) ∝ exp (m), then adding
Gaussian noise and only retaining the first Ngal objects detected at

more than 5σ significance. In this work we use the noise law of
Rykoff, Rozo & Keisler (2015) for all bands. The latter reads

σ (m) = 2.5

ln 10

√(
1 + Fnoise

F (m)

)
1

F (m)teff
, (21)

with Fnoise = teffF2(mlim)/25 − F(mlim) and teff = exp (a +
b(mlim − 21)). We take a = 4.56 and b = 1. F(m) simply de-
notes a conversion from magnitude to fluxes. We then draw the
types and redshifts from the multidimensional histogram shown in
the other panels of Fig. 1. As emphasized previously, the latter is
a binned version of the continuous prior distributions implemented
in BPZ. For each object, we use the spectral template and the filters
from Fig. 2 to compute the other four magnitudes ugrz, and also
add noise. These steps provide us with a set of noisy photometric
fluxes following the distributions of interest. We now demonstrate
that using the method presented above we recover the input distri-
butions as well as the individual redshifts and types of galaxies in
this simulated photometric catalogue.

We run the Gibbs sampler3 and obtain samples from the posterior
distribution p({tg, zg, mg}, {fijk} | {F̂b,g}). Drawing 104 samples
takes about 10 min using a laptop equipped with a 2.8 GHz Intel
Core i7 processor.

Fig. 5 shows the distributions of type and redshift (with the ref-
erence magnitude marginalized over) obtained with samples {fijk}
from the full posterior distribution. For comparison, the stacked
likelihood functions of all objects (summed over types and magni-
tudes) are also shown. The redshift distributions of the three types
are successfully recovered with meaningful uncertainties. As ob-
served in this figure and confirmed by the left-hand panels of Fig. 7,
the likelihoods distributions are broad and multimodal, demonstrat-
ing that stacking them does not yield a meaningful estimate of the
distributions of interest. This is a well-known drawback of template-
fitting photometric redshift estimation methods: strong distribution
priors p(z, t, m) are usually required to deliver reliable redshift
estimates (see e.g. Hildebrandt et al. 2012; Benjamin et al. 2013;
Bonnett et al. 2015). This is naturally alleviated in our Bayesian
hierarchical model, and the mechanism by which the secondary

3 The sampler is initialized at a raw histogram of the maximum likelihood
redshifts of the individual objects. In all our tests the sampler converged
very quickly and the initialization did not impact the final results.
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Figure 6. Posterior distributions on the fractional count parameters gj = ∑
ikfijk, i.e. on the type-redshift-magnitude parameters fijk with marginalization over

type and magnitude. The top right panel shows the resulting redshift distributions, with the violin plots illustrating how parameter uncertainties propagate
into the redshift distribution estimates. Adjacent bins are significantly anti-correlated, as expected from a Dirichlet model properly harnessing the individual
likelihoods. The red contours show the posterior distributions on the same parameters from a noise-free case, i.e. a standard Dirichlet model where the types,
redshifts and magnitudes of all objects are known.

peaks are suppressed is illustrated in a simplified setting in Ap-
pendix B.

Fig. 6 offers a closer look at the posterior distributions on the
overall fractional counts in the redshift bins of the model, i.e. on
the parameters gj = ∑

ik fijk which describe the overall redshift
distribution of the sample. As expected, adjacent bins are signifi-
cantly (anti)correlated, and correlation strength decreases with the
separation between bins. Anti-correlation is a feature of the Dirich-
let model but is significantly enhanced in our model due to the
large support of the individual likelihoods. For comparison, the red
contours show a noise-free inference, i.e. samples from a simple
Dirichlet model where the number counts are calculated from the
true redshifts, types and magnitudes of our simulated catalogue.

The contours are much smaller and exhibit smaller correlations,
supporting the previous argument.

Fig. 7 shows the result of the our parameter inference on the red-
shift and type estimates of three randomly chosen individual objects
(one per type). The left-hand panels highlight the typical problem
of redshift estimation using photometric data: the likelihood func-
tions are multimodal in both redshift and type. The right-hand panels
show the maximum a posteriori distributions on type and redshift re-
sulting from constraining the parameters of our hierarchical model.
Some of the degeneracies are removed; for example, secondary
lobes at high redshift, which are clearly disfavoured by the inferred
distributions shown in Fig. 5, have been removed. This demon-
strates that the uncertainties in the individual redshifts and types are
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Hierarchical inference of galaxy redshifts 4265

Figure 7. Likelihood functions and posterior distributions for three objects
from our simulation – one of each type. The dashed vertical lines show
the true redshift. Inferring the individual types and redshifts as well as
their underlying population removes some of the strong degeneracies and
secondary peaks in the flux–redshift likelihood function.

significantly reduced by including distribution information. Impor-
tantly, this new method inferred these redshift distributions directly
from the data and propagated their uncertainties into the individual
redshift and type estimates. This feature of the hierarchical models
is sometimes referred to as ‘Bayesian shrinkage’ as explained in
more detail in Appendix B.

6 C O N C L U S I O N S

Current methods for estimating redshift distributions rely on stack-
ing the posterior probability distributions on the individual redshifts
of galaxies. These are typically obtained via template-fitting or ma-
chine learning techniques, and are sensitive to the available priors
and training sets (e.g. Hildebrandt et al. 2012; Dahlen et al. 2013;
Bonnett et al. 2015). The method we presented in this paper is the
first to simultaneously infer the redshift distributions and individual
redshifts of galaxies from noisy photometric flux measurements.

This new approach can be seen as a generalization of template-
fitting methods and has several advantages over existing frame-
works. Simultaneously inferring individual redshifts and redshift
distributions alleviates the sensitivity to external priors. In addition,
the histogram representation of the distributions is very flexible and
can represent a range of distributions, capturing features compara-
ble to the bin size. Its relation to the Dirichlet distribution allowed
us to design a Gibbs sampling scheme to efficiently infer all the
parameters of the model. Any library of spectral templates could
be used in this framework to model the flux–redshift relation. In
fact, multiple libraries could be used jointly since any degenera-
cies between the parameters will be inferred correctly, even with
highly correlated templates. We have also shown that the inclusion
of selection effects such as redshift tomography cuts only affects
the likelihood function, not the inference technique.

Our technique provides samples of the posterior distributions
on redshift distributions. These samples can be jointly used with
galaxy clustering or cosmic shear likelihood functions. Therefore,

our method is the first to consistently exploit spectral templates and
provide a way to self-consistently propagate redshift uncertainties in
cosmological analyses, which is essential for obtaining meaningful
results from ongoing and upcoming photometric surveys.

Our hierarchical model can be extended in various ways to in-
clude other physical effects of interest. It could exploit more com-
plicated likelihood functions, for example including combinations
of templates and marginalization of extra nuisance parameters such
as magnitude zero-points. It could also be interfaced with exist-
ing probabilistic approaches for analysing galaxy surveys, such as
Bayesian methods for reconstructing the matter density field (e.g.
Jasche & Kitaura 2010; Jasche & Wandelt 2013a) and inferring
galaxy clustering or cosmic shear power spectra (e.g. Jasche &
Wandelt 2013b; Alsing et al. 2016), which do not typically infer
redshifts from noisy photometric fluxes. Together, these probabilis-
tic techniques have the potential to unlock the true potential of
galaxy surveys by extracting cosmological information while fully
accounting for all uncertainties.
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APPENDIX A : G AU SSIAN APPROX IMATIO N

One of the most common estimators for binned distributions and
histograms assumes that the bins are uncorrelated and that the pos-
terior distributions on the fractional count parameters are Gaussian.
For the parameters considered in this paper, this can be written as

p({fijk}|{nijk}) =
∏
ijk

p(fijk|nijk) =
∏
ijk

N
(

fijk;
nijk

Ngal
,

nijk

Ngal

)
.

(A1)

This form is an approximation of the Dirichlet distribution, which
is the correct posterior distribution for histograms. This approxi-
mation is accurate in the limit of large, uncorrelated counts nijk.
However, it fails to capture inter-bin correlations. In addition, for
low values of nijk the posterior distribution yields negative values
for fijk, which violates the model assumptions since the fractional
counts fijk must be positive and sum to 1. We highlight these prob-
lems using the illustration of Section 5: Fig. A1 shows the posterior
distributions on the last two parameters of the second type-redshift
distributions of Fig. 5. The correct Dirichlet posterior distributions
in both the noiseless and noisy cases are strictly positive. They do
not encompass the true values (which are very close to zero) which
is a feature of the Dirichlet distribution in this regime. The blue
lines of Fig. A1 show the result of approximating the Dirichlet pos-
terior distribution with a multivariate Gaussian distribution with the
same mean and diagonal covariance (but no inter-bin correlations).
This is similar to what would be obtained by using equation (A1) in
place of the Dirichlet distribution in our hierarchical model applied
to noisy photometric data. This approximation significantly goes to
negative values of fijk and fails to capture the inter-bin correlations.
This highlights the need to employ the correct Dirichlet distribu-
tion when inferring the parameters of a binned distribution or a
histogram.

A P P E N D I X B : SU P P R E S S I O N O F S E C O N DA RY
RE DSHIFT PEAKS

One important aspect of the method presented here for inferring
redshift distributions is that the secondary peaks in the likelihood of

Figure A1. Posterior distributions on the parameters gij = ∑
k fijk describ-

ing the second type-redshift distributions shown in Fig. 5.

some galaxies are strongly suppressed in the final inferred redshift
distribution. This is seen most clearly in the left-hand panel of Fig. 5:
the peak in the stacked likelihoods at z � 2.4 is completely absent in
the redshift distribution as obtained from the Bayesian hierarchical
model. The complete absence of any peak associated with these
high likelihoods is perhaps counterintuitive – a model with two
differently weighted redshift peaks would surely be reasonable? –
but the process by which these peaks are suppressed can be seen
explicitly by considering a greatly simplified version of the full
problem.

The aim, as in Section 2, is to infer the redshift distribution,
p(z|galaxy) of a population of galaxies, but here only from a re-
stricted sample of galaxies with strongly bimodal likelihoods. Fol-
lowing equation (1), the redshift distribution is modelled as being
piece-wise constant, so that

p(z|galaxy) =
M∑

j=1

�(z − zj,min) �(zj,max − z)

zj,max − zj,min
fj , (B1)

where zj + 1,min = zj,max for 1 ≤ j ≤ M − 1 (i.e. the bins are contigu-
ous) and fj is the fraction of galaxies in the jth bin.

The data consist of a sample of Ngal very similar galaxies, indexed
by g ∈ {1, 2, . . . , Ngal}, with photometric data dg that in all cases
leads to a bimodal likelihood of the form

p(dg|zg) = LA δD(z − zA) + LB δD(z − zB ), (B2)

where LA, LB, zA and zB all determined by dg. In other words, the
photometric data for all of these Ngal galaxies are consistent with
one of two redshifts, much as is the case for the galaxy whose
likelihood is plotted in the top-left panel of Fig. 7.

These galaxies can only contribute to the two bins jA (for which
zjA,min ≤ zA ≤ zjA,max) and jB (for which zjB ,min ≤ zB ≤ zjB ,max); it
is assumed that the two redshifts are sufficiently separated that jA

	= jB. Hence in analysing this sample of Ngal galaxies fj will be zero
for all the other bins and so it is only fjA

and fjB
which need to

be inferred here. Moreover, fjB
= 1 − fjA

, so that fjA
is the only

independent population-level parameter.
Taking the prior on fjA

as uniform between 0 and 1 (a special
case of the Dirichlet distribution used as the prior in equation 3),
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Figure B1. Left: posterior distribution on fjA
given in equation (B5) for various values of Ngal and LA (with fjB = 1 − fjA

and LB = 1 − LA). Right: value
of pA, the probability that a given galaxy is at zA. These highlight how small deviations from LA = LB in the likelihood of individual galaxies are amplified in
the posterior distributions on pA and pB and on the population parameters fjA

and fjB
. This is an illustration of the ‘(Bayesian) shrinkage’ that occurs in the

context of hierarchical models.

the joint prior on fjA
and the Ngal redshifts {zg} of the galaxies is

p(fjA
, {zg}|galaxy) = �(fjA

) �(1 − fjA
)

×
Ngal∏
g=1

[
�(zg − zjA,min) �(zjA,max − zg)

zjA,max − zjA,min
fjA

+ �(zg − zjB ,min) �(zjB ,max − zg)

zjB ,max − zjB ,min
(1 − fjA

)

]
. (B3)

Combining this prior with the likelihood given in equation (B2)
leads to the full posterior

p(fjA
, {zg}|{dg}, galaxy) = �(fjA

) �(1 − fjA
)(Ngal + 1)

×
∏Ngal

g=1

[
fjA

LA δD(zg − zA) + (1 − fjA
) LB δD(zg − zB )

]
∑Ngal

g=0 L
g
A L

Ngal−g

B

.

(B4)

Integrating the posterior over the Ngal redshifts yields the marginal
posterior distribution in fjA

as

p(fjA
|{dg}, galaxy) = �(fjA

) �(1 − fjA
)

×
∑Ngal

g=0
(Ngal+1)!

g! (Ngal−g)! (fjA
LA)g [(1 − fjA

) LB ]Ngal−g

∑Ngal
g=0 L

g
A L

Ngal−g

B

.

(B5)

Some examples of this posterior for different Ngal, LA and LB are
shown in the left-hand panel of Fig. B1. If LA = LB this posterior
is uniform between fjA

= 0 and fjA
= 1, which is the same as the

prior – the data provide no reason to prefer either option, no matter
how many galaxies are in the sample. Otherwise, taking LA > LB

(without loss of generality, as the labels are arbitrary), the posterior
mode is fjA

= 1, even with just one galaxy in the sample. The
posterior becomes increasingly sharply peaked with increasing Ngal

even if LA is only marginally greater than LB. Provided only that
LA > LB, limNgal→∞ p(fjA

|{dg}, galaxy) = δD(fjA
− 1).

One result of the potentially sharp posterior in fjA
for large Ngal

is that the posterior distributions of the redshift of the individual
galaxies (which are all the same) can be very different from their
associated likelihoods. Integrating over fjA

and Ngal − 1 galaxy
redshifts (and hence assuming that Ngal ≥ 1) yields the marginal
posterior distribution on the redshift of any one of the Ngal galaxies
as

p(zg|{dg}, galaxy) = pA δD(zg − zA) + pB δD(zg − zB ), (B6)

where

pA =
∑Ngal−1

g=0 (g + 1) L
g+1
A L

Ngal−1−g

B

Ngal
∑Ngal

g=0 L
g
A L

Ngal−g

B

(B7)

and

pB =
∑Ngal−1

g=0 (g + 1) L
Ngal−1−g

A L
g+1
B

Ngal
∑Ngal

g=0 L
g
A L

Ngal−g

B

(B8)

are, respectively, the probabilities that the galaxy is at zA and zB.
In the case that Ngal = 1 this result reduces to pA = LA/(LA + LB)
and pB = LB/(LA + LB), and if LA = LB then pA = pB = 1/2.
Otherwise (and once again adopting LA > LB), pA increases with
LA and Ngal, as illustrated in the right-hand panel of Fig. B1. Of
particular interest is the case that LA is only a little higher than LB

but Ngal is high: the galaxy is almost certainly at zB, despite the
observed data on this particular object being ambiguous. This is
an example of ‘borrowing strength’ or ‘(Bayesian) shrinkage’, in
which most of the information about an individual object comes
from the population of which it is a member.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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