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Abstract 
Aim: Root canal irrigation is an important adjunct to control microbial infection. This 

study aimed primarily to develop a transparent root canal model to study in situ 

Enterococcus faecalis biofilm removal rate and remaining attached biofilm using 

passive or active irrigation solution for 90 seconds. The change in available chlorine 

and pH of the outflow irrigant were assessed.  

Methodology: A total of forty root canal models (n = 10 per group) were manufactured 

using 3D printing. Each model consisted of two longitudinal halves of an 18 mm length 

simulated root canal with size 30 and taper 0.06. E. faecalis biofilms were grown on 

the apical 3 mm of the models for 10 days in Brain Heart Infusion broth. Biofilms were 

stained using crystal violet for visualisation. The model halves were reassembled, 

attached to an apparatus and observed under a fluorescence microscope. Following 

60 seconds of 9 mL of 2.5% NaOCl irrigation using syringe and needle, the irrigant 

was either left stagnant in the canal or activated using gutta-percha, sonic and 

ultrasonic methods for 30 seconds. Images were then captured every second using 

an external camera. The residual biofilm percentages were measured using image 

analysis software. The data were analysed using Kruskal-Wallis test and generalised 

linear mixed model. 

Results:  The highest level of biofilm removal was with ultrasonic agitation (90.13%) 

followed by sonic (88.72%), gutta-percha (80.59%), and passive irrigation group 

(control) (43.67%) respectively. All agitation groups reduced the available chlorine and 

pH of NaOCl more than that in the passive irrigation group. 

Conclusions: The 3D printing method provided a novel model to create a root canal 

simulation for studying and understanding a real-time biofilm removal under 
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microscopy. Ultrasonic agitation of NaOCl left the least amount of residual biofilm in 

comparison to sonic and gutta-percha agitation methods.  

1. Introduction 
Root canal treatment describes the dental procedure used to either prevent apical 

periodontitis by the treatment of diseased or infected soft tissue contained in the root 

canal system, or the procedure used to resolve established apical periodontitis [1], 

which is caused mainly by bacteria [2]. Bacteria adhere to the root canal surfaces and 

rapidly form biofilms [3]. A biofilm is defined as a community of microorganisms of one 

or more species embedded in an extracellular polysaccharide matrix that is attached 

to a solid substrate [4]. Thus, the essential aim of the root canal treatment involves the 

microbial control of the root canal system through instrumentation and irrigation. 

Instrumentation aims to give the canal system a shape that permits the delivery of 

locally used medications (e.g. irrigant), as well as a root canal filling, which helps to 

entrap the remaining microbiota [5]. Irrigation also aims to lubricate the instruments, 

and, remove pathogenic microorganisms (microbiota) in the root canal system through 

the flushing action [6]. However, as the lubricated instrument is rotated along its long 

axis to sculpt the inner canal surface which it engages with, the most apical part of the 

canal remains untouched [7]. Thus, the use of a final irrigation regimen, after the 

completion of a chemo-mechanical canal preparation, with high volumes of various 

chemically active solutions may contribute to removing residual biofilm in the non-

instrumented part of the root canal system [8].  

The debridement action of an irrigant within the root canal system may remain elusive 

when using a needle and syringe alone [9]. Two phenomena are inherent to irrigant 

penetration and debridement action in the confined space of a closed root canal 

system. First, the stagnation of the irrigant flow beyond the irrigation needle tip [10]. 
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Second, the gas bubbles or vapour locks effect ahead of the advancing front of the 

irrigant [11]. These phenomena may limit the delivery of irrigant to the canal terminus 

[12]. For the above mentioned reasons, attempts to improve the efficacy of irrigant 

penetration and irrigant mixing within the root canal system are therefore important 

[13] since they may improve the removal of residual biofilms. Irrigant agitation may be 

applied to aid the dispersal of the irrigant into the root canal system, especially into the 

periapical terminus of the canal [14]. Agitation techniques for root canal irrigants 

include either manual agitation [13, 15-18] or automated agitation [17, 18]. 

Manual agitation of the irrigant could be achieved by using a file [19] or a taper gutta-

percha cone [16], which is achieved by moving the master file or gutta-percha cone 

up and down in short strokes within an instrumented canal [20]. Automated devices 

for agitation of the irrigant in the root canal system include ultrasonic and sonic devices 

[17]. 

During ultrasonic agitation, a file oscillates at frequencies of 25 to 30 kHz in a pattern 

of motion consisting of nodes and anti-nodes along its length [21]. During sonic 

agitation of the irrigant, the file oscillates at frequencies of 1 to 6 kHz [22], and it 

produces lower shear stresses compared to ultrasonic agitation [23]. The 

EndoActivator system is a sonic device with polymer tips with a cordless electrically 

driven hand-piece [24]. 

The issue of the efficacy of irrigation protocol to remove bacterial biofilm has received 

considerable critical attention. It has been investigated by the immersing of samples 

in a static irrigant that neglect irrigant flow within the confinement of a root canal 

system [25-27]. Other studies used Computational Fluid dynamics models to measure 

the physical parameters associated with irrigant flow with in the root canal system, that 
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lack the ability to estimate the chemical action of irrigant as they provide a virtual view 

of the root canal irrigation [28, 29].  

Although the use of extracted teeth might be clinically relevant, it may not be the 

optimum method as the root canal components (dentine, cementum) are concealed 

body compartments [30], making them unavailable for direct visualization. In addition, 

the use of extracted teeth of a different size introduces many variables to the studies 

[31]. 

Attempts to mimic the root canal anatomy using gypsum converted to hydroxyapatite 

[32, 33] have shown promising anatomical features, but such opaque materials did not 

allow direct visualisation. The use of 3D printing models to study root canal disinfection 

has been explored in a preliminary study [34], but the tested steriolithography material, 

Visijet® EX200 Plastic did not allow bacterial colonization and was not transparent. It 

seems justifiable to develop an in vitro model that provides transparency and 

generation of multiple samples with the same anatomical features to investigate the 

real-time interaction between the activated irrigant and biofilm removal during the 

irrigation process 

This study aimed primarily to develop and utilise transparent test models to facilitate 

an investigation into the influence of NaOCl agitation on the removal rate of 

Enterococcus faecalis biofilm subjected to sodium hypochlorite irrigation. A further aim 

was to compare the residual biofilm and removal rate of biofilm when subjected to 

passive (stagnant) and active irrigation (2.5% NaOCl). Finally, the outcomes of 

chemical interaction between a NaOCl irrigant and bacterial biofilm (in situ) 

represented by the available chlorine and pH of outflow irrigant, as outcome measures 

were assessed.  
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 2. Materials and Methods 

2.1. Construction of transparent root canal models and distribution to 

experimental groups 

A solid computer representation of the root canal model was created using AutoCAD® 

software (Autodesk, Inc., San Rafael, CA, USA). The design of the model consisted 

of two equal rectangular moulds (18 mm × 6 mm × 1 mm) (Figure 1). 

Each mould contained four holes on either side, as well as a longitudinal half canal. 

When the two moulds were reassembled, a straight simple canal of 18 mm length, 

apical size 30, and a 0.06 taper was created.  

The AutoCAD format of the model was converted into stereo-lithography format (STL 

format).  Forty root canal models were manufactured using PreForm Software 1.9.1 of 

Formlabs 3D printer (Formlabs Inc., Somerville, MA, USA).  The material used to 

create the model was a clear liquid photopolymer material (AZoNetwork Ltd., 

Cheshire, UK). It is composed of a mixture of methacrylates and a photo-initiator. The 

process of fabrication started by conversion of the digital geometric data of the model 

into a series of layers that were physically constructed layer-by-layer of 25-µm 

thickness. Each layer was fabricated by exposing the liquid photopolymer material to 

a laser light source from the printer causing the liquid to cure into a transparent solid 

state.  

The models (n = 40) divided to four groups (n = 10 per group) (Table 1). In the passive 

irrigation group, the irrigant was delivered using a 10 mL syringe (Plastipak, Franklin 

Lakes, New Jersey, USA) with a 27-gauge side-cut open-ended needle (Monoject, 

Sherwood Medical, St. Louis, MO, USA). In the gutta-percha (GP) irrigation group, the 

irrigant was delivered as in the previous group and agitated using a cone GP 

(SybronEndo,	Buffalo, New York, USA). In the sonic irrigation group, the irrigant was 
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delivered as in the first group but agitated using the EndoActivator® device (Dentsply 

Tulsa Dental Specialities, Tulsa, OK, USA). In the ultrasonic irrigation group, the 

irrigant was delivered as in the first group but agitated using a Satelec® P5 ultra-sonic 

device (Satelec, Acteon, Equipment, Merignac, France). 

2.2. Generation of single species biofilm (E. faecalis) on the surface of the canal 

models  

2.2.1. Preparation of microbial strain and determination of the standard inoculum 

(CFU/mL) 

Biofilms were grown from a single bacterial strain (Enterococcus faecalis; ATCC 

19433). The strain was supplied in the form of frozen stock in a brain-heart infusion 

broth (BHI) (Sigma-Aldrich, USA) and 30% glycerol stored at -70 °C. The strain was 

thawed to a temperature of 37 °C for 10 minutes and swirled for 30 seconds [35]. After 

thawing, 100 µL of the strain were taken and plated onto a BHI agar plate (Sigma-

Aldrich, St. Louis, Montana, USA) with 5% defibrinated horse blood (E&O 

Laboratories, Scotland, UK) and incubated at 37 °C in the 5% CO2 incubator (LEEC, 

Nottingham, UK) for 24 hours. Bacterial morphology and catalase activity were 

confirmed prior to the generation of the biofilms. For this, two colonies of the strain 

were separately removed using a sterile inoculating loop (VWR, Leicester, UK), and 

catalase testing using 3% H2O2 (Sigma-Aldrich Ltd, Dorset, UK) and Gram-staining 

(BD Ltd., Oxford, UK) were performed. 

A standard inoculum was used. For this, six colonies were removed from the agar 

plate, placed into 20 mL of BHI broth, and incubated at 37 °C in a 5% CO2 incubator 

for 24 hours. BHI containing E. faecalis was adjusted to 0.5 absorbance at a 

wavelength of 600 nm using a spectrophotometer (NanoDrop™ Spectrophotometer 
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ND-100, Wilmington, USA) [36]. Inoculum concentration was confirmed using a total 

of six ten-fold serial dilutions to determine the colony forming units per millilitre 

(CFUs/mL) corresponding to 1.1 × 108 CFU/mL. 

2.2.2. Sterilisation of the canal models 

The model halves were packed individually in packaging bags (Sterrad 100S, ASP®, Irvine, 

CA, USA) and then sterilised using gas plasma with hydrogen peroxide vapour (Sterrad 100S, 

ASP®, Irvine, CA, USA) for 50 minutes [37]. 

2.2.3. Generation and staining of E. faecalis biofilm on the canal surface 

One mL of standard E. faecalis inoculum was delivered into a sterilised 7 mL plastic 

bijou bottle (Sarstedt Ltd, Nümbrecht, Germany) that contained a single sterilised half 

model such that the 3 mm apical portion was immersed. This was achieved using a 

sterile syringe (BD Plastipak™, Franklin Lakes, NJ, USA) and a 21-gauge needle (BD 

Microlance™, Franklin Lakes, NJ, USA) to insert the inoculum. The samples were then 

incubated at 37 °C in the 5% CO2 incubator for 10 days. Every 2 days, half of the 

inoculum that surrounded the sample was discarded and replaced with fresh BHI broth 

[38].  

After ten days incubation, all samples with biofilms were removed from the plastic 

bottle and prepared for staining with a crystal violet dye (CV) [39]. The model halves 

containing the biofilms were placed onto a slide facing up and rinsed with 1 mL sterile 

distilled water (Roebuck, London, UK) for 1 minute using a sterile 10 mL syringe 

(Plastipak, Franklin Lakes, New Jersey, USA) to remove loosely attached cells. Using 

a micropipette (Alpha Laboratories Ltd, Eastleigh, Winchester, UK), 1 µL of CV stain 

(Merck, Darmstadt, Germany) was applied in the apical 3 mm of the model and left for 

1 minute to allow staining. The stained canals were subsequently washed with 3 mL 
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of sterile distilled water for 1 minute [39]. Subsequently, the models were re-

assembled for the irrigation experiments as described below. 

2.3. Re-apposition of the model halves  

Before reassembling the two model halves, a polyester seal film of 0.05 mm thickness 

(UnisealTM, Buckingham. UK) was positioned on the half coated with biofilm. Any part 

of the film that overhung the canal boundary was removed using a surgical blade 

(Swann-Morton, Sheffield, UK) without disturbing the biofilm. The two halves of the 

model were then held in position using four brass bolts (size 16 BA) and nuts 

(Clerkenwell Screws, London, UK). 

2.4. Irrigation experiments 

The apical end of each canal was blocked using a sticky wax (Associated Dental 

Product Ltd, Swindon, UK). Each model was fixed to a plastic microscopic slide (75 × 

25 × 1.2 mm) (Fisher scientific Ltd, Rochester, NY, USA) using a custom-fabricated 

clamp. The model half with the biofilm faced the slide. The microscopic slide was 

placed on a stage of an inverted fluorescence microscope (Leica, UK). The test irrigant 

used in experiments was NaOCl (Teepol® bleach, UK).  

Concentration of available NaOCl was verified before experiments using iodometric 

titration (British Pharmacopoeia 1973) and adjusted to 2.5%. A total of 9 mL of irrigant 

(NaOCl) were delivered using a 10 mL syringe (Plastipak, Franklin Lakes, New Jersey, 

USA) with a 27-gauge side-cut open-ended needle (Monoject, Sherwood Medical, St. 

Louis, MO, USA). The needle was inserted 3 mm coronal to the canal terminus. The 

port opening of the needle always faced the model half containing the biofilm. The 

syringe was attached to a programmable precision syringe pump (NE-1010) to deliver 

the irrigant in 60 seconds at a flow rate of 0.15 mL s-1, followed by 30 seconds of 
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irrigant that was either kept stagnant (passive) in the canal or activated using GP, 

sonic and ultrasonic methods.  

For the GP agitation group, a gutta-percha cone with an apical ISO size 30 and .02 

taper was placed 2 mm coronal to the canal terminus which was used to agitate the 

irrigant in the root canal system with a push-pull amplitude of approximately 3-5 mm 

at a frequency of 50 strokes per 30 seconds. A new GP cone was used with each 

canal model.  

For the sonic agitation group, the agitation was carried out using an EndoActivator® 

device by placing the polymer tip of an EndoActivator® device with size 25 and .04 

taper at 2 mm from the canal terminus, and then the agitation was continued for 30 

seconds with high power-setting (Ruddle 2007). Once again, a new tip was used with 

each canal model. 

For the ultrasonic agitation group, the agitation was carried out by placing a stainless 

steel instrument size and taper 20/02 (IrriSafe; Satelec Acteon, Merignac, France) of 

Satelec® P5 Newtron piezon unit at 2 mm from the canal terminus, then the agitation 

was continued for 30 seconds. The file was energized at power setting 7 as 

recommended by the manufacturer. A new tip was used with each canal model. 

Outflow irrigant was collected in a 15 mL plastic tube (TPP, Schaffhausen, 

Switzerland) using a vacuum pump (Neuberger, London, UK) (Figure 2). The amount 

of available chlorine (%) and pH of the outflow NaOCl were measured using iodometric 

titration (British Pharmacopoeia 1973) and a pH calibration meter (HANNA pH 211, 

Hanna Instrument, UK) respectively. 
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2.5. Recording of biofilm removal by the irrigation procedure 

Removal of biofilm was recorded using a high-resolution CCD camera (QICAM, 

Canada). The camera was connected to a 2.5 × lens of a fluorescence microscope 

(Leica, UK). An N2.1 longpass filter was used during the time-lapse recording of 

interactions between the irrigant and the biofilm. 

2.6. Image analysis 

One video per irrigation procedure was obtained and images were captured at each 

second of footage (90 images). The canal surface coverage of biofilm present after 

every second of irrigation (0.15 mL) was visualised and quantified using Image-pro 

Plus 4.5 software (MediaCybernetics®, Silver Springs, New York USA) (Figure 3).  

2.7. Data analyses 

The residual biofilm (%) at each second of 90 seconds irrigation with passive and 

active NaOCl irrigation was analysed using line plots. An assumption concerning a 

normal distribution of data for the residual biofilm was checked using a visual 

inspection of the box and whisker plots. The data representing the percentages of 

residual biofilm covering the canal surface area were not normally distributed and 

therefore the non-parametric Kruskal-Wallis test, followed by Bonferroni post-hoc 

comparisons were performed to compare their distributions in the four experimental 

groups. The effects of irrigant agitation duration on the percentage of residual biofilm 

covering the canal surface area were analysed by the type of irrigation (passive or GP, 

sonic, and ultrasonic active irrigation) using a generalised linear mixed model. The 

differences in median of chlorine and pH values of the outflow NaOCl of the four 

groups before and after irrigation were compared using the Kruskal-Wallis test. A 

significance level of 0.05 was used throughout. The data were analysed by SPSS (BM 
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Corp. Released 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, New 

York, IBM Corp).  

3. Results 

The median values of the residual biofilm (%) covering the canal surface-area against 

duration of irrigation(s), stratified by the type of irrigation are presented in Figure 4. 

The data showed that the greatest removal was associated with the ultrasonic group 

(90.13%) followed by the sonic (88.72%), the GP (80.59%), and the passive irrigation 

group (control) (43.67%) respectively.  

What is important in the box and whisker plots of the data (median values of residual 

biofilm covering the canal surface) (Figure 5) is that the data do not satisfy the 

assumptions of normal distribution. 

The results of the Kruskal-Wallis test (Table 2) revealed that there was a statistically 

significant difference between the residual biofilm on the canal surface area in the 

ultrasonic irrigation group and both GP (p = 0.002) and passive irrigation groups (p = 

0.001). In comparison, the difference was not statistically significant between the 

residual biofilm in the ultrasonic and the sonic irrigation groups (p = 0.78). Interestingly, 

the difference was not statistically significant between the residual biofilm in the GP 

group and both sonic (p = 0.21) and syringe irrigation groups (p = 0.34). Finally, the 

difference was statistically significant between the residual biofilm of the sonic group 

and the passive syringe group (p = 0.001). 

The data of the generalized linear mixed model analysis (Table 3) revealed that the 

interval of irrigant agitation interestingly had an influence on the removal amount of 

biofilm. During the 30 seconds of irrigant agitation, the amount of biofilm removal using 

passive syringe irrigation was significantly less [5.35% s-1 (±1.1), 6.66% s-1 (±1.1), 
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7.52% s-1 (±1.1)] than the amount of biofilm removal using active GP, sonic, and 

ultrasonic irrigation respectively (p = 0.001). For the active irrigation groups, the 

amount of biofilm removal using ultrasonic agitation was significantly more [2.18% s-1 

(±1.1)], than the amount of biofilm removal using the GP agitation (p = 0.047), whilst it 

was interestingly not significantly more [0.86% s-1 (±1.1)] than the sonic agitation (p = 

0.43). On the other hand, the amount of biofilm removal using sonic irrigation was not 

significantly more [1.32% s-1 (±1.1)] than the amount of biofilm removal using GP 

irrigation (p = 0.23). 

The results of the Kruskal-Wallis tests to explore the effect of biofilm NaOCl irrigant 

interaction on the available chlorine and pH of NaOCl are presented in Table 4. It is 

noteworthy that the left half of the table revealed that there was a relation between 

available chlorine reduction and irrigant agitation because there was a statistically 

significant difference between the available chlorine in the passive group and both the 

ultrasonic group (p = 0.001) and sonic group (p = 0.016). There was not a statistically 

significant difference between available chlorine in the passive group and GP group 

(p = 0.127).  

Amongst the active irrigation groups, it was revealed that there was a statistically 

significant difference between the level of available chlorine in the ultrasonic group 

and the GP group (p = 0.006). Furthermore, there was not a statistically significant 

difference between available chlorine in both the sonic and GP groups (p = 1) and 

ultrasonic agitation group (p = 0.057). 

The data from the right half of the table indicated that there was a strong evidence of 

pH reduction when NaOCl was activated, as a statistically significant difference 

between the pH in passive irrigation group and active irrigation groups was shown 

(ultrasonic; p = 0.001, sonic; p = 0.021, and GP; p = 0.029).  
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Comparing the active irrigation groups, there was a statistically significant difference 

between the pH in ultrasonic group and both sonic (p = 0.029), and GP groups (p = 

0.021). Furthermore, there was not a statistically marked difference between the pH 

in the sonic and GP groups (p = 1). 

4. Discussion 

The key attribute of this study was to investigate the rate of E. faecalis biofilm removal 

using passive or activated 2.5% NaOCl irrigant delivered into a simulated root canal 

model which was made from transparent materials and created using 3D printing. The 

experiments were successful in testing the aims, which were to compare the efficacy 

of passive irrigation and three different irrigation protocols (GP, sonic, and ultrasonic) 

in the removal of biofilm from the root canal system. In addition, the outcomes of 

biofilm-irrigant interaction were also investigated. A NaOCl irrigant (2.5 %) was 

selected for the irrigation procedure since it constitutes the most frequently used 

irrigant in root canal treatment [40, 41] and has been proven to be effective against a 

broad spectrum of bacteria [42]. 

For the objective of this study, the model proposed herein was made from transparent 

resin materials (acrylic), and created using 3D printing. The selection of this material 

was due to its excellent optical transparency, which enabled direct and real-time 

imaging of biofilm removal by antibacterial agents (e.g. NaOCl), as well as the 3D 

printing technique which provided an accurate representation of the simple root canal 

anatomy and allowed numerous variables to be tested [43]. Moreover, the use of resin 

canal models is recommended from other studies [21, 44]. However, the surface and 

composition of such a synthetic material (resin) differs from that of the natural surface 

found in the root canal dentine. The porous nature of dentine (due to dentinal tubules) 

may act differently from a solid resin material. An in vitro study that uses ex vivo 
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(extracted teeth) to test the antimicrobial action of irrigants would be more relevant in 

terms of reflecting the clinical situation. Yet tooth structures are opaque, which makes 

them unsuitable for the direct visualisation needed to assess the antibacterial action 

of an irrigant during the process of irrigation within the root canal. Researchers have 

thus had to resort to using indirect methods of analysis in order to gain an insight into 

the efficacy of irrigation (for example, splitting the tooth). Accordingly, it is not possible 

to assess the rate of biofilm removal by an irrigant during the irrigation regimen in ex 

vivo models.  

The model proposed herein relied upon an adequate seal between the two model 

halves in order to minimize leakage of the irrigant during the irrigation procedure. This 

was achieved by using a seal film between the two halves as recommended in another 

study that assesses the efficacy of the antimicrobial agent in flow chambers [45]. 

Indeed, a pilot experiment to compare between models (n = 3) with the seal film and 

other models (n = 3) without the film showed that the leakage was minimal in models 

with film. For this, the placement of the seal film between the model halves, and the 

holding of this construction in position using nuts and bolts, is important in that it 

provides a seal and thus facilitates the irrigation and minimizes irrigant leakage from 

the canal model. However, the model used in this study does not account for root canal 

complexities such as the lateral canal, isthmus area and accessory canals. 

In the present study, each model was designed with an apical size 30 and taper 0.06 

because this is the apical size most commonly used in clinical practice [46]. The 

selection of a side cut 27-gauge endodontic needle was made for this study, again 

due to common use in clinical practice but also to avoid the greater pressure required 

to deliver the irrigant at a rate of 9 mL per minute, as is the case when using a flat 
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ended 30-gauge needle. A total of 9 mL per minute (0.15 mL s-1) irrigant was used 

since this falls within the range of 0.01–1.01 mL s-1 reported in other studies [47]. 

The Gram-positive facultative E. faecalis type strain was selected to generate the 

biofilms as these species have been associated with secondary root canal infections 

[48]. It has been reported that E. faecalis exhibits an inherent resistance to 

antimicrobial agents, as well as possessing the capacity to adapt to changes in 

environmental conditions [49]. Furthermore, E. faecalis is able to develop a biofilm 

under different growth conditions, including aerobic, anaerobic, nutrient-rich and 

nutrient-deprived environments [50].  Moreover, this species has been used to 

evaluate the efficacy of irrigation solutions [48, 51]. However, single species biofilm 

may be considered a limitation of the present study and future investigations using 

multi-species biofilms, including Gram-negative species may be valuable to be 

explored in the future. 

The initial inoculum concentration was in accordance with other studies [51, 52], which 

was around 108 CFU/mL. In addition, this concentration represents cell concentrations 

(of total bacteria) found in infected root canal systems determined by culture [53].  

A total of ten days of E. faecalis biofilm growth was chosen for this study as it has been 

shown to produce standardised biofilm models for testing the efficacy of antimicrobial 

agents [51], which has been confirmed in preliminary studies using microscopy (data 

not shown) demonstrating the evidence of microbial colonisation.    

In this study, a fluorescence microscope was used to record biofilm removal by NaOCl. 

Fluorescence microscopy has been used as a technique by which to assess biofilms 

[54-56] when stained with a fluorescent marker. One major advantage of this 

technique is that it allows a direct visualisation of the biofilm removal without fixation, 

dehydration or the disturbing of biofilm structures during the irrigation regimen. 
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Nevertheless, there were some limitations associated with the microscopy for the test 

models. High-resolution imaging proved difficult because of the steeply curved sides 

of the canal walls, causing poor light transmission/reflection from these areas. Also, it 

was not possible to observe the degradation of single bacterial cells in the biofilm since 

a low magnification 2.5-x objective lens was used in this study to capture the apical 

3mm of the canal. Finally, crystal violet stain was added to the biofilms as a way of 

making them visible and slightly fluorescent. To examine the effect that crystal violet 

may have on the oxidative capacity of NaOCl, preliminary experiments (based on 

iodometric titration and the pH calibration of NaOCl) were performed. Crystal violet, 

which exhibits slight fluorescence properties [57], proved neutral towards NaOCl and 

did not exhibit any effect on the oxidative capacity of NaOCl, as represented by the 

available chlorine and pH. This may be due to the fact that, firstly, the stain was 

alkaline and secondly, the concentration was not high enough to cause an effect on 

NaOCl. 

Image analysis software (Image-Pro Plus) has been used to analyse the images from 

fluorescence microscopy. This software has also been adopted in other studies in 

order to analyse images [16, 58]. One criticism that can be made in relation to all 

image-analysis techniques is that the areas measured are, to some extent, 

subjectively chosen by the examiner. In order to reduce this limitation, inter- and intra- 

examiner assessments were carried out. A semi-automatic approach to measuring the 

biofilms was applied and imaging software was used to manually draw the template of 

the root canal outline and quantify the biofilm. The same template was used to obtain 

and calculate the biofilm area after washing, without further interference of the 

operator.  
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Although the method of quantifying the biofilm from the root canal wall showed marked 

results, a single assessor performed the measurements and therefore there was a 

possibility of bias.  In order to reduce this, a methodology was agreed using a standard 

protocol for outlining the root canal and for setting the threshold of the stain to be 

measured. The principal assessor and another observer who was experienced in 

using image analysis software measured 10% of the images and this was repeated 

until sufficient inter-observer agreement was achieved [59]. Another attempt to reduce 

bias was attained by assessment of the intra-observer reliability. This was performed 

by recording ten replicate measurements of the residual biofilm in each group at 

specific intervals (every 10 seconds of the 90 second irrigation) and comparing the 

values taken. This comparison showed good agreement between the measurements 

[60]. This semi-automatic method provided operator-independent quantitative results. 

The amount of residual bacteria in the canal models in active irrigation groups (GP, 

sonic, and ultrasonic) decreased from the passive irrigation group (control). This could 

be explained by the fact that the NaOCl agitation may refresh the consumed irrigant 

within the canal [61], which increased the biofilm degradation by the chemical action 

of new NaOCl [19]. Furthermore, irrigant agitation may have intensified the fluid 

dynamics and increased wall shear stresses. Nevertheless, the difference in efficacy 

of the agitation techniques to agitate NaOCl inside the root canal may be related to 

space restrictions of the root canal that interfere with the agitation method [43].	The 

same above mentioned reasons	may once again be responsible for the important 

finding that the reduction in the total remaining amount of available chlorine and pH of 

NaOCl was obvious in agitation groups in comparison to the passive syringe group.  

The difference between GP, sonic, and ultrasonic agitation may be attributed to the 

fact that the manual push–pull motion of gutta-percha point generated frequency is 
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less efficient than the automated methods [14]. The difference between EndoActivator 

sonic and ultrasonic agitation can be due to the driving frequency of ultrasonic device 

being higher than that of the sonic device. A higher frequency results in a higher flow 

velocity of NaOCl irrigant [62]. This may be the result of more biofilm removal by 

ultrasonic than EndoActivator irrigation.  

The results of this study are broadly consistent with the earlier study of Halford et al. 

(2012) [63], who showed that the ultrasonic agitation of NaOCl effectively reduces 

viable E. faecalis bacteria in root canal models when compared to syringe and sonic 

agitation. In contrast, the reduced efficacy of manual agitation (e.g. GP) compared to 

sonic and ultrasonic agitation, presented in this study, is not consistent with the results 

of the Townsend and Maki study (2009) [64], who suggested that manual agitation, 

sonic, and ultrasonic were similar in their ability to remove bacteria from the canal 

walls. These differences can be explained in part by the differences in canal 

preparation as Townsend and Maki used a size and taper 40/0.10 and 35/0.08; size 

30 and taper 0.06 was used herein. For that, the larger apical sizes and taper may 

enhance irrigant exchange and the hydrodynamic forces generated by manual 

agitation. 

Based on the findings, the efficacy of passive irrigation using 2.5% NaOCl was less 

than that achieved by active irrigation protocols using 2.5% NaOCl. Manual agitation 

(GP agitation) was associated with greater residual biofilm than the automated 

agitation (sonic & ultrasonic). Hence, it could conceivably be hypothesised that the 

automated agitation provides optimum efficacy of 2.5% NaOCl within the root canal 

system, as the difference between the automated agitations was not statistically 

significant (p > 0.05).   
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Despite these promising results, there are still many unanswered questions about the 

efficacy of activated NaOCl on multispecies biofilms in simple and complex root canal 

system. Further studies, which take these variables into account, will need to be 

undertaken. 

5. Conclusion 

Within the limitations of the current study, the bacterial biofilm models used herein 

provide a simple method by which to visualise and examine the efficacy of root canal 

irrigants during irrigation within root canal systems. This study shows that the agitation 

of NaOCl irrigant is essential for increasing the efficacy of 2.5% NaOCl to remove 

biofilm. In addition, the use of automated agitation (sonic & ultrasonic) is 

recommended when compared to manual GP agitation in the removal of biofilm in the 

main root canal as a final irrigation protocol.   
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Figure 1: Image illustrates the design of the root canal model. The top view shows half of a simulated 

canal of 18 mm; the left side is the coronal portion of the simulated canal with 1.38 mm diameter and 

the right side represents the apical portion with 0.3 mm diameter. The lower view shows the other half 

and when the two halves are reassembled, a straight simple canal of 18 mm length, apical size 30, 

and a 0.06 taper is created. 
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Table 1: Allocation of the model samples 

Group Type of irrigation 

 
(passive irrigation) (n = 10) 

 

 
Syringe and needle + passive 

irrigant stagnation 
 

 
(GP irrigation) (n = 10) 

 

 
Syringe and needle + GP 

irrigation 

 
(sonic irrigation) (n = 10) 

 
Syringe and needle + Sonic 

irrigation 
 

(ultrasonic irrigation) (n = 10) 
 

 
Syringe and needle + Ultrasonic 

irrigation 
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Figure 2: Sketch illustrating the set-up of equipment for recording of the biofilm (biofilm was generated 

on the apical portion (3 mm) of the canal model) removal by active or passive NaOCl irrigation protocol 

using a camera connected to a 2.5 × lens of a fluorescence microscope an inverted fluorescence 

microscope. The irrigant were delivered using a syringe with a 27-gauge side-cut open-ended needle, 

which was attached to a programmable precision syringe pump. The residual biofilm was quantified 

using computer software (Image-pro Plus 4.5).	Outflow irrigant was collected in a plastic tube using a 

vacuum pump. The amount of available chlorine (%) and pH were measured using iodometric titration 

and a pH calibration meter respectively. 
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Figure 3: Images of stained E. faecalis biofilm on the canal surface of the root canal model (a); before 

(b) and after (c) 90 seconds of irrigation protocol using 2.5% NaOCl. Image-pro plus 4.5 software 

depicts the respective stained biofilm in red before (d) and after (d) irrigation. 
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Figure 4: Median values of the residual biofilm (%) covering the root canal surface-area over duration 

(s) of irrigation for each group, stratified by the type of irrigant agitation (n = 10 per group). 
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Figure 5: Box and whisker plots of the median values (%) of the residual biofilm covering the root 

canal surface area (n = 10 per group). 
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Table 2: Kruskal-Wallis analysis to compare  the difference in the amount of residual biofilms covering 

the canal surface following passive or active irrigation time (30 seconds) with 2.5 % NaOCl irrigant  (n 

= 10 per group). 

Comparable groups *Median (minimum, maximum) (%)  

Group 1 Group 2 Group 1 Group 2 p value 

ultrasonic GP 1.09 (0, 5.25) 13.85 (12.51, 15.18) 0.002 

ultrasonic passive syringe 1.09 (0, 5.25) 25.76 (20.23, 29.30) 0.001 

ultrasonic sonic 1.09 (0, 5.25) 3.82 (1.63, 5.25) 0.78 

sonic GP 3.82 (1.63, 5.25) 13.85 (12.51, 15.18) 0.21 

sonic passive syringe 3.82 (1.63, 5.25) 25.76 (20.23, 29.30) 0.001 

GP passive syringe 13.85 (12.51, 15.18) 25.76 (20.23, 29.30) 0.34 

         * The median difference is significant at the 0.05 level.  
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Table 3: Generalized linear mixed model analysing the effect of time (second) on the amount of biofilm 

removed from the canal surface of each experimental group (n = 10 per group). 

Experimental groups 
*Coefficient 

for time 
effect (±SE) 

95% CI  p value 

GP agitation vs passive syringe irrigation -5.35 (±1.1) -7.49,  -3.19 0.001 

sonic agitation vs passive syringe irrigation -6.66 (±1.1) -8.81,  -4.51 0.001 

ultrasonic agitation vs passive syringe irrigation -7.52 (±1.1) -9.67,  -5.37 0.001 

GP agitation vs ultrasonic agitation   2.18 (±1.1) 0.03,  4.323 0.047 

sonic agitation vs ultrasonic agitation 0.86 (±1.1)   -1.29,  3.01 0.43 

sonic agitation  vs GP agitation  -1.32 (±1.1) -3.47, 0.83 0.23 
*Coefficient for time effect represents the rate of biofilm removal, SE= standard error. 
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Table 4: Kruskal-Wallis analysis analysing the effect of biofilm NaOCl irrigant interaction on the available 

chlorine (left) and pH (right) of NaOCl as dependent variables (n = 10 per group). 

Comparable groups 
*Median available chlorine 

(minimum, maximum) (%) 

P 

value 

*Median pH  

(minimum, maximum) 

p  

value 

Group 1 Group 2 Group 1 Group 2   Group 1    Group 2  

 syringe ultrasonic 0.43 (0.29, 0.61) 1.35 (1.26, 1.52) 0.001 0.56 (0.41, 0.68) 3 (2.15, 4.39) 0.001 

 syringe sonic 0.43 (0.29, 0.61) 0.89 (0.52, 1.12) 0.016 0.56 (0.41, 0.68) 1.71 (1.56, 1.88) 0.021 

syringe GP 0.43 (0.29, 0.61) 0.69 (0.53, 0.81) 0.127 0.56 (0.41, 0.68) 0.69 (0.53, 0.81) 0.029 

ultrasonic  sonic 1.35 (1.26, 1.52) 0.89 (0.52, 1.12) 0.057 3 (2.15, 4.39) 1.71 (1.56, 1.88) 0.029 

ultrasonic GP 1.35 (1.26, 1.52) 0.69 (0.53, 0.81) 0.006 3 (2.15, 4.39) 0.69 (0.53, 0.81) 0.021 

sonic GP 0.89 (0.52, 1.12) 0.69 (0.53, 0.81) 1 1.71 (1.56, 1.88) 0.69 (0.53, 0.81) 1 

* The median difference is significant at the 0.05 level.  

 

	

	

	

	

	

	


