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Disordered actomyosin networks are sufficient to
produce cooperative and telescopic contractility
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While the molecular interactions between individual myosin motors and F-actin are well
established, the relationship between F-actin organization and actomyosin forces remains
poorly understood. Here we explore the accumulation of myosin-induced stresses within a
two-dimensional biomimetic model of the disordered actomyosin cytoskeleton, where myosin
activity is controlled spatiotemporally using light. By controlling the geometry and the
duration of myosin activation, we show that contraction of disordered actin networks is
highly cooperative, telescopic with the activation size, and capable of generating non-uniform
patterns of mechanical stress. We quantitatively reproduce these collective biomimetic
properties using an isotropic active gel model of the actomyosin cytoskeleton, and explore
the physical origins of telescopic contractility in disordered networks using agent-based
simulations.
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he generation of mechanical forces in cells is mediated b?l

the diverse architectures of the actomyosin cytoskeleton'.

In non-adherent cells, the cytoskeleton is organized into
the cortex, a thin disordered F-actin network beneath the plasma
membrane?. The cytoskeleton in adherent cells also includes
stress fibres which are spatially and temporally organized across
the cell®. Stress fibres couple the actomyosin network to the
extracellular matrix (ECM) via adhesions, and are thought to be
the main contractile elements in the network®°. Myosin-driven
contractility produces retrograde flow of the cytoskeletal network
from the cell edge towards the cell centre. As a result, the traction
stresses applied to the ECM accumulate at the cell periphery®”’,
and the total work done by the cell scales with the spread
area®~!1. While this pattern of stress distribution is typically
thought to be dependent upon the activity of stress fibres,
previous reports have suggested that large traction stresses can be
produced in the absence of a highly aligned and organized F-actin
cytoskeleton!2"1°, Furthermore, physical models have proposed
that disordered actomyosin networks contract'®!® and are
sufficient to quantitatively reproduce the pattern of traction
stresses observed in cells'"!?. Thus, as F-actin organization is
poorly manipulated in living cells, it is unclear how the
organization of the F-actin cytoskeleton relates to the
magnitude or dynamics of actomyosin contractility and stress
generation.

In vitro model systems reconstituted from purified proteins
have become a paradigm for studying cytoskeletal dynamics
by enabling control over cytoskeletal organization and
composition?28, As non-equilibrium active matter?, these
materials display novel collective dynamics including
spontaneous flow, swirling waves, self-healing and topological
defect dynamics?>?73%31, However, comparing the dynamics
of in vitro networks with the dynamics of the cell cytoskeleton
has proved difficult, due to limited in vitro spatiotemporal
control of activity. While cells precisely coordinate their
mechanical activity in space and time, in vitro networks have
so far been uniformly active.

To explore the accumulation and transmission of
myosin-induced mechanical stresses in disordered F-actin
networks, we have developed a novel assay (Methods) where
myosin II activity is controlled in space and time within a
previously established biomimetic model of the cell cortex
(Fig. 1a,b)?®32. In our model, the actomyosin cytoskeleton is
disordered in F-actin polarity, orientation and length (Fig. 1c-e).
By altering the area of myosin activation with light from 25 pm?
to over 1,000 um?, we can quantitatively measure the structure
and dynamics of F-actin contraction from subcellular to cellular
length scales (Fig. 1f). We find that contractility is highly
cooperative, that the velocity of contraction scales with the size of
the region of activation (that is, behaves telescopically), and that
the peak velocity is predominantly localized at the periphery of
the active region. Using mechanical force balance and exploiting
the radial symmetry of contraction, we can calculate the
spatial distribution of contractile stresses. We show that the
resultant pattern of stress generation is consistent with that
measured in contractile cells and cell layers. By developing a
minimal mechanical model of disordered actomyosin as a
viscoelastic active gel, we further show that the observed
pattern of contraction arises from a trade-off between active
and viscoelastic stresses in the actomyosin network. Using
agent-based simulations, we then explore the molecular
mechanisms that underlie F-actin contractility in disordered
networks. Together our experimental data and theoretical/
computational modelling establish that disordered F-actin
networks alone can qualitatively reproduce the dynamics of
contractile behaviour observed in cells.

Results

Uniform myosin activation generates localized flows. Upon
illumination with 405nm light, myosin activity initiates F-actin
flow within the activation region (Fig. 2a, Supplementary
Movie 1), whose direction and magnitude is quantified by
measuring the F-actin velocity field (Fig. 2b, Methods and
Supplementary Methods). The divergence of the velocity field
becomes negative and reaches a minimum, as the network
becomes maximally contractile (Fig. 2c). The divergence
subsequentlzy increases as the network aggregates as described
previously®%. Thus, the time from initial myosin activation to the
minimum in the divergence characterizes the time of network
contraction?3, as opposed to the coalescence of aggregates®’.

The F-actin flow profile changes in both magnitude and spatial
distribution during contraction. The initial F-actin velocity is
equally radial and tangential, but within 30 s of myosin activation,
it becomes predominantly radial (Fig. 2c¢, inset). Simultaneously,
the F-actin flow changes across the activation region from an
initially uniform spatial profile to being localized at the boundary
of the activation area (r = £) at later times (Fig. 2d). After 30s the
divergence continues to decrease, indicating that the direction of
F-actin flow is stabilized quickly, whereas its magnitude continues
to increase over longer timescales. Consistent with the radial flow
at long times, there is increased radial alignment and nominal
bundling of F-actin (Supplementary Fig. 1).

By making two simple assumptions, we estimate the spatial
distribution of mechanical stresses in the actomyosin network
based on the F-actin velocity profile during contraction
(Supplementary Methods). First, we assume that the gel is
overdamped and exerts frictional forces on the substrate. Second,
we assume that the F-actin deformations, as measured by the flow
field, are radially symmetric, and there is negligible azimuthal
dependence (Fig. 2¢, inset). We make this assumption after ~60's
(and within 300s), once the flow has become pronounced at the
boundaries and tangential flows are suppressed. For non-circular
geometries, there are elevated tangential flows, and these
approximations cannot be made (Supplementary Fig. 2). Thus,
without assuming any mechanical properties of the network,
the predicted distribution of radial stress is found to be largest at
the centre of the activation region and decays outwards towards
the boundary (Fig. 2¢)33-%.

Actomyosin contraction is highly cooperative. To define the
spatial extent and the dynamics of contraction, we evaluate
the motor-induced strain (¢) and the strain rate (de/df) within the
activated region (Supplementary Methods). This yields a strain time
course &(f), which can generally be subdivided into three phases: an
initial lag phase, P1 (0-100s), a linear phase, P2 (100-300s) and a
plateau phase, P3 (>300s) (Fig. 3a). In P1, the velocity has a
significant tangential component (Fig. 2¢, inset), and is therefore
ignored. In P2, the strain is approximately linear with time, and
represents the condensation of the disordered F-actin network. In
P3, the majority of the actomyosin network has aggregated, and
thus is nearing the completion of contraction. Therefore, we use the
slope of the strain curve in P2 to define the strain rate in both
the experiment and the model data, and take the plateau in P3 as
the maximum strain value, &y, (Fig. 3a, Supplementary Fig. 3).
We calculate (de/dt) and &4,, for a wide range of myosin
densities, p (Fig. 3b,c). While we find a linear relationship
between initial myosin density and the strain rate (Fig. 3b), the
relationship between initial myosin thick filament density and
€max displays a highly cooperative behaviour (Fig. 3c). Above a
density p.=0.56 um ~ 2, the network contracts with a high strain
magnitude (6y,,x>1) and that below p., the network reaches a
low level of strain (&, <0.5). Strains can increase beyond one as
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Figure 1 | Blebbistatin inactivation promotes spatiotemporal control of myosin motor activity and F-actin network contractility. (a) Stabilized F-actin
(red), crowded onto a lipid bilayer by methylcellulose (MC), is decorated with myosin (green), which is inhibited by blebbistatin. Light (405 nm) activates
myosin activity (arrows). (b) Images of actin (left), non-muscle myosin Il (right) embedded in 20 pM blebbistatin. Scale bar, 10 um. (¢) Fluorescent F-actin
in blebbistatin-inhibited actomyosin networks. The colour indicates the orientation of F-actin, in two comparative cases, isotropic (left) and aligned (right).
Scale bar, 10 um. (d) Global coherency of F-actin orientation, C, and mean local nematic order parameter, g (N=13) (Supplementary Methods). (e) Length
distribution of F-actin, I, prior to myosin addition (N=100); (f) contraction of F-actin network where myosin is active over entire field of view (left),
blebbistatin is inactivated in a circular central region (middle) and a ring pattern (right). Scale bar, 25 pum.

they represent deformations in both radial and orthoradial
directions, and are augmented by the flow of additional F-actin
into the activation region. To calculate the cooperativity of
this non-linear behaviour, we regress this data against the
Hill equation (Methods), and find an extraordinarily large Hill
coefficient nyy=11. This behaviour is consistent with previous
reports using skeletal muscle myosin that imply there is a
critical stress needed to induce contraction at a fixed F-actin
concentration®2. A critical threshold of myosin concentration
may also suggest a transition in the percolation of actomyosin
forces for p>p. Hereafter, we only consider data under
conditions where p exceeds p..

Disordered actomyosin contraction is telescopic with size.
For p above p., we measured how the myosin-induced F-actin
network strain and the strain rate varied with the radius of

the activation region (Fig. 4a). While maintaining a myosin
concentration above the critical threshold for contraction, we
alter the total amount of active actomyosin by controlling
the radius of the illuminated region. In doing so, we activate
regions of three different circular sizes (mean/s.d.): small
(r=9.0+1.6um, N=9), medium (r=23.1+2.6pum, N=11)
and large (r=37.1132pm, N=4) (Fig. 4b). We find that with
increasing activation radii, there is a decrease in strain from small
to medium size, but no significant changes in the magnitudes of
strain or strain rate from medium to large (Fig. 4c,d).
However, contraction velocity at the boundary of the activation
region, calculated both by PIV (Fig. 4e) and kymograph
analysis (Supplementary Fig. 4), increases with the activation
radius (Supplementary Movie 2). The dependence of the velocity
on the size of the activation radius is similar to the ‘telescopic’
behaviour observed in bundles, where contractile velocity scales
with bundle length?®.
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Figure 2 | Uniform contractility yields elevated boundary flows and accumulation of active stresses. (a) Images of F-actin network 10, 170 and 300s
after the initial inactivation of blebbistatin. Scale bar, 20 um. (b) Particle image velocimetry (PIV) of F-actin velocity field corresponding to images in a taken
over 10 s intervals. The myosin activation area (purple) is a circular region, defined by a radius r=¢&, subject to 405 nm illumination. Vector magnitudes are
normalized across all time points. (¢) Divergence of the F-actin velocity field (dt =10 s) averaged over the activation area. (¢, inset) Radial velocity (blue, v,)
and tangential velocity (orange, v;) averaged over the activation area. (d) Mean velocity as a function of distance from the centre of the activation region,
with positive values reflecting inward motion. (e) Predicted distribution of radial stress during contraction without assuming any materials properties of
actomyosin (Supplementary Methods). Line colours correspond to timescales as indicated in d.

Models of actomyosin network reproduce telescopic behaviour.
To elucidate the physical origins of telescopic contractility, we
developed a minimal mechanical model of disordered actomyosin
as an active viscoelastic gel characterized by a Young’s modulus
E and viscosity 5 (ref. 37), (Methods, Supplementary Notes 1 and
2). An inner domain of size ¢ is populated with active stresses (a,)
within an ambient passive viscoelastic medium (Fig. 5a). The
composite active medium interacts with the surface underneath
through a friction coefficient, {. The time-dependent flows in the
network (Fig. 5b) and the accumulation of mechanical stresses
(Fig. 5¢) and strains are determined by the interplay between
short time viscous dissipation and the rate of active stress
buildup (Supplementary Notes 1 and 2). The long time
behaviour is determined by network elasticity as strain reaches a
plateau (Fig. 3a, Supplementary Fig. 5) and recoils if broken

(Supplementary Fig. 6). The model quantitatively reproduces the
strain, strain-rate and boundary velocity as observed in the
experiment when the active stresses are comparable in magnitude
with the gel elastic modulus. The model predicts that the max-
imum strain (&,,,) and the strain rate (de/dt), spatially averaged
over the activation zone, remain essentially constant, exhibiting a
nominal decrease, while the maximum boundary velocity
increases strongly with the size of the activation region (Fig. 5d-
f), in agreement with our experimental data (Fig. 4). Varying both
network elasticity (Fig. 5d-f) and network viscosity
(Supplementary Fig. 7) alter the slope of the relationship between
activation size and velocity. Our model suggests that stiffening
(increasing E relative to o,) the network can attenuate the
increase in velocity with the total active motor content, although
the linear relationship remains. Through F-actin crosslinking by
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Figure 3 | Actomyosin contractility is highly cooperative. (a) Network strain (¢) time course for low (pmyo=0.37 pm =2y (blue), medium
(Prmyo=0.48 pum~2) (red) and high (Prmyo=1.01 um~2) (orange) myosin density. Three different stages are shown: P1 (<1005s), P2 (100-3005s) and
P3 (>3005s). The strain rate, de/dt is taken at P2. The maximum network strain (enay) is taken at P3. (a, inset) Strain at high myosin concentration in the
agent-based model (Ryy = 0.04, the ratio of myosin concentration to actin concentration). (b) Contractile strain rate as a function of myosin thick filament
density, p. (b, inset) Agent-based simulation of strain rate versus Ry. (€) Maximum contractile strain as a function of p. The red line corresponds to a fit to
the Hill equation, with a hill coefficient (ny) of 11 (Supplementary Methods). The dashed line denotes the critical myosin density, p. = 0.56 um ~ 2, above
which the F-actin networks undergo significant strain (¢max>1). (¢, inset) Agent-based simulation of contractile strain and Ry.
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Figure 4 | Actomyosin contraction is telescopic. (a) Actomyosin network contraction for activation regions of varying size: small (left), medium (middle)
or large (right). Red vectors are boundary velocities at the time point of maximum contraction in each experiment. Scale bar, 25 pm. (b) Average radii of the
activation regions. The error bars (s.d.) correspond to averaging over different illumination regions of slightly different sizes. (¢) The maximum contractile
strain (¢may) for each size of activation region. (d) Strain rate (de/dt) for activation regions. (e) Velocity of contraction measured at the boundary of the

activation region. *P<0.05 and ***P<0.001 by a Student's t-test.

Filamin-A (R = [filamin]/[actin] = 0.035), we bundle F-actin,
and thereby increase the stiffness of the F-actin network®®
(Fig. 5g), we indeed see that the magnitude of the average
strain (Fig. 5h) and strain rate (Fig. 5i) are decreased.

As F-actin bending has been attributed to underlying
contractility in disordered assemblies'®?®, we can use our
agent-based model to test how bending influences telescopic
behaviour (Fig. 6, Methods, Supplementary Notes 3 and 4).
Within the activation region, myosin motors have strong load
dependence (Supplementary Fig. 8), while outside the activation
area the myosin molecules are non-processive. Thus, mechanical
stresses are generated locally within the activation region and

propagate outside the activation area (Supplementary Movie 3),
consistent with our continuum model (Fig. 5, Supplementary
Figs 5, 7 and 9). For F-actin filaments with persistence length of
20 um (Fig. 6a), the contraction at a critical myosin density and
continuous increase in strain rate with myosin density are
consistent with experiment (Fig. 3a—c insets and Supplementary
Fig. 3). Furthermore, contraction in the simulation quantitatively
reproduces the magnitude of the network strain, strain rate, and
boundary velocity distribution as observed in the experiment and
predicted by the continuum model (Fig. 6b-d and Supplementary
Fig. 5). By contrast, for a persistence length of 2.6 mm, the
increase in strain is significantly slower (Fig. 6b), which leads to
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Figure 5 | Minimal physical model of isotropic actomyosin captures telescopic contractile dynamics. (a) Active viscoelastic gel model of a central
contractile core (with stress ,) and surrounded by a non-contractile medium (with Young's modulus E and viscosity 7). Heatmap represents magnitude of
the flow velocity and arrows indicate direction of flow. (b) Spatial profile of radial velocity and (c) radial stress at different times. (d) Maximum velocity,
(&) maximum strain rate and (f) the maximum strain as a function of the radius of the activation zone in a for various values of the parameter £/a,.
See Supplementary Table 1 for a list of model parameters. (g) F-actin with 45nM Filamin-A (Rc = [Filamin]/[Actin] = 0.035). Red vectors indicate
boundary velocity. Scale bar, 25 um. Strain (h) and Strain rate (i) of un-crosslinked and filamin-crosslinked actomyosin. Error bars are s.d. ""P<0.0001

by a Student's t-test.

much lower maximum strain rate (Fig. 6c) as well as boundary
velocity (Fig. 6d). However, the increase in velocity with the size
of activation region remains, suggesting that telescopic
contraction is not influenced by F-actin bending but by the
total amount of active actomyosin.

Discussion

Many variables have been explored to identify the mechanisms
that govern how individual cells generate mechanical forces and
exert them on the ECM. Recently, it has recently been shown
that the total contractile work done by the cell is principally
governed by spread area!l. Previous work, however, has suggested
that the organization of the cytoskeleton plays an important
role in regulating the distribution and magnitude of traction
stresses®”>°~41, This conclusion stems from observations

that stress fibres contract*>=#%, are subject to large tensions*’,

and broadly co-localize with cellular traction stresses®°.
Furthermore, it has been shown that akin to highly organized
sarcomeres in vivo, apolar bundles in vitro exhibit telescopic
contraction where contractile velocity increases with bundle
length3. However, it remained unclear whether F-actin bundling
and alignment is a prerequisite for this behaviour, as cortical
actomyosin, which is disordered in F-actin length, orientation
and polarity, is also contractile.

In this study, we have shown that myosin activity within
disordered F-actin networks is highly cooperative, as it reaches a
plateau in strain with myosin concentration (Fig. 3¢), indicating a
possible transition in network connectivity leading to force
percolation. Previous works have established that myosin
activity is determined by F-actin organization?’, and that
F-actin macroscopic connectivity can be mediated by passive
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Figure 6 | F-actin bending does not underlie telescopic contractility. (a) Agent-based simulation of F-actin (red) with mean and persistence length
(Ip) are 7.1pm and 20 pm, respectively, and myosin motors (green) during contraction at 200s. The width of the image is 40 um, and the radius of the
activation area is 6 um. Myosin has lower off-rate within the activation area than outside the activation area. (b) Strain over time for three different
persistence lengths, [, =20 pm, 320 pm and 2.6 mm. (¢) Strain rate and (d) velocity as a function of the diameter of the activation region in actomyosin
networks with different /. See Supplementary Table 2 for a list of model parameters.

F-actin crosslinking proteins?>4%4° and myosin activity®’,

Furthermore, it has been shown that there is a relationship
between the extent and rate of contractility with F-actin network
connectivity’!. Consistent with these studies, we suggest that
myosin crosslinking at high myosin density (Supplementary
Fig. 10) is sufficient to drive the transition in percolation and
promote contractility on cellular length scales. On small length
scales however, the activation radius is comparable to the mean
filament length, and thus myosin crosslinking may further elevate
the connectivity of the network, leading to large strains (Fig. 4c).
Above this transition in connectivity, the network achieves a
constant strain and the resultant patterns of internal mechanical
stress are consistent with those measured in adherent cells in
both their spatial distribution (Fig. 2e) and dependence on the
network size (Fig. 4e).

Using a minimal continuum model of isotropic and uniformly
contractile actomyosin, we show that homogeneous viscoelasticity
is sufficient to reproduce the telescopic contractile dynamics
observed experimentally. Our minimal coarse-grained description
ignores microscale anisotropies in deformations that are
evident from our experimental data (Supplementary Fig. 11).
The predicted velocity profile (Fig. 5a) is thus not in perfect
agreement with the experimentally measured flow profile
(Fig. 2b), especially near the activation boundary, where we
observe moderate shear deformations (Supplementary Fig. 12).
A viscoelastic solid model was chosen to match the experimental
observation that strain increases rapidly over short times and
reaches a plateau at long times (Fig. 3a, Supplementary Fig. 5).
In the active gel model, the dynamics of contractility are
determined by the relative magnitudes of the viscoelastic and

the active stress content. When balanced, the elevated velocity at
the boundary arises from a sharp gradient in active contractile
stress, which increases with the size of the contractile domain,
and is robust to modulation of bulk mechanical parameters.
However, it is likely that the mechanical properties of the
actomyosin network, such as elastic modulus and viscosity, are
modulated by actin density. By analysing a model where elastic
modulus and viscosity are functions of density (Supplementary
Fig. 9, Supplementary Note 5), we find that the telescopic
behaviour is again robust to perturbations in both bulk
mechanical properties and the size of the activation domain. In
addition, like the linear model, increasing stiffness reduces the
decrease in strain and strain rate with activation size.

As F-actin buckling has been previously implied in facilitating
actomyosin network contractility!”!8, we sought to determine its
role in the cooperative and telescopic contractile behaviour.
Increasing the persistence length of F-actin reduces its bending
during contraction, thereby resisting contraction. As a result, the
maximum strain rate and telescopic boundary velocity are
reduced compared with those of cases with normal persistence
length. However, the telescopic relationship between velocity and
activation size is retained and invariant to changes in filament
length (Supplementary Fig. 13). We interpret this delay as the
additional time needed for myosin motors to accumulate and
position themselves to generate sufficient forces that contract the
network. Thus, while F-actin bending affects the rate of
contraction, the network again retains its telescopic character.
Taken together, the relationship between activation size and
boundary velocity emerges from the accumulation of active
stresses in a viscoelastic medium.
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The finding that disordered actomyosin networks produce
cooperative, telescopic contractility illustrates that the organization
of the cytoskeleton into spatially controlled architectures, such as
stress fibres, may not be required for generating this behaviour in
cells. It is possible, however, that stress fibre architectures could be
playing an alternative role in the actomyosin network, such as
regulating the distribution of contractile stresses to the ECM. In the
future, elucidating the dynamics of anisotropic and asymmetric
activation will contribute to a more comprehensive understanding
of the spatial regulation of cellular contractility. Our present
work demonstrates that disordered actomyosin networks are
independently capable of reproducing highly cooperative telescopic
contractility.

Methods

Assay development. The development of the biomimetic model of the cell cortex
has been described previously”2. Briefly, 1.3 uM Alexa-568 labelled F-actin
(Molecular Probes) is stabilized with 2 uM phalloidin (Cytoskeleton) and crowded to
the surface of a 99.6% Egg Phosphatidyl Choline (Avanti Polar Lipids)/0.4%
FITC-DHPE (Molecular Probes) phospholipid bilayer, using 0.25% 14,000 MW
methyl-cellulose (Sigma) as a depletion agent (Fig. 1a,b). Blebbistatin (20 pM)
(Sigma) is added to the sample volume prior to the addition of myosin. Following
formation of the F-actin network, 24 nM of purified®> non-muscle myosin IT

(Ry; = 0.085) labelled with Alexa-647 (Molecular Probes) is added in solution in
dimeric form, which polymerizes into thick filaments onto the F-actin (Fig. 1a,b).
This results in a two-dimensional actomyosin network disordered in F-actin
orientation, alignment (C, q) and length (I) (Fig. 1c—e). Myosin density, while
uniformly distributed in a given field of view (95.4 pm X 95.4 pm, Supplementary
Fig. 10) at high magnification, can vary due to diffusion across the sample chamber
(~1cm in diameter) during sample preparation®®. A single experimental setup can
therefore be used to make measurements on several different fields of view with
varying myosin densities. Fields of view are always chosen more than 500 pm apart
to ensure that they are mechanically isolated from each other, and the local density
of myosin is determined for each field by measuring the number density of the
myosin thick filaments (p, pm ~2) present within the activation region immediately
prior to light activation. Due to the presence of the blebbistatin, myosin ATPase
activity is limited, thereby allowing myosin to accumulate on the F-actin network,
but not induce contraction. As the network contains no F-actin crosslinking protein,
all network connectivity is via myosin motors. Once the actomyosin network has
been formed, we use Nikon Ti Inverted microscope equipped with a spinning disk
(Yokagawa) and a Mosaic system (Photonics Instruments) to spatially inactivate
blebbistatin in circular regions of interest (ROIs) via exposure to 405 nm light, thus
allowing myosin to contract the F-actin network®%, ROIs are pulsed with 405 nm
light for 100 ms immediately before each image is taken of Alexa 568 labelled actin
(Fig. 1f). We acquire images every 10s, to keep blebbistatin in an inactive state
within the ROL Multiple ROIs can be taken within a single sample chamber.
Imaging is performed with a x 60 1.4 numerical aperture oil immersion lens
(Nikon) on a CCD Camera (Coolsnap Hq2, Photometrics).

Analytical methods. Using Particle Image Velocimetry (PIV, Mathworks,
Natick, MA), we measure the displacement vectors between individual frames at
every spatial location to calculate the velocity field. By integrating the velocity field
over time, we compute the local displacement field. Network Strain is then
calculated by taking the divergence of the displacement field, and the strain rate is
given by the divergence of the velocity field (Supplementary Methods). We also
compute strain and strain rates using kymograph (Image]J, NIH, see Supplementary
Fig. 4). The boundary velocity is averaged within a 2.65 um window about the
circumference of the activation region. The filament length is calculated by tracing
the fluorescence of individual F-actin in Image] as they are crowded to the lipid
surface, and measuring the contour length.

Active gel model. We describe the mechanics of disordered actomyosin using

a continuum model of a homogeneous and isotropic viscoelastic gel characterized
by a Young’s modulus E, Poisson’s ratio v and viscosity 1 (Supplementary

Notes 1 and 2). The gel dynamics are overdamped and driven out of equilibrium
by myosin motors that exert isotropic active contractile stresses of the form:
aa(r,t) = oo(r) (1 —e~"/%), where go(r) >0 describes the spatial profile of activity
and 1, is the timescale for the accumulation of active stresses. By assuming a
spatially constant active stress profile oo for r<¢&, where ¢ is the radius of the
activation zone, the equations of mechanical equilibrium can be analytically solved
to reproduce the observed pattern and dynamics of contraction (Fig. 5,
Supplementary Notes 1 and 2).

Agent-based model. We simulated thin actomyosin networks consisting of
F-actin and active myosin motors using an approach similar to our recent
works>®*>7 (Supplementary Note 3). F-actin is simplified as serially connected

8

cylindrical segments. Each cylindrical segment is 280 nm in length and 7 nm in
diameter, with a fixed polarity denoting the barbed and pointed ends. Motors
consist of a rigid backbone with multiple arms, mimicking the geometry of myosin
bipolar thick filaments®®. The backbone consists of three cylindrical segments of
42 nm in length with symmetric polarity, connected by elastic hinges. Each
endpoint of the backbone segment has two motor arms. The arms of motors can
bind to binding sites located on actin segments every 7 nm, and exert force with
load-dependent kinetics (Supplementary Fig. 8 and Supplementary Note 4). The
mean contour length and persistence length of the F-actin is 7.1 and 20 pm.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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