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Abstract 
 

Three-dimensional direct numerical simulations (DNS) of high hydrogen content (HHC) 

syngas nonpremixed jet flames with a Reynolds number of Re=6000 have been carried out to 

study the nitric oxide (NO) pollutant formation. The detailed chemistry employed is the GRI 

3.0 updated with the influence of the NCN radical chemistry using flamelet generated 

manifolds (FGM). Preferential diffusion effects have been considered via FGM tabulation 

and the reaction progress variable transport equation.  

The DNS based quantitative results indicate a strong correlation between the flame 

temperature and NO concentration for the pure hydrogen flame, in which NO formation is 

mainly characterised by the Zeldovich mechanism. The results also indicate a rapid decrease 

of maximum NO values in H2/CO syngas mixtures due to lower temperatures associated with 

the CO-dilution into H2. Results on NO formation routes in H2/CO syngas flames show that 

while the Zeldovich mechanism dominates the NO formation at low strain rates, the high NO 

formation rate at high strain rates is entirely caused by the NNH mechanism. We also found 

that the Fenimore mechanism has a least contribution on NO formation in H2/CO syngas 

flames due to absence of CH radicals in the oxidation of CO. It is found that, due to 

preferential diffusion, NO concentration exhibits higher values near the flame base depending 

on the hydrogen content in H2/CO syngas fuel mixture.  
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1. Introduction 

In moving towards cleaner combustion technologies, high hydrogen content (HHC) 

alternative fuel blends are undoubtedly significant, because they are environmentally friendly 

and can be used as an alternative feedstock for energy resources in clean energy conversion 

[1-2]. There is a significant current interest in combustion of HHC syngas fuels with a 

broader reactant class such as hydrogen diluted with carbon monoxide. As with any fuel, the 

combustion of HHC syngas fuel can produce gaseous pollutant such as nitric oxides (NOx), 

carbon monoxide (CO), sulphur dioxide (SO2), volatile organic compounds (VOCs) etc. 

which cause a substantial negative impact on the environment.  While the HHC syngas fuel 

burning has abilities to lower CO2 emissions, the NO formation is critical as a pollutant, 

which is sensitive to local flame temperature, O atom concentrations and residence times at 

the NO forming conditions [3-4]. Progress with respect to further reduction of NO levels in 

syngas as a major pollutant requires better understanding the burning issues of clean fuels and 

their correlation with the pertinent chemical kinetics. Currently there is a significant interest 

in better understanding the NO formation in HHC syngas flames and particularly the different 

NO mechanisms with respect to HHC syngas fuel variability.    

Many theoretical, experimental and computational efforts have been devoted to identifying 

mechanisms of the NO formation in turbulent jet flames. There is a wealth of experimental 

investigations available for NO formation in turbulent hydrogen, methane and 

methane/hydrogen blended nonpremixed jet flames, which includes effects of residence time 

on NO levels [5], NO formation and its relationship to flame temperature [6], radiation 

effects on NO concentration [7], and NO formation during the flame vortex interactions [8]. 

Experimental investigations on NO detection in turbulent premixed flames [9-11] as well as 
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effects of hydrogen addition on NO formation in fuel-rich and fuel-lean ethane, propane and 

CH4/O2/N2 flames [12, 13] were also reported in the literature.  

In the meantime, several computational studies of NO concentration of turbulent jet flames 

were also carried out.  For example, stochastic modelling of NO concentration in premixed 

methane combustion [14], prediction of NO concentration in hydrogen nonpremixed jet flame 

[15], tabulation of NO chemistry for large eddy simulation of turbulent nonpremixed 

combustion [16], prediction of NO concentration with radiation in nonpremixed flames [17] 

and prediction of NO concentration in lean premixed flames [18] were also reported.  In 

addition, several other research questions relevant to NO formations have been addressed by 

numerical modelling on turbulent flames, which include recent investigations of influence of 

airstream dilution and jet velocity on NO emission characteristics of CH4 bluff-body flames 

[19], the formation/destruction mechanisms of NO in CH4/H2 jet flames in a hot co-flow [20] 

and the effects of hydrogen addition on NO characteristics in MILD (Moderate or Intense 

Low-oxygen Dilution) combustion of CH4/H2 fuel blends [21].     

However, only a few investigations focused on NO formations of hydrogen-rich to hydrogen-

lean H2/CO syngas flames for laboratory scale fundamental flames as well as practical engine 

like conditions. For example, experimental and numerical investigations on nitric oxide 

formation in laboratory scale H2/CO jet flames have been reported in the recent literature. 

These include experimental investigations such as NO emission characteristics and scaling of 

H2/CO syngas flames [22], assess NO production from different formation routes from 

syngas and biogas fuel blends [23] as well as numerical studies such as effects of syngas 

composition and diluents on emission characteristics of syngas nonpremixed flames [24], 

effects of the fuel-side nitrogen dilution on the structure and NOx formation characteristics of 

syngas nonpremixed flames [25], and effects of syngas composition, pressure and dilution 
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gases on the NOx emission of H2/CO syngas nonpremixed flames [26].  Limited advances 

have been also made in understanding the global NO formation characteristics of H2/CO 

syngas flames in practical engine like conditions, for example in industrial gas turbine 

combustor [27] and in spark-ignition direct-injection internal combustion engine [28]. 

However, detailed understanding on NO formation in turbulent flames with variable fuel 

compositions is still lacking, particularly with respect to hydrogen-rich to hydrogen-lean 

H2/CO syngas fuel blending. 

 

Over the last several years, computationally intensive direct numerical simulation (DNS) 

technique which provides detailed information on turbulent reacting flows has been 

successfully applied to simulate a broad range of combustion problems [29-33]. Many review 

articles also reported advances in DNS of turbulent combustion, for example [34, 35]. 

However, despite many DNS investigations of turbulent combustion problems have been 

carried out including hydrogen combustion, no three-dimensional DNS with detailed 

chemistry is reported for NO formation of HHC syngas fuel burning in turbulent flames.  The 

aim of the present work is to study the NO formation in pure hydrogen and HHC H2/CO 

syngas turbulent nonpremixed jet flames using DNS and flamelet generated manifold (FGM) 

tabulated chemistry [36], and to explore the possibility of better understanding the behaviour 

of basic mechanisms of NO formations for high hydrogen content nonpremixed syngas 

burning. This new work on investigation of NO formation in HHC syngas fuel mixture with 

the influence of preferential diffusion is a continuation of our previous DNS investigations 

focused on burning characteristics of H2/CO, H2/CO/CO2, H2/CO/CO2/N2 syngas combustion 

[37], effects of preferential diffusion on hydrogen-rich to hydrogen-lean H2/CO syngas 

combustion [38], influence of chemical reactions on major, minor and radical species 

concentrations of hydrogen-rich to hydrogen-lean H2/CO syngas burning [39], analysis of the 
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Wobbe index, flame index, flame normal, flame surface and a micromixing process of 

hydrogen-rich to hydrogen-lean H2/CO syngas flames [40], and turbulence-chemistry 

interaction and the local flame extinction of CO2-diluted oxy-syngas combustion [41].  

 

Given the nature of HHC turbulent nonpremixed syngas combustion, it is important to ask 

two key questions: (i) how does NO form with respect to hydrogen content in the HHC 

syngas fuel mixture in turbulent nonpremixed flames, (ii) how does preferential diffusion 

influence NO distribution in the HHC syngas fuel mixture in turbulent nonpremixed flames. 

To answer these two questions, we performed a new set of unsteady compressible three-

dimensional DNS calculations including a transport equation for the NO mass fraction. The 

remainder of the paper is organised as follows: the governing equations, chemistry and 

numerical details are presented in section 2 followed by results and discussion in section 3. 

Finally, conclusions and recommendations for further work are presented in section 4.  

 

2. DNS Equations, Chemistry and Numerical Implementation     

The set of governing equations solved in present DNS for turbulent nonpremixed jet flames is 

the time-dependent compressible flow Navier-Stokes equations, the energy equations, 

transport equations of mixture fraction, reaction progress variable and mass fraction of nitric 

oxide and the state equation. The governing equations for mass, momentum, energy, mixture 

fraction, reaction progress variable and the state equations in their non-dimensional form can 

be found in [38]. It is important to note that we added an additional model term for the 

diffusion term in the transport equation of reaction progress variable in order to include the 

non-unity Lewis number effects (preferential diffusion).  With an additional model term, the 

non-dimensional transport equation of reaction progress variable, Y can be written as:  
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The non-dimensional transport equation for NO mass fraction, YNO is given by:  
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Where t  stands for time, ju  is the velocity components in the jx  direction,   stands for heat 

conductivity, PC  for specific heat at constant pressure,   is the mixture fraction,  Y  is the 

source term of the progress variable, 
NOY  is the source term of the NO transport equation,   

is the density, YD  is the additional diffusion coefficient for non-unity Lewis number 

calculation respectively. In addition, YPr, Re and Sc represent Prandtl number, Reynolds 

number and Schmidt number respectively.  

 

The detailed flame chemistry of HHC syngas flames is represented by databases of the FGM 

tabulated chemistry [36], accounting for both chemical and transport processes using the 

laminar flamelet concept [42]. In order to demonstrate the NO formation mechanism with 

respect to reaction between N2 and CH radicals, we employed detailed chemistry tabulation 

with recently identified critical radical species NCN and corresponding chemical reactions in 

this investigation. The FGM tables were created with updated GRI-Mech 3.0 [43] with the 

NCN radical chemistry.  The mechanism contains 54 species, in which 53 species are from 
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GRI 3.0 and the NCN radical, and 329 reactions, in which 325 reactions are from GRI 3.0 

and 4 reactions involving the NCN radical reactions.  The resolution of the manifolds is 301 

points in the mixture fraction direction and 101 points in the progress variable direction. For 

2H -Air combustion, the mass fraction of 2H O
 
was selected as the progress variable, while 

for 2H /CO-Air  combustion, sum of the mass fractions of 2H O, CO  and 2CO  was selected as 

the progress variable.  

 

Turbulent nonpremixed round jet flame is adopted as a model problem.  The Cartesian cubic 

configuration of turbulent nonpremixed jet flame including domain size and boundary 

conditions is shown in Fig. 1. The configuration consists of 10 jet nozzle diameters (10D) in 

axial direction and 7 jet nozzle diameters (7D) in radial direction. There are 

640 640 640  computational grid points in the X Y ZL ×L ×L cubic computational domain 

resulting 262 million grid points.  The full compressible governing equations noted above are 

solved using the parallel DNS flame solver, DSTAR [37-41, 44]. The equations are 

discretised in space on a three-dimensional Cartesian grid with high-order finite difference 

numerical schemes. Derivatives are computed using centered explicit schemes of order six 

except at boundaries where the order is progressively reduced to four [45]. Temporal 

integration is realized with a Runge–Kutta algorithm of order three [46]. A Courant-

Friedrichs-Levy (CFL) condition for the convective terms is treated to ensure the stability of 

the explicit integration and determine a suitable time step.  All simulations were performed at 

a Reynolds number of 6,000. Boundary conditions are treated with the help of non-reflecting 

inflow/outflow Navier-Stokes characteristics boundary condition (NSBC) [47]. The inflow 

mean axial velocity is specified using a hyperbolic tangent profile with profile 

fuelw=W /2{1-tanh[(0.5/4δ)(r/0.5-0.5/r)]}  with 2 2

x y
r= (x-0.5L ) +(y-0.5L ) . Here r is the radial 
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direction of the round jet, originating from the centre of the inlet 

domain (0 ,0 )
x y

x L y L    . The initial momentum thickness   was chosen to be 10% of 

the jet radius. The inflow turbulent fluctuations were artificially generated in a sinusoidal 

form and added to all three velocity components. The boundary conditions for scalars such as 

mixture fraction and reaction progress at outlet boundary were specified with zero-gradient. 

Table 1 summarised the fuel compositions of the three numerically simulated HHC flames H, 

HCO1 and HCO2, their stoichiometric mixture fractions, adiabatic flame temperatures, and 

physical and numerical parameters for turbulent round jet configuration.     

 

3. Results and Discussion 

In the following, the NO formation mechanisms and results are presented and discussed 

under three sections with two principal aims. The first section discusses basic mechanisms of 

NO formation. The second section compares the NO formation of pure hydrogen flame H 

between the unity Lewis number case and the non-unity Lewis number case. This section also 

discusses comparison between the DNS data and the experimental measurements in order to 

demonstrate the accuracy of DNS based NO prediction with the influence of preferential 

diffusion. The third and final section discusses the NO distributions of pure hydrogen flame 

H, H2/CO syngas flames HCO1 and HCO2 with the influence of preferential diffusion by 

highlighting corresponding basic NO mechanisms and dominant chemical reactions. The 

results are discussed in several forms which include instantaneous contour plots, one-point 

data analysis and probability density function distributions. Subsequently, important chemical 

reactions and mechanisms for NO formation are highlighted, where HHC fuels are unique in 

terms of pollutant formation during combustion.  
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3.1 Basic mechanisms of NO formation 

Generally, there are two well-known routes for NO formation in combustion environments, 

namely the thermal-NO [48] and prompt-NO [49] mechanisms. Moreover, there exist two 

additional routes for NO formations, known as the N2O route [50] and the NNH route [51].  

The thermal NO mechanism involves breaking up N2 triple-bond by O atoms at high 

temperature, which includes two principal reactions proposed by Zeldovich [48]:  

2N +O N+NO                       (3) 

2N+O O+NO                        (4) 

and the reaction of N atom with OH radical: 

N+OH NO+H                                  (5) 

The Eqs. (3), (4) and (5) involve radical species O, N, H and OH that are initially formed 

through decomposition or abstraction reactions. Due to the inherent stability of the N2 

molecule, considerable energy is required to oxidise N2, and thus thermal NO is only formed 

in appreciable quantities at temperatures approximately above 1700K.  

The Fenimore’s prompt-NO mechanism [49] involves reaction between N2 and CH radicals 

which was originally described through HCN such that: 

2CH+N HCN+N                                             (6) 

However, recent studies have shown that the NCN radical is the major pathway to prompt 

NO for the reaction CH+N2 [52]. In the present work, we consider the NCN radical pathway 

to study prompt-NO, which includes two major reactions [53]: 

2CH+N NCN+H                                                          (7) 

2 2C O+N NCN+CO                                                       (8) 

The N2O route [50] is originated by the N2O interaction with radicals H or O and yield NO 

and can be described by the following elementary reactions:  
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2 2N +O N O                                             (9) 

2 2N O+H N +OH                                                      (10) 

2 2 2N O+O N +O                                                      (11) 

2N O+O NO+NO                                                                 (12) 

The NNH route [51] takes place due to the reaction of H radicals with N2 and it is likely that 

the NNH route can have an important role in the hydrogen combustion primarily at short 

residence times [54] and includes reactions: 

2N +H NNH                                                      (13) 

NNH+O NO+NH                                                                 (14) 

and the reaction of NNH and O has the following channels: NH+NO, N2O+H and N2+OH 

[51].  

3.2 Preferential diffusion effects on NO formation in hydrogen flame H  

In order to identify the influence of preferential diffusion on NO formation and distribution, 

we compare instantaneous three-dimensional NO structures, and scattered data of NO mass 

fraction in the mixture fraction space between the unity Lewis number and the non-unity 

Lewis number cases as shown in Fig.2. Three-dimensional structure of mass fraction of NO 

displays local increase of NO values with strong vortical structures in shear layer region and 

outer region layer in the non-unity Lewis number case compared to the unity Lewis number 

case.  It is seen from the unity-Lewis number three-dimensional structure that the high NO 

zone is insensitive to steady straining in the absence of non-unity Lewis number. This 

confirms that the strain rate effects remain closely tied to non-unity Lewis number and 

preferential diffusion effects and therefore NO formation for hydrogen flame H.  Fig. 2 

(bottom) shows scattered NO values of the full domain and the near nozzle region between 

the unity Lewis number and the non-unity Lewis number. The scattered data of the non-unity 
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Lewis number case show much higher NO values compared to the unity Lewis number case 

for each mixture fraction range of NO values around the stoichiometric mixture fraction 

region, and on the fuel-lean side.  

 

In order to evaluate the success of DNS predictions of quantitative NO values, we now 

discuss the comparison of mass fraction of NO values with the closest possible experimental 

data of turbulent nonpremixed hydrogen jet flame carried out by Barlow and Carter [6].  Fig. 

3 shows comparisons for scattered data of NO values between DNS values (a1, b1, c1) and 

the experimental data (a2, b2, c2) at three different downstream axial locations z=4, 8 and 10.  

It is important to note that DNS of nonpremixed hydrogen jet flame was performed at a 

Reynolds number of 6000, while experimental investigation was carried out at a much higher 

Reynolds number of 10000. With two different Reynolds numbers, one can expect 

differences in the jet shear layer on the developing flames. For example, the shear layer 

dynamics affect the internal chemical structure including NO formation. Despite the 

difference of Reynolds number and its influence on flow field and flame structure, the 

comparison between DNS data and the experimental measurements show reasonably good 

agreement at all three axial locations. Particularly, we observe the occurrence of peak NO 

values on fuel lean side close to stoichiometric mixture fraction of 0.028 for DNS data (Fig. 3 

(a1, b1, c1)). This has been also observed by the experimental measurements (Fig. 3 (a2, b2, 

c2)). In summary, the comparison between DNS results and the experimental measurements 

indicates that our DNS results with the inclusion of preferential diffusion reasonably predict 

the NO formation and its distribution in turbulent nonpremixed hydrogen flame.  
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3.3 NO formation in hydrogen flame H and H2/CO syngas flames HCO1 and HCO2 

with the influence of preferential diffusion        

Instantaneous cross-sectional mid-plane contour plots of flame temperature and mass fraction 

of NO at non-dimensional time instant t=30 are shown in Fig.4. To obtain an idea of the 

temperature distribution and NO formation more locally, and to facilitate the subsequent one-

point data analysis, the flames are divided into three different zones, defined as the upstream 

zone A (0<z<2), intermediate zone B (2<z<8) and downstream zone C (8<z<10). The flame 

structures between the three cases show large differences with respect to CO-dilution, which 

is a regulated pollutant and a component of unburned syngas, resulting from inefficient 

mixing that yields equivalence ratio outside the ignition range and an incomplete combustion 

of hydrocarbon species in the syngas. The flame temperatures of the three flames show a 

decreasing maximum value but an increasing vortical level from flames H to HCO1 and 

HCO2, because of the decreasing hydrogen content and the increasing CO content in H2/CO 

syngas fuel mixture. Moreover, temperature distributions in Fig.4 show intense burning and 

strong flame width for the pure hydrogen flame H, but moderate burning and relatively weak 

flame width for the CO-diluted HCO1 and HCO2 syngas flames depending on the CO 

content in syngas fuel mixture. It is important to note that the similar flame appearances were 

recently observed by Hwang et al. [22] in their experimental investigation for turbulent 

nonpremixed pure H2, H2-rich H2/CO syngas, and H2 and CO equally blended H2/CO syngas 

jet flames at Reynolds number of 9000. 

Furthermore, as seen in Fig. 4 the distribution of NO mass fraction exhibits some formation 

near the flame base in zone A for the pure hydrogen flame H. The contour plots indicate a 

strong correlation between the flame temperature and the mass fractions of NO, particularly 

for the pure hydrogen flame H.  Moreover, as we move downstream in Fig. 4, pockets of high 
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NO values are apparent for H2/CO syngas flames HCO1 and HCO2 at intermediate zone B 

and downstream zone C. The rise of NO concentration of H2/CO syngas flames at these 

pockets may also correspond to regions with high scalar dissipation rate. In addition, large 

fluid parcels can be observed in the vortical regions of the upstream jet of all cases, as 

indicated by the distributions of temperature and NO mass fractions, indicating the existence 

of non-reacting zones associated with the flow structures in the reacting flow field.  

For the pure hydrogen flame, NO is mainly formed through the Zeldovich mechanism (Eqs. 

(3), (4) and 5)) as the Fenimore mechanism cannot occur at all due to the absence of CH 

radicals. Furthermore, the formation of NO appears to be rapid for the pure hydrogen flame 

H, thus indicating possible reaction between H radicals and N2 via the NNH mechanism (Eqs. 

(13) and (14)). 

However, NO formation mechanism in H2/CO blended syngas flames is questionable and 

needs further analysis. To investigate the NO formation mechanisms in hydrogen-rich H2/CO 

syngas flame HCO1, laminar counterflow flames are computed by using an updated GRI 3.0 

mechanism with 54 species and 329 reactions [43]. In the following, the results of two 

calculations having different strain rates are compared. The strain rates are selected such that 

one flame is close to chemical equilibrium ( 11 a s ) and the other is close to extinction 

( 4 11 10  a s  ).  Fig.5 (a) and (b) shows the temperature and net NO formation rate as 

functions of mixture fraction. A high strain induces high gradients and therefore high 

conductive heat losses, which lead to a relatively low flame temperature. It is observed that 

the higher temperature of the low strained flame does not lead to a higher NO formation rate. 

While the Zeldovich mechanism is expected to produce more NO for the low-strained flame, 

the net formation rate is actually higher for the high-strained flame with the lower 

temperature.  To further investigate this behaviour in hydrogen-rich H2/CO syngas flame, the 
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contributions of various NO formation mechanisms are analysed. In Fig.6 (a) and (b) the 

reaction rates of different NO formation routes are plotted for the two cases. It is found that 

low strained H2/CO syngas flame with the highest flame temperature, the Zeldovich 

mechanism accounts for almost the total NO production. Other NO formation mechanisms 

have a negligible contribution. However, in the high strained syngas flame, the Zeldovich 

formation rate is virtually zero, because of the low temperature. Fig. 6(a) and (b) also show 

that the Fenimore mechanism is negligible in low and high strain rates cases, because CH 

radicals are not formed in the oxidation of CO. Interestingly, we found that the high NO 

formation rate in the high strained syngas flame is almost exclusively caused by the NNH 

route.  The high concentration of H radicals results in a high formation rate of NNH (Eq. 13). 

The NNH radicals then can react with O radicals to form NO and NH (Eq. 14). The NH 

radicals subsequently react with various partners to form NO directly or via N and HNO.  

In summary, for hydrogen-rich H2/CO syngas flames the NO formation rate is highest at low 

flame temperatures, i.e. at high strain (or scalar dissipation) rates. At high temperatures (i.e. 

at low strain), the Zeldovich mechanism is the main NO formation route, but at low 

temperatures the NNH route dominates. The Fenimore mechanism has a negligible 

contribution in low and high strained rates, because the concentration of CH radicals is 

practically zero. Moreover, the present findings of NO distribution in hydrogen-rich and 

hydrogen-lean H2/CO syngas flames are also consistent with recent NO study carried out by 

Shih and Hsu [26] for their one-dimensional laminar opposed-jet syngas nonpremixed flames, 

in which they found that hydrogen-rich H2/CO syngas flames produce NO emission from 

Zeldovich and NNH routes. 

Figs. 7-9 show the instantaneous scatter plots of flame temperature, mass fraction of NO and 

source term of the transport equation of NO versus mixture fraction in zones A, B and C. The 
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scattered data of pure H2 flame H does not exhibit local flame extinction for all three zones. It 

is observed that the range of mixture fraction for pure H2 flame H is much narrower than CO-

diluted flames HCO1 and HCO2. As a result of the preferential diffusion effects, the peak 

temperature occurs on the lean side of the stoichiometric mixture fraction, which are the 

strongest for the flame H. The wide range of mixture fraction distribution at a fixed 

temperature can be attributed to the preferential diffusion which enhances the chemical 

reactions at the molecular level and leads to chemical reactions at leaner conditions with high 

flame temperatures. However, this behaviour is starting to deviate more towards local 

extinction with CO addition to H2. The scattered data of flame temperature of both the flames 

HCO1 and HCO2 show that a wide range of temperature is found in a range of relatively high 

mixture fraction compared to the pure H2 flame H.  

The scatter data of mass fraction of NO between the three flames show noticeable differences 

in zones A, B and C.  The pure hydrogen flame H shows considerably higher flame 

temperatures for all three zones therefore highest NO values compared to the CO-diluted 

H2/CO flames. For example, the scatter data of temperature in Figs. 7-9 show the peak values 

of 2637K for pure hydrogen flame H, 2480K for H2-rich H2/CO syngas flame HCO1 and 

2434K for equally blended H2/CO syngas flame HCO2.  The NO concentration of flame H 

shows the peak values of 150 (ppm) in zone A, 130 (ppm) in zone B and over 150 (ppm) in 

zone C. This confirms the formation of high NO concentration near the flame base for the 

hydrogen flame due to high diffusivity, mainly via the Zeldovich mechanism with possible 

influence from the NNH mechanism. The scatter plots also reveal decrease of the maximum 

NO value due to lower temperature of the post-flame gas with respect to CO-dilution, thereby 

reducing the contribution of the Zeldovich mechanism. The NNH mechanism takes place in a 

thin area of the flame with large concentration of H radical and therefore can be the dominant 
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route of NO formation in H2/CO syngas combustion. For example, the NO concentration of 

syngas flame HCO1 shows peak values of 90 (ppm) in zone A, 120 (ppm) in zone B and 110 

(ppm) in zone C.  A similar trend is also observed for the syngas flame HCO2. Furthermore, 

more populated NO concentration forms for the entire mixture fraction range at the upstream 

zone A for all three flames irrespective of the fuel mixture. However, this behaviour 

disappears in zone B, where NO concentrations start to compress towards fuel lean side. 

Similar trends with further compact NO concentrations are observed in zone C.  

In addition to the differences found for the NO concentration, differences are also exhibited 

for the source term of the NO transport equation for all three flames. To identify the 

distribution between the NO concentration and the source term of the NO transport equation, 

scatter plots of the source term of the NO transport equation are also plotted in zones A, B 

and C respectively. For pure hydrogen flame H, densely populated NO source term particles 

are found in the fuel lean region with a Gaussian shape distribution. However, as seen in 

syngas flames HCO1 and HCO2, the Gaussian shape is slightly deviated with CO-dilution. It 

is also noticed that the negative values of NO source term occur for CO-diluted flames 

HCO1, HCO2, while it shows zero as a minimum value for the undiluted flame H. There is 

also a considerable difference in the maximum values of the NO source term between the 

three cases depending on the amount of CO-dilution in the fuel.   

To explicitly identify the behaviour of NO formation and its relation with temperature, 

conditional mean value of mass fraction of NO as a function of temperature and probability 

density functions (pdf) of temperature and NO mass fraction are plotted. Fig. 10 shows the 

conditional mean values of mass fraction of NO as a function of temperature for pure 

hydrogen flame H and H2/CO syngas flames HCO1 and HCO2. The conditional mean values 

of NO show considerably high peak for hydrogen flame H compared to syngas flames HCO1 
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and HCO2 at high temperature regions with main contribution from the Zeldovich route. It is 

also observed in Fig. 8 that CO addition (HCO1 and HCO2) tends to reduce the strength of 

high NO peak value considerably. This effect is presumably due to considerable energy 

required to oxidise highly stable N2 molecule as the CO-dilution lower the flame temperature 

and therefore energy level.    

Figs. 11 and 12 show pdf of temperature and NO mass fraction for flames H, HCO1 and 

HCO2. The pdf distribution of pure hydrogen flame H remains fully Gaussian with 

significantly high NO values at high temperature. However, pdfs of H2/CO syngas flames 

HCO1 and HCO2 display a relatively less-Gaussian behaviour compared to pure hydrogen 

flame H. From Figs. 11 and 12 one can conclude that pdf of NO mass fraction has a large 

variance for pure hydrogen flame H in which data points are spread out around the mean and 

from each other, but relatively a small variance for CO-diluted flames HCO1 and HCO2 in 

which data points tend to be close to the mean values and hence to each other.      

It is known that the NO chemistry is sensitive to reactions governing the fuel oxidation and 

the present results indicate possible avenues for future studies of important interactions 

between emissions. In particular, further investigation on NO-CO interactions and their 

correlation with main CO oxidation reaction 2OH+CO H+CO  flame temperature and 

effective flame zone residence time of syngas combustion would be of great interest. In the 

future, NO-CO interactions via the NCN radicals will be investigated in detail, which will 

help us to further understand how critical pollutants interact with each other in hydrogen-rich 

and hydrogen-lean syngas combustion.  
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4. Conclusions 

Nitric oxide formation in hydrogen and hydrogen-rich H2/CO syngas turbulent nonpremixed 

jet flames have been investigated using direct numerical simulation and tabulated FGM 

chemistry. Simulations were performed at a Reynolds number of 6000. The influence of 

preferential diffusion on nitric oxide formation is checked by comparing DNS results 

between the unity Lewis number and the non-unity Lewis number cases. Statistics of 

instantaneous flame temperature, mass fraction of NO, source term of transport equation of 

NO, conditional mass fraction of NO, and probability density functions of NO from direct 

numerical simulations were compared for pure hydrogen flame H and two hydrogen-rich 

H2/CO syngas flames.    

 

The main conclusions are as follows: 

a. In pure hydrogen flame and hydrogen-rich syngas flames studied here, the peak 

temperature occurs on the lean side of the stoichiometric mixture fraction as a result 

of the preferential diffusion effects associated with the hydrogen content in the fuel 

mixture, which are the strongest for pure hydrogen flame.   

b. Comparing statistics of NO distribution between the unity Lewis number and the non-

unity Lewis number showed that preferential diffusion plays a significant role in 

capturing accurate and higher NO levels depending on the hydrogen content in the 

fuel mixture.  

c. The analysis indicates a strong correlation between the flame temperature and the 

mass fractions of NO, particularly for the flame H, in which NO is mainly formed 

through the Zeldovich mechanism and partially via the NNH mechanism. 

d. The results also indicate a decrease of NO concentration values due to the lower 

temperature of the post-flame gas with respect to CO-dilution in the H2/CO syngas 
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mixture, thereby reducing the contribution of the Zeldovich mechanism. To fill the 

gap, the NNH mechanism takes place in a thin area of the flame with the presence of 

high concentration of H radical results in a high formation rate of NNH. The 

Fenimore mechanism is not found due to absence of CH radical in the H2/CO syngas 

mixture.  
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Tables: 

Table 1. Simulated test cases, flame properties, physical and numerical parameters. 

Simulated Flames, 

Properties and 

Parameters 

Flame H Flame HCO1 Flame HCO2 

Fuel Properties  100% H2 by volume 70% H2 by volume 

30% CO by volume 

50% H2 by volume 

50% CO by volume 

Stoichiometric mixture 

fraction 

0.028 0.124 0.179 

Adiabatic flame 

temperature 

2637K 2480K 2434K 

Jet Diameter (D)  5mm 5mm 5mm 

Domain size 

x y z(L ×L ×L )  

35mm×

35mm

50mm

  

35mm×

35mm

50mm

  

35mm×

35mm

50mm

  

Number of grid points 

x y z(N ×N ×N )  

640×

640

640

  

640×

640

640

  

640×

640

640

  

Mean inlet jet velocity 

j(U )  -1

20.94 

ms
 

-1

20.94 

ms
 

-1

20.94 

ms
 

Inlet Jet temperature  300K 300K 300K 

Jet Reynolds number 1  

j(Re=U D/ )  

6000 6000 6000 

Velocity fluctuation 2  

j(u /U )  

0.23 0.21 0.2 

Integral length 

scale 2,3

33(l /D)  

0.36 0.37 0.39 

Turbulence Reynolds 

number 2,3

t 33(Re =u l / )  

230 224 218 



28 

 

1 Kinematic viscosity at the inflow conditions, 2 11.574e-05 m s   is used to calculate the 

Reynolds number. 

2 The turbulence scales evolve from the artificial turbulence specified at the inflow. The 

uvalue is evaluated at the 1/2 stream location along the jet centreline.   

3 Integral length scale 33l is defined as the integral of the auto-correlation of the spanwise 

component of velocity in the spanwise direction. The u value is evaluated at the 1/2 stream 

location along the jet centreline.   
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Figure Captions 

 

Fig.1. Configuration of the turbulent non-premixed round jet flame. Fuel is injected from the 

fuel inlet with a nozzle diameter D (here we show iso-contours of flame structure of 

hydrogen flame H and dashed line indicates the flammable layer).  

Fig.2. Comparison of iso-contours of NO mass fraction, scatter plots of NO mass fraction vs. 

mixture fraction at full domain ( 0 z 10£ £ ), and scatter plots of NO mass fraction vs. 

mixture fraction at near nozzle region ( 2z ) between unity Lewis number (a1, b1, c1) and 

non-unity Lewis number (a2, b2, c2) of hydrogen flame H at a non-dimensional time instant 

t=30.  

Fig.3. Comparison of scatter plots of NO mass fraction vs. mixture fraction of hydrogen 

flame H between DNS data (a1, b1, c1) at Reynolds number of 6000, and the experimental 

data (a2, b2, c2) at Reynolds number of 10000, at different non-dimensional axial locations 

z=4 (a), 8 (b) and 10 (c). 

Fig.4. Snapshots of flame temperature and NO mass fraction for flames H, HCO1 and HCO2 

at non-dimensional time t=30. 

Fig.5. Temperature (a) and net NO formation rate (b) as functions of mixture fraction for a 

low strain rate 11 a s and high strain rate 4 110  a s  for syngas flame HCO1. 

Fig.6. Reaction rates of different NO formation mechanisms as functions of mixture fraction 

(a) for a low strain rate 11 a s and (b) for a high strain rate 4 110  a s  for syngas flame 

HCO1. 

Fig.7.  Scatter plots for flame temperature, NO mass fraction and source term of the transport 

equation of NO mass fraction vs. mixture fraction in near-inflow zone A (0<z<2) for flames 

H, HCO1 and HCO2 at non-dimensional time t=30. 

Fig.8. Scatter plots for flame temperature, NO mass fraction and source term of the transport 

equation of NO mass fraction vs. mixture fraction in intermediate zone B (2<z<8) for flames 

H, HCO1 and HCO2 at non-dimensional time t=30. 

Fig.9. Scatter plots for flame temperature, NO mass fraction and source term of the transport 

equation of NO mass fraction vs. mixture fraction in near-outflow zone C (8<z<10) for 

flames H, HCO1 and HCO2 at non-dimensional time t=30. 

Fig.10. Conditional mean values of mass fractions of NO as a function of temperature for 

flames H, HCO1 and HCO2 at non-dimensional time t=30.  

 

Fig.11. Probability density function (pdf) of temperature for flames H, HCO1 and HCO2 at 

non-dimensional time t=30.  

 

Fig.12. Probability density function (pdf) of mass fractions of NO for flames H, HCO1 and 

HCO2 at non-dimensional time t=30.  
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Figures:  

 

 

Fig.1. Configuration of the turbulent non-premixed round jet flame. Fuel is injected from the 

fuel inlet with a nozzle diameter D (here we show iso-contours of flame structure of 

hydrogen flame H and dashed line indicates the flammable layer).  
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Fig.2. Comparison of iso-contours of NO mass fraction, scatter plots of NO mass fraction vs. 

mixture fraction at full domain ( 0 z 10£ £ ), and scatter plots of NO mass fraction vs. 

mixture fraction at near nozzle region ( 2z ) between unity Lewis number (a1, b1, c1) and 

non-unity Lewis number (a2, b2, c2) of hydrogen flame H at a non-dimensional time instant 

t=30.  
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Fig.3. Comparison of scatter plots of NO mass fraction vs. mixture fraction of hydrogen 

flame H between DNS data (a1, b1, c1) at Reynolds number of 6000, and the experimental 

data (a2, b2, c2) at Reynolds number of 10000, at different non-dimensional axial locations 

z=4 (a), 8 (b) and 10 (c). 
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Fig.4. Snapshots of flame temperature and NO mass fraction for flames H, HCO1 and HCO2 

at non-dimensional time t=30. 
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(a) 

 
(b) 

 
Fig.5. Temperature (a) and net NO formation rate (b) as functions of mixture fraction for a 

low strain rate 11 a s and high strain rate 4 110  a s  for syngas flame HCO1.   
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(a) 

 
(b) 

 

Fig.6. Reaction rates of different NO formation mechanisms as functions of mixture fraction 

(a) for a low strain rate 11 a s and (b) for a high strain rate 4 110  a s  for syngas flame 

HCO1.   
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Fig.7.  Scatter plots for flame temperature, NO mass fraction and source term of the transport 

equation of NO mass fraction vs. mixture fraction in near-inflow zone A (0<z<2) for flames 

H, HCO1 and HCO2 at non-dimensional time t=30. 
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Fig.8. Scatter plots for flame temperature, NO mass fraction and source term of the transport 

equation of NO mass fraction vs. mixture fraction in intermediate zone B (2<z<8) for flames 

H, HCO1 and HCO2 at non-dimensional time t=30. 
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Fig.9. Scatter plots for flame temperature, NO mass fraction and source term of the transport 

equation of NO mass fraction vs. mixture fraction in near-outflow zone C (8<z<10) for 

flames H, HCO1 and HCO2 at non-dimensional time t=30. 
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Fig.10. Conditional mean values of mass fractions of NO as a function of temperature for 

flames H, HCO1 and HCO2 at non-dimensional time t=30.  
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Fig.11. Probability density function (pdf) of temperature for flames H, HCO1 and HCO2 at 

non-dimensional time t=30.  

 

 
 



41 

 

 
 
Fig.12. Probability density function (pdf) of mass fractions of NO for flames H, HCO1 and 

HCO2 at non-dimensional time t=30.  


