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Abstract 

 

Parkinson’s disease (PD) is characterized by a range of motor symptoms. Besides the cardinal 

symptoms (akinesia and bradykinesia, tremor and rigidity), PD patients show additional 

motor deficits, including: gait disturbance, impaired handwriting, grip force and speech 

deficits, among others. Some of these motor symptoms (e.g., deficits of gait, speech, and 

handwriting) have similar clinical profiles, neural substrates, and respond similarly to 

dopaminergic medication and deep brain stimulation (DBS). Here, we provide an extensive 

review of the clinical characteristics and neural substrates of each of these motor symptoms, 

to highlight precisely how PD and its medical and surgical treatments impact motor 

symptoms. In conclusion, we offer a unified framework for understanding the range of motor 

symptoms in PD. We argue that various motor symptoms in PD reflect dysfunction of neural 

structures responsible for action selection, motor sequencing, and coordination and execution 

of movement. 
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Introduction 

Parkinson’s disease (PD) is a degenerative neurological disorder, associated with 

primary (akinesia, bradykinesia, tremor, rigidity, and postural instability) and secondary 

motor symptoms (e.g. gait disturbance, micrographia, precision grip impairment, and speech 

problems) (Jankovic & Tolosa, 2007; Lees, Hardy, & Revesz, 2009). Although it has been 

assumed that the various motor symptoms in PD were caused solely by striatal dopamine 

depletion (Kalia, Brotchie, & Fox, 2013; Xia & Mao, 2012), many studies have shown that 

additional neural structures and neurochemical systems were also responsible for the 

occurrence of motor symptoms in PD; these include prefrontal cortical areas and the 

cerebellum, as well as serotonergic, glutamatergic, and cholinergic systems (Bohnen et al., 

2013; Fox, 2013).  

A unified framework to understand motor symptoms in PD 

 In the current review, we attempt to explain commonalities among different motor 

symptoms in PD. We argue that by investigating subprocesses of motor behavior, one may 

find links among different motor symptoms in PD. This is motivated by studies showing 

overlapping neural areas underlying different motor processes in PD. In addition, many 

studies have reported significant correlations among different motor symptoms in PD, 

including gait and speech (Cantiniaux et al., 2010; Giladi et al., 2001; Goberman, 2005; 

Moreau et al., 2007; Nutt et al., 2011), speech and hand movement (Skodda, Visser, & 

Schlegel, 2011), gait and hand movements (Naismith & Lewis, 2010; Vercruysse et al., 

2012), handwriting and primary motor symptoms (Wagle Shukla et al., 2012), speech 

production and other motor processes including gait and facial movements (Goberman, 

2005), and saccadic eye movements and finger and body movement (Shibasaki, Tsuji, & 

Kuroiwa, 1979).   
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Complex motor behaviors, such as gait, speech and handwriting, rely on simpler 

motor processes, which include the selection of appropriate motor actions, sequencing of 

movements, coordination of different motor effectors, correct execution of these sequences of 

movements, as well as the integration of perceptual input with timing information (see Figure 

1). Here, we propose that correlations among different motor symptoms in PD, especially 

those affecting speech, hand motor control and gait, are due to sharing many of more 

elemental motor processes. Cortical areas also play a role in some of these motor processes 

(see Table 1 and data reviewed above). Despite similarities in the component processes, these 

complex movements, however, differ in several aspects, including how they are impacted by 

stimuli and environmental cues. For example, environmental stimuli has more influence on 

gait than on speech, as the former involves the continuous updating of perceptual 

information. 
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Figure 1: Motor performance relies on elemental motor processes including action selection 

(basal ganglia), sequencing and planning of motor actions (motor cortical regions), and 

motor coordination and timing (cerebellum), among others. We hypothesize that gait, 

handwriting, and speech are composed of the integration of these elemental motor processes 

depicted in the figure. Future computational and simulation studies should clarify how these 

brain regions interact to produce such complex motor behavior. 

 

Crucially for the present review, there is a dearth of functional magnetic resonance 

imaging (fMRI) studies on motor production. This is possibly because motor responses or 

movement of any type can easily introduce motion-induced signal changes that confound the 

blood-oxygen-level dependent (BOLD) activation signals of interest. Those studies that 

mainly discuss the neural substrates of motor output were added to the review. In this review, 

we will first describe in detail the clinical and neural profile of a range of motor symptoms in 

PD. This will include primary symptoms that are considered to be cardinal features of the 

disorder, such as akinesia, bradykinesia, tremor, and gait disturbances, and also some 

secondary symptoms that have been highlighted as central to the Parkinsonian phenotype, 

such as impairment of handwriting, speech and precision grip. At this point, we inform the 

reader here that wwe provided a critical review of the literature on postural instability 

elsewhere (Crouse, Phillips, Jahanshahi, & Moustafa, 2016). Our goal is to summarize recent 

research in order to compare the effects of PD and associated treatments on each motor 

symptom in turn. In addition, we will also highlight potential relationships amongst various 

motor symptoms of PD, such as whether severity of tremor or akinesia impact gait or 

handwriting; or whether freezing of gait and speech deficits have overlapping neural 

mechanisms. Importantly, in writing this review, we did not aim to provide a complete 

overview of existing studies for each motor symptom in PD, as these issues have been more 
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than adequately covered in other reviews (Helmich, Hallett, Deuschl, Toni, & Bloem, 2012; 

Jankovic, 2008).  

In conclusion, we are going to present a unified framework that explains how 

interactions among brain regions might explain different motor symptoms of PD. By doing 

so, we wish to provide insight into why pharmacological and neurosurgical treatments are 

effective only for a restricted set of motor symptoms, and why certain, seemingly distant 

motor symptoms show covariation. The ultimate aim of this review is twofold: we intend to 

pave the way for novel computational models that can account for multiple motor PD 

symptoms simultaneously, and we also hope that this review can benefit the development of 

comprehensive treatments for motor symptoms. 

 

a- Primary motor symptoms: Akinesia and bradykinesia, rigidity, and tremor 

Clinical features 

Akinesia (poverty of action, difficulty initiating movements,) and bradykinesia (slow 

movements) are considered among the primary motor features in PD. Rigidity is associated 

with feeling of stiffness experienced by the patient, and clinicians may assess rigidity by 

examining the resistance of a muscle against passive stretching. Interestingly, clinically 

assessed severity of rigidity was found to correlate with the magnitude and duration of the 

long-latency reflex (Berardelli, Sabra, & Hallett, 1983). With respect to tremor, one may 

distinguish between resting, postural, and kinetic manifestations of the symptom. Resting 

tremor (which occurs at rest) is the most common form of tremor in PD, while action/kinetic 

tremor (which is tremor that occur during voluntary movements) and postural tremor 

(inability to maintain stable posture against gravity) (Toth, Rajput, & Rajput, 2004) are more 

common in essential tremor (Bhidayasiri, 2005). However, it is often difficult to dissociate 

PD from essential tremor (Thenganatt & Louis, 2012). Fahn (2011) added intention tremor 
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(i.e. tremor that occurs and grows as patient approaches a target during visually guided 

movements, Zakaria et al., 2013), although very few studies have focused on this kind of 

tremor. Tremor can affect the hands, the feet, and to a lesser extent, other body parts, either at 

high or low frequency (8-11 or 4-6 Hz). Approximately 70% of PD patients experienced 

tremor during the course of the disease (Helmich et al., 2012).    

The clinical diagnosis of PD requires the presence of a subset of motor symptoms 

(e.g., tremor, rigidity, akinesia, bradykinesia and postural imbalance), therefore the diagnostic 

system allows for patients with different motor symptom profiles (Hughes, Daniel, Kilford, & 

Lees, 1992). Studies often classify PD patients into the tremor-dominant, the akinesia-

dominant (also known as akineto-rigid), or the mixed phenotype category (Jankovic et al., 

1990; Lee et al., 2012; Lewis et al., 2005; Moustafa & Poletti, 2013; Mure et al., 2011; 

Poletti, Frosini, et al., 2011; Rajput, 1993; Schiess, Zheng, Soukup, Bonnen, & Nauta, 2000; 

Schillaci et al., 2011; Zaidel, Arkadir, Israel, & Bergman, 2009; Zetusky & Jankovic, 1985). 

Although most of these studies did not specify the subtype of tremor that the patients were 

presenting with, they can help to reveal the clinical correlates and neural substrates of these 

different motor subtypes (akinesia vs. tremor) in PD. For example, it was found that in the 

early stages of PD, tremor- and akinesia-dominant patients did not differ in terms of age, 

disease duration, levodopa dosage, or disease severity (as measured by the Unified 

Parkinson's Disease Rating Scale - Motor section, UPDRS III) (Eggers, Kahraman, Fink, 

Schmidt, & Timmermann, 2011). However, these motor subtypes might have different 

clinical profiles and outcomes. In a recent longitudinal study, it was found that the akinesia-

dominant subtype indeed progressed faster than the tremor-dominant one (Eggers et al., 2012; 

Louis et al., 1999). Studies also found that  bradykinesia symptoms are more common among 

patients with rapid disease progression (Jankovic et al., 1990). Interestingly, a recent study 

found that 15-38% of tremor-dominant PD patients converted over time into the mixed 
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phenotype, while 46-50% converted to the akinesia dominant phenotype (Von Coelln et al., 

2015), suggesting that these phenotypes might have common clinical and neural substrates. 

Further, early studies found that the severity of akinesia and bradykinesia symptoms 

did not correlate (Evarts, Teravainen, & Calne, 1981). Similarly, it was reported that resting 

tremor did not correlate with other primary motor symptoms in PD (Louis et al., 2001). 

Furthermore, compared to tremor-dominant patients, patients with severe akinesia were more 

likely to develop dementia (Aarsland, Andersen, Larsen, Lolk, & Kragh-Sorensen, 2003; 

Poletti, Emre, & Bonuccelli, 2011; Poletti et al., 2012; Williams-Gray, Hampshire, Robbins, 

Owen, & Barker, 2007). Other studies suggested that tremor symptoms can decrease over the 

years (Helmich et al., 2012; Toth et al., 2004). This may contribute to the fact that compared 

to non-tremor patients, tremor-dominant PD patients were found to survive longer (Forsaa et 

al., 2010; Lo et al., 2009). These data suggest that the different dominant primary motor 

symptoms of PD are associated with different clinical courses of the illness.  

 

Neural substrates 

The cardinal neural loss in PD is a reduction of dopamine levels in the basal ganglia, 

particularly the dorsal striatum (Kish, Shannak, & Hornykiewicz, 1988). However, the 

primary motor symptoms of PD are associated with dysfunction of different neural areas 

(Fahn, Libsch, & Cutler; Fox, 2013; Lewis et al., 2011). Dopamine depletion in the basal 

ganglia is strongly linked to akinesia and rigidity, while its link to tremor is unclear (Albin, 

Young, & Penney, 1989; Helmich, Janssen, Oyen, Bloem, & Toni, 2011; Rodriguez-Oroz et 

al., 2009; Rossi et al., 2010; Spiegel et al., 2007). A few studies, for example, have argued 

that resting tremor is less related to dopamine deficiency, while kinetic and postural tremor 

are more dopamine dependent, as indicated by the differential effects on dopamine 
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medications on each type of tremor (Benamer et al., 2003; Benamer et al., 2000; Pirker et al., 

2002; Spiegel et al., 2007).  

Studies have found that PD patients with dominant akinesia have more dopamine loss 

in the striatum (Schillaci et al., 2011) and the globus pallidus (Rajput, Voll, Rajput, 

Robinson, & Rajput, 2009), as compared to PD patients with predominant tremor. On the 

contrary, studies have also report reduced dopamine levels in PD patients with tremor, 

relative to patients with dominant akinesia (Qamhawi et al., 2015). Similarly, studies have 

also suggested that excessive inhibitory output from the basal ganglia to cortical areas might 

be the neural mechanism underlying bradykinesia symptoms (Berardelli, Rothwell, 

Thompson, & Hallett, 2001). Computational and mechanistic models suggested that the 

source of akinesia involves not only hyper-excitability of striatal neurons originating in the 

indirect pathway leading to (i) suppression of movement and (ii) enhanced motivational cost 

of movement, but that (iii) a lack of D2 receptor stimulation results in an aberrant learning 

process which further amplifies such symptoms (Collins & Frank, 2014; Wiecki & Frank, 

2010). However, other fMRI studies have also shown that hypoactivation of many cortical 

areas, including supplementary motor and anterior cingulate cortex, may be associated with 

akinesia symptoms (Sabatini et al., 2000). 

Rigidity has been associated with the frequency of neuronal discharge in the 

subthalamic nucleus (STN) of PD patients. A study has reported that response to placebo, as 

mirrored in reduction of clinician-rated rigidity of the arm, was associated with reduced firing 

frequency of STN neurons in PD patients (Benedetti et al., 2004). Another study, however, 

has reported that in never-medicated early stage PD patients, the activation of the basal 

ganglia, the thalamus, or motor cortical areas (the primary motor cortex and the 

supplementary motor area, SMA) during a precision grip force task did not correlate 

significantly with rigidity (J. Prodoehl, Spraker, Corcos, Comella, & Vaillancourt, 2010). 
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Furthermore, a later study has revealed that severity of rigidity correlated with functional 

connectivity between the cerebellum, the motor, temporal and occipital cortices, and the 

nucleus caudatus in mild-moderate PD patients OFF medication, while they were performing 

a motor task involving external and internal (memory) cues (Baradaran et al., 2013). To sum 

up, these findings suggested that rigidity is not only associated with STN firing frequency, 

but also with altered functioning of a widespread brain network. 

The neural substrates of tremor are less clear, as tremor has been associated with 

cerebellar, thalamic, and STN abnormalities (Helmich et al., 2012; Kassubek, Juengling, 

Hellwig, Spreer, & Lucking, 2002; Mure et al., 2011; Probst-Cousin, Druschky, & 

Neundorfer, 2003; Weinberger, Hutchison, Lozano, Hodaie, & Dostrovsky, 2009; Zaidel et 

al., 2009). However, an fMRI study did not report subthalamic activation in relation to tremor 

in PD (Helmich et al., 2011), which finding differs from intraoperative studies with direct 

recordings showing that STN neurons that oscillated at tremor frequency (Levy, Hutchison, 

Lozano, & Dostrovsky, 2000; Magill, Bolam, & Bevan, 2001). In addition, Rosenberg-Katz 

and colleagues (Rosenberg-Katz et al., 2013) found that PD patients with tremor had a lower 

mean loss of gray matter than non-tremor patients. It was also reported that PD patients with 

dominant tremor showed more activation in the prefrontal cortex than patients with non-

dominant tremor (J. Prodoehl et al., 2013). 

However, the neural substrates of kinetic tremor are not completely established and 

require further research by possibly comparing neural activations in PD patients with kinetic 

or postural vs. resting tremor using fMRI (or comparing neural substrates of different tremors 

in PD and essential tremor patients). Some have argued that cerebellar activation in PD 

patients during movement could reflect compensatory mechanisms that counteract the 

functional impairment of the cortico-striatal motor circuit (Wu & Hallett, 2013; Yu, Sternad, 

Corcos, & Vaillancourt, 2007). One recent study compared motor function in patients with 
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PD and essential tremor, and suggested that the cerebellum plays a role in resting and kinetic 

tremor (Brittain et al., 2015). 

 

Effects of dopamine medications and DBS 

Dopaminergic medications have been shown to be effective in treating akinesia and 

bradykinesia. Studies have also found that although dopaminergic medications effectively 

ameliorated bradykinesia, they did not normalize movement speed (Vaillancourt, Prodoehl, 

Verhagen Metman, Bakay, & Corcos, 2004). Another study has found that the restoration of 

SMA activation with apomorphine (a dopamine agonist) was associated with the concomitant 

improvement of akinesia and bradykinesia (Jenkins et al., 1992). On the other hand, the 

effects of dopaminergic medications (both levodopa and dopamine agonists) on tremor are 

inconclusive (Elble, 2002). For example, levodopa has been found to effectively manage 

resting tremor, while it showed less clinical efficacy, or could even exacerbate kinetic 

(Solida, Ghika, & Vingerhoets, 2002) and postural tremor (Pact & Giduz, 1999; Solida et al., 

2002; Uitti, 1998). Other studies have suggested that kinetic and postural tremors might be 

less responsive to dopaminergic treatment than akinesia and bradykinesia (Fishman, 2008; 

Koller, Busenbark, & Miner, 1994). Furthermore, Shapiro and colleagues concluded that 

rigidity did not always respond well to dopaminergic medication (Shapiro et al., 2007). An 

interesting study measured local field potentials in the STN of PD patients, in whom 

levodopa reduced both bradykinesia and rigidity (Kuhn et al., 2009). Curiously, improvement 

in both symptoms correlated with the suppression of oscillatory power in the STN, regardless 

of the synchronisation frequency across a broad range (8-35 Hz).  

Deep brain stimulation (DBS) of the STN might have differential effects on akinesia, 

bradykinesia, and tremor in PD. For example, STN DBS was more effective for treating 

tremor than akinesia (Schlaier et al., 2014), presumably by reducing the pathology associated 
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with abnormal STN oscillations. In addition, DBS of the thalamus was found to be effective 

in managing tremor, while it was less efficient in improving akinesia and rigidity (Benabid et 

al., 1996), although some recent studies found different effects of thalamic DBS on the 

cardinal symptoms of PD (Yamada, Hamasaki, & Kuratsu, 2014). Moreover, DBS of the 

STN was found to improve motor symptoms in advanced PD patients and increase glucose 

metabolism in the right premotor area and the cerebellum. Improvement of rigidity and 

resting tremor in the left limbs correlated with increase of glucose metabolism in the right 

premotor area (Nagaoka et al., 2007). Interestingly, in another study, DBS was found to 

ameliorate rigidity when applied to the bilateral, contralateral and ipsilateral STN, although 

the greatest improvements were observed for bilateral stimulation (Tabbal et al., 2008). 

Furthermore, DBS of the internal globus pallidus (GPi) had variable effects on the primary 

motor symptoms in PD, depending on the contact location within the GPi (Krack et al., 

1998). DBS of the STN and the GPi had comparable effects on bradykinesia (Brown et al., 

1999). Similar to dopaminergic medications, STN DBS ameliorated bradykinesia but did not 

completely abolish slowness of movement (Vaillancourt, Prodoehl, et al., 2004). Finally, the 

impact of dopaminergic medication and DBS on the tremor-dominant versus akineto-rigid 

subtypes of PD appears to be different (reference needed).  

 

b- Gait impairment in Parkinson’s disease 

Clinical features 

Gait disturbance is a common problem for patients with PD. Classically, patients with 

the disease experience a shuffling gait, in which an individual has great difficulty lifting their 

feet from the ground, effectively impairing the ability to activate appropriate leg swing and 

propulsion. Individuals with PD also suffer from a number of paroxysmal deficits in gait, 

whereby the normal gait cycle is interrupted in the midst of an active motor program. For 
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example, an individual can suffer from a marked hastening of footsteps during walking, 

known as festination. Similarly, individuals can also experience an abrupt cessation of 

walking, in which the feet ‘freeze’, causing exacerbation of balance impairment and falls. A 

study has reported that such freezing of gait (FOG) did not correlate with several PD motor 

symptoms, such as bradykinesia (Bartels et al., 2003). 

 

Neural substrates 

Effective gait requires the coordination of interconnected circuitry across multiple 

levels of the nervous system, including the spinal cord, the brainstem, the basal ganglia, the 

thalamus and the cerebral cortex (Takakusaki, 2008; Takakusaki, Oohinata-Sugimoto, Saitoh, 

& Habaguchi, 2004). Interneurons in the spinal cord coordinate rhythmic patterns of activity 

between lower limb muscles that alter the centre of mass and propel the body forward 

through space. These lower circuits are controlled hierarchically by cortical systems that in 

concert with neurons in the cerebellum and basal ganglia, allow for the flexible execution of a 

range of motor plans across different contexts. With the exception of the spinal cord neurons 

that control the movements of the lower limbs, there is a great deal of overlap in the neural 

systems utilized to control both gait and cognition. As such, it is likely that deficits in PD that 

impair gait function, such as the dopaminergic denervation of the striatum, may at least 

partially manifest as impairments due to deficiencies in cognitive processes. It should be 

noted, however, that cholinergic dysfunction might have a role in gait disturbance in PD 

(Rochester et al., 2012). In addition, a resting state fMRI study has revealed that the severity 

of FOG was associated with reduced connectivity within a fronto-parietal executive and a 

temporo-occipital visual network (Tessitore, Amboni, Esposito, et al., 2012). These findings 

were complemented by a voxel-based morphometry study which reported that FOG in PD 
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was associated with reduced gray matter volume in left cuneus, precuneus, lingual gyrus, and 

posterior cingulate cortex (Tessitore, Amboni, Cirillo, et al., 2012). 

Alternatively, the concurrence of cognitive and ambulatory deficits in PD may be due 

to reliance on compensatory processes. Accumulating evidence implicated the role of the 

motor circuit between the putamen and the SMA in ‘automatic’ behaviors, and compelling 

evidence supported the dysfunction of this system in Parkinson’s disease (Redgrave et al., 

2010). The loss of automatic control of movement would by necessity force an individual to 

devote more cognitive resources to execute motor programs associated with routine tasks 

(e.g. walking), which are automatic in healthy individuals. In consequence, controlled 

execution of routine motor actions might decrease patients’ capacity to flexibly deal with 

changes in their surrounding environment. Using fMRI studies, it was also suggested that 

altered STN activations underlie the occurrence of FOG in a subset of PD patients (Moustafa, 

2014; Shine, Frank, Moustafa, & Lewis, 2013). Computational modeling suggested that 

increased STN activity can impair initiation of motor responses, including gait – and in 

particular it can induce a type of freezing when subjects experience response conflict (Frank, 

Samanta, Moustafa, & Sherman, 2007 & Sherman, 2007). One computational model 

suggested a possible link between serotonin deficiency and FOG, in addition to PD-related 

dopamine deficits (Muralidharan, Balasubramani, Chakravarthy, Lewis, & Moustafa, 2014 

Lewis, & Moustafa, 2014).  

In contrast to general gait deficits, FOG is also commonly exacerbated when 

individuals are required to perform stressful tasks (Ehgoetz Martens, Ellard, & Almeida, 

2014; A. Lieberman, 2006) or are required to navigate in complex spatial environments 

(Almeida & Lebold, 2010). One may argue therefore, that rather than reflecting a general 

impairment of cognition, freezing may be due to an inability to effectively manage response 
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conflict, irrespective of the domain in which it occurs (Shine et al., 2013; Vandenbossche et 

al., 2012). 

 

Effects of dopaminergic medications and DBS 

The administration of dopaminergic medications leads to a general improvement in 

gait abnormalities (Bohnen, Albin, Muller, & Chou, 2011), though FOG cannot be 

completely ameliorated with dopaminergic replacement (Nutt et al., 2011; Shine, Naismith, 

& Lewis, 2011). For example, a study has reported that FOG in some PD patients did not 

respond well to levodopa (Ferraye et al., 2013). In addition, there are currently significant 

limitations associated with long-term dopaminergic therapy in general, as it often leaded to 

side effects, such as dyskinesias. Similar effects have been seen with DBS surgery (Bohnen et 

al., 2011), however there remains contention regarding the best stimulation target for 

effective treatment of freezing (Alam, Schwabe, & Krauss, 2011; Vercruysse et al., 2014). 

For instance, a case study has reported that DBS to the pedunculopontine nucleus (PPN) 

could effectively remediate FOG in a patient with PD (Wilcox et al., 2011), suggesting a key 

role for the PPN in gait control. 

 

c- Handwriting deficits: Micrographia 

Clinical features 

A recent study has suggested that handwriting can be used as an early detection tool 

for PD (Rosenblum, Samuel, Zlotnik, Erikh, & Schlesinger, 2013). PD patients typically 

exhibit a diminutive form of handwriting known as micrographia. In an early study of 

micrographia, McLennan and colleagues found that micrographia is present in a large 

proportion of PD patients and is dissociable from other PD motor symptoms including tremor 

and rigidity (McLennan, Nakano, Tyler, & Schwab, 1972). Although altered handwriting in 
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PD patients has been recognized for a long time, empirical studies of PD handwriting features 

have begun to gain prominence only since the 1990s, as discussed by Bidet-Ildei and 

colleagues (Bidet-Ildei, Pollak, Kandel, Fraix, & Orliaguet, 2011). In addition to 

micrographia, handwriting in PD is characterized by a jagged contour and sharp fluctuations 

in velocity and acceleration profiles (Teulings, Contreras-Vidal, Stelmach, & Adler, 2002; 

Van Gemmert, Teulings, Contreras-Vidal, & Stelmach, 1999). Aspects of handwriting 

including stroke size, peak acceleration, stroke duration, ratio between mean and standard 

deviation of stroke length or duration all have been used for PD diagnostics (Phillips, 

Bradshaw, Iansek, & Chiu, 1993; Teulings & Stelmach, 1991). Compared to healthy controls, 

PD patients were found to exhibit increased movement time, reduced maximum and 

minimum values of magnitude of pen velocity and more velocity inversions (Tucha et al., 

2006). In a study by van Gemmert and colleagues (Van Gemmert, Adler, & Stelmach, 2003), 

PD patients were asked to copy repetitive ‘lll’ patterns of different sizes. It was found that 

patients undershot the target if the target size was greater than 1.5 cm, thereby indicating that 

letter size reduction effect is characterized by a threshold, becoming significant at a critical 

target size. 

 

Neural substrates 

Since handwriting requires integration of cognitive, linguistic, perceptual and motor 

functions, and is naturally subserved by an extensive brain network, impaired handwriting is 

observed in a variety of neurological conditions. There is evidence of the involvement of 

Broca’s area, classically known for its role in speech production, in handwriting generation 

(Hillis et al., 2002). Other brain areas, including the dorsolateral and medial premotor cortex, 

are involved in handwriting (Beeson et al., 2003). Future research should investigate the 

activation of these brain regions in PD patients while conducting a handwriting task. 
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Repetitive transcranial magnetic stimulation of the supplementary cortex has been shown to 

improve handwriting in PD patients (Randhawa, Farley, & Boyd, 2013). Since handwriting 

involves processing of space through visual and somatosensory modalities, intraparietal 

sulcus and superior parietal lobule can also be expected to support handwriting. In addition to 

sensory motor cortical areas, prefrontal areas typically associated with planning and 

execution such as the left inferior and dorsolateral prefrontal cortex also influence 

handwriting (Beeson et al., 2003). Through computational modeling, reducing dopamine 

levels in the basal ganglia, the substantia nigra and the globus pallidus external (GPe) 

pathways also led to reduction of the size of the letters written by PD patients (Gangadhar, 

Joseph, & Chakravarthy, 2008; for a review see Helie, Chakravarthy, & Moustafa, 2013). As 

we have seen, due to the complex nature of handwriting, impairment of a number of regions 

could affect handwriting. It remains to be clarified which brain areas show abnormal 

activations during handwriting in PD patients, as compared to healthy controls. 

 

Effects of dopamine medications and DBS 

The clinical value of assessing handwriting in PD is not only provision of a sensitive 

marker of early PD onset, but its response to dopaminergic medication also forms the basis of 

a rapid, quantitative assessment of pharmacotherapy effect. Lange and colleagues reported 

progressive degeneration of handwriting as PD patients were withdrawn from their normal 

dopamine medications (Lange et al., 2006). Using computational analysis of PD handwriting, 

Eichhorn and colleagues demonstrated that certain sensitive indices derived from handwriting 

showed rapid improvement in PD patients on apomorphine (Eichhorn et al., 1996). However, 

these positive changes were not always observed in patients with levodopa-unresponsive 

Parkinsonism. For example, Poluha and colleagues found that levodopa ameliorated the 
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speed of handwriting, but not the size of written letters (Poluha, Teulings, & Brookshire, 

1998). 

There are few studies investigating the effects of DBS to STN, GPi or other brain 

targets on handwriting. One study involving patients with advanced PD undergoing high-

frequency STN DBS revealed that stimulation improved handwriting quality; there was a 

significant increase in mean vertical stroke length, speed of writing and smoothness of 

contour (Siebner et al., 1999). However, another study found that STN DBS had only 

moderate effects on handwriting in PD patients (Bidet-Ildei et al., 2011). Future studies 

should investigate whether the exact positioning of the DBS electrodes in the STN as well as 

the DBS stimulation parameters might have differential effects on handwriting, as different 

STN regions impact different brain structures, and may thus impact handwriting differently. 

Further, future studies should investigate if handwriting correlates with other motor processes 

(including gait, speech, and hand motor control) and should elucidate the neural substrates of 

handwriting. fMRI studies in healthy populations have shown the involvement of prefrontal 

and parietal cortices in handwriting; however, although these brain areas are known to be 

affected in PD, yet it is not known whether their deficiency contributes to impaired 

handwriting in the disease.  

d- Precision grip deficits 

Clinical features 

Precision grip (PG) is a grip formed by the index finger and thumb to hold a small 

object (Napier, 1956). This form of grip, unique to old world monkeys and great apes (Jones 

& Lederman, 2006), enables them to make (Marzke, 1997; Susman, 1998) and dexterously 

use tools (Ambrose, 2001; Jones & Lederman, 2006; Moyà-Solà, Köhler, & Rook, 1999; 

Young, 2003). PG dexterous manipulation is included in studies that examine motor 

integration (Müller & Dichgans, 1994). PG is also used as a tool for assessment of loss of 
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functionality in various disorders, including PD (Fellows, Noth, & Schwarz, 1998; 

Ingvarsson, Gordon, & Forssberg, 1997).  

In a typical PG task, participants are required to use precision grip and lift an object to 

a designated height (Eliasson, Forssberg, Hung, & Gordon, 2006; Fagergren, Ekeberg, & 

Forssberg, 2003; Johansson, 1998; Johansson & Cole, 1994; Johansson, Hager, & Riso, 

1992; Johansson, Riso, Hager, & Backstrom, 1992; Johansson & Westling, 1984, 1988a, 

1988b; Ulloa, 2004). The two primary forces generated by the fingers are load force (which 

lifts the fingers) and grip force (which couples the fingers and the object). An optimal load 

force is required to lift the object to the desired height without overshooting and optimal grip 

force is crucial for coupling the fingers to object, minimizing fatigue and preventing damage 

to the object. For a constant object weight, the grip force profile shows a rapid increase in 

grip force from initial (zero grip force) to reach a peak and then gradual settling to a static 

value (Johansson & Westling, 1984). The components of the grip force profile are rate of grip 

force development, peak grip force, static grip force and safety margin. 

It has been observed that PD patients were able to scale the forces for changes in 

object weight and object size (Gordon, Ingvarsson, & Forssberg, 1997). Interestingly, when 

PD patients were asked to drop a load in the plate attached to the manipulandum they were 

holding, a preparatory increase in grip force was also observed. Thus, PD patients were able 

to engage in anticipatory control of the force generated in a familiar task (Gordon et al., 

1997). Another study found that PD patients employed a higher and static grip force than 

controls when lifting objects which were either weighted similarly or differently than the 

previous trials (Fellows et al., 1998).  

 

Neural substrates 
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Many brain regions involved in motor control are recruited during grip force 

generation. The sensory information about the muscle length, tendon tension, joint 

configurations and changes in configurations are sent to the spinal cord. This information is 

then received by the cerebellum and thalamus. The cerebellum is involved in temporal 

coordination of multi-joint movement sequences (Fellows, Ernst, Schwarz, Töpper, & Noth, 

2001). Damage to dentate nucleus or afferent input effects the sensorimotor processing which 

eventually leads to mistiming of grip force generation (Fellows et al., 2001). A dedicated 

region in the thalamus projects to the primary somatic sensory cortex (S-I) (Strick, 1976). S-I 

projects to secondary somatic sensory cortex (S-II) and posterior parietal cortex (BA5 and 

BA7). The primary motor cortex (involved in control of movement execution) and premotor 

areas (involved in motor preparation through sensory and motor planning) receive inputs 

from regions BA5 and BA7 (Kandel, Schwartz, & Jessell, 2000). A study involving transient 

virtual lesions found that lesions in left or right ventral premotor areas impaired the correct 

finger positioning on the object; contralateral ventral premotor lesion impaired sequential 

recruitment; and left dorsal premotor area lesion affected grasping and lifting phases (Davare, 

Andres, Cosnard, Thonnard, & Olivier, 2006). Hence, the dorsal and ventral premotor areas 

seem to control different phases of the precision grip (Davare et al., 2006).  

In a PG task, different aspects of motor tasks are controlled by different areas of basal 

ganglia. The basal ganglia are involved both in the PG planning and the grip force 

modulation. A task requiring constant or variable grip force amplitude production activated 

the caudate, the putamen, the GPe, the GPi and the STN (Vaillancourt, Yu, Mayka, & 

Corcos, 2007) but the selection of the grip force was limited to the anterior basal ganglia 

(caudate nucleus, anterior putamen and GPe). Another study, which involved four tasks that 

required a switching between two force amplitude levels and relative timing, also showed that 

the anterior basal ganglia were highly active for tasks requiring switching between two force 
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amplitude levels but not for the task with varied timing and constant force amplitude (Pope, 

Wing, Praamstra, & Miall, 2005). Hence, these areas are involved in initial grip force 

selection. Initial grip force generation is an entirely feed-forward process which is shaped by 

previous experience (Gordon, Westling, Cole, & Johansson, 1993; Johansson, Riso, et al., 

1992). Wasson and colleagues demonstrated that the activation of putamen and caudate 

reflected the predictability of the grip force (Wasson, Prodoehl, Yu, Corcos, & Vaillancourt, 

2007). Boecker and colleagues (Boecker et al., 2005) provided further insight about the role 

of the anterior basal ganglia in planning of predictability in a PG lift task. In a visually guided 

PG task, it was shown that activity of the STN and the GPi scaled with the rate of change of 

force production whereas GPe and putamen activity increased with the duration (Janey 

Prodoehl, Yu, Wasson, Corcos, & Vaillancourt, 2008; Vaillancourt, Mayka, Thulborn, & 

Corcos, 2004). A fMRI study has revealed that contralateral and ipsilateral fronto-parietal 

areas and sub-cortical motor structures were concurrently working in a PG lift task (H. H. 

Ehrsson, Fagergren, Johansson, & Forssberg, 2003). A PET study demonstrated that the 

contralateral posterior putamen and the thalamus were activated when lifting objects with 

different weights (J. Prodoehl, Corcos, & Vaillancourt, 2009). Further investigation of the 

basal ganglia nuclei involved in grip force amplitude production revealed that the GPi and the 

STN was involved in amplitude scaling whereas the GPe, the putamen and the caudate did 

not show an increase (Spraker, Yu, Corcos, & Vaillancourt, 2007). A fMRI study on PG in 

healthy individuals reported increased activity in visual cortical areas, supplementary motor 

cortex, parietal cortex, and fusiform gyrus (Neely, Coombes, Planetta, & Vaillancourt, 2013).  

In summary, the basal ganglia are involved in planning and modulation of grip force. 

Anterior basal ganglia (caudate, anterior putamen, and GPe) plan the initial grip force 

production, whereas posterior basal ganglia (posterior putamen, GPi and STN) modulate the 

grip force on a dynamical basis. Additionally, multiple cortical areas are also activated during 
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PG tasks. With multiple areas employed in PG, further research should investigate how this 

task is impaired in PD patients. We argue that this may provide a sensitive tool for measuring 

the progression of the disease. 

 

Effects of dopamine medications and DBS 

PD patients on medications demonstrated a slow grip force development, higher grip 

onset to lift latency, higher time for the peak grip force generation, larger lift durations and 

lower object heights while handling objects with different weights (Fellows et al., 1998). 

Similar findings were also reported in de novo PD patients who demonstrated higher grip to 

lift latency, higher time for the peak grip force generation, higher peak grip force and higher 

static grip force (S. J. Fellows & Noth, 2004). In a study by Ingvarsson and colleagues, the 

grip force generated by controls and PD patients in the on and off medication states for silk 

and sand paper surface conditions was compared. The static grip force generated by PD 

patients was comparable to controls when using sandpaper as the surface, independently of 

the patients’ medication status (Ingvarsson et al., 1997). However, static grip forces generated 

by PD patients in the ON condition for silk surfaces showed higher static grip forces and 

safety margin than controls. Interestingly, PD patients tested OFF medication showed higher 

variance both than controls and PD patients ON medication (Ingvarsson et al., 1997).  

The reasons for such variations in peak and static grip force by PD patients (both on 

and off medication) were investigated by Wenzelburger and colleagues (Wenzelburger et al., 

2002). They examined the influence of levodopa induced dyskinesia (LID) on precision grip 

performance. PD patients with LID (PD+LID) showed higher peak and static grip force, as 

compared to PD patients without LID (PD-LID) and controls. ON medication patients in 

PD+LID had higher peak and greater static grip force than OFF medication PD+LID patients. 

Higher grip force development was present only in the PD+LID group and dopamine 
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medications further increased the grip forces developed (Wenzelburger et al., 2002). In an 

attempt to understand the altered grip forces in PD Gupta and colleagues (Gupta, 

Balasubramani, & Chakravarthy, 2013) proposed a computational model of  risk-based 

decision making during PG control in controls and PD patients OFF and ON medication. The 

model was able to replicate experimental findings, thereby providing valuable insights about 

the decision making dynamics involved in grip force selection (Gupta et al., 2013).  

STN DBS induced a significant improvement in lifting velocity and grip force 

production rate (Fellows et al., 2006). By contrast, PD patients (who were generating higher 

peak grip force and static grip force with DBS off) had a further increase in peak grip force 

and static grip force with DBS switched on (S. J. Fellows et al., 2006). This may indicate that 

force development in precision grip is highly dependent on the integrity of the basal ganglia.  

STN DBS at present falls short of alleviating all the motor symptoms in a precision grip task. 

The PG task is a very powerful and sensitive (due to the fine finger force generation 

requirement) tool for understanding impairment of motor performance in PD. Previous 

studies have characterized motor performance, resting tremor (Mansur et al., 2007; Rigas, 

Tzallas, Tsalikakis, Konitsiotis, & Fotiadis, 2009; Salarian & al., 2007), rigidity (Fung, 

Burne, & Morris, 2000; Patrick, Denington, Gauthier, Gillard, & Prochazka, 2001; Prochazka 

et al., 1997; Sepehri et al., 2007) and bradykinesia (Allen & al., 2007; Dunnewold, Jacobi, & 

van Hilten, 1997; Kim et al., 2011; Veltink & al., 1995), individually and in combination 

(Ghika et al., 1993; Niazmand & al., 2011; Papapetropoulos et al., 2010; Veltink & al., 1995), 

but did not explore the temporal evolution of motor performance changes in the short term 

due to medication and in the long term due to disease progression in PG. Therefore, future 

studies on PG in PD should be directed towards quantitative estimation of motor symptoms 

(specifically akinesia, bradykinesia and tremor) to understand the changes in individual 
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symptoms with disease progression and starting medication. This might open new avenues 

for symptom-specific drug adjustments or DBS for alleviating PD symptoms. 

 

e- Speech problems in Parkinson's disease 

Clinical features 

Most PD patients developed speech and voice disorders at some point during their 

illness (Ho, Iansek, Marigliani, Bradshaw, & Gates, 1998). Speech production was found to 

correlate with other motor symptoms in PD, including akinesia (Skodda et al., 2011). Along 

these lines, speech stuttering was also found to correlate with FOG in PD patients (Morgante 

et al., 2013; Park et al., 2014). Interestingly, it was also found that bradykinesia was related to 

speech disorders in PD (Robbins, Logemann, & Kirshner, 1986). Speech disturbances have 

also been shown to be more common in PD patients who had a high occurrence of FOG (Park 

et al., 2014). The correlation of gait and speech symptoms could be due to the fact that both 

motor processes require the coordination of different motor effectors (e.g., lip and jaw in 

speech control and both legs in gait). 

Speech in PD is often hypophonic (i.e. hypokinetic, soft speech), monotonic (i.e. 

speech quality tends to be soft, hoarse, and monotonous) and/or festinating (excessively 

rapid, soft, poorly intelligible speech) (Jankovic, 2008). Dysarthria, that is, slurred, slow, and 

almost incomprehensible speech, is also common in PD. Few studies have focused on the 

complex movements involved in the articulation of speech, while the majority of the studies 

investigating hypokinetic dysarthria have focused on perceptual measures. One study 

investigated sequencing of lip and jaw movements while speaking, and showed a decreased 

coordination across these articulators in PD patients (Connor, Abbs, Cole, & Gracco, 1989). 

Another study found altered movements of lips and jaws in PD patients compared to controls 

(Forrest, Weismer, & Turner, 1989). 
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Until recently, the only outcome on which studies have focused was speech 

production. However, motor function also exerts a great influence on speech function, which 

gave rise to a new motor interaction model (Levelt, Roelofs, & Meyer, 1999), which  

suggests that in addition to the goal of the spoken statements, the syntactic structure should 

be taken into consideration (Kleinow & Smith, 2006). Maner and colleagues (Maner, Smith, 

& Grayson, 2000) have shown that speech motor planning, execution, or both were affected 

by processes often considered relatively remote from the motor output stage. Several studies 

have indicated that the greater the linguistic demand, the more disruptions there will be in the 

speech pathway (Maner et al., 2000). In addition, adults who stutter had more variation in 

their articulation movement patterns. Moreover, syntactic complexity and higher disfluency 

differed between normal children and children who stutter (Silverman & Ratner, 1997). 

These studies support the conjecture that higher order processes influence speech motor 

control even in adults and children without any neurological deficits (Kleinow & Smith, 

2000); future studies should investigate whether and how such processes impact speech 

production in PD.  

Illes, Metter, Hanson, and Iritani (1988) and Cummings and colleagues (1988) 

collected speech samples from PD patients and in these samples found reduced utterance 

length and syntactic complexity, as compared with controls. In addition, PD patients 

produced a smaller proportion of grammatically intact sentences. Moreover, Grossman and 

colleagues (Grossman et al., 1991) found that PD patients showed impairment answering 

probes paired with complex sentences with central or terminal clauses (C. Lee, Grossman, 

Morris, Stern, & Hurtig, 2003).   

Stuttering has also been reported in PD (Anderson, Hughes, Rothi, Crucian, & 

Heilman, 1999). In addition, experimental and computational studies have indicated that 

stuttering is related to basal ganglia function (Burghaus et al., 2006; Civier, Bullock, Max, & 
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Guenther, 2013). Future work should explore the neural underpinnings of stuttering in PD, 

and reveal whether the basal ganglia and/or other brain regions are responsible for stuttering 

in PD. Given previous studies showing correlations between speech and gait (including 

stuttering and FOG), we predict that stuttering may also be related to cortical dysfunction, 

besides the impairment of the basal ganglia. Several other issues remain to be clarified, such 

as the cortical and subcortical substrates of various other aspects of speech, including 

hypophonia, and whether hypophonia correlate with other motor symptoms in PD, such as 

micrographia and smaller stride steps. 

 

Neural substrates 

Lieberman and colleagues (P. Lieberman et al., 1992) compared speech behavior in 

PD and healthy controls. They suggested that speech production and syntactic ability were 

dependent on basal ganglia pathways. Speech symptoms related to abnormalities of the basal 

ganglia in PD were found to be somewhat similar to symptoms of a patient who was suffering 

from Broca’s aphasia. Ellfolk and colleagues (Ellfolk et al., 2014) measured the gray matter 

volume of the caudate nucleus in early onset, non-demented PD patients on levodopa. These 

patients also performed a phonemic and a semantic fluency test. The results suggested that 

patients who had lower gray matter volume in their right caudate performed poorer on the 

phonemic fluency test. However, this pattern absent for the semantic fluency test. The 

findings from these two studies suggest that areas that are affected by PD also play a role in 

the cognitive component of speech production. In addition, Azevedo and colleagues 

suggested that bradykinesia may affect the prosody of the patients’ speech (Azevedo, Reis, 

Souza, & Cardoso, 2013). 

 

Effects of dopamine medications and DBS 
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Although dopamine replacement therapies are effective at treating rigidity and 

bradykinesia, they can either impair or have no effect on speech disorders (Maillet et al., 

2012) or speech performance (Azevedo et al., 2013). This indicate that dopaminergic and 

non-dopaminergic deficits might contribute to the occurrence of speech disorders in PD. 

Probably due to the limited understanding of the pathophysiology of speech- and voice-

related symptoms in PD, their medical treatment has been largely ineffective. However, these 

findings were not supported by a study which found that dopamine treatment did indeed have 

a positive effect on speech (Rusz et al., 2013). This contradictory finding could be due to the 

acoustic analysis technique employed by the group, highlighting the importance of the 

methodology used to assess voice and speech in PD patients. However, the combination of 

pharmacological and surgical treatment with behavioral speech therapy has been 

demonstrated to be efficient (Schulz & Grant, 2000; Spielman et al., 2011). This was 

supported by several reviews of the literature on the treatment of speech problems in PD 

patients (Sapir, Ramig, & Fox, 2011; Trail et al., 2005). 

The effect of dopamine medications on speech disorders in PD seem to depend on the 

kind of medication administered (levodopa vs. dopamine agonists). While some studies 

reported improvement of speech-voice problems with levodopa (Gallena, Smith, Zeffiro, & 

Ludlow, 2001), other studies found that dopamine agonist medications were not effective in 

the treatment of voice-speech disorders of PD (Goberman, 2005), and may even increase 

speech dysfluency (Anderson et al., 1999). These effects are possibly due to the 

overactivation of the direct (Go) pathway of the basal ganglia, as shown by computational 

modeling studies (Frank, 2005). Several other studies showed that most dopamine 

medications were ineffective in the treatment of speech problems (Kompoliti, Wang, Goetz, 

Leurgans, & Raman, 2000; Larson, 1994; Trail et al., 2005), suggesting that speech problems 

in PD are not strongly related to dopamine dysfunction (Goberman, 2005). In agreement with 
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this, clonazepam (a GABAergic agent) was found to significantly improve some aspects of 

speech in PD (Biary, Pimental, & Langenberg, 1988).  

Surgical procedures such as DBS (of the thalamus, the pallidum or the STN) and 

ablative surgeries have shown to be less effective in ameliorating speech problems in PD 

patients. Some studies showed no improvement and in some cases, even impairment of 

speech (Borden et al., 2014; B. Wu, Han, Sun, Hu, & Wang, 2014). Other studies have found 

some improvement in speech after DBS surgery; however, this improvement is much smaller 

than that observed for other motor problems. What is more, the improvements have been 

found to disappear after five years (A. L. Benabid, Chabardes, Mitrofanis, & Pollak, 2009), 

and some have reported dysarthria as a major side-effect of DBS (Krack et al., 2003). Biary 

and colleagues suggest that the spread of voltage from the stimulation target to neighboring 

areas that mediate sensorimotor control may cause the adverse effect seen on speech (Biary et 

al., 1988). Other studies have, however, shown an ameliorative effect of STN DBS on 

dysarthria in PD patients (Pinto, Thobois, et al., 2004). In addition, stimulator settings may 

affect speech, with high frequencies and amplitude having a detrimental effect on the 

intelligibility of the speech (Törnqvist et al., 2005). Other studies found that the electrode 

positioning within the STN had variable effects on speech production (Tripoliti et al., 2011). 

The effects of STN DBS on stuttering is inconclusive, as some studies reported the 

impairment (Burghaus et al., 2006; Toft & Dietrichs, 2011) and others the amelioration of 

this symptom after the neurosurgical intervention (Walker et al., 2009). 

As previously mentioned, since pharmacological or surgical therapies alone appeared 

to lack the desired effects on speech problems, combining these with behavioral speech 

therapy is highly recommended even for PD patients who have undergone both therapies 

(Pinto, Ozsancak, et al., 2004). While there are some studies that have found a positive effect 

of speech therapies (e.g. Spielman et al., 2011), these studies were limited by small sample 
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sizes and methodological flaws, leaving insufficient evidence to support or oppose speech 

therapy in PD (Herd et al. 2012). However, in their review on the treatments of  PD 

symptoms, Suchowersky and colleagues concluded that speech therapies that are intensive 

focus on the volume of speech are the most effective (e.g. Lee Silverman Voice Treatment, 

LSVT LOUD) (Suchowersky et al., 2006).  

The majority of PD patients experience speech difficulties during the progression of 

the disease. While the incidence is high, the effectiveness of DA therapies and surgical 

intervention is low, and in some cases detrimental to speech. There does appear to be some 

benefit in combining current medical and surgical treatments with speech therapy. However, 

currently there is insufficient evidence to support these proposals, prompting further 

controlled research in this area. 

 

Conclusions 

 In this review, we focused on the clinical features and neural substrates of the primary 

and secondary motor symptoms of PD. The review highlighted that the different motor 

symptoms of PD are associated with somewhat similar clinical and neural features. For 

example, the provision of lines have been shown to enhance both handwriting (Oliveira, 

Gurd, Nixon, Marshall, & Passingham, 1997) as well as gait (Park et al., 2014), suggesting 

that perceptual input from external stimuli can enhance motor performance related to 

different effectors in PD. Further, some brain regions, such as Broca’s area that are known to 

play a role in language production were also shown to be involved in handwriting (Hillis et 

al., 2002) and gait (Albani et al., 2001), further suggesting common neural substrates for 

these different motor processes.  

In addition, one study has reported a patient with both micrographia and hypophonia 

(Sekar, Arcelus, & Palmer, 2010), suggesting that reduced speech volume and smaller 
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handwriting may share common neural substrates. Smaller stride length is conceptually 

similar to reduced speech volume and small letters in handwriting, and has been also reported 

in PD patients (Lewis, Byblow, & Walt, 2000; Morris, Iansek, Matyas, & Summers, 1996). 

To our knowledge, no study has investigated whether micrographia, hypophonia, and smaller 

stride length are correlated in PD patients. In addition, motor blocking including stuttering 

and FOG were found to correlate in PD patients (Morgante et al., 2013), suggesting that the 

initiation of various motor responses (speech or gait) may share a common neural 

mechanism. 

  

  Medication DBS Neural basis 

Akinesia & 

Bradykinesia 

DA treatment improves 

response times 

(Vaillancourt, Prodoehl, 

Verhagen Metman, Bakay, 

& Corcos, 2004). 

Stimulation of the STN 

reduced akinesia by 57% 

(Brown et al., 1999). 

Stimulation of the GPi had 

mixed results, depending on 

the location within the GPi 

(Krack et al., 1998).  

Decrease of DA activity in the 

dorsal striatum (Kish, et al., 

1988) and globus pallidus 

(Rajput, et al., 2009) 

Under activation of  

supplementary motor and 

anterior cingulate cortex 

(Sabatini et al., 2000) 

Rigidity Levodopa reduced rigidity 

(Kuhn et al., 2009). This 

was related to the 

suppression of oscillatory 

power in the STN. 

Improvement of rigidity  in the 

left limbs correlated with 

increase of glucose metabolism 

in the right premotor area in 

patients on DBS (Nagaoka et 

al., 2007). DBS was found to 

ameliorate rigidity when 

applied to the bilateral, 

contralateral and ipsilateral 

STN, although the greatest 

improvements were observed 

for bilateral stimulation 

(Tabbal et al., 2008). 

Severity of rigidity correlated 

with connectivity between the 

cerebellum, the motor, 

temporal and occipital cortices, 

and the nucleus caudatus in 

mild-moderate PD patients 

OFF medication. 

Tremor DA treatment resulted in a 

lower score in the UPDRS 

tremor ratings (Elble 2002; 

Solida, Ghika, & 

Vingerhoets, 2002). 

STN DBS reduced tremor by 

65% (Schlaier, Hanson et al., 

2014).  

Abnormal firing patterns in the 

cerebellum (Brittain et al., 

2015) 

Increased grey matter 

concentration in the Thalamus 

(Kassubek, et al., 2002; Probst-

Cousin, et al., 2003) 

Imbalance of beta and gamma 

oscillations in the subthalamic 
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nucleus (Weinberger, et al., 

2009). 

Gait Freezing of gait is more 

common in the off state of 

DA treatment, however it is 

also known that DA 

treatment can increase FOG 

occurrences (Nutt, et 

al.,2011). 

STN DBS improved freezing 

scores on the ADL section of 

the UPDRS at 1 and 2 years 

(Davis et al., 2006). PPN DBS 

has shown to be effective when 

STN DBS fails to improve 

FOG and gait (Bohnen et 

al.,2011; Alam et al., 2011). 

Dysfunctional circuit between 

the putamen and SMA 

(Redgrave et al., 2010) 

Decreased grey matter in 

occipital cortical area 

(Tessitore et al. 2012). 

Dysfunctional networks 

between STN and cortical 

areas (Shine, et al., 2013) 

Problems with 

Handwriting 

DA meds improves 

handwriting in PD patients 

(Lange et al., 2006), but not 

DA resistant PD patients 

(Eichhorn et al. 1996). 

Levodopa can improve 

speed, but not quality of 

handwriting (Poluha et al. 

1998). 

STN DBS improves 

handwriting speed and 

accuracy (Siebner et al., 1999). 

Dorsolateral and medial 

premotor cortex are active 

during the orthographical 

retrieval of words (Beeson et 

al., 2003), areas that are also 

dysfunction in PD patients. 

TMS on the supplementary 

cortex improves handwriting in 

PD patients (Randhawa, et al., 

2013) 

Reduced DA levels in the BG, 

SN and GPe pathways also 

leads to a reduction in letter 

size by PD patients 

(Gangadhar, et al., 2008). 

Deficits in 

Force 

generation 

and Precision 

grip 

DA treatment increases grip 

force and reduces force 

oscillations observed during 

OFF periods (Ingvarsson et 

al., 1997). 

STN DBS decreases grip 

initiation, however excessive 

forced used is also increased 

(Fellows et al. 2006). 

BG are involved in both the PG 

planning and grip force 

modulation (Vaillancourt, et 

al., 2007) 

High activation in visual 

cortical areas, supplementary 

motor cortex, parietal cortex, 

and fusiform gyrus (Neely, et 

al., 2013).  All of these areas 

are dysfunctional in PD 

patients. 

Speech 

problems 

DA treatment does not have 

an effect on prosody, 

however it improves speech 

speed (Azevedo et al., 

2013). DA treatment 

improved articulation, pitch 

variance, intensity and 

overall voice quality (Rusz 

et al. 2013). DA treatment 

increases speech 

dysfluencies (Anderson et 

al.,1999). DA treatment did 

not improve speech 

(Kompoliti et al., 2000). 

ACh treatment has little 

effect on speech (Schulz et 

al., 2000), and GABA 

STN DBS improves the 

effectiveness of speech therapy 

(Spielman et al., 2011). STN 

DBS can have an adverse 

effect on speech fluency; 

however this disappears after 6 

months (Borden et al. 2014; 

Wu et al., 2014). 

Production and syntactic ability 

are dependent on basal ganglia 

pathways (Lieberman et al., 

1992). 

PD patients with low grey 

matter volume in the right 

caudate had poorer phonemic 

fluency (Ellfolk et al., 2014) 
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medication improves 

dysarthria (Biary et 

al.,1988).  

Table 1. Summary of the neural substrates and therapeutic effects for the main motor 

symptoms of PD. DA = dopamine; STN = subthalamic nucleus; DBS = deep brain 

stimulation; BG = basal ganglia; SMA = Supplementary motor area; SN = substantia nigra; 

GPi = globus pallidus internal; GPe = globus pallidus external; UPDRS = Unified 

Parkinson's Disease Rating Scale; PPN = the pedunculopontine nucleus;  FOG = freezing of 

gait; ADL = Activities of Daily Living; TMS = transcranial magnetic stimulation; GABA = 

gamma-aminobutyric acid. 

Table 1 summarizes the neural substrates and the therapeutic effects of medication 

and DBS on motor symptoms of PD. The finding that dopaminergic medications are not very 

effective at managing complex motor symptoms of PD, such as gait, handwriting and speech 

problems, suggests that striatal dopamine depletion is not the sole cause of these symptoms; 

as can be seen in Table 1, there is convincing evidence from experimental studies that 

different cortical areas play a key role in these complex motor processes, and this may 

explain why medications that balance striatal function may not be effective for these motor 

symptoms. This is in contrast to the effects of dopaminergic medications on the cardinal 

symptoms of PD (akinesia, bradykinesia, tremor and rigidity), which seem to improve by an 

increase in striatal dopamine levels. Further, the findings that dopamine medications can 

impair some motor processes, such as gait and speech (see summary of results in Table 1) 

may be explained by the dopamine overdose hypothesis (Cools, Barker, Sahakian, & 

Robbins, 2001; Vaillancourt, Schonfeld, Kwak, Bohnen, & Seidler, 2013), which suggests 

that dopamine medications can overflood brain regions that are intact at a given point of the 

disease course, and consequently impair the associated motor functions. 
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Thus, here we propose that a simple systems-level framework (Figure 1 above) can 

explain some of the more complex motor symptoms of PD (see Figure 1). In this framework, 

different brain regions subserve different functions: (a) the basal ganglia supports action 

selection (Gurney, Prescott, & Redgrave, 2001), (b) the cerebellum supports motor 

coordination and timing (Ivry, Spencer, Zelaznik, & Diedrichsen, 2002; Kashiwabuchi et al., 

1995; Schlerf, Spencer, Zelaznik, & Ivry, 2007; Shibuki et al., 1996; Spencer & Ivry, 2005; 

Spencer, Ivry, & Zelaznik, 2005), and (c) motor cortical areas support integrating perceptual 

input as well as motor planning and sequencing (Dagher, Owen, Boecker, & Brooks, 1999). 

We suggest that the various motor symptoms discussed in this review all demand action 

selection, motor coordination and integration, and sensorimotor integration and motor 

planning, but to a different extent. Moreover, it should be kept in mind that the above 

outlined functions supporting movement can be divided into further subcomponents; for 

example, conceptually different (motor) sequencing has been suggested to occur in Broca’s 

area (Udden & Bahlmann, 2012) and in the premotor area and the SMA (Halsband & Lange, 

2006). In addition, different portions of the striatum (i.e. the dorsomedial, the dorsolateral and 

the ventral) have been suggested to make different contributions to learning and action 

selection (see Cools, 2006; Yin & Knowlton, 2006). It remains to be clarified by future 

research how more detailed models of motor sequencing and action selection can account for 

the various motor symptoms in PD. 

Importantly, it is argued that the production of motor responses occur at different 

stages, including the integration of perceptual input and selection of response. Although 

different motor functions (e.g., gait and handwriting) rely on these processes (as reported 

above), they are likely to differ on the motor execution mechanism (i.e, different nuclei in the 

brain control saccades, leg, and hand movement). Future work should focus on investigating 

the basic brain mechanisms of elementary motor processes so that we can develop an 
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understanding of how PD and associated therapies impact the different motor symptoms. 

Future neurocomputational modeling studies of action selection, sequencing, and 

coordination and timing of motor processes, as well as the investigation of the role of the 

basal ganglia, cortex, cerebellum, dopamine, and other brain neurotransmitters in mediating 

these fundamental motor processes will enhance our understanding of the motor symptoms of 

PD. Future neuroimaging work should improve upon existing techniques or develop novel 

techniques to investigate non-dopaminergic systems in PD, as increasing evidence suggests 

their involvement in most motor symptoms in PD.  

Here, we argue that our reductionist approach may be able to explain (a) why 

dopamine medication and STN DBS may be effective for some motor processes and not 

others, and (b) why there are correlations among different motor processes, such as gait, 

speech, and hand movement (as discussed in the introduction). By providing a unified 

framework, future studies can then attempt to simultaneously find common treatments for the 

different motor symptoms in PD, rather than approaching individual motor impairments 

separately. Based on the unified framework proposed here, it is likely that treatments that 

target different cortical regions may improve complex motor processes such as gait, 

handwriting, and speech impairment in PD. 

In sum, our review shows that many of the motor symptoms in PD rely on 

overlapping neural regions. Figure 1 depicts the offered unified framework, in which each 

motor symptom in PD can be potentially explained by a combination of low-level motor 

processes, such as action selection, motor coordination, and motor sequencing. 
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