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Abstract

Background: Recent studies have shown that 3′-deoxy-3′-[18F] fluorothymidine ([18F]FLT)) uptake depends on
endogenous tumour thymidine concentration. The purpose of this study was to investigate tumour thymidine
concentrations and whether they correlated with [18F]FLT uptake across a broad spectrum of murine cancer
models. A modified liquid chromatography-mass spectrometry (LC-MS/MS) method was used to determine
endogenous thymidine concentrations in plasma and tissues of tumour-bearing and non-tumour bearing mice and
rats. Thymidine concentrations were determined in 22 tumour models, including xenografts, syngeneic and
spontaneous tumours, from six research centres, and a subset was compared for [18F]FLT uptake, described by the
maximum and mean tumour-to-liver uptake ratio (TTL) and SUV.

Results: The LC-MS/MS method used to measure thymidine in plasma and tissue was modified to improve
sensitivity and reproducibility. Thymidine concentrations determined in the plasma of 7 murine strains and one rat
strain were between 0.61 ± 0.12 μM and 2.04 ± 0.64 μM, while the concentrations in 22 tumour models ranged
from 0.54 ± 0.17 μM to 20.65 ± 3.65 μM. TTL at 60 min after [18F]FLT injection, determined in 14 of the 22 tumour
models, ranged from 1.07 ± 0.16 to 5.22 ± 0.83 for the maximum and 0.67 ± 0.17 to 2.10 ± 0.18 for the mean uptake.
TTL did not correlate with tumour thymidine concentrations.

Conclusions: Endogenous tumour thymidine concentrations alone are not predictive of [18F]FLT uptake in murine
cancer models.
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Background
The nucleoside analogue, 3′-deoxy-3′-[18F]fluorothymidine
([18F]FLT) was proposed by Shields et al. [1] as a positron
emission tomography (PET) tracer for imaging cell prolifer-
ation. [18F]FLT is phosphorylated, and consequently
trapped in cells, by thymidine kinase 1 (TK1), whose
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expression reaches a maximum in the late G1 and S phases
of the cell cycle [2]. However, although [18F]FLT has been
well characterized as a tracer, not all tumours take it up
and it does not yet have an established clinical role [3]. One
of the aims of the IMI QuIC-ConCePT Consortium1 was
to assess whether [18F]FLT uptake measures can be quali-
fied as early imaging biomarkers for predicting response or
resistance to therapy, by direct correlation with accepted
histopathological metrics of response in a wide range of
preclinical tumour models.
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Previous studies have reported variability in tumour
[18F]FLT uptake [4–7] and have linked it with specific
tumour properties that are independent of tumour cell
proliferation. These include the expression and activity
of the plasma membrane nucleoside transporters as well
as the activity of TK1, the first enzyme of the DNA sal-
vage pathway. Zhang et al. [5] measured free thymidine
concentrations in six xenograft lines, including three
variants of one line, and showed evidence for a correl-
ation between [18F]FLT uptake and tumour thymidine
concentrations, which was also observed by Schelhaas
et al. [6] but not by McKinley et al. [7]. Zhang et al. also
administered exogenous thymidine, raising plasma thy-
midine concentrations, and observed a decrease in
tumour [18F]FLT uptake, suggesting that thymidine and
[18F]FLT compete as substrates for TK1. Measurement
of plasma thymidine concentrations may, therefore, be a
critical parameter in deciding whether a patient would
be appropriate for [18F]FLT PET scanning.
We describe here a modified thymidine assay, based

on the method of Li et al. [8], which we used at a single
centre (CRUK Cambridge Institute (CI)) to measure thy-
midine concentrations in plasma, tumour and tissue
samples from multiple European research centres in
order to address the question of whether the negative
correlation between [18F]FLT uptake and tumour thymi-
dine concentrations observed previously in smaller stud-
ies was valid across a wider range of tumour models. We
also examined the variability of thymidine concentra-
tions in plasma and other normal tissue between differ-
ent murine strains and whether tumours themselves
altered plasma thymidine concentration in their hosts.

Methods
Contributors
Plasma and tumour samples were analysed from six cen-
tres, five participating centres in the IMI QuIC-ConCePT
Consortium and one additional centre. The participating
institutions were the CRUK Cambridge Institute, Cam-
bridge, UK (CI); AstraZeneca, Alderley Park, Macclesfield,
UK (AZ); Imperial College London, UK (IC); Westfälische
Wilhelms-Universität, Münster, Germany (WWU) and
Radboud University Medical Centre, Nijmegen, The
Netherlands (Radboudumc). The additional centre was
the Wolfson Molecular Imaging Centre Manchester, UK
(WMIC). All procedures performed were carried out in
compliance with the national laws on the use of animals
in research in the UK (The Animals (Scientific Proce-
dures) Act 1986), Germany and the Netherlands, and with
local ethical approval, and also in compliance with the
QuIC-ConCePT Ethical Guidelines, based on the NCRI
Guidelines for the welfare and use of animals in cancer re-
search [9]. The tumour models used in the study are de-
scribed in Table 1.
Sample collection
Blood was collected by cardiac puncture into heparin-
ized syringes and stored on ice until separation of the
plasma by centrifugation at 4 °C. Plasma separation was
performed within 30 min of blood collection in order to
minimise thymidine degradation, which occurs in whole
blood at 4 °C (Additional file 1: Figure S1). The plasma
was frozen immediately and stored at −80 °C. Tumour
and tissue samples were taken under terminal anaesthe-
sia and frozen immediately in liquid nitrogen prior to
storage at −80 °C. Only viable tumour tissue was sam-
pled. Samples were couriered on dry ice to Cambridge
for assay of thymidine content.

Thymidine assay
Stable isotope labelled 2H3-thymidine (D3-TdR; Carbo-
synth Ltd, UK) was used as an internal standard in the
liquid chromatography-mass spectrometry (LC-MS/MS)
thymidine assay in place of the iodo-deoxyuridine stand-
ard used by Li et al. [8]. Other reagents were obtained
from Sigma Aldrich (thymidine) and Fisher (Optima
grade formic acid, acetonitrile and water).
All sample preparation was carried out on ice to min-

imise enzymatic degradation of thymidine. For plasma
samples, the internal standard (D3-TdR, 100 ng/mL)
was added to 50–100 μL aliquots of plasma, followed by
300 μL of ice-cold acetonitrile. After vortex mixing and
centrifugation (3000g, 10 min), the supernatant was
transferred to a 96-well plate and evaporated to dryness.
For tumour and tissue samples, a minimum of 10 mg
was required. Thymidine was extracted by homogenising
tissue in ice-cold acetonitrile (50 % v/v) in a Precellys 24
tube homogeniser (50 mg/mL of tissue/homogenate).
Aliquots of 50 or 100 μL were then subjected to the
same extraction procedure as used for plasma. Samples
were reconstituted in 100 μL water prior to analysis by
LC-MS/MS.
For plasma analysis, human plasma was used as the

control matrix for the calibration standards. Human
plasma contains approximately 100 times less en-
dogenous thymidine than mouse plasma and was fur-
ther depleted of thymidine by incubation for 2 h at
37 °C, as described by Li et al. [8]. For tissue analysis,
water was used as the control matrix. Calibration
standards ranged from 1 to 500 ng/mL (plasma) and
0.08 to 40.8 μM (tissue).
The LC system used an Agilent 1290 pump with auto-

injector, 4 °C sample cooler and 40 °C column heater.
Analyte separation was performed on a Waters
ACQUITY UPLC™ HSS T3 1.8 μm 50 × 2 mm i.d. col-
umn. The mobile phases were 0.1 % formic acid in water
(mobile phase A) and 0.1 % formic acid in acetonitrile
(mobile phase B) delivered at 0.6 mL/min. The gradient
programme started with 100 % A for 0.5 min, decreasing



Table 1 Tumour models

Tumour Type Origin Model type Host (supplier)

CRUK Cambridge
Institute (CI)

AsPC-1 Pancreatic Human Xenografta CB17 SCID mouse (Charles River)

MiaPaCa-2 Pancreatic Human Xenografta CB17 SCID mouse (Charles River)

PancTu I Pancreatic Human Xenografta CB17 SCID mouse (Charles River)

Colo-357 Pancreatic Human Xenografta CB17 SCID mouse (Charles River)

K8484b Pancreatic Murine Syngeneic allografta PC mouse (p53R172H; Pdx1-Cre) (CI)

KPCc Pancreatic Murine Spontaneousd KPC mouse (KrasG12D; p53R172H; Pdx1-Cre)
(CI)

AstraZeneca (AZ) PC9 NSCLC Human Xenografta CB17 SCID mouse (AstraZeneca)

A431 Squamous carcinoma Human Xenografta ONU mouse (AstraZeneca)

H1975 NSCLC Human Xenografta ONU mouse (AstraZeneca)

Imperial College
London (IC)

HCT116 Colorectal Human Xenografta BALB/c nu mouse (Charles River)

WWU Münster A549 NSCLC Human Xenografta NMRI nu mouse (Janvier)

HTB56 NSCLC Human Xenografta NMRI nu mouse (Janvier)

EBC1 NSCLC Human Xenografta NMRI nu mouse (Janvier)

H1975 NSCLC Human Xenografta NMRI nu mouse (Janvier)

WMIC Manchester MDA-MB-231-
MFP

Breast Human Xenografte CBA nu/nu mouse (University of
Manchester)

A549 NSCLC Human Xenografta CBA nu/nu mouse (University of
Manchester)

HCT116 Colorectal Human Xenografta CBA nu/nu mouse (University of
Manchester)

A2870 Ovarian carcinoma Human Xenografta CBA nu/nu mouse (University of
Manchester)

U87 Glioblastoma Human Xenografta CBA nu/nu mouse (University of
Manchester)

FTC113 Follicular thyroid
carcinoma

Human Xenografta CBA nu/nu mouse (University of
Manchester)

KHT Sarcoma Murine Syngeneic
autografta

C3H mouse (University of Manchester)

Radboudumc
Nijmegen

CC531 Colorectal Rodent Syngeneic liver
metastasisf

Wag/Rij rats (Charles River)

aSubcutaneous tumours
b[15]
cHingorani SR, Wang L, Multani AS, Combs C, Deramoudt TB, Hruban RH et al. Trp53R172H and KRASG12D cooperate to promote chromosomal instability and
widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer cell. 2005;7(5):469–483
dSpontaneous tumours arising in the pancreas
eOrthotopic tumours (mammary fat-pad implant)
fTumours created by intra-hepatic injection
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to 60 % over 2 min, a further decrease to 10 % for
0.01 min, held at 10 % B for 0.5 min then increased to
100 % A for 0.01 min then held at 100 % for 3 min, to
give a total run time of 6 min.
Mass spectrometry was performed with an ABSciex 6500

fitted with APCI probe operating in negative ion mode with
a source temperature of 350 °C. Compound optimization
was performed manually using Analyst software V1.6.2
(Sciex) following infusion of reference standards of thymi-
dine and D3-TdR. Data was processed and integrated using
Multiquant software V2.1.1 (Sciex). The most abundant
transition was found to be fragmentation of the formate ad-
duct to the molecular ion giving rise to the following select-
ive reaction monitoring transitions of 287→241 and
290→244 for thymidine and D3-TdR, respectively.

[18F]FLT PET imaging and data analysis
[18F]FLT PET scans were conducted at four centres (CI,
AZ, IC and WMIC) on three different preclinical PET
scanners (Inveon, Siemens Healthcare, UK; NanoScan
PET/CT, Mediso, Hungary; and quadHIDAC, Oxford
Positron Syst., UK). See Table 2 for details of PET
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scanners and methodology. All animals were anaesthe-
tised using isoflurane in 100 % oxygen, and body
temperature was maintained by heating. To minimise
systematic differences in quantification, three measures
were taken. Firstly, robust quality control measures were
put in place at each centre. In particular, each centre ad-
hered to their manufacturer’s recommended quality con-
trol schedule, including quantification standards at
minimum six monthly intervals. Secondly, the tumour
maximal intensity voxel was used because it is largely
operator independent, so it controlled for subjective dif-
ferences in region of interest drawing between centres.
Thirdly, a ratiometric analysis, tumour-to-liver ratio
(TTLmax) was used as the primary parameter. This
minimised the influence of differences in hardware and
reconstruction methods on absolute quantification and
provided a relative measure of [18F]FLT uptake. In mur-
ine liver, [18F]FLT is not metabolised and can therefore
be used as a reference organ [10]. Secondary parameters
TTLmean, SUVmax and SUVmean were also compared
to thymidine and plasma levels. Uptake parameters were
determined at 60 ± 5 min after intravenous [18F]FLT in-
jection. As the full range of parameters was not available
for all 22 tumour models, data from only 14 models
were used in the correlation of thymidine concentration
with imaging data.

Tracer production
[18F]FLT was manufactured according to Ph.EU [11]
specifications at the cyclotron centres available to the
partners. The radiochemical purity in all the studies was
more than 95 %.

Statistics
Data were expressed as mean ± one standard deviation
(SD), unless stated otherwise. The significance of compari-
son between two data sets was determined using the un-
paired, two-tailed Student t test with Welch’s correction
(Prism v6.0 software, GraphPadSoftware) and differences
were considered significant if p ≤ 0.05. Mean [18F]FLT up-
take value and mean thymidine concentration were
Table 2 Summary of imaging parameters at each centre

Research Centre Injected dose
(average, MBq)

Measurement time

CRUK Cambridge
Institute (CI)

8.3 60–65 min

AstraZeneca (AZ) 8.3 50–60 min

Imperial College
London (IC)

3.7 50–60 min

WMIC Manchester 9.5 57.5–62.5 and 55–65 min
(FCT113 only)
determined in cohorts of mice, where each cohort was de-
fined by tumour type and study centre. Correlations be-
tween cohorts were performed on mean data and assessed
by the Spearman correlation coefficient (Prism v6.0 soft-
ware, GraphPadSoftware).

Results
Performance of thymidine assay
Assay performance was assessed by using the EMA
Guidelines on bioanalytical method validation (EMEA/
CHMP/EWP/192217/2009) as a guide to determining
the linearity, precision, accuracy, matrix effects and re-
covery. Linearity was tested using eight non-zero stan-
dards with the back-calculated concentration of each
standard value not exceeding ±15 % of the theoretical
value (±20 % at the lower limit of quantification
(LLOQ)). The precision and accuracy were assessed by
replicate analysis (n = 5) of quality control (QC) samples
at four different concentrations. Recovery was assessed
by comparing the peak response ratios of analytes spiked
before and after extraction with those spiked at the same
concentrations. Examples of chromatograms are shown
in Fig. 1. Recovery of both thymidine and D3-TdR from
plasma was 100 %. The results for precision and accur-
acy of the assay are summarised in Table 3.
The method was shown to be robust and reproducible,

with a lower detection limit of 1 ng/mL (4.1 nM). Any
assay for which the accepted control criteria were not
met was discarded and the assay repeated.

Plasma and other normal tissue thymidine concentrations
vary in different rodents
Plasma samples were collected from five mouse strains
and one rat strain that are used routinely in preclinical
studies. Plasma thymidine concentrations in non-
tumour-bearing mice varied threefold between strains,
from 0.61 ± 0.12 μM for CB17 SCID mice housed at the
CI to 2.04 ± 0.64 μM for NMRI nude mice housed at
WWU (Fig. 2). Interestingly, there was a significant dif-
ference between the plasma thymidine concentrations in
the CB17 SCID strain housed at two different centres,
PET scanner Reconstruction
method

NanoScan PET/CT pre-clinical PET scanner
(Mediso)

3D OSEM

Inveon Siemens PET scanner 2D FBP

Inveon Siemens PET scanner 2D OSEM

quadHIDAC small animal PET scanner (Oxford
Positron Systems)
or
Inveon Siemens PET scanner (U87 and FCT113
only)

OPL-EM

or
3D-OSEM/MAP
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namely 0.61 ± 0.12 μM for CB17 SCID mice at the CI
and 0.89 ± 0.24 μM for CB17 SCID mice at AZ (p =
0.003). The variation in thymidine concentrations be-
tween strains at a single centre was not significant. The
thymidine concentration in Wag/Rij rat plasma was
within the range observed for mice.
Muscle, spleen and pancreas thymidine concentrations

were measured in non-tumour-bearing mice in the PC
and SCID mouse strains used at the CI (Fig. 3). Plasma,
muscle and pancreas all showed thymidine concentra-
tions between 0.55 ± 0.23 μM and 1.14 ± 0.40 μM, while
Table 3 Precision and accuracy of plasma thymidine assay;
acceptance criteria ±15 % for CV and RE (±20 % at LLOQ)

QC Theoretical thymidine
concentration
(ng/mL)

Calculated thymidine
mean concentration
(ng/mL, n = 6)

CV (%) RE (%)

LLOQ 1 0.99a 19 −0.9

Low 3 2.81 10 −6.4

Medium 40 47 13 −5.4

High 450 462 1.7 2.6

LLOQ Lower limit of quantification, CV coefficient of variation, RE relative error
an = 5
concentrations in the spleen were approximately 40-fold
higher. Thymidine concentrations were higher in PC
than in SCID mice in both pancreas (p = 0.02) and
muscle (p = 0.03) but were comparable in plasma.

Different tumour models showed a wide range of
thymidine concentrations
Tumour thymidine concentrations were measured in a
panel of 22 different tumours, including three xenografts
grown from the same cell line but in two different cen-
tres (A549 at WMIC and WWU; HCT116 at IC and
WMIC; H1975 at WWU and AZ). The tumour thymi-
dine concentrations ranged from between 0.54 ±
0.17 μM for the A431 xenograft to 20.04 ± 3.65 μM for
the syngeneic rat metastasis model CC531 (Fig. 4). The
xenografts grown at two different centres showed com-
parable thymidine concentrations except for H1975 tu-
mours, where thymidine in H1975 tumours at AZ was
1.64 ± 0.29 μM while for tumours grown at WWU, it
was 3.63 ± 1.73 μM (p = 0.018). For A549, the WWU
tumour thymidine concentration was 3.69 ± 3.96 μM,
which was similar to the value of 5.25 ± 0.73 μM for
the same tumours grown at WMIC. HCT116 tumours
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at IC and WMIC also had similar concentrations of
4.23 ± 0.97 and 3.27 ± 3.06 μM, respectively. There
was no difference between the genetically engineered
spontaneous KPC tumours and the syngeneic trans-
planted K8484 tumours.

Tumours can affect plasma thymidine concentrations
The presence of the LoVo subcutaneous xenograft
has been associated with lower plasma thymidine
concentrations in CD1 nu/nu mice [12]. However, for
the three centres able to provide plasma samples
from animals with and without tumours, this relation-
ship was not consistent. Plasma thymidine was signifi-
cantly lower in SCID mice with AsPC-1 (p < 0.0001)
or MiaPaCa-2 tumours (p = 0.0016) than in non-
tumour bearing mice, but higher in mice with KPC
tumours than in the PC mice, which lack the KRAS
mutation and do not develop spontaneous tumours
(p = 0.006). The plasma thymidine concentration in
tumour-bearing rats was also more than three times
higher than that in naïve animals (Fig. 5).

[18F]FLT uptake does not correlate with tumour thymidine
concentrations
For 14 of the 22 tumour models studied, the ratio of
TTL had been determined at a comparable time of 60 ±
5 min after [18F]FLT injection. In this data set, TTLmax
varied fivefold from 1.01 ± 0.19 to 5.22 ± 0.8 and
TTLmean varied threefold from 0.67 ± 0.17 to 2.1 ± 0.2.
There was no correlation between the PET measure-
ments, TTLmax or TTLmean, and tumour thymidine
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concentrations (Fig. 6). This also held true when compar-
ing SUVmax and SUVmean with tumour thymidine con-
centration (Additional file 1: Figure S2). Correlation plots
for TTLmax, TTLmean, SUVmax and SUVmean with
tumour thymidine are shown in Additional file 1: Figure
S3; none of these correlations reached statistical signifi-
cance. However, there was evidence that the data were
consistent between sites. [18F]FLT uptake and tumour thy-
midine concentrations were measured in HCT116 tu-
mours at IC and WMIC, where the former was measured
using two different scanners (Inveon Siemens PET scanner
and quadHIDAC small animal PET scanner, respectively).
Both sites obtained very similar maximum and mean
tumour-to-liver uptake ratios (maxTTL 2.74 ± 0.36 (IC)
and 3.1 ± 1.13 (WMIC); meanTTL 1.31 ± 0.36 (IC) and
1.31 ± 0.38 (WMIC)) and similar thymidine concentra-
tions (4.23 ± 0.97 μM (IC) and 3.27 ± 3.06 μM (WMIC)).

Discussion
The strength of this study is that data were collected
from multiple centres, allowing a more thorough investi-
gation into the relationship between plasma and tumour
thymidine concentrations and [18F]FLT uptake than has
been possible previously. Plasma thymidine concentra-
tions of non-tumour-bearing animals varied threefold
between different strains (from 0.61 ± 0.12 μM for SCID
mice at the CI to 2.04 ± 0.64 μM for NMRI nude mice at
WWU), while variation in thymidine concentrations be-
tween strains at a single centre was low (Fig. 2). Differ-
ences between mouse strains might be expected;
however, differences between the same strain at different
centres, namely between SCID mice at CI and AZ, were
more surprising. This might reflect differences in genetic
background in the same strain from different sources, al-
though local factors at the different centres may also be
important. There was no significant difference in plasma
concentrations between the two strains of mice housed
at the CI (PC and SCID mice) or between two strains
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housed at AZ (SCID and nude mice). Most modern ani-
mal units have broadly similar environmental conditions;
however, rodent diet from different suppliers may have
an effect. In the present study, standardisation of diets
across a large range of centres and countries was not
possible due to logistical constraints. The CI diet is rich
in protein and fat, whereas the AZ diet contains much
lower levels of both, but is enriched in vitamins. The AZ
diet contains approximately six times more folic acid
than the CI diet, which could contribute to the differ-
ence in plasma thymidine concentrations [13]. Although,
there is no published evidence that the source of nutri-
ents influences plasma thymidine concentrations, gut
microbiota are influenced by the genetic background of
the host and diet; this can lead to differential breakdown
of dietary components, which may provide a possible ex-
planation for the differences in plasma thymidine con-
centrations [14] (Fig. 2).
While plasma concentrations in non-tumour-bearing

animals were found to vary only 3-fold, there was a 40-
fold range in tumour thymidine concentrations in the
panel of 22 tumour models studied, from 0.54 ± 0.17 μM
in the A431 xenograft to 20.04 ± 3.65 μM in the rat
colon carcinoma liver metastasis model CC531 (Fig. 4).
However, there was no obvious clustering of, for ex-
ample, murine tumours derived from xenografts or
xenograft tumours with the same tissue of origin. The
CI pancreatic tumour xenografts MiaPaCa-2, Panc-Tu 1,
AsPC-1 and Colo-357 showed a wide range of thymidine
concentrations, ranging from 1 to 10 μM and of the four
non-small cell lung cancer (NSCLC) xenografts studied
at WWU, EBC1 and HTB56 had relatively high thymi-
dine concentrations (12 μM), while A549 and H1975
had lower values (4 μM). In contrast, the spontaneous
KPC pancreatic adenocarcinoma at the CI had similar
thymidine concentrations to its transplanted allograft
counterpart, K8484. This was despite differences in
tumour architecture and stroma [15], which perhaps
suggests that tumour thymidine concentrations within
the same strain of mice are determined primarily by
tumour genetics rather than site of growth within the
host. The plasma thymidine concentration in KPC
tumour-bearing mice was 2.8-fold higher than that in
PC mice while the plasma thymidine concentration in
K8484 tumour-bearing mice was not significantly differ-
ent. In addition, the presence of CC531 tumours re-
sulted in a 3.8-fold increase in plasma thymidine
concentration. In contrast, AsPC-1 and MiaPaCa-2 xe-
nografts caused a small but significant decrease in
plasma thymidine concentration while the other three
xenografts had no effect. In summary, in five out of the
eight tumour models studied, the tumour affected the
plasma thymidine level of their respective hosts. Plasma
and tumour thymidine concentration appeared not to be
correlated in those animals in which both concentrations
were measured (Additional file 1: Figure S8).
The most striking result in this study was the lack

of correlation between tumour thymidine concentra-
tions and [18F]FLT uptake across 14 different tumour
models and 4 centres (Fig. 6 and Additional file 1:
Figure S2 and Figure S3). One cannot exclude that
differences between the three PET scanners and re-
construction algorithms used have introduced variabil-
ity into the dataset. However, by employing regular
quality control measures and by using tumour-to-
tissue ratios rather than SUV as the primary param-
eter describing uptake variability due to technical dif-
ferences is expected to be minimised. Previous work
has shown a negative correlation between [18F]FLT
uptake and tumour thymidine concentrations in
smaller cohorts from single centres [5, 6]. The
current work however implies that if there is compe-
tition between thymidine in the tumour and [18F]FLT,
tumour thymidine concentration alone is not suffi-
cient to predict [18F]FLT uptake. In a subset where
tumour thymidine and [18F]FLT uptake were available
for individual mice from a single centre, there was no
negative correlation (Additional file 1: Figure S9).
This was also observed in the models studied by Mc-
Kinley et al. [7], highlighting the complexity of factors
affecting [18F]FLT uptake. Variable effects of metabol-
ism, clearance, cell membrane transporters, thymidine
kinase 1 (TK1) activity, dephosphorylation and in-
flammatory infiltration on [18F]FLT uptake all prob-
ably play a part to different degrees [16].
Zhang et al. [5] showed that in the HCT116 xeno-

graft, [18F]FLT uptake was inversely correlated with
plasma thymidine concentration, which was delivered
by a mini-pump. However, in the six tumour models
where plasma samples were available, we found no
correlation between endogenous plasma thymidine
concentrations and [18F]FLT uptake (Additional file 1:
Figure S4). To determine if a tumour-to-plasma thy-
midine concentration gradient had an effect on
[18F]FLT uptake in these models, we also considered
the differential between the plasma and tumour thy-
midine concentrations, but similarly found no correl-
ation between this parameter and tumour-to-liver
uptake ratio (Additional file 1: Figure S5).
Despite plasma thymidine concentrations being

higher in rodents as compared to humans [8], the
lack of a simple relationship between plasma or
tumour thymidine concentration and [18F]FLT uptake
in the mice studied here suggests that this may also
be the case in patients. Therefore, future clinical
studies examining the performance of [18F]FLT, par-
ticularly where [18F]FLT has failed to report on
tumour proliferation, should look beyond plasma
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thymidine concentration as a possible explanation for
differences in tumour uptake.

Conclusions
Tumour thymidine concentrations were not correlated
with [18F]FLT uptake in a broad range of preclinical
tumour models. There was no evidence from this study
that a simple thymidine test, either on plasma or tumour
samples, could be used to predict the value of an
[18F]FLT PET scan for individual patients.
This study also underlines the need for a more detailed

investigation of the determinants of thymidine metabol-
ism, such as the expression and activity of the enzymes
TK1, thymidine phosphorylase and thymidylate synthase,
in a similarly wide range of tumour models.

Ethical approval
All applicable international, national and/or institutional
guidelines for the care and use of animals were followed.
All procedures performed were in accordance with the
ethical standards of the institution or practice at which
the studies were conducted. Further information is given
in the “Methods” section.

Endnotes
1The QuIC-ConCePT (Quantitative Imaging in Can-

cer: Connecting Cellular Processes with Therapy) project
is an IMI funded project which aims to provide drug de-
velopers with tools, imaging biomarkers, that can show
earlier and more accurately how patients’ tumours re-
spond to drugs in cancer clinical trials (http://www.quic-
concept.eu/).
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