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Abstract 
 
A number of new nucleoside derivatives are disclosed as inhibitors of DOT1L activity. SARs established 

that DOT1L inhibition could be achieved through incorporation of polar groups and small heterocycles at 

the 5-position (5, 6, 12) or by the application of alternative nitrogenous bases (18). Based on these results, 

CN-SAH (19) was identified as a potent and selective inhibitor of DOT1L activity where the polar 5-nitrile 

group was shown by crystallography to bind in the hydrophobic pocket of DOT1L. In addition, we show 

that a polar nitrile group can be used as a non-traditional replacement for heavy halogen atoms. 
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DOT1L is a protein methyltransferase known to methylate lysine 79 of histone 3 (H3K79), an epigenetic 

mark associated with transcriptionally active genes.1 Chromosomal translocations recurrent in leukemia 

result in oncogenic fusions between MLL and a variety of genes, such as AF4 or AF9, that recruit DOT1L to 

aberrant genomic loci, and transcriptional activation of leukemic genes.2 Small molecule inhibitors of 

DOT1L activity can reverse the oncogenic reprogramming of MLL-rearranged leukemia,3, 4 and the first-in-

class DOT1L inhibitor pinometostat (EPZ-5676; Epizyme) has progressed to Phase I clinical trials for the 

treatment of pediatric patients with relapsed/refractory leukemias bearing a rearrangement of the MLL 

gene.5 

Most current DOT1L inhibitors, such as EPZ004777 and EPZ-5676, compete with the methyl donating 

cofactor S-adenosyl-L-methionine (SAM). These SAM analogues lock a conformationally dynamic loop of 

the enzyme into an inactive state.6, 7 In a variation on this theme, recently reported structurally novel 

inhibitors of DOT1L also antagonize the formation of an enzymatically active state, but only partially 

occupy the cofactor site.8, 9 Selective inhibition of DOT1L can also be achieved by functionalizing the 

adenosine ring of S-adenosyl-L-homocysteine (SAH), the reaction product of SAM (Figure 1). Bromo-

deaza-SAH (Br-SAH) is a potent and selective inhibitor of DOT1L activity with a bromine atom that 

occupies a hydrophobic cavity specific to DOT1L, but this compound is inactive in cell based systems, 

probably due to poor cell penetration.10 Modification of EPZ004777 by introduction of a bromine atom on 

the adenosine ring gave SGC0946 and both compounds selectively kill human cord blood cells 

transformed with an MLL-AF9 fusion oncogene.7 However, the poor pharmacokinetic properties of 

EPZ004777 precluded conventional dosing methods for efficacy studies in a mouse xenograft model of 

MLL.3 Nonclinical in vivo pharmacokinetics of EPZ-5676 in mouse, rat and dog showed moderate to high 

clearance and low oral bioavailability,11 and so EPZ-5676 was administered by continuous intravenous 

infusion in the Phase I clinical trial.5, 11 

As part of our research efforts to discover new inhibitors of DOT1L activity with improved 

pharmacokinetic properties, we adopted a strategy to identify novel functional groups that would 

favourably exploit the hydrophobic cavity adjacent to the adenine binding site of SAH in DOT1L. In 

addition, we wished to avoid the use of heavy halogen atoms as they confer higher lipophilicity to drug 

molecules which tends to be detrimental to drug-like properties.  In this Letter, we disclose cyano-deaza-

SAH (19, CN-SAH) as a potent and selective inhibitor of DOT1L activity that incorporates a polar nitrile 

group which binds in this hydrophobic pocket. 

 

Previously, a screen of a library of 3120 kinase inhibitors had identified 5-iodotubercidin (3, 5-ITC) as an 

inhibitor of DOT1L activity (IC50 18.2 M) which was subsequently optimised to Br-SAH (IC50 0.077 M).10 
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We adopted a related approach where the tubercidin template (2) was investigated as a model system 

with the objective of transferring preferred structure-activity-relationships (SARs) into more relevant 

templates for potential use as biochemical and structural tools, chemical probes with cell activity, and 

ultimately to chemical leads suitable for convenient dosing in preclinical in vivo efficacy studies. 

 

 

 

 

  
 

SAH, X = N, R = H: DOT1L IC50 = 600 nM a 

Me-SAH, X = N, R = Me: DOT1L Ki = 290 nM b 

Br-SAH, X = C-Br, R = H: DOT1L IC50 = 77 nM a 

 

 

EPZ004777, X = C-H: DOT1L Ki = 0.3 nM c 

SGC0946, X = C-Br: DOT1L IC50 = 0.3 nM d 

FED1, X = N: DOT1L IC50 = 2.9 nM d 

Cmpd 10, X = C-Cl: DOT1L IC50 = 28.2 nM e 

 

  

Figure 1. Structures of DOT1L inhibitors. a Yu et al. [10]; b Yao et al. [12]; c Daigle et al. [3]; Basavapathruni 
et al. [6]; d Yu et al. [7]; e Yi et al. [13]. 
 

 

The nucleoside target compounds were either purchased from commercial sources (1-6, 13-15) or 

prepared using short synthetic sequences (7-12, 16-18) as described in detail in the Supplementary 

Material. The DOT1L inhibitory activity of target compounds 1-19 (Table 1) was evaluated by the assay 

conditions as reported by Yu et al. with minor modifications (see: Supplementary Material). 10 

 

The SARs were initially focused on exploring the substitution at the 5-position (tubercidin numbering used 

throughout), which presents this substituent towards the hydrophobic pocket adjacent to the adenine 

binding site of SAH in DOT1L (PDB code 3QOX); this interaction has been successfully exploited by 5-ITC 

(3: X = I)(PDB code 3UPW) and Br-SAH (PDB code 3SX0).10 Adenosine (1) and tubercidin (2: X = H) were 

very weakly active with 20-40 % inhibition at 200 M respectively which supported the benefits of a 

group at this 5-position.  Toyocamycin (5: X = CN), a bacterial metabolite with a diverse range of 

activities,14 showed promising activity as did sangivamycin (6: X = CONH2). These results were somewhat 
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unexpected as replacing a lipophilic iodine atom ( +1.12) with a polar nitrile ( -0.57) or primary 

carboxamide group ( -1.49) is not a traditional bioisostere transformation.15, 16 The aromatic chloride to 

nitrile transformation has been reviewed by Jones et al.16b whereas there are far fewer reports of the 

corresponding aromatic iodide to nitrile substitution in medicinal chemistry design.17, 18 However, in the 

context of this work, these results demonstrated the hydrophobic pocket could accommodate both 

lipophilic and polar groups assuming the binding mode was retained (vide infra).  

 

Further SARs with synthetic analogues showed 5-fluorine 7, 5-phenyl 10 or 5-benzyl 11 derivatives were 

similar in activity to tubercidin.  The 5-ethyne 8 was equipotent to toyocamycin (5) although extending 

the alkyne further with a 5-(2-cyclopropylethyne) group 9 lost activity (<20 % I @ 200 M).  The use of an 

oxazole 12 as a surrogate for the p-carboxamide of 6 showed that a small heterocyclic group could be 

accommodated with retention of activity. 

   

Limited SAR of the ribose showed that the 2’-hydroxy was important for binding (13 v 3: X = I) as 13 was 

inactive (<20 % I @ 200 M). The addition of a 2’-Me (14 v 2: X = H) failed to improve activity as 14 was 

also inactive (<20 % I @ 200 M) albeit with only the inferior 5-H substituent. Modification of the 

nitrogenous base proved to be more successful. Although 3-deazaadenosine (15) was inactive (< 20 % I @ 

200 M) confirming the preference of the N atom at this position (15 v 1), modification of the base at the 

6-position by substitution of the 6-CH for a 6-N demonstrated that the pyrazolo [3,4-d]pyrimidine could 

be of comparable potency to the pyrrolo[2,3-d]pyrimidine (18 v 3: X = I cf. 17 v 2: X = H). DOT1L inhibitory 

activity was again superior when combined with the 5-iodo substituent as 18 was one of the most potent 

inhibitors from this model system. 
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Compound DOT1L 

% inhibition at  

200 or 250 M a 

IC50 (µM) a 

1 26 ± 4 % I @ 200 M  

2 41 ± 4 % I @ 200 M  

3  7 ± 2 c 

4 < 20 % I @ 200 M  

5  44 ± 10 

6  26 ± 7 

7 ca. 52 ± 5 % I @ 200 M b ca. 200 b 

8  41 ± 12 

9 < 20 % I @ 200 M  

10 44 ± 5 % I @ 200 M  

11 42 ± 1 % I @ 250 M  

12  43 ± 8 

13 < 20 % I @ 200 M  

14 < 20 % I @ 200 M  

15 < 20 % I @ 200 M  

16 ca. 50 ± 4 % I @ 200 M b ca. 200 b 

17 < 20 % I @ 200 M  

18  22 ± 2 

19  0.026 ± 0.005 

Table 1. a Assay conditions: DOT1L (0.2 nM), [3H]-SAM (0.7 M), chicken nucleosome (0.1 M), buffer: 20 

mM Tris pH8, 5 mM DTT, 10 mM MgCl2, 0.01% Triton X-100. In general, IC50s were determined side by side 

from 11-point dose response curves with test concentrations from 0.20 to 200 M, except 11 (0.50 to 500 

M) and 19 (0.01 to 10 M). Experiments were performed in triplicate with data presented as the mean ± 

SD. b Incomplete concentration-inhibition S-curve. c Data are presented for comparison in a common assay 

format. Literature values for 5-ITC (3): DOT1L IC50 = 18.2 M. See reference [10]. 
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Figure 2. Design of CN-SAH (19). 
 

 

Based on these results, we selected toyocamycin (5) with the 5-nitrile as the starting point for the design 

of the biochemical tool cyano-deaza-SAH (19, CN-SAH) as proof-of-principle to deliver potent and 

selective inhibitors of DOT1L that incorporate polar groups that bind in the hydrophobic pocket (Figure 2). 

We anticipated these polar groups could then be applied to identify new DOT1L chemical probes and 

would improve the ‘drug-like’ properties of this template by significantly lowering the overall 

lipophilicity.19 
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Scheme 1. Synthesis of CN-SAH (19). Reagents and conditions: (a) 33% HBr in AcOH, acetone, EtOAc, 0 °C - rt, 3 h, 60 

%; (b) formamidine acetate, 2-ethoxyethanol, reflux, 24 h, 36 %; (c) (i) HMDS, TMSCl, reflux 18 h, then (ii) evaporate 

and add MeCN, then (iii) β-D-Ribofuranose-1-acetate-2,3,5-tribenzoate (23), TMSOTf, reflux, 3 h, 49 %; (d) 

ammonium formate, 5 mol% Pd/C, EtOH, reflux, 3 h, 65 %; (e) 7 M NH3 in MeOH, 0 °C - rt, 12 h, 60 %; (f) SOCl2, 

DMPU, 0 °C, 5 h, 50 %; (g) (i) KI, K2CO3, DMF, rt, 5 min, then (ii) t-Butyl Boc-ʟ-homocysteinate (27), 80 °C, 5 h, 75 %; 

(h) 4 M HCl in dioxane, 0 °C, 7 h, 82 %. 
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The synthesis of CN-SAH (19) is described in Scheme 1.20 This 8-step sequence follows published 

procedures to related compounds with minor modifications to improve yields/selectivities or the 

substitution of highly toxic reagents for safer alternatives.10, 21   The preferential N7 glycosylation of 

pyrrolo[2,3-d]pyrimidine 22 with furanose 23 was achieved with 1,1,1,3,3,3-hexamethyldisilazane (HMDS) 

as described recently by Kim et al. to give 24.22 Reduction of the C6-Br by catalytic transfer hydrogenation 

gave 25 and then deprotection of the benzoates afforded toyocamycin (5).21 Conversion of the 5’-OH to 

the corresponding 5’-chloride 26 activated the 5’ position of the sugar ready for the introduction of the 

homocysteine moiety. This followed the procedure of Yu et al.10 except that t-butyl Boc-L-homocysteinate 

(27) was used which greatly improved the efficiency of the reactions even with the additional step to 

simultaneously deprotect the homocysteine acid and amine groups.  

 

 

 

 
Figure 3. Co-crystal structures of CN-SAH (19) (PDB code 5JUW, left) and Br-SAH (PDB code 3SX0, right) in DOT1L. 
Images generated with PyMOL. 

 

CN-SAH (19) was shown to be a potent inhibitor of DOT1L with an IC50 value of 26 nM (Table 1). To 

establish the binding mode, we solved the structure of CN-SAH in complex with DOT1L (2.3 Å, PDB code 

5JUW). As expected, the structure is nearly identical to DOT1L in complex with SAM (PDB code 1NW3) and 

Br-SAH (PDB code 3SX0). The activation loop of DOT1L is folded on the cofactor mimetic, in a 

conformationally active state.  The nitrogen atom of the 5-nitrile of CN-SAH occupies the hydrophobic 

pocket composed of V249, L224, P133, and F245 as previously exploited by the bromine of Br-SAH.  
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MTase (h) CN-SAH (19) 
IC50 (μM) a 

Br-SAH 
IC50 (μM) b 

SAH 
IC50 (μM) 

DOT1L 0.013 0.077 0.22 

DNMT1 0.15 1.9 0.20 

PRMT3 0.87 2.3 2.0 

PRMT5 2.4 2.3 0.20 

G9a 99 no inhibition 4.1 

SETD7 no inhibition no inhibition 47 

SUV39H2 no inhibition no inhibition 22 

EZH2 no inhibition no inhibition 65 

Table 2. Inhibition of DOT1L activity and MTase selectivity profiles of CN-SAH (19), Br-SAH and SAH.  

a Screened at Eurofins Cerep (France). In general, IC50s were determined from 8-point dose response 

curves (test concentrations: 30 nM to 100 M) except DOT1L which required a lower dynamic range (0.1 

nM to 1 M). Data is the mean of two replicates. SAH was used as a reference compound throughout and 

data are presented for comparison in a common assay format. See: Supplementary Material.  

b Reference [10].  

CN-SAH (19) was confirmed to be a potent inhibitor of DOT1L (IC50 = 13 nM) by independent evaluation 

(Table 2 and Supplementary Material). In addition, CN-SAH was 17-times more potent than SAH against 

DOT1L which, like the bromine atom of Br-SAH, shows the nitrile group of CN-SAH better exploits the 

hydrophobic pocket of DOT1L. CN-SAH was then screened against a panel of representative protein lysine 

(PKMT), protein arginine (PRMT) and DNA (DNMT) methyltransferases to establish the selectivity profile 

(Table 2). CN-SAH was inactive at concentrations up to 100 M against the PKMTs EZH2 (as part of PRC2 

complex), SUV39H2 and SETD7 although there was very weak activity for G9a. CN-SAH showed inhibitory 

activity for both PRMT3 and the PRMT5 complex but with acceptable selectivity at 66- and 180-fold 

respectively. The selectivity of CN-SAH over these PRMTs is modestly improved when compared to BrSAH 

(both 30-fold) which reflects improved affinity for DOT1L rather than weaker activity for the PRMTs. CN-

SAH was shown to be an inhibitor of DNMT1 with only 11-fold selectivity and would need to be improved. 

 

In summary, we have designed and evaluated a number of new nucleoside derivatives as inhibitors of 

DOT1L activity. SARs established that DOT1L inhibition could be achieved through incorporation of polar 

groups and small heterocycles at the 5-position (5, 6, 12) or by the application of alternative nitrogenous 

bases (18). Based on these results, CN-SAH (19) was identified as a potent and selective inhibitor of DOT1L 

activity where the polar 5-nitrile group was shown by crystallography to bind in the hydrophobic pocket of 
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DOT1L. The next phase of these studies will be to develop CN-SAH into a chemical probe that is active in 

cell-based models and with good oral activity in rodent models of disease.    
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