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Abstract 28 

Neuroimaging studies suggest that the cerebellum might play a role in both speech perception and 29 

speech perceptual learning. However, it remains unclear what this role is: does the cerebellum help 30 

shape the perceptual decision? Or does it contribute to the timing of perceptual decisions?  To test 31 

this, we used transcranial direct current stimulation (tDCS) in combination with a speech perception 32 

task. Participants experienced a series of speech perceptual tests designed to measure and then 33 

manipulate (via training) their perception of a phonetic contrast. One group received cerebellar 34 

tDCS during speech perceptual learning and a different group received sham tDCS during the same 35 

task. Both groups showed similar learning-related changes in speech perception that transferred to a 36 

different phonetic contrast. For both trained and untrained speech perceptual decisions, cerebellar 37 

tDCS significantly increased the time it took participants to indicate their decisions with a keyboard 38 

press. By analysing perceptual responses made by both hands, we present evidence that cerebellar 39 

tDCS disrupted the timing of perceptual decisions, while leaving the eventual decision unaltered. In 40 

support of this conclusion, we use the drift diffusion model to decompose the data into processes 41 

that determine the outcome of perceptual decision-making and those that do not. The modelling 42 

suggests that cerebellar tDCS disrupted processes unrelated to decision-making. Taken together, the 43 

empirical data and modelling demonstrate that right cerebellar tDCS dissociates the timing of 44 

perceptual decisions from perceptual change. The results provide initial evidence in healthy humans 45 

that the cerebellum critically contributes to speech timing in the perceptual domain.  46 

 47 

New and Noteworthy 48 

The role of the cerebellum in behaviour has classically been confined to the control of movement. 49 

However, the cerebellum projects to non-motor areas and neuroimaging studies show neural 50 

changes in the cerebellum during perception and language tasks. This paper provides initial 51 

evidence in healthy humans that alterations of the cerebellum impair the timing of perceptual 52 

decisions in speech without impacting the outcome of perceptual decisions. 53 

 54 

 55 
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Introduction 56 

The role of the cerebellum in behavior has classically been confined to the control of movement. 57 

The cerebellum is known, for instance, to be involved in motor control through the detection and 58 

correction of movement errors (Wolpert et al. 1998; Smith & Shadmehr 2005; Rabe et al. 2009; 59 

Izawa et al. 2012; Panouillères et al. 2015). However, the cerebellum projects to non-motor areas 60 

(Strick et al. 2009) and several studies suggest a cerebellar contribution to behaviours such as 61 

perception, language, and memory (Desmond & Fiez 1998; Mathiak et al. 2002; Durisko & Fiez 62 

2010; Lesage et al. 2012). A host of neuroimaging studies have noted activity changes in the 63 

cerebellum during speech-sound classification, word recognition and language tasks (Xiang et al. 64 

2003; Ackermann et al. 2007; Stoodley & Schmahmann 2009). Furthermore, recent evidence has 65 

linked neural changes in the cerebellum to perceptual learning during both speech and nonspeech 66 

behaviours (Guediche et al. 2015; Vahdat et al. 2014). To date, direct interventional studies of the 67 

cerebellum’s role in speech perception and perceptual learning are lacking. Here we use transcranial 68 

direct current stimulation (tDCS) to provide an initial test of the role of the cerebellum in speech 69 

perception. 70 

Neuroimaging meta-analysis suggests that areas in the right cerebellum are active during speech 71 

perception (Stoodley & Schmahmann 2009), but the nature of this activity remains unclear. One 72 

possibility is that the cerebellum contributes to perceptual decision-making. This contribution might 73 

be most meaningful during times of perceptual change. Indeed, at least three neuroimaging studies 74 

suggest that the right cerebellum is involved in perceptual learning. Callan et al. (2003) examined 75 

neural changes in native Japanese speakers following feedback-driven perceptual learning on a 76 

difficult English phonetic contrast. Increases in neural activity were observed in Crus I and lobule 77 

VI of the right cerebellum, areas active during motor and language tasks (Stoodley & Schmahmann 78 

2009). More recent neuroimaging studies provide further evidence that the cerebellum is involved in 79 

perceptual learning. In the first case, Guediche at al. (2015) linked increased activation in the 80 

cerebellum to a task involving adaptation to distorted speech; and in the second, Vahdat et al. (2014) 81 

examined changes in neural connectivity following perceptual learning related to the position of the 82 

right arm during reaching movements. In this case, learning was driven via explicit feedback (as in 83 

Callan et al. 2003) and perceptual-learning-related changes in functional connectivity were observed 84 
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between supplementary motor area and right Crus I and lobule VI in the cerebellum. This work 85 

presents the intriguing possibility that the cerebellum’s known role in motor learning might be 86 

mirrored in the perceptual domain. 87 

There are, of course, other explanations for neural changes in the cerebellum associated with speech 88 

perception. A long line of research suggests that the cerebellum plays a role in the timing of sub-89 

second behaviors (Spencer & Ivry 2013). For instance, patients with cerebellar ataxia show deficits 90 

in movement timing, such as tapping in sync with a metronome (Spencer et al. 2003; Franz et al. 91 

1996)—deficits not observed in basal ganglia disorders such as Parkinson’s patients (Ivry & Keele 92 

1989). Noninvasive brain stimulation studies support a role for the cerebellum in movement timing. 93 

To give one example, repetitive transcranial magnetic stimulation (rTMS) applied to the cerebellum 94 

can cause increased variability in the pacing of movements (Koch et al. 2007; Théoret et al. 2001). 95 

A smaller amount of research has examined the role of the cerebellum in the timing of non-motor 96 

behaviors. Repetitive TMS of the right cerebellum drove participants to perceive sub-second time 97 

intervals as longer (Koch et al. 2007). Patients with cerebellar degeneration have trouble 98 

discriminating between speech sounds distinguished by their voice onset time (Ackermann et al. 99 

2007). And cerebellar tDCS delivered to the right cerebellum has been shown to alter response times 100 

and, in some cases, measures of accuracy, associated with working memory tasks, difficult serial 101 

subtraction, and linguistic prediction (Ferrucci et al. 2008; Pope & Miall 2012; Miall et al. 2016). 102 

Intriguingly, besides deficits in the timing of behaviors, cerebellar damage seems to leave other 103 

aspects of behaviors, such as movement trajectory and accuracy, relatively unscathed (Spencer & 104 

Ivry 2013).    105 

To test the role of the right cerebellum in speech perception we used transcranial direct current 106 

stimulation (tDCS) to alter the cerebellum during a speech perceptual learning task. TDCS was used 107 

(as opposed to TMS) because it can be applied throughout perceptual learning. Anodal stimulation 108 

was used (i.e. the anode was placed over the cerebellum) because it has been shown to alter the 109 

functioning of the cerebellum and influence behaviour in both the motor and cognitive domain 110 

(Galea et al. 2009; Galea et al. 2011; Ferrucci et al. 2008). 111 

In the study, participants made perceptual decisions about a series of stimuli that spanned the 112 

phonetic contrast between the words “head” and “had”. Feedback was given to manipulate the point 113 
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of perceptual uncertainty between the two words, a paradigm recently shown to cause learned 114 

changes in perception that persist for a week (Lametti, Krol, et al. 2014). This perceptual learning 115 

task was ideal for two reasons: 1) Reflecting the cerebellum’s role in motor learning, we reasoned 116 

that cerebellar involvement in the outcome of speech perceptual decisions might be greatest during 117 

times of perceptual change. 2) The learning task perturbed the timing of perceptual decisions; this 118 

allowed for the cerebellum’s role in perceptual timing to also be assessed. We compared the 119 

acquisition, transfer, and retention of this type of perceptual speech learning between two groups: 120 

one that received tDCS to the right cerebellum throughout learning and another that was given sham 121 

tDCS during the same task. We also compared the timing of perceptual decisions between the 122 

groups by examining gross changes in reaction times throughout the task. Finally, we used the drift 123 

diffusion model to decompose reaction times into processes related to perceptual decision-making 124 

and unrelated processes such as behavioural timing. We hypothesized that, if tDCS effectively 125 

altered the functioning of the cerebellum, changes would be observed in processes unrelated to the 126 

outcome of decision making during speech perceptual learning.   127 

 128 

Methods 129 

Participants and Apparatus 130 

36 neurologically healthy native English speakers participated in the experiments (age range = 18-131 

35); 21 were female. (One of the 36 participants was excluded from the final analysis because 132 

his/her reaction times differed by more than 2.5 standard deviations from the group mean.) 133 

Participants wore headphones (Bose) and responded to speech stimuli from the headphones by 134 

pressing keys on a keyboard. A direct current stimulator (NeuroConn) was used to apply transcranial 135 

direct current stimulation (tDCS) to the cerebellum. Participants gave their informed consent and the 136 

local ethics committee approved the experiments.  137 

Figure 1 138 

 139 

 140 



6 
 

Procedure 141 

Figure 1A shows the procedure. The experiment began with two perceptual tests designed to 142 

measure perception of the words “head” and “had” and the words “head” and “hid” (PT1 and PT2, 143 

respectively). The order of the tests was balanced between participants. Participants then performed 144 

a learning task in which their perception of the phonetic contrast between the words “head” and 145 

“had” was manipulated (PT3 to PT5: see Perceptual Learning).  146 

During perceptual learning, subjects received either 15 minutes (“real”) or 30 seconds (“sham”) of 147 

transcranial direct current stimulation (tDCS) (see Transcranial Direct Current Stimulation). 148 

Perceptual learning was followed by a 5-minute break and two more perceptual tests. The first was a 149 

head-to-hid perceptual test that examined whether learning transferred to a different phonetic 150 

contrast (PT6); the second was a head-to-had perceptual test that measured aftereffects associated 151 

with learning (PT7). The transfer test always followed learning; it was included to assess whether 152 

the effects of cerebellar tDCS on speech perception were global or limited to trained speech sounds.  153 

Measuring Speech Perception 154 

Speech perception was assessed using two perceptual tests, one that measured the distinction 155 

between “head” and “had” and a second that measured the distinction between “head” and “hid”. 156 

Each perceptual test used nine speech stimuli. Figure 1B depicts the stimuli by their first and second 157 

formant frequency values (F1 and F2). The stimuli were created in Matlab by altering F1 and F2 in 158 

ten steps from formant values associated with the word “head” to those associated with “had” or 159 

“hid” (Lametti, Rochet-Capellan, et al. 2014). An English-speaking male provided the root word 160 

“head” and the continua endpoints, “had” or “hid”. The root word was not included in either 161 

continuum. Stimuli were 0.430 seconds long and started with 0.05 seconds of silence.       162 

During each perceptual test the entire set of nine stimuli were played from the headphones in a 163 

random order, one word at a time. After each stimulus participants were prompted by text on a 164 

computer screen to indicate whether they heard “head” or “had” (in the case of the head-to-had 165 

perceptual test) or “head” or “hid” (in the case of the head-to-hid perceptual test). If participants 166 

thought they heard “head” they pressed “s” on the keyboard with their left hand; if they thought they 167 

heard “had” or “hid” they pressed “l” with their right hand. Participants were instructed to respond 168 
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accurately and quickly. The entire stimulus set was repeated 20 times in each perceptual test 169 

yielding 180 perceptual decisions per test. Each perceptual test took about 5 minutes.  170 

The proportion of “had” or “hid” responses was found for each test. Psychometric functions were fit 171 

to these values using “glmfit” in Matlab. The perceptual boundary—that is, the point on the continua 172 

where “had” or “hid” was reported 50% of the time—was computed from the functions.  The 173 

locations on the continua where participants perceived “had”/“hid” 25% and 75% was also 174 

computed from the psychometric functions. The distance between these values was used as a 175 

measure of perceptual acuity as in Vahdat et al. (2014) (e.g. a smaller distance indicates a steeper 176 

psychometric function).  177 

Perceptual Learning 178 

The perceptual distinction between the words “head” and “had” was manipulated using feedback 179 

exactly as described in (Lametti, Krol, et al. 2014). Briefly, the perceptual boundary between “head” 180 

and “had” was computed from the baseline phase of the experiment. For the real tDCS group this 181 

boundary averaged 5.39; for the sham group it averaged 5.45. This difference was not significant (p 182 

= 0.8). A new perceptual boundary was then set one stimulus lower than the original, rounded-to-183 

the-nearest integer, perceptual boundary. Feedback was delivered around this new boundary 184 

immediately following each perceptual decision. Figure 2A shows how the feedback would be 185 

applied based on the average baseline psychometric function (dashed curve) for the head-to-had 186 

continuum. If, for instance, a participant’s baseline perceptual boundary was computed as 5.42, a 187 

new perceptual boundary was set at stimulus 4 for training purposes. After this, a response of “head” 188 

for stimuli 1-3 and “had” for stimuli 4-9 resulted in “CORRECT” being displayed on the computer 189 

screen. A “had” response for stimuli 1-3 or a “head” response for stimuli 4-9 resulted in the 190 

appearance of “INCORRECT” on the screen and the addition of 1 point to an error counter at the 191 

bottom of the screen. Perceptual learning consisted of three perceptual tests in a row with this 192 

feedback. Perceptual tests with feedback had 135 perceptual decisions (15 blocks of the 9 stimuli 193 

instead of 20 as in the baseline, transfer and aftereffect tests). There was a 30 second break between 194 

perceptual tests. During the break the error counter was zeroed and participants were instructed to 195 

reduce their errors. Perceptual learning lasted for about 17 minutes (16.81 mean, 1.16 SD).  196 
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Transcranial Direct Current Stimulation 197 

Transcranial direct current stimulation was applied to the right cerebellum during learning. 198 

Following the baseline phase of the experiment, the anode was placed in a 25 cm2 saline-soaked 199 

sponge and positioned 3 cm lateral to the inion on the right side of the scalp. The cathode was 200 

placed in a 25cm2 saline-soaked sponge and positioned in the center of the right buccinator muscle. 201 

This tDCS electrode configuration has previously been shown to influence behavior attributed to the 202 

right cerebellum and cause neural changes associated with alterations of the right cerebellum (Galea 203 

et al. 2009; Galea et al. 2011; and see Grimaldi et al. 2016 for a review of the impact of tDCS on the 204 

cerebellum). 205 

Participants were divided into two groups. A “real” stimulation group (n = 17) received 15 minutes 206 

of stimulation during perceptual learning and a “sham” group (n = 18) received 30 seconds of 207 

stimulation at the start of learning. In each case, the current was ramped up to 2.0 mA over 30 208 

seconds and ramped down to zero over 30 seconds. The electrodes were removed from the scalp 209 

during the break that followed training. Participants were blind to the stimulation condition.  210 

Data Analysis 211 

The proportion of “had” or “hid” responses was computed for each perceptual test on a per subject 212 

basis (Figure 1C, top panel). Training-related changes in this proportion were found by comparing 213 

post-learning perceptual tests to pre-learning perceptual tests. These changes were then averaged 214 

across participants within each group. To visualize perceptual learning (as in Figure 2B), the 215 

proportion of “had” responses was computed for each of the 65 blocks of 9 perceptual decisions that 216 

made up the baseline head-to-had perceptual test and the training perceptual tests. These proportions 217 

were then averaged across participants within each group.  218 

The time it took participants to come to a perceptual decision by pressing “s” or “l” on the keyboard 219 

was examined. Reaction times were measured from the start of each stimulus. The idea behind 220 

measuring reaction times was that they would peak near the category boundary, or the point where 221 

participants were the most uncertain about whether they heard “had”, “head” or “hid” (Niziolek & 222 

Guenther 2013). In this case, learning-related changes in the perceptual boundary should also be 223 

reflected by reaction time changes.  224 
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Across stimuli and groups, the mean reaction time was 0.638 seconds (0.161 SD) before training 225 

and 0.602 seconds (0.172 SD) after training. Reaction times greater than 1250 milliseconds were 226 

discarded (~ 5% of the data). The reaction time data was positively skewed. To correct for this, 227 

reaction times were log normalized (using the natural logarithm). Reaction times were also 228 

converted into z-scores on a per perceptual test and subject basis (Figure 1C, bottom panel). 229 

Average z-scores were then computed for each stimulus in each perceptual test. To examine gross 230 

changes in reaction time between the groups, for each perceptual test log normalized reaction times 231 

were averaged across stimuli. This was done first within subjects and then across groups. TDCS-232 

related changes in reaction time were visualized (as in Figure 5) by averaging log normalized 233 

reaction times across the blocks of 9 stimuli that made up each perceptual test.  234 

Diffusion Modelling 235 

The drift diffusion model was fit to participant responses and reaction times using the Diffusion 236 

Model Analysis Toolbox in Matlab (Vandekerckhove & Tuerlinckx 2008). The model assumes that 237 

one decision reflects a correct response and the other reflects an incorrect response.  Given that 238 

perceptual boundaries before and after learning were not statistically different from the stimulus in 239 

the middle of the continua (5.24 on average, 1.0 SD), the data were grouped by stimulus quality or 240 

coherence. Stimulus 9 (“had/hid”) was made equivalent to stimulus 1 (“head”), 8 was made 241 

equivalent to 2, 7 was made equivalent to 3, and 6 was made equivalent to 4. A response of “head” 242 

was considered to be correct under this transformation. This left 5 stimuli that differed in stimulus 243 

quality such that the proportion of correct responses decreased as the quality of the stimuli decreased 244 

(see Figure 6A).   245 

To further increase the sample size used for modeling, data from PT1 (head-to-had continuum) was 246 

combined with PT2 (head-to-hid continuum) to create a before-tDCS dataset and data from PT6 247 

(head-to-had continuum) was combined with PT7 (head-to-hid continuum) to create an after-tDCS 248 

dataset. The model was then fit to the before-tDCS and after-tDCS datasets on a per subject basis 249 

and the model’s parameters were compared between the sham and real tDCS groups. Approximately 250 

5% of the parameters estimated from individual subject data were greater than 2 standard deviations 251 

from the group mean; these values were not included in the final analysis.  252 
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Statistical Analysis    253 

Between and within-group comparisons of the measures described above were performed using 254 

split-plot or repeated measures ANOVA. Where appropriate, post-hoc comparisons were performed 255 

using two-tailed t-tests. The significance level for all statistical tests was 0.05; this value was 256 

corrected for multiple comparisons using the Bonferroni method.    257 

 258 

Results 259 

The aim of the experiment was to test the competing hypotheses that the cerebellum might influence 260 

the outcome of speech perceptual decisions versus playing a role in the timing of decisions. To do 261 

this, a group of participants received tDCS to the cerebellum while they performed a speech 262 

perceptual learning task—a task that altered both speech perception and the timing of speech 263 

perceptual decisions. Their performance during training, on a transfer test, and on an aftereffect test 264 

was compared to participants who received “sham” tDCS (see Figure 1A).  265 

Figure 2 266 

Feedback drove a learned change in response to the stimuli. Figure 2B shows the proportion of 267 

“had” responses during the baseline phase of the experiment (PT1) and during perceptual learning 268 

(PT3, PT4, and PT5). Feedback caused a change in response such that the proportion of “had” 269 

responses increased during learning (F (1, 64) = 13.79, p < 0.0001: main effect of block). Across the 270 

45 blocks of perceptual decisions that made up the training phase of the study, a block-by-block 271 

comparison revealed no significant differences between the sham and real tDCS groups (p > 0.05 in 272 

every case) and there was no interaction between blocks and the presence or absence of tDCS (F (1, 273 

44) = 1.03, p > 0.4). This model-free analysis suggests that cerebellar tDCS did not alter the rate and 274 

amount of speech perceptual learning. 275 

Figure 3 276 

Following learning, participants experienced a transfer test (PT6). Figure 3A shows the average 277 

psychometric function (top panel) and log normalized reaction times at each stimulus (bottom panel) 278 
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for the head-to-hid continuum before and after speech perceptual learning on the head-to-had 279 

continuum (PT2 vs. PT6). The figure thus depicts the transfer of learning from one phonetic contrast 280 

to another. The left panel shows the sham tDCS group and the right panel shows the real tDCS 281 

group. As compared to baseline, training on the head-to-had continuum altered how participants 282 

responded during the head-to-hid transfer test. Specifically, the psychometric functions shifted 283 

towards “head” such that participants reported perceiving more “hids”. This change in perception 284 

was reflected by a change in reaction times for some of the stimuli [F (8,26) = 5.96, p < 0.001: 285 

interaction between stimuli and experimental phase]. Reaction times increased for stimuli 3 and 4 in 286 

the case of the sham group, and stimuli 2 in the case of the real group (p < 0.05, in each case). This 287 

suggests that participants became less certain about whether these stimuli were “head” or “hid”. On 288 

the other hand, reaction times decreased for stimuli 8 and 9 in the case of the sham group, and 289 

stimuli 7 and 8 in the case of the real tDCS group (p < 0.05, in each case). That is, participants 290 

became faster to perceive and label these stimuli as “head” or “hid”. These reaction time changes are 291 

consistent with a shift in the perceptual boundary (the point of greatest perceptual uncertainty) 292 

towards “head”. Crucially, the pattern of reaction times following learning did not differ between 293 

the sham and real tDCS groups (F (8,26) = 0.27, p > 0.95: interaction between stimuli and group). 294 

Thus, perceptual learning on the head-to-had continuum altered participants’ perception of the head-295 

to-hid continuum, and this alternation was not changed by cerebellar tDCS applied during learning.     296 

The transfer test was followed by an aftereffect test (PT7). Figure 3B depicts average psychometric 297 

functions for the head-to-had continuum and associated reactions times before and after learning 298 

(PT1 vs. PT7) for the sham and real tDCS groups. The figure thus depicts aftereffects associated 299 

with speech perceptual learning. Compared to baseline, perceptual learning altered how subjects 300 

responded during the head-to-had perceptual test even after the feedback was removed. Consistent 301 

with the trained perceptual boundary, the psychometric functions moved towards “head” indicating 302 

that subjects reported perceiving more “hads”. This change in perception was, again, reflected by a 303 

change in reaction times to some of the stimuli [F (8,26) = 3.40, p < 0.01: interaction between 304 

stimuli and experimental phase]. In the case of the sham group, reaction times increased for stimuli 305 

2 and 3 and decreased for stimulus 6 (p < 0.01, in each case). In the case of the real group, reaction 306 

times increased for stimuli 2 and 3 and decreased for stimuli 6 and 7 (p < 0.05, in each case). The 307 

reaction time changes agree with a learning-related shift in the perceptual boundary on the head-to-308 
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had continuum towards “head”. Following learning, the pattern of reaction times did not differ 309 

between the sham and real tDCS groups (F (8,26) = 0.78, p > 0.62: interaction between stimuli and 310 

group). This suggests that the aftereffects of perceptual learning were not altered by cerebellar 311 

tDCS.  312 

The learning-related changes in the psychometric functions shown in Figure 3 are quantified in 313 

Figure 4. Specifically, the figure shows changes in the proportion of “had” or “hid” responses from 314 

baseline and the impact of cerebellar tDCS on these changes. During the transfer test, perceptual 315 

learning caused an increase in the proportion of “hid” responses for both the sham and real tDCS 316 

groups (p = 0.018, p = 0.011, respectively). However, there was no difference in this change 317 

between the two groups (p = 0.84). During the aftereffect test, perceptual learning caused an 318 

increase in the proportion of “had” responses for both groups (p < 0.0001, in both cases). Again, 319 

there was no difference in these changes between the two groups (p = 0.94). Finally, we examined 320 

changes in the acuity of the psychometric function (i.e. the steepness of the curves depicted in 321 

Figure 3) across baseline, perceptual training, transfer and aftereffect tests. Cerebellar tDCS did not 322 

have an impact on perceptual acuity [F (6,27) = 1.23, p = 0.319: interaction between acuity and 323 

group]. In combination with the reaction time measures, this demonstrates that cerebellar tDCS did 324 

not have an impact on both the transfer and retention of speech perceptual learning. 325 

Figure 4 326 

The perceptual data demonstrates that cerebellar tDCS does not have an impact on the outcome of 327 

speech perceptual decision-making for both trained and untrained speech stimuli. We next examined 328 

whether the cerebellum might play a more general role in speech perception related to the timing of 329 

perceptual decisions.  330 

The z-scores depicted in Figure 3 give a measure of how perception changed across the stimuli. 331 

However, as the z-scores were computed on a per perceptual test and subject basis, they mask 332 

overall differences in mean reaction time between tests and groups—differences that could provide 333 

evidence for changes in the timing of decisions. 334 

Figure 5 335 
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Figure 5A shows average (but still log normalized) reaction times for each perceptual test over the 336 

course of the experiment. The squiggly lines shows how average reaction times evolved during the 337 

training, transfer, and aftereffect tests. Cerebellar tDCS drove significant between-group differences 338 

in average reaction time over the course of the experiment [F (6,28) = 2.65, p = 0.037: interaction 339 

between perceptual tests and group]. There was no difference in average reaction time between the 340 

groups during the baseline phase of the experiment (PT1 and PT2). The introduction of feedback at 341 

the start of perceptual learning led to an increase in reaction time (p < 0.05, in each case). The group 342 

that received sham stimulation decreased their response times over the course of perceptual learning 343 

(PT3 vs. PT5: p = 0.012) until reaction times did not differ from baseline responses. A similar 344 

decrease was not observed for the group that received real stimulation (PT3 vs. PT5: p = 0.73). 345 

Indeed, by the middle of learning and tDCS (PT4), the sham group was responding to the stimuli 346 

faster than the real group (p = 0.035). This tDCS-related change in reaction times was also observed 347 

at the end of learning (PT5, p = 0.01), and 7 minutes after stimulation during the transfer test 348 

(PT6)—a test that involved responses to untrained stimuli (p = 0.014). Twelve minutes after tDCS 349 

during the retention test (PT7), there was no longer a difference in average reaction times between 350 

the two groups (p = 0.155). The difference in reaction time thus grew with stimulation and wore off 351 

when stimulation was removed. In combination with the lack of a difference in the perceptual 352 

measures (as depicted in Figures 3 and 4), this suggests that independent of the outcome of 353 

perceptual decision-making right cerebellar tDCS impaired the timing of speech perceptual 354 

decisions.  355 

To rule out the possibility that the reaction time delay observed in PT4, PT5 and PT6 could be 356 

explained by a perturbation of the motor system, we examined average reaction times from left and 357 

right hand responses separately. Since the right cerebellum projects to frontal lobe motor areas in the 358 

left hemisphere, we reasoned that a perturbation of the motor system caused by right cerebellar 359 

tDCS should have a larger (if not exclusive) impact on right hand responses. To increase the sample 360 

size and the likelihood of seeing an interaction between the response hand and tDCS-related 361 

changes, reaction times from PT4, PT5, and PT6 were pooled into left and right hand responses. 362 

Figure 5B shows that right cerebellar tDCS slowed perceptual responses regardless of the hand used 363 

to indicate perception [F (1,33) = 0.59, p = 0.45: interaction between the hand used to respond and 364 
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group]. This result does not fit with a perturbation of the motor system originating in the right 365 

cerebellum.  366 

To further explore the impact (or lack thereof) of cerebellar tDCS on perceptual decision-making, 367 

we fit a drift diffusion model to the reaction times and associated perceptual decisions. Diffusion 368 

models have been shown to account for reaction times in a wide range of simple perceptual 369 

decisions such as those in this study (Gold & Shadlen 2007). The model has four key parameters 370 

that break down reaction times and associated perceptual responses into different aspects of 371 

perceptual processing: Boundary Separation reflects the decision criteria; Starting Point reflects the 372 

bias for one of two perceptual decisions; and Drift Rate relates to the rate of evidence accumulation. 373 

In combination, these three parameters define the speed of perceptual decisions, while the fourth 374 

parameter, Non-Decision Time, accounts for the time required for processes unrelated to perceptual 375 

decision-making (Ratcliff & McKoon 2008). Cerebellar tDCS could have impaired one or a 376 

combination of these parameters leading to the observed reaction time delay. However, if tDCS 377 

spared processes related to perceptual decision-making, only a difference in the Non-Decision Time 378 

parameter should be observed between the groups.    379 

Figure 6 380 

To allow the effect of tDCS on reaction times to be carried by one or more of the parameters we let 381 

all four vary when fitting the data. Figure 6A shows the transformed stimulus categories (see 382 

Methods) and associated perceptual decisions and reactions times to which the model was fit. The 383 

top panel shows the transformed data before tDCS and perceptual learning and the bottom panel 384 

shows the transformed data after tDCS and perceptual learning. Similarly, the top panel of Figure 385 

6B shows the parameters before tDCS and perceptual learning and the bottom panel shows the 386 

parameters after tDCS and perceptual learning.  387 

Cerebellar tDCS caused a clear difference in Non-Decision time between the sham and real tDCS 388 

groups [Figure 6B, bottom right: main effect of group: F (1,30) = 7.76, p < 0.01]. A difference 389 

between the sham and real stimulation groups was not observed for any of the other parameters (i.e. 390 

there were no other significant main effects or interactions following tDCS). Fitting the model with 391 

fewer free parameters yielded results that were qualitatively and, in most cases, quantitatively 392 
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similar. This provides additional evidence that, during speech perceptual decisions, disruptions of 393 

the cerebellum spare the perceptual decision making process.    394 

 395 

Discussion 396 

Motivated by fMRI studies showing activity changes in the cerebellum during both speech 397 

perception and perceptual learning, we used tDCS to test whether the cerebellum is involved in 398 

speech perceptual learning versus the timing of perceptual behaviours. The empirical data and 399 

modeling of the perceptual decision-making process support the second hypothesis (with caveats 400 

discussed below). In short, cerebellar tDCS significantly altered the time it took participants to come 401 

to a speech perceptual decision without changing the outcome of their decision.  402 

In the experiments, feedback was used to drive a change in the perception of the phonetic contrast 403 

between the words “head” and “had” while tDCS was applied to the right cerebellum. This task 404 

caused an alteration in both perception and the timing of perceptual decisions. For both groups, the 405 

induced change in perception was identical and robust; it was reflected by changes in perceptual 406 

responses and normalized patterns of reaction times across the stimuli, and it transferred to a 407 

different phonetic contrast. Compared to sham stimulation, cerebellar tDCS significantly increased 408 

the time it took participants to respond to the speech stimuli. The alteration in response time grew as 409 

tDCS was applied, it wore off after stimulation came to an end, and it altered the timing of both 410 

trained and untrained speech perceptual decisions. Taken together, the behavioural results show a 411 

tDCS-related dissociation between perceptual change in speech and the timing of perceptual 412 

decisions, implicating the right cerebellum in perceptual timing during speech.  413 

Learning, whether for motor or perceptual tasks, typically involves a practice-dependent change in 414 

the timing of behaviors (Spencer & Ivry 2013). As the trial and error process of learning progresses 415 

behaviours become better timed. In the present study, the introduction of feedback at the start of 416 

learning caused an increase in reaction time. The sham group reduced reaction time as learning 417 

progressed, whereas the group receiving cerebellar stimulation did not. Both groups achieved the 418 

same amount of perceptual change, but a disruption of a practice-dependent change in response time 419 

during the task was only observed in the stimulated group. A disruption in response time was also 420 
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observed during the transfer task, which involved untrained stimuli. Our interpretation of the result 421 

is that the cerebellum does not play a direct role in perceptual decision-making in speech. However, 422 

by perturbing response time, a role for the cerebellum in the timing of when perceptual decisions are 423 

initiated or, possibly, when they are used in behaviour was revealed.  424 

If the cerebellum is involved in the timing of speech decisions, as the empirical data suggest, it 425 

leaves open the possibility that the cerebellum might have a greater impact on perceptual change 426 

when perceptual learning places a greater reliance on timing. Speech perceptual learning can be 427 

driven by both externally generated feedback (as in this study) and internally generated error signals. 428 

In the case of the latter, learning is presumably caused by a mismatch between a predicted speech 429 

sound and what was actually perceived (Guediche et al. 2015). There is a large amount of evidence 430 

from the motor control literature that the cerebellum plays a role in motor learning driven by errors 431 

in prediction (Wolpert et al. 1998; Smith & Shadmehr 2005; Rabe et al. 2009; Izawa et al. 2012). 432 

The cerebellum might play a larger role in the outcome of perceptual learning when learning relies 433 

on similar temporal predictions (Spencer & Ivry 2013). Indeed, the cerebellum has a known role in 434 

other forms of learning that depend on temporal predictions. For instance, lesions of the cerebellum 435 

in animal models and humans disrupt classical conditioning (McCormick & Thompson 1984; 436 

Hoffland et al. 2012), which critically depends on the correct timing between unconditioned 437 

responses and conditioned stimuli (Pavlov 1926).  It thus remains to be tested whether repeating this 438 

study with a perceptual learning paradigm involving a time-dependent error signal would reveal an 439 

impact of cerebellar tDCS on the outcome of perception. Such an outcome would support our 440 

interpretation of the results presented here.  441 

Using the Drift Diffusion Model, we broke down participants’ decisions into processes related to the 442 

outcome of speech perception versus unrelated processes. Cerebellar tDCS only impacted the latter 443 

(i.e. “Non-Decision Time”). Importantly, the Non-Decision Time parameter altered by tDCS 444 

includes other processes besides the timing of perceptual decisions, such as the motor act of 445 

indicating perception (but see the next paragraph). Nevertheless, the computational results provide 446 

additional evidence that cerebellar tDCS entirely spared the perceptual decision making process in 447 

speech.   448 
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One possible explanation for the observed reaction time delay (an explanation that would agree with 449 

the modelling results) is that tDCS simply impaired the motor system. After careful consideration, 450 

we believe this conclusion to be unlikely for at least two reasons. In the study, tDCS was applied to 451 

the right cerebellum. The right cerebellum interacts with speech, language and motor areas in the 452 

left hemisphere. In particular, the right cerebellum projects to left hemisphere motor areas that 453 

control movements of the right hand (Kelly & Strick 2003). One would thus expect impairments in 454 

this motor circuit to only impact right hand responses. On the other hands, word recognition is 455 

largely lateralized to the left hemisphere (DeWitt & Rauschecker 2012). An impairment related to 456 

the timing of word perception should thus be observed in responses from both hands, and this is 457 

precisely what we saw.  458 

Does tDCS focally stimulate the cerebellum? This question, which is of paramount importance to 459 

the interpretation of this study, can be addressed by examining the results of studies that pair tDCS 460 

and TMS (Grimaldi et al. 2016). When a conditioning TMS pulse is applied to the cerebellum 5-7 461 

milliseconds before a test TMS pulse is applied to motor cortex a reduction in the ensuing motor 462 

evoked potential is observed. This phenomenon is known as cerebellar inhibition (Pinto & Chen 463 

2001; Daskalakis et al. 2004), and it is thought to be caused by inhibitory output from cerebellar 464 

purkinje cells on cortical motor areas. Importantly, cerebellar inhibition is altered by both anodal 465 

and cathodal cerebellar tDCS (Galea et al. 2009). The direction of the alteration depends on the 466 

polarity of the stimulation. Cerebellar tDCS does not seem to alter the excitability of adjacent areas, 467 

a result supported by behavioural work and studies that model the flow of direct current applied to 468 

the brain (Rampersad et al. 2014; Galea et al. 2011; and see Figure 3 in Grimaldi et al. 2016). Thus, 469 

neurophysiological investigations, behavioural work and computational modelling suggest that 470 

cerebellar tDCS focally alters the functioning of the cerebellum. Nevertheless, as Grimaldi et al. 471 

(2016) point out, more work is needed to determine the precise impact of tDCS on cerebellar 472 

neurons and the locations within the cerebellum that tDCS affects (e.g. cerebellar cortex or purkinje 473 

cells).  474 

 475 

Why did anodal tDCS impair behaviour in this study? There are many examples of studies 476 

examining the impact of anodal tDCS on motor behaviour that have observed isolated behavioural 477 

improvements. These results, which have mainly focused on the effects of  tDCS when applied to 478 
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the cerebral cortex, have led to the over-simplified idea that anodal tDCS ought to improve 479 

behaviour, whereas cathodal tDCS should inhibit it. However, we know of no established 480 

mechanistic framework that would support this, and given the complexity and nonlinear dynamics 481 

of cortical and cerebellar processing it is increasingly clear that the heuristic of a sliding scale 482 

rationale is overly simplistic (Bestmann et al. 2015; de Berker et al. 2013; Rahman et al. 2015). 483 

Indeed, anodal tDCS can impair behaviour and cathodal tDCS can improve behaviour, and this 484 

seems especially true when applied to the cerebellum. To give two examples of particular relevance 485 

to the current study, Ferrucci et al. (2008) applied anodal tDCS to the right cerebellum and found 486 

that practice-dependent changes in reaction time associated with a working memory task were 487 

impaired. And in more recent work, Pope and Miall (2012) applied cathodal tDCS to the cerebellum 488 

and observed improvements in performance on a difficult serial subtraction task. In explanation, 489 

Pope and Miall speculate based on the neurophysiology of cerebellar-cortical connections that 490 

cathodal stimulation led to a decrease in inhibitory output from the cerebellum and, by consequence, 491 

a release of cognitive resources. Although there is some evidence that seems to counter this idea 492 

(e.g. Boehringer et al. 2013 report impairments to cognition following cathodal cerebellar tDCS), 493 

the results presented here in combination with neurophysiological investigations of the impact of 494 

tDCS on the cerebellum complement Pope and Miall’s hypothesis. In Galea et al (2009), for 495 

instance, anodal cerebellar tDCS was observed to increase inhibitory output from the cerebellum on 496 

motor cortex, while cathodal tDCS was observed to decrease it. Thus, if the present study were 497 

repeated with cathodal cerebellar tDCS one might predict an improvement in the timing of 498 

perceptual behaviour compared to sham stimulation. Of course, the lack of a cathodal group does 499 

not subtract from this paper’s main finding: alterations of the cerebellum dissociate the timing of 500 

perceptual decisions from perceptual change in speech. 501 

Ambiguous speech sounds are often encountered during conversation (most notably when talking 502 

with a foreign-accented speaker) and we rapidly adapt our perception of speech in these situations 503 

(Bradlow & Bent 2008; Reinisch & Holt 2014). During conversation, external feedback related to 504 

the meaning of ambiguous speech is readily available via body language, contextual information, or 505 

explicit clarification. Here we demonstrate that simple external feedback can drive changes in the 506 

perception of ambiguous speech sounds and these changes are transferable. The timing of this 507 

perceptual behaviour critically depends on the integrity of the right cerebellum. More generally, the 508 
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work supports a growing body of evidence that the cerebellum plays a role in the timing of 509 

behaviours beyond the motor domain.   510 
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Figure Legends 531 

Fig 1: Experimental methods, stimuli and data analysis. (A) The experiment involved seven 532 

perceptual tests. Baseline perceptual tests (PT1 and PT2) were followed by perceptual training (PT3 533 

to PT5), a transfer test (PT6) and an aftereffect test (PT7). The order of the baseline tests was 534 

balanced across participants. (B) The perceptual continua used in the experiment are depicted by 535 

their first formant (F1) and second formant (F2) values. One continua spanned the distinction 536 

between “head” and “had” (black dots) and one spanned the distinction between “head” and “hid” 537 

(grey dots). (C) Perceptual change was assessed by measuring the proportion of “had” and “hid” 538 

responses for each stimulus in each perceptual test (top panel). Perceptual change was also 539 

examined by measuring the time it took participants to respond to the stimuli (bottom panel). 540 

Reaction times were log-normalized and displayed as z-scores.  541 

Fig 2: Feedback altered perceptual responses. (A) During perceptual training, feedback was 542 

delivered around a new perceptual boundary (solid vertical line) that was set one stimulus lower 543 

than the perceptual boundary (dashed vertical line) measured during the baseline head-to-had 544 

perceptual test. In this example, “CORRECT” was displayed on the screen if the participant 545 

perceived stimuli 1-4 as “head” and “INCORRECT” was displayed if the stimuli were perceived as 546 

“had”. “CORRECT” was displayed on the screen if participant perceived stimuli 5-9 as “had” and 547 

“INCORRECT” was displayed on the screen if they were perceived as “head”. (B) The proportion 548 

of “had” responses (y-axis) was computed for blocks of nine stimuli for the baseline head-to-had 549 

perceptual test (PT1) and during perceptual training (PT3-PT5). The introduction of feedback led to 550 

a learned increase in the proportion of “had” responses. The grey lines represent the group that 551 

received tDCS; the black lines represent the group that received sham stimulation.     552 

Fig 3: Training altered speech perception. (A) Top panel: Psychometric functions were fit to the 553 

proportion of “hid” responses before (PT2, dashed lines) and after (PT6, solid lines) perceptual 554 

training. Prior training on the head-to-had continuum altered the proportion of hid responses on the 555 

head-to-hid continuum such that participants were more likely to report hearing “hid”. Bottom 556 

panel: Log-normalized reaction times were computed and displayed as z-scores for each stimulus 557 

before (PT2, dashed lines) and after (PT6, solid lines) perceptual training. Changes in the perceptual 558 

boundary were mirrored by changes in reaction times to some of the stimuli. (B) Top panel: 559 
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Psychometric functions were fit to the proportion of “had” responses before (PT1, dashed lines) and 560 

after (PT7, solid lines) perceptual training. Following training, participants were more likely to 561 

report hearing “had”. Bottom panel: Log-normalized reaction times were computed and displayed as 562 

z-scores for each stimulus before (PT1, dashed lines) and after (PT7, solid lines) perceptual training. 563 

Changes in the psychometric function were mirrored by changes in reaction times. Error bars 564 

represent +/- a standard error.  565 

Fig 4: Training-related changes in the proportion of hid and had responses were computed for the 566 

transfer (PT6 minus PT2) and aftereffect tests (PT7 minus PT1). Training caused an increase (as 567 

indicated by the stars, P < 0.05) in the proportion of hid and had responses during these perceptual 568 

tests. Training-related changes in the proportion of hid and had responses did not differ between the 569 

sham (black bars) and real (grey bars) stimulation groups.  570 

Fig 5: Cerebellar tDCS slowed reaction times. (A) The mean (log-normalized) reaction time is 571 

displayed for each perceptual test. The grey bars represent the group that received cerebellar tDCS. 572 

The black bars represent the group that received sham tDCS. The approximate timing of the transfer, 573 

aftereffect and retention tests in relation to tDCS and perceptual learning is indicated at the bottom 574 

of the figure. The application of cerebellar tDCS caused a reaction time difference between the 575 

groups (PT3 to PT5). This difference was still present during the transfer test that occurred seven 576 

minutes after tDCS. To visualize how reaction times evolved during training and transfer and the 577 

aftereffect test, log-normalized reaction times associated with blocks of nine perceptual decisions 578 

were averaged and joined via the grey lines (real stimulation) and black lines (sham stimulation) at 579 

the top of the figure. (B) Average reaction times from PT4, PT5 and PT6 were pooled for left and 580 

right hand responses and compared between the groups. A similar tDCS-related difference in 581 

reaction time was observed for left and right hand responses.  582 

Fig 6: Drift diffusion modelling. (A) The data were grouped by stimulus coherence. The right side 583 

of the panel shows the proportion of correct responses. The left side of the panel shows reaction 584 

times for each of the transformed stimuli. The top panel shows these measures before tDCS and 585 

learning and the bottom panel shows these same measures after tDCS and learning. (B) A drift 586 

diffusion model was fit to the data shown in (A). The first three boxes in the top and bottom panels 587 

show the parameters that account for the outcome of perceptual decisions. The fourth box shows the 588 
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parameter that accounts for process unrelated to perceptual decision making. The top panel shows 589 

the parameters before tDCS and the bottom panel shows the parameters after tDCS. Cerebellar tDCS 590 

caused a difference in the parameter that accounts for processes unrelated to perceptual decision 591 

making. The stars indicate parameters that are statistically different at p < 0.05.  592 
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