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Abstract  19 

Cytomegalovirus (CMV) is the most common congenital infection in humans and a leading cause of 20 

sensorineural hearing loss. Ganciclovir (6mg/kg twice daily for 42 days) has been shown to reduce 21 

hearing deterioration and is used in clinical practice. Vaccines and passive administration of antibody 22 

are being evaluated in randomised controlled trials in allograft candidates, women of childbearing 23 

age and pregnant women with primary CMV infection. To help define genetic variation in each of the 24 

targets of these therapeutic interventions, we amplified and sequenced genes UL97 (site utilised for 25 

ganciclovir phosphorylation), UL55 (glycoprotein B (gB) vaccine target) and UL128, UL130 and 26 

UL131a (specific monoclonal antibody targets). Serial blood, saliva and urine samples (total 120) 27 

obtained from 9 infants with symptomatic congenital CMV treated with 42 days’ ganciclovir were 28 

analysed.  All samples tested were UL97 wild type at baseline and none developed mutations during 29 

treatment, showing no selection of resistance. The prevalences of UL55 genotypes were 28% gB1, 30 

22% gB2, 1% gB3 and mixed in 20% samples. No mutations were noted in UL128-131a. Phylogenetic 31 

tree analysis showed that sequences with variations were found in multiple body sites of individual 32 

patients, so there was no evidence of body site compartmentalisation of particular strains of CMV. 33 

The significance of these results for changes in diagnostic practices and therapeutic interventions 34 

against CMV are discussed. 35 

 36 

 37 

 38 

 39 

 40 

 41 
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INTRODUCTION  42 

Congenital CMV infection is estimated to affect 0.7 per 1000 live births worldwide (Dollard et al. 43 

2007).  Around 25% of babies born with congenital CMV develop some form of permanent 44 

neurological impairment, primarily sensorineuronal hearing loss (SNHL) and intellectual and 45 

developmental disabilities, with approximately one third having symptoms at birth (Dollard et al., 46 

2007).  Congenital CMV can be due to maternal primary infection in pregnancy, reinfection with a 47 

new strain or reactivation from latency (Gaytant et al. 2002; De Vries et al. 2013).  48 

A phase III randomised controlled trial (RCT) demonstrated that six weeks (6mg/kg twice daily) of 49 

intravenous ganciclovir therapy started in the first month of life reduced hearing deterioration and 50 

improved neurological outcomes in newborns with congenital CMV and evidence of central nervous 51 

system (CNS) disease (Kimberlin et al 2003; Oliver et al. 2009). The protein kinase encoded by CMV 52 

gene UL97 phosphorylates ganciclovir to its active form and UL97 mutations impair ganciclovir 53 

phosphorylation with 90% of resistance mutations to ganciclovir occurring in the UL97 gene 54 

between amino acids 460-520 (Chou 2008). . Resistance is suspected clinically after solid organ 55 

transplant when viral load increases despite treatment and can be confirmed by sequencing the 56 

UL97 gene (Chou 2008).  Theoretical and clinical studies in solid organ transplant recipients show 57 

that therapy lasting for longer than 100 days is needed to select for resistance to ganciclovir (Lurain 58 

et al. 2002; Limaye et al. 2000; Limaye 2002; Emery & Griffiths 2000). No published studies have 59 

assessed whether short courses of treatment in neonates selects for ganciclovir-resistant strains of 60 

CMV. 61 

In clinical studies of neonates, viral load is usually suppressed during 6 weeks of treatment but 62 

rebounds in blood, urine and saliva samples (Whitley et al. 1997; Luck et al 2009).  This pattern is 63 

consistent with viral replication recovering once the antiviral drug pressure is stopped, rather than 64 

selection of resistance, but it is important to document this, especially now that longer courses of 65 

treatment with ganciclovir are being evaluated in a RCT (NCT00466817). 66 
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This cohort of symptomatic babies was used to assess genetic variation in additional genes that are 67 

currently targets for therapeutic intervention against CMV. Two phase II vaccine trials have been 68 

conducted in the last 6 years with promising results of recombinant soluble glycoprotein B (gB) 69 

vaccine in women of childbearing age and in solid organ transplant candidates (Griffiths et al. 2011; 70 

Pass et al. 2009). Five distinct genotypes (gB 1 – 5) have been identified in  infants with congenital 71 

CMV and co-infection with multiple strains reported (Ross et al. 2011).  72 

This study also examined variation in genes that are the target of a current RCT attempting to 73 

interrupt transmission of CMV from donor to recipient during renal transplantation (NCT01753167) 74 

and a third target for therapeutic intervention. Proteins encoded by the UL128-131a gene loci form a 75 

pentameric complex with the antigens glycoprotein L and glycoprotein H (Macagno et al. 2010). The 76 

UL128-131a region is a major determinant of virus entry into epithelial cells (Macagno et al. 2010). 77 

Monoclonal antibodies against these proteins that have high neutralising activity against CMV are 78 

infused at the time of transplant and the proportion of infected recipients compared to that found in 79 

recipients of placebo. As with the gB vaccine mentioned above, parallel studies of this monoclonal 80 

antibody preparation in women of childbearing age could be envisaged with the objective of 81 

reducing maternal-fetal transfer of CMV. Hyperimmune immunoglobulin has recently been 82 

evaluated during pregnancy for this purpose but did not significantly alter the course of infection 83 

during pregnancy (Revello 2014).  84 

The final aim of this study was to address a change in contemporary diagnosis of congenital CMV 85 

infection. Although urine is still most commonly used for diagnosing suspected clinical infection at 86 

birth, the detection of CMV using PCR of dried blood spots and saliva are gaining a role in both the 87 

retrospective diagnosis of CMV and in screening programmes (Boppana et al. 2010; Boppana et al. 88 

2011; Walter et al. 2008) .  Previous studies  show that multiple genotypes are present in samples 89 

taken within the first weeks of life with distinct strains found in different body compartments  as 90 

shown by genotyping of gB, gH and gN (Ross et al. 2011).  None of the infants were reported to be 91 
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symptomatic or to receive treatment for congenital CMV (Ross et al. 2011).   92 

Given the above observations, this study aimed to evaluate variation in CMV genes with possible 93 

relevance to pathogenesis or treatment. This study examined different body compartments of 94 

treated infants and determined whether genetic changes segregated by patient or by body site. 95 

MATERIALS AND METHODS 96 

Patient samples 97 

Blood, saliva and urine samples were analysed from 9 infants with congenital CMV recruited from 4 98 

different paediatric units in the ethically approved Viral Load and Immunity in Congenital CMV (VICC) 99 

study during 2008-2010. Eight infants had been treated with 42 days ganciclovir treatment and one 100 

infant with 42 days ganciclovir followed by 39 days of valganciclovir. Samples were obtained at days 101 

7, 28, 42 of treatment, 7 days post treatment and 3, 6 and 9 months of life.  102 

Samples with CMV viral loads >2.5 log10 were selected for analysis to increase the likelihood of there 103 

being sufficient genetic material for analysis. 104 

DNA Extraction of CMV DNA using the Biomerieux automated extractor  105 

Total nucleic acid was extracted using the commercial Nuclisense Easymag system (Biomerieux, 106 

Basingstoke UK). This is a semi-automated system based on a nucleic acid purification method 107 

developed by Boom and colleagues with enhanced magnetic silica technology (Boom et al. 1990). 108 

DNA was extracted according to the manufacturer’s instructions. 109 

 UL97 population sequencing  110 

The UL97 region (codons 550 – 645) was characterised using a method published previously by 111 

Castor and colleagues with the following modifications to the cycling programme (Castor et al. 112 

2007). The PCR programme was: denaturation at 94°C for 2 min, followed by 45 cycles of 94°C for 30 113 

seconds, 55°C for 30 seconds, and 72°C for 1 minute. Final elongation was carried out at 78°C for 4 114 
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min, with cooling at 37°C for 1 min. PCR product was visualised on agarose gel prior to cycle 115 

sequencing. 116 

Genotyping of cytomegalovirus glycoprotein B  117 

 gB genotyping (sequence strains C327A (M60929), C336A (M60931), C076A (M85228), and C194A 118 

(M60926)) was performed using a method previously described by Pang et al (Pang et al. 2008). Real 119 

time PCR amplification was performed on the ABI TaqMan 7500 (Applied Biosystems, Foster City, 120 

CA) with 45 thermal cycles of 95°C for 15 seconds and 60°C for 45 seconds. 121 

PCR amplification of UL128-131a  122 

Primer sequences to cover known sequence polymorphisms within the UL128-131a regions were 123 

modified from a method published previously (Vogel et al. 2013). The primer sets were: UL128-2-F 124 

(forward) 5 -TCg gCg ATA AAC ACC ACT ATC-3  and UL128-2-R (reverse) 5 -CCA TCC CAA TCT CAT CgT 125 

TT-3 ; UL130-2-F (forward)  5  AgA ACg gCg TCA ggT CTT T-3  and UL130-2-R (reverse) 5 -CAA CAA 126 

AAg gAC CAC gTT CA-3; UL131A-2-F (forward) 5 -TgA AAg Tgg TgA CgA AgC Ag-3  and UL131A-2-R 127 

(reverse) 5 -gCT CAg AgA TCC CgA gTA Cg-3. 128 

DNA sequencing and phylogenetic analysis  129 

Sequencing was performed using the ABI Prism BigDye terminator cycle sequencing kit (v3.1), on an 130 

Applied Biosystems 3730 DNA analyser. Sequences were analysed using Applied Biosystems 131 

SeqScape software with Genbank accession numbers of G221975, FJ527563, GQ221974, GQ466044 132 

and AY446894 used as CMV reference sequences. Phylogenetic trees were constructed using an 133 

online phylogenetic tree maker http://www.hiv.lanl.gov/content/sequence/PHYML/interface.html. 134 

RESULTS   135 

UL97   136 
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Sequencing data were obtained from 20 blood, 24 saliva and 24 urine samples taken at four time 137 

points during and after ganciclovir treatment (day 7, day 28, day 42 and 7 days post-treatment). Not 138 

all patients had all samples available at each time point, but sequence data were obtained from all 139 

specimens tested. Results showed that all samples were wild type at day 7. No known resistance 140 

mutations were identified within the UL97 region in samples taken during treatment. Phylogenetic 141 

analysis demonstrated viral segregation with the patient and not compartmentalisation by body site 142 

(Figure 1).  143 

Glycoprotein B  144 

32 blood, 37 urine and 33 saliva samples were amplified. Genotypes were obtained for 71/102 145 

samples (70%). gB1 28% (29/102) and gB2 22% (22/102) were the most prevalent strains with gB3 146 

identified in only one sample and no genotype available in 30% (31/102); mixed genotypes were not 147 

uncommon (gB1/gB2 16% and gB2/gB3 4% (Table 1).  In 7/9 newborns the gB genotype identified in 148 

≥1 compartment varied at different intervals during and after treatment. No evidence of 149 

compartmentalisation by body site was noted. Mixed genotypes were not associated with sample 150 

type or time point across infants. 151 

UL128-131a 152 

It was possible to investigate this third region using the samples collected as it is not responsible for 153 

ganciclovir phosphorylation. 36 blood, 42 urine and 42 saliva samples were amplified from newborns 154 

on day 7 of life and at 6 months.  Sequence data was obtained from all specimens tested. No 155 

mutations were identified in any of the samples sequenced. Results obtained from UL128-UL131a 156 

sequencing data in blood, saliva and urine show the virus segregating with the patient and not the 157 

body compartment.  158 

DISCUSSION 159 
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Although the number of cases available to us was small, they have the advantage of representing a 160 

population known to benefit from therapeutic interventions; congenital CMV infection born with 161 

symptoms. Natural history studies show that 32% of pregnant women with primary CMV infection 162 

transfer virus across the placenta and that approximately 13.5% of infected babies are born with 163 

symptoms while another 12.7% develop symptoms on follow up (Kenneson & Cannon 2007; Dollard 164 

et al. 2007). It is possible that those who suffer from this infection represent a subset of infected 165 

individuals because one or more strains of CMV has above average pathogenicity. If this were true, it 166 

would be important to document the genetic composition of these proposed more pathogenic 167 

viruses.  168 

Results from the cohort presented demonstrate that 42 days of treatment with ganciclovir does not 169 

frequently select for resistance mutations in the UL97 gene. The region sequenced covered codons 170 

439 – 645 of the UL97 gene. This area has been shown in a previous study to include all clinically 171 

relevant ganciclovir mutations (Chou 2008). We cannot exclude, however, that as yet undefined 172 

mutations exist outside this region. These results suggest that the rebound in viral load seen at the 173 

end of treatment is more likely due to the natural dynamic nature of CMV replication rather than 174 

antiviral resistance (Emery & Griffiths 2000). It will be interesting to see whether, in contrast, the 175 

recently completed study of a longer course of 6 months’ valganciclovir in neonates selects for 176 

resistant strains (NCT00466817). 177 

Our studies of other loci give the impression of genetic stability within CMV, with no evidence that 178 

these symptomatic babies have been infected with unusual strains of virus and no significant 179 

sequence variation observed. In addition, in contrast to Ross’s study of babies not reported to be 180 

symptomatic, this study found no evidence of body site compartmentalisation, because genetic 181 

variants segregated with individual patients rather than by body site which could be due to 182 

ganciclovir enhancing selection of strains (Ross et al. 2011). This implies that changes in diagnostic 183 

practices towards preferring saliva and blood over urine should not introduce major biases into 184 
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studies of CMV genetics. The epitopes within the UL130 complex that are targeted by a current 185 

study of passive infusion of monoclonal antibodies appear to be conformational, so interpretation is 186 

complex, but the polymorphisms seen do not suggest major changes from the wild-type virus.  187 

Genetic variation was seen for gB; as in previous studies gB 1 was the predominant genotype in 188 

these  congenitally infected infants (Ross et al. 2011). Table 1 highlights a complex relationship 189 

between genotype, body compartment and time point. A possible explanation is a combination of 190 

transplacental transfer of more than one maternal strain (cases 3, 4, 5 and 7) and postnatal 191 

reinfection from multiple CMV strains (cases 1 and 8) in congenitally infected newborns. Re-infection 192 

with another strain may induce symptoms. However, this data was unavailable for the study. No 193 

maternal samples were available for sequencing and so it was not possible to demonstrate the 194 

presence of the same genotypes present in a mother and her infected newborn as has been shown 195 

in other studies (Yamamoto et al. 2007). Future studies could consider prospectively collecting 196 

samples from other family members to determine if they are the source of CMV reinfections during 197 

the first year of life. 198 

As regards the implications of genetic variation in gB for the potential to control CMV infection using 199 

vaccines containing gB, the variations seen mapped to antigenic domains 2 and 4 among the 5  200 

identified by Potzsch (Pötzsch et al. 2011). Interpretation is complex, because some of the epitopes  201 

are linear whereas others are conformational. It is hoped that these and other reports of genetic 202 

variation in gB will aid future three-dimensional modelling of the structure of gBs and identify any 203 

predicted effects on the ability of antibodies to bind gB variants. 204 

This study amplified viral DNA direct from clinical specimens giving it an advantage over studies 205 

using cell cultures which can select for different virus strains(Dargan et al. 2010). The use of 206 

population sequencing in this study, however, means that genotypes are only identifiable once they 207 

account for approximately 20% of the sequence population (Lurain & Chou 2010). Mutations present 208 

at lower levels can be detected with pyrosequencing (approximately 6%) and ultra-deep sequencing 209 
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(≤1%) (Renzette et al. 2011).  Future studies employing these newer methods could determine if 210 

even more variation is seen and consider virus evolution over longer periods of time.  211 
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 313 

Figure 1 Phylogenetic tree constructed using polymorphisms obtained from sequencing of UL97 314 

samples 315 

Key:  316 

P: Patient; B: Blood; S: Saliva; U: Urine 317 

1: Sample from day 7; 2: sample from day 28; 3: sample from day 42; 4: sample 7 days post 318 

treatment 319 

 320 

321 
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Table 1 CMV gB genotype distribution in blood, saliva and urine in infants treated with ganciclovir 324 

N= sample not available  325 

0 = No genotype obtained  326 

1 = genotype 1 327 

2 = genotype 2 328 

3 = genotype 3 329 

4 = genotype 4 330 

1,2 = mixed genotype 1 and 2 331 

2,3 = mixed genotype 2 and 3 332 
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