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Introduction

Phase-contrast and confocal microscopy have greatly facili-
tated the progress of cell biology.1 Understanding cellular 
morphology is especially important in order to unravel sub-
cellular signaling mechanisms.2 Modern robotic micro-
scope systems allow scientists to acquire a large number of 
images relating to several diverse conditions within a short 
time period. Hence, automated and robust image segmenta-
tion, object detection, and the subsequent cellular mor-
phometry are now integral parts of microscopic analyses. 
Furthermore, because of the introduction of time dimen-
sionality, aggregating biological information extracted from 
live imaging data and from endpoint high-resolution imag-
ing is a challenging problem with a much sought-after solu-
tion. In this article, we present an enhanced workflow 
combining two methodologies. We report an improved 
CellProfiler-based image segmentation pipeline, hereafter 
referred to as image analysis pipeline for single-channel 
images (IAPSCI), that enables robust identification of 
induced pluripotent stem cells (iPSCs), cells with highly 
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Abstract
Most image analysis pipelines rely on multiple channels per image with subcellular reference points for cell segmentation. 
Single-channel phase-contrast images are often problematic, especially for cells with unfavorable morphology, such as 
induced pluripotent stem cells (iPSCs). Live imaging poses a further challenge, because of the introduction of the dimension 
of time. Evaluations cannot be easily integrated with other biological data sets including analysis of endpoint images. 
Here, we present a workflow that incorporates a novel CellProfiler-based image analysis pipeline enabling segmentation 
of single-channel images with a robust R-based software solution to reduce the dimension of time to a single data point. 
These two packages combined allow robust segmentation of iPSCs solely on phase-contrast single-channel images and 
enable live imaging data to be easily integrated to endpoint data sets while retaining the dynamics of cellular responses. 
The described workflow facilitates characterization of the response of live-imaged iPSCs to external stimuli and definition 
of cell line–specific, phenotypic signatures. We present an efficient tool set for automated high-content analysis suitable 
for cells with challenging morphology. This approach has potentially widespread applications for human pluripotent stem 
cells and other cell types.
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variable morphology on single-channel, phase-contrast 
images. In addition, we present an open-source solution, 
named HipDynamics, to capture cell population changes 
from live imaging data enabling collation and aggregation 
to endpoint imaging data sets via dimensionality reduction.

Automated object segmentation of brightfield and phase-
contrast, gray-scale cellular images is a well-known chal-
lenge, because of the large variability in cell morphology 
and poor edge-background contrast. While strategies to 
optimize segmentation exist, basic intensity thresholding is 
still one of the principal methods employed in object detec-
tion pipelines, often complemented by applying edge detec-
tion, active masks, Markov random fields, or support vector 
machines.3

CellProfiler (CP) is a cellular image analysis software, 
developed and generously made open source by the Broad 
Institute.4 Tested image processing, segmentation, and 
object measurement algorithms are arranged in series (i.e. 
where one module’s output is the input of the next) forming 
an image analysis pipeline.5 The software enables quick 
prototyping of pipelines and automated analysis of thou-
sands of images.

CP’s conventional method of cell object segmentation is 
by employing the IdentifyPrimaryObjects module, which is 
based on identifying a high-contrast (typically fluorescent) 
subcellular feature (typically the nucleus) for each cell. As 
the second step, the IdentifySecondaryObject module 
extends the former segmented primary objects until an edge 
is detected.4 This methodology is supported by robust and 
tested algorithms.6,7 However, in the case of comparatively 
low-contrast, gray-scale, single-channel images of cells 
with highly variable morphology and where subcellular fea-
tures are difficult to identify, CP’s conventional object seg-
mentation technique proves largely inadequate.

High-content image data sets often contain thousands of 
images and several orders of magnitude more cells. 
Furthermore, cell segmentation analysis frameworks often 
produce dozens, sometimes hundreds, of phenotypic features 
to quantify any given cell. Thus, in the case of high-content 
screens, data sets can become unwieldy and lead researchers to 
ignore many morphological measures that may have revealing 
patterns in downstream analyses.8

A common methodology to account for this problem is 
to employ per-image (per-field, per-well) data reduction 
techniques or per-cell classifications. The latter techniques 
may average cellular measures, or compare cell populations 
by evaluating corresponding morphology measure distribu-
tions, using metrics such as Kuiper and Kolmogorov-
Smirnov tests.9–11 Per-field (or per-well) techniques usually 
require predominant cell population changes in order to be 
captured. Conversely, per-cell classification techniques 
allow identification of small changes in a given population, 
albeit with a requirement for supervised or semisupervised 
learning. This is cell type specific, time-consuming, 

demands the user’s intervention, and it requires a formu-
lated hypothesis regarding distinct cell states.12

Besides the sheer number of feature types and their val-
ues, an additional challenge in live imaging high-content 
analysis is the introduction of a third dimension, time. 
Depending on the experiment, live imaging may or may not 
increase the size of raw data produced, yet it almost inevita-
bly increases the complexity of appropriate data extraction 
when collated with data from endpoint images or other 
types of datasets (i.e., genomics, gene expression, and/or 
proteomics). Current tools are unable to reduce time dimen-
sionality, leaving researchers to focus on specific time 
points, which can result in loss of information.

In this study, we set out to confront these two problems, 
namely, the robust segmentation of single-channel images and 
dimension reduction of live imaging data. We present IAPSCI, 
an improved object segmentation methodology for CP that 
results in robust cell segmentation on single-channel images. 
We also introduce HipDynamics, an R-based, open-source 
project that reduces time-dependent, CP-generated cell mor-
phology measures for enhanced downstream analyses. IAPSCI 
and HipDynamics are herein combined as a novel, automated, 
two-step workflow.

Methods

Cell Culture, Green Fluorescent Protein 
Transduction, Image Acquisition

Two human iPSC lines were analyzed. CTR-M2-O5 was a 
kind gift of Jack Price, and IELY was provided by Tamir 
Rashid and Ludovic Vallier.13 Feeder-free CTR-M2-O5 
cells (passage 45) were cultured on Geltrex, and CTR-
M2-O5 (passage 46) cells were cultured on vitronectin in 
E8 medium (Gibco, Waltham, MA). Cultures of both cell 
lines were rinsed with HBSS (Life Technologies, Carlsbad, 
CA) and then incubated for 8 min with Accutase (Biolegend, 
San Diego, CA) to create a single-cell suspension. Cells 
were then seeded on three different concentrations of fibro-
nectin (FN), as described by Leha et al.14 IELY was cul-
tured, dissociated, and seeded on 96-well plates as described 
by Leha et al.14 Cells were transduced with Baculovirus 
based CellLight Nucleus-GFP, BacMam 2.0 (Thermo 
Fisher Scientific, Waltham, MA), according to the manu-
facturer’s instructions, to generate green fluorescent nuclear 
reference points with low efficiency. Images were acquired 
hourly for a total of 24 h using an IncuCyte Zoom (Essen 
Bioscience, Ann Arbor, MI) with a 10× objective and 
extracted as described by Danovi et al.15 After 24 h, the ratio 
of transduced to untransduced cell lines was comparable 
between experiments.

The following subsections of the Methods section focus on 
the image analysis pipelines. They detail the tested conventional 
CP image analysis or image analysis pipeline for multichannel 
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images (IAPMCI), the parallelized IdentifyPrimaryObjects 
modules CP image analysis or image analysis pipeline for  
single-channel images (IAPSCI) and the method used to com-
pare the two.

IAPMCI: Image Analysis Pipeline for 
Multichannel Images

The standard IdentifyPrimaryObjects module CP image 
segmentation methodology IAPMCI was run with the fol-
lowing modules and specifications. Parameters are left at 
default unless specified.

 1. LoadImages. The module loads images one by one 
within a specified folder and feeds them into the 
pipeline. Specifications: Input image file location: 
YourImageSetLocation.

 2. UnmixColors. The module creates separate gray-
scale images from one color image. Specifications: 
Red absorbance: 0; Green absorbance: 1; Blue 
absorbance 0.

 3. ImageMath. The module is able to perform mathe-
matical operations, such as addition and subtraction, 
on the image. Specifications: Operation: Invert.

 4. ImageMath. Specifications: Operation: Subtract, 
Multiply the result by: 2.5.

 5. ApplyThreshold. The module removes pixels below 
or above a particular intensity. Specifications: Select 
the output image type: Grayscale; Set pixels below 
or above the threshold to zero: Below; Threshold 
strategy: Manual; Manual threshold: 0.55.

 6. ImageMath. Specifications: Operation: Invert.
 7. IdentifyPrimaryObjects. A module that identifies 

specific features within an image, usually a subcel-
lular entity. Specifications: Typical diameter of 
objects: 5 to 35, Threshold strategy: Automatic.

 8. Apply Threshold applied on entire gray-scale image 
of step 1. Specifications: Set pixels below or: Below 
threshold, Threshold strategy: Manual, Manual 
threshold: 0.33.

 9. ImageMath applied on image from step 1. 
Specification: Multiply the result by: 4.0.

10. IdentifySecondaryObjects. The module finds dividing 
lines in the surrounding of the location specified by the 
IdentifyPrimaryObjects module. Specifications: Select 
method of secondary object identification: Watershed - 
Gradient, Threshold strategy: Global, Threshold 
method: Otsu, Threshold correction: 0.4, Lower and 
upper: 0.0 to 0.7.

11. OverlayOutlines. The module allows for overlay of 
the outline of an object onto the original input 
image. Specifications: Overlay secondary objects 
and output image of step 1.

12. SaveImages. The modules allows saving its input 
image to a specified location. Specification: Specify 
an output folder.

13. ExportToSpreadsheet. The module allows exporting 
metadata and measurements of an object type to a 
spreadsheet. Specifications: Output file location: 
Specify output location, Press button to select mea-
surements: Measurements of secondary objects.

The following five modules are solely used for HipDynamics 
processing and following downstream analyses.

14. MeasureObjectIntensity. The module extracts 17 
intensity features for each object identified based on 
the corresponding gray-scale image. Specifications: 
Objects: Objects of step 10; Image: output image of 
step 1.

15. MeasureObjectSizeShape. The module measures 17 
area and shape features of objects. Specifications: 
Objects: Objects of step 10.

16. MeasureObjectNeighbours. The module computes 
seven features of an object’s neighbors. Specifications: 
Object: Objects of step 14; Neighboring objects: 
Objects of step 10.

17. MeasureRadialDistribution. Measures features 
about the radial distribution intensities of objects. 
Specifications: Objects: Objects of step 10; Image: 
output image of step 1.

18. ExportToDatabase. The module exports all measure-
ments to a SQL-compatible database. Specifications: 
Experiment name: NameToYourLikingX; Database 
specification (an existing database (DB) needs to be 
present. Find more information about appropriate DBs 
below.); Table Prefix: NameToYourLikingY; Which 
objects should be used of locations: Objects of step 10.

The DB employed for the presented workflow was a MySQL 
version 5.5 DB (Oracle, Inc.). Before running the presented 
workflow, a new user with writing permission as well as a new 
schema has to be created. This process is necessary only once. 
The schema, its data, and user will be maintained during future 
runs of the presented workflow. CP automatically exports 
structured data into the MySQL DB, which is picked up by 
HipDynamics for further processing. The MySQL’s user 
details, IP address, and schema name need to be supplied to 
CP’s ExportToDatabase module and added to hipDynamic.R 
file to guarantee successful data transferal and persistence.

IAPSCI: Image Analysis Pipeline for Single-
Channel Images

The improved Parallelised IdentifyPrimaryObjects modules 
CP image segmentation methodology uses conventional CP 
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modules; however, it processes several primaryObjectsI-
dentification modules each parameterized with incremental 
length scale ranges in parallel. This is followed by an inte-
gration step to prioritize the largest object at a given loca-
tion and discarding of subobjects. To merge the objects 
from each IdentifyPrimaryObject module, objects are con-
tracted by one pixel from their boundary and the stack 
merged. This is to avoid merging distinct neighboring 
objects and solely focuses on overlapping segmentations. 
Once merged, the objects are resegmented and expanded by 
one pixel to the original size, followed by object measure-
ment and result output.

IAPSCI was run with the following modules and specifi-
cations. Unless otherwise specified, parameters of each 
module were left at default:

1. LoadImages. Specifications: Input image file loca-
tion: location of image test set.

2. ImageMath. Specifications: Operation: Invert. The 
following series of modules is repeated three times, 
but with different specifications. When describing 
the specifications for each module, * denotes the 
first, ** denotes the second, and *** the third repeti-
tion. If no * is given, the same specification was 
used in all repetitions.

3. ApplyThreshold. Specifications: Select the output 
image type: Grayscale; Set pixels below or above 
the threshold to zero: Below; Threshold strategy: 
Manual; Manual threshold: 0.78*, 0.75**, 0.74***.

4. ImageMath. Specifications: Operation: Invert. All 
other parameters were left at default.

5. IdentifyPrimaryObjects.. Specifications: Typical 
diameter of objects: 5 to 20*, 21 to 40**, 41 to 
65***; Threshold strategy: Automatic.

6. ReassignObjectNumber. The module unifies unique 
objects into one provided they are below a given 
distance away from each other. Specifications: 
Unification Method: Distance; Maximum Distance: 
2 pixels.

The following array of modules is run after the three-cycle 
repetition.

7. MaskObjects. The module allows removal of objects 
that are outside or inside a specified region. 
Specifications: Select objects to be masked: Objects 
identified in repetition 1; All other parameters were 
left at default. Mask using a region defined by: 
Objects; Select masking object: Objects identified 
in repetition 2.

8. MaskObjects. Specifications: Select objects to be 
masked: Objects remaining in step 8; Mask using a 
region defined by: Objects; Select masking object: 
Objects identified in repetition 3.

9. MaskObjects. Specifications: Select objects to be 
masked: Objects identified in repetition 2; Mask 
using a region defined by: Objects; Select masking 
object: Objects identified in repetition 3.

10. ConvertObjectsToImage. The module transforms all 
objects identified back into an image format. 
Specifications: Input objects: Objects remaining 
after step 9; Color format: Binary.

11. ConvertObjectsToImage. Specifications: Input 
objects: Objects remaining after step 10; Color format: 
Binary.

12. ConvertObjectsToImage. Specifications: Input 
objects: Objects remaining after repetition 3; Color 
format: Binary.

13. ImageMath. Specifications: Operation: Add; 
Images: Binary images generated in step 11, 12 and 
13. All other parameters were left at default.

14. IdentifyPrimaryObjects. Specifications: Typical 
Diameter: 1 to 40; Threshold strategy: Binary.

15. OverlayOutlines. Specifications: Overlay objects of 
step 14 and output image of step 1.

16. SaveImages. Specification: Specify an output folder.
17. ExportToSpreadsheet. Specifications: Output file 

location: Specify output location, Press button to 
select measurements: Measurements of secondary 
objects.

The following five modules are not necessary for cell seg-
mentation procedures and performance evaluation but are 
solely used for HipDynamics processing and/or following 
downstream analyses.

18. MeasureObjectIntensity. Specifications: Objects: 
Objects of step 14; Image: output image of step 1.

19. MeasureObjectSizeShape. Specifications: Objects: 
Objects identified in step 14.

20. MeasureObjectNeighbours. Specifications: Object: 
Objects of step 14; Neighbouring objects: Objects 
of step 14.

21. MeasureRadialDistribution. Specifications: Objects: 
Objects of step 14; Image: output image of step 1.

22. Export to Database. Specifications: Experiment 
name: NameToYourLikingX; Database specifica-
tion (An existing database needs to be present); 
Table Prefix: NameToYourLikingY; Which objects 
should be used of locations: Objects of step 14.

IAPMCI–IAPSCI Performance Comparison

The Image test set, the CP project file containing the pipe-
line above, and the R-script used to generate the plots to 
compare the performance of the two pipelines are available 
in the online supplements. The performance of the two 
image analysis pipelines was determined for each image by 
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the number of objects identified and by the analysis of their 
features. As an image test set, we used phase-contrast 
images with an additional green channel, referring to cells 
expressing nuclear green fluorescent protein (GFP). The 
data exported by the SaveToSpreadsheet was used to pro-
duce the Key Performance indicators KPI 1 and KPI 2.

HipDynamics Methodologies

HipDynamics is an open-source project and can be down-
loaded from Github.16 It allows visualization of dynamic 
changes in cell populations on a plate, aggregating per well 
or, when several technical replicates are present from the 
same experiment, per condition. Here, condition refers to the 
concentration of FN present in a specific well. To fulfill these 
criteria, HipDynamics performs an optional aggregation of 
metadata information, such as condition levels, by matching 
plate and well locations with their metadata. Plots are easily 
generated, depicting population dynamics of morphological 
features per well or per condition. Furthermore, the user is 
presented with a summary file containing quantified trends in 
a time dimensionality–reduced form. The summary file can 
be passed on for further downstream analyses or used as a 
final output to assess cell populations. This approach was 
developed to facilitate parallel analysis of cell measurement 
data from live imaging and endpoint imaging. The following 
pseudocode summarizes the core methodologies employed 
in HipDynamics to generate its outputs.

A. Pseudocode for computing and visualizing iPSC popu-
lation dynamics of morphological features.

1 | For each feature per well per cell line in aggre-
gated data:

2 |      binSize :=  compute dynamic bin size based on 
maximum and minimum feature 
values in aggregated data

3 |     bins := create array of n bins with size binSize
4 |     For each hour in feature:
5 |         matrix[hour] :=  compute histogram from the 

cellular objects at hour 
based on bins

6 |    heatmap := normalise matrix
7 |    plot heatmap

B. Pseudocode for computing time dimensionality–
reduced trends.

1 | For each feature per well per cell line in aggre-
gated data:

2 |    For each hour in feature:
3 |         array[hour] :=  compute IQR, excluding outli-

ers that lie 3 standard devia-
tions from the mean

4 |        linReg := perform linear regression on array
5 |         extract gradient and y-intercept from linReg 

and emit to summary table

Results

iPSCs are particularly challenging to segment because of 
their highly variable morphology and their inherent ten-
dency to come together in clumps. Our project framework 
establishes a complete suite of solutions to enable charac-
terization of a large panel of iPSCs exposed to diverse 
extracellular conditions. For this purpose, data from single-
channel live images and from endpoint images can be inte-
grated for evaluation alongside other data sets, such as 
genomics, gene expression, and proteomics. To set up an 
initial simple workflow, cells were plated on three concen-
trations of FN (1, 5, and 25 µg/mL) as an extracellular 
matrix suitable for culturing pluripotent stem cells to build 
a signature of individual iPSC lines.14 In this established 
assay, we first compared the performance of the novel 
IAPSCI image analysis pipeline to the conventional 
IAPMCI. For this purpose, we used a small two-channel 
live-image set of iPSCs (n wells = 54, n hours = 24, total n 
images = 1296).13 In this particular data set, the second 
image channel contains green fluorescent nuclear live dye 
emissions, acting as a reference point for IAPMCI, to allow 
assessment of the image analysis pipeline’s robustness. The 
performance evaluation for both pipelines is shown in the 
following sections and compared against a manual count of 
fluorescent objects.

Performance of the Novel Image Analysis 
Pipeline

IAPMCI is largely dependent on sufficient reference points 
to allow reliable edge detection of primary objects within a 
given cell. Therefore, the efficiency of nuclear staining of 
iPSCs in the image set dictates its success rate. As a result, 
iPSCs with a clear fluorescent signal are efficiently detected 
(Fig. 1B). A lack of sufficient reference points can result in 
inadequate or absent object expansion, leading to high lev-
els of inaccuracy.

Conversely, IAPSCI uses multiple parallelized Identify-
PrimaryObject modules to improve the pipeline’s object 
detection capability (Fig. 1C). When employing this solu-
tion with incremental iPSC typical diameter ranges, it is 
possible to detect subcellular features of different sizes. The 
favored (largest) identified object at a given location is 
fused with objects in its immediate surroundings to segment 
one cell into one or as few objects as possible. It is impor-
tant to note that IAPSCI deliberately fuses cellular clumps 
into one object.

The same set of images were analyzed by the two pipe-
lines. For segmentation, the conventional pipeline IAPMCI 
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used fluorescent and gray-scale channels, whereas IAPSCI 
accessed only the gray-scale channel for segmentation. 
Importantly, IAPSCI was referred to as IAPSCI (GFP) 
where it was forced to recognize only objects overlapping 
and/or within the perimeter of the fluorescent green cells, 
identified by IAPMCI.

First we set to define the accuracy and reliability of the 
two pipelines in terms of number of objects segmented 
compared with a manual fluorescent count acting as “ground 
truth.” Figure 2A visualizes the number of objects at 7, 14, 
and 21 h, identified by IAPMCI, IAPSCI (GFP), and 
IAPSCI. The manual count used as gold standard refers to 
the number of objects expressing nuclear GFP, whether 
within a single cell or in one or several cells adhering to 
form a clump. The detection accuracy of IAPSCI (GFP) and 
IAPMCI appears to be similar, due to a near equal number 
of identified cells for both measures. Importantly, when 
IAPSCI is run without constraints on GFP-expressing cells, 
several orders of magnitude more cells are identified.

Next, we wanted to explore the performance of the two 
pipelines in terms of specific morphological features of the 
objects segmented. Figure 2B shows object area, minor 
axis length, and perimeter as examples of features from 
objects segmented by IAPMCI and IAPSCI (GFP). For 
these features, a shift in distribution toward an increased 
size is observed with experiment progression (hour 7, 14, 
and 21), consistent with spreading and clumping of cells 

over time. A high degree of similarity of these distributions 
can be observed over 21 h of live imaging. Altogether, these 
results show that despite the absence of nuclear GFP as a 
reference, IAPSCI is capable of segmenting cells with chal-
lenging morphology.

Time Dimensionality Reduction of Live-Image 
Data

Data from our chosen pipeline IAPSCI from iPSC over 
three FN conditions can be obtained from single-channel 
images, and each feature can be quantified over time. We 
next set out to explore dimensionality reduction to enable 
visualization of normalized trends. This is an important step 
to simplify feature selection, evaluation, and integration of 
data with other data sets. Based on the observation that on 
the three FN concentrations, cells appeared to spread/clump 
in different ways, giving rise to objects with increasing size 
at different time points after plating, we explored the trends 
for specific features over time. Figure 3A shows an exam-
ple of HipDynamic’s visualization at the FN condition level 
for one specific feature (segmented object area). With 
increasing (FN) concentration, it is possible to observe an 
accelerated rate of cell area expansion on both tested iPSC 
lines.

Next we set out to apply dimensionality reduction, opt-
ing for a linear regression (LR) applied to each feature, as 

Figure 1. High-level overview 
of typical live-image analysis 
workflows compared with the 
novel one described in this 
study. (A) Manual: Manual cell 
counting, data curation, and 
quality assessment. (B) Semi-
automated workflow with 
automated image segmentation 
requiring multichannel images 
(IAPMCI), followed by manual 
data curation to account for 
time dimension. (C) Automated 
workflow: Involves automated 
image segmentation of single-
channel images (IAPSCI), 
time-dimensionality reduction 
(HipDynamics), and downstream 
analyses.
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opposed to retaining all the time points (n hours = 24 in our 
case). The LR’s gradient now accounts for the information 
on time-related variability (Fig. 3B).

While important information can be derived from spe-
cific features, such as area over time, we aimed to address 
whether a cell population’s behavior over time could be 
quantified using the full breadth of its time-reduced features 
(n = 106) assembled into a gradient signature vector. The 
signature vectors of the iPSC lines that were used in the 
image set on IAPSCI at all three condition levels are dis-
played in Figure 4A. Some features appeared to be charac-
teristic of one cell culture and/or (FN) concentration. We 
next set out to assess whether the signature vector was able 
to quantify the similarity between cell lines by computing 
correlation matrices of the cell cultures for each condition 
level (Fig. 4B). All correlations show a positive similarity 
in the range of 0.66 and 0.91, where a higher correlation 
suggests a higher similarity in feature signature vector and 
hence cell line characteristic.

Importantly, the results of Figure 4A and B show that 
independent equivalent cultures of the same cell line (CTR-
M2-O5 P45 and P46) are more strongly correlated com-
pared with IELY, a nonrelated cell line. In fact, in each 
feature condition, IELY is distinct from CTR-M2-O5 (Fig. 
4B). A list of all 106 features as well as a table with all fea-
ture vectors can be found in the Supplementary Material. 
Altogether, these results indicate that cell line–specific sig-
natures can be captured, observed, quantified, and com-
pared with live images using the methodology we have 
developed.

Discussion

The cell line–specific dynamic signatures generated via 
HipDynamics can now be applied to large panels of iPSCs. 
The cells show dramatic changes over time, from simple 
round objects at the time of seeding stage to complex, irreg-
ular, and highly spread morphologies at later time points.

Figure 2. Key performance 
indicators (KPIs) for quantitative 
comparison of image analysis 
pipeline for multichannel images 
(IAPMCI) and image analysis 
pipeline for single-channel 
images (IAPSCI). (A) KPI 1: 
Number of objects identified by 
manual count, IAPMCI, IAPSCI 
(green fluorescents protein 
[GFP]), and IAPSCI at hour 
7, 14, and 21 on a log scale. 
IAPSCI does not depend on 
expression of GFP and identifies 
a larger number of objects 
compared with the others, both 
similar to a manual count. (B) 
KPI 2: Area, minor axis length 
(MAL), and perimeter density of 
all objects identified by IAPMCI 
and equivalent objects identified 
by IAPSCI (GFP) at hour 7, 
14, and 21. There is an overall 
similarity in the density for 
both pipelines demonstrating 
comparable performance.
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IAPSCI is a novel and unconventional approach to detect 
objects in a robust manner, making use of existing CP mod-
ules. The pipeline’s detection accuracy is solely dependent 
on image quality and is a useful tool for fast, automated, 
non–machine learning, high-content, live and/or endpoint 
imaging experiments in presence of challenging cell mor-
phologies. We conclude that IAPSCI has a similar accuracy 
and robustness in detecting objects on single-channel, 
phase-contrast, cellular images to IAPMCI, which in turn is 
dependent on a minimum of two channels.

IAPSCI and conventional pipelines require input param-
eters for optimal segmentation. Manual pipeline optimiza-
tion is necessary, due to microscope- and cell type–specific 
exposure settings that generate images with different bright-
ness and focus. The number of input parameters for IAPSCI 

was kept to a minimum (n = 3 in step 3) for accelerated 
image analysis pipeline optimization. In direct comparison, 
IAPSCI requires fewer parameters than IAPMCI.

The low transduction rate resulted in poor efficiency of 
GFP expression, especially during the first hours of imag-
ing. IAPMCI tends to oversegment large parts of the image 
in the case of a suboptimal number of fluorescent reference 
points during early hours after plating. We chose hour 7 as 
our first evaluation point to minimize this effect. The per-
formance comparison shows that IAPSCI is as accurate as 
IAPMCI, with the significant advantage of not being depen-
dent on fluorescent live dyes. This is particularly relevant in 
experiments in which the application of live dyes may affect 
cell behavior, introduce bias through a priori feature selec-
tion, and exert financial strain due to live-dye costs.

Figure 3. A descriptive example 
of visualization and dimensionality 
reduction for distinct features 
obtained by HipDynamics. (A) A 
condition-level view of the effect 
of fibronectin (FN) concentrations 
on area for induced pluripotent 
stem cell (iPSC) cultures (from 
top to bottom: CTR-M2-O2 P45, 
CTR-M2-O2 P45, and IELY). 
The increase in objects area 
with time due to spreading and 
formation of clumps takes place 
at different rates, depending 
on the extracellular condition 
(from left to right: 1, 5, or 25 µg/
mL). (B) Computation of time 
dimensionality–reduced data point, 
the gradient of the linear curve, 
of the IELY cell line at (FN) 25 µg/
mL. The gradient of the red curve 
is computed using the mean of 
all interquartile ranges (IQRs) for 
each hour. The same methodology 
is applied at every condition level 
for each cell line to all features.
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Importantly, IAPSCI cannot detect cells within clumps. 
The reason lies in the similarity of image intensity for adja-
cent cells. Instead, IAPSCI detects a clump as one object. 
Nevertheless, for iPSCs, the properties of cell adhesion and 
clump morphology are very useful signatures that appear to 
be cell line specific.

Finally, we report here the unique advantage offered by 
HipDynamics for researchers to view their segmented and 
measured data sets. Multiple view level visualization allows 
identification of feature-based trends, relationships, and 
anomalies that may have been easily missed with current 
methodologies. This approach offers a valid alternative to 
computationally expensive machine learning methods, such 
as PhenoDissm, a software package using support vector 
machines to deduce phenotypic dissimilarity of cells in a 
high-content, image-based environment.17 In addition, easy 
comparison with endpoint imaging data, mitigation of fea-
ture selection, and application of downstream analyses are 
enabled by HipDynamics’ time dimensionality reduction 
capabilities.

HipDynamics uses LR to reduce multiple time-dependent 
data points into one. The feature vectors shown in Figure 4A 
suggest that LR is sufficient to detect cell line– and condition 
level–specific changes. LR also produces an intercept measure 
that in our preliminary observations appears largely indepen-
dent of FN concentration and cell line (not shown). Further 
work would be required to explore the relevance of this value. 
Rather than applying LR, it could also be possible to employ a 
logistic regression with multiple polynominals. While the lat-
ter may result in a more sensitive feature vector, it also bears 
the danger of overfitting to one specific cell culture, thus com-
promising the potential of computing a generalizable feature 
signature vector for specific cell lines. As a result, we chose to 
employ LR in the present studies.

As future work, we aim to develop a standalone 
CellProfiler module that incorporates IAPSCI and its refined 
methodology. Furthermore, we are packaging it together with 
HipDynamics into a scalable web application that can be 
used intuitively and help to reduce the burden of high-content 
data management.

Figure 4. Characterization of cell 
lines using HipDynamic’s feature 
signature vectors. (A) Cell lines’ 
signature vectors constructed from 
the gradients of each measure 
at different fibronectin (FN) 
concentrations (from left to right: 
1 µg/mL, 5 µg/mL, and 25 µg/mL). 
Some features are FN dependent, 
and the IELY signature appears 
distinct. The red arrows highlight one 
specific feature (cell edge intensity) 
as an example. (B) The feature 
signature vectors were assembled 
in correlation matrices according to 
their FN concentration (condition 
level).
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The validated platform described in this study is likely to 
further extend its value to other cell types, including cells 
with different morphologies, and readily offers unique 
capabilities to characterize large panels of human pluripo-
tent stem cells.
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