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Abstract

We construct an Euler system—a compatible family of global cohomology classes—for the Galois
representations appearing in the geometry of Hilbert modular surfaces. If a conjecture of Bloch and
Kato on injectivity of regulator maps holds, this Euler system is nontrivial, and we deduce bounds
towards the Iwasawa main conjecture for these Galois representations.

2010 Mathematics Subject Classification: 11F41, 11F67, 11F80, 11R23

1. Introduction

One of the central problems of number theory is the study of cohomology groups
of global Galois representations, and the relation between these cohomology
groups and the values of L-functions. A crucial tool in this study is the theory
of Euler systems: collections of Galois cohomology classes for a given Galois
representation over abelian extensions of the base field, satisfying compatibility
conditions as the field changes. These have powerful applications to studying
Selmer groups, and thus they are inevitably difficult to construct.

In the present paper, we construct Euler systems for a new class of Galois
representations: the Asai, or twisted tensor product, Galois representations
attached to Hilbert modular eigenforms over real quadratic fields. These are the
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A. Lei, D. Loeffler and S. L. Zerbes 2

Galois representations which appear in the middle-degree cohomology of Hilbert
modular surfaces. More precisely, we shall prove the following:

THEOREM A. Let F be a Hilbert modular eigenform over the real quadratic field
F, of level )t and weights (k + 2, k' + 2), with k, k' > 0 and k = k' mod 2; and
let L be a finite extension of Q containing the Hecke eigenvalues of F. Let v be
a place of L above the rational prime p # 2, and let M, (F) be the Asai Galois
representation of F at v (see Definition 4.4.2 below). Let a be a generator of
Or/Z, and j an integer with 0 < j < min(k, k).

Then there exists a collection of cohomology classes, the Asai—Flach classes,

< 1
ARSI € H'YZ| p, ———— . ML, (F)" (=) ).
éma € < [u p ANmF/Q(‘ﬁ)i| L, (S (=)

for integers m > 1, which satisfy Euler-system-type norm relations as m varies.

Note that we do not need to impose any assumptions on the character of
F, because our constructions do not require any self-duality properties of the
Galois representations involved. See Definition 4.4.6 below for the definition of
these classes, and Corollary 4.4.7 for the norm relation. This construction can
be regarded as an analogue of previous work of the present authors and Guido
Kings [20, 21, 24] in the setting of Rankin—Selberg convolutions of two elliptic
modular forms.

REMARK. In [26], Liu uses Hirzebruch—Zagier cycles to construct a collection of
global cohomology classes for the self-dual twist of M, (F)* @ M, (g)*, where
F' is a Hilbert modular form of parallel weight 2 and g is an elliptic modular
form of weight 2. These cohomology classes stand in the same relation to the
Euler system constructed in this paper as the cohomology classes arising from
‘diagonal cycles’ (constructed in [9]) do to the Euler system of Beilinson—Flach
elements [20, 21, 24].

Using Kings’ theory of A-adic sheaves, we can construct a ‘p-adic
interpolation’ of the above classes for varying j and m, assuming that F is
ordinary at p in the sense of Definition 9.1.1:

THEOREM B. Suppose F is ordinary at p. Let I' = Gal(Q(u,~)/Q), Ar its
Iwasawa algebra, and j : I' — AT the canonical character. Let m > 1 be coprime
to p, and ¢ > 1 be coprime to 6pm Nmpg,q(N).
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Euler systems for Hilbert modular surfaces 3

Then there exists an Iwasawa cohomology class

CA‘/—"ma € H (Z|:/"Lm7 :|v MLL('F)* ® AF(_j)>

which interpolates the étale Asai—Flach classes AFLt m’pj »forall 0 < j < min(k,
k" andr > 0. -
Moreover, the restriction of My, (F)* to Gal(Q,/Q,) has a canonical one-

dimensional unramified quotient, and the projection of locp(cAf,i 2) to the
cohomology of this quotient is zero.

Our main application of this Euler system is (in some sense) a version of the
Iwasawa main conjecture for the motive M, (F) over the cyclotomic tower. For
this theorem, we assume that p is split in F, and we fix a prime p | p. Using
Perrin—Riou’s big logarithm map (see Section 9.3), we construct a ‘motivic p-adic
L-function’ L'} i(F) € L, ®z, A interpolating the Bloch-Kato logarithms of
the Asai—Flach classes; and we define a dual Selmer group X (Q (i), F), which
is a Ap-module of finite type. Then we prove the following theorem:

THEOREM C. Assume that F and v satisfy the list of hypotheses given in
Section 9.5 below. Then the characteristic ideal of the dual Selmer group
X (Q(up), F) divides the p-adic L-function Ly s (F) in L, ®q, Ar. (We
adopt the convention that the ‘characteristic ideal’ of a nontorsion Ar-module

is the zero ideal.)

Sadly, this theorem is rather less powerful than it seems, since we have at
present no analogue of the explicit reciprocity laws available in the Rankin-
Selberg setting (see [4], [21, Theorem B]); thus we cannot rule out the possibility
that L;migal (F) is identically zero, in which case the above theorem is vacuous.

We can show that our Euler system is nonzero in many cases if one assumes a
standard conjecture in arithmetic geometry:

THEOREM D. Suppose that F is new of level N, k, k' > 1 and |k — k'| > 3,
and F has trivial narrow class group. Let r = k + k’ and assume that [5,
Conjecture 5.3(1)] holds for some smooth compactification A" — Ar of the r-fold
fibre product of the umversal abellan variety over the Hilbert modular surface of
level N. Then the class AFe[ |4 is nonzero, for any 0 < j < min(k, k).

See Proposition 5.5.2 below for details. A second piece of evidence for the
nontriviality of our construction is a formula expressing the localizations of our
étale classes at p in terms of overconvergent p-adic modular forms. This is joint
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work of the second and third authors with Chris Skinner, and is explained in a
separate paper [28].

2. Setup and notations

2.1. Fields and groups. Let F be a totally real field, with ring of integers Op,
different 0 and discriminant A = N (). Later in the paper we shall specialize to
the case where F is the real quadratic field Q(/d),ford > 1a square-free integer,
but our initial discussion (up to the end of Section 2.6) is valid for general F.

We write CI*(F) for the narrow class group of F (the group of nonzero
fractional ideals of Of, modulo principal fractional ideals with a totally positive
generator). We refer to ideals whose class in CI7(F) is trivial as narrowly
principal.

DEFINITION 2.1.1 (See [12, Section 1]). We define the algebraic groups
D =Res{G,, G =Res{GL,, G*=G xpG,.

There is a natural embedding ¢ : GL, < G*, which will be of great importance
in the present paper. The embedding j : G* < G will also be needed, particularly
in Section 4.

If H is any of the three groups {GL,, G*, G}, then we let H (R)* be the identity
component of H(R), which is the subgroup of elements whose determinant is
(totally) positive. We write H(Q)T = H(Q) N H(R)*.

We define Hr to be the elements of F ® C of totally positive imaginary part,
with its natural action of G(R)™.

2.2. Arithmetic quotients. Let A be the adele ring of Q, and A, be the
subring of finite adeles.

DEFINITION 2.2.1. Let H be one of the three groups G, G*, or GL,. We say an
open compact subgroup U C H (Ay) is sufficiently small if, for any h € H(Ay),
the quotient group
HQ)"NhUR™!
UN{G):ue O

u

acts without fixed points on Hr (or Hq it H = GL,).

(The denominator is, of course, trivial if H = GL, or H = G*.)

Downloaded from https://www.cambridge.org/core. UCL, Institute of Education, on 12 Dec 2018 at 12:39:45, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2018.23


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2018.23
https://www.cambridge.org/core

Euler systems for Hilbert modular surfaces 5

DEFINITION 2.2.2. For U € G(Ay) an open compact subgroup (respectively
U* C G*(Ay), Uy C GLy(Ay)) we write

Y(U) := GAQ\IGAf) x Hrl/U,
YH(U") == G (Q\IG"(Afp) x Hf]/U,
Yo(Uq) := GLo(Q)"\[GL2(Af) x H]/Uq,

If U is sufficiently small (in the sense of Definition 2.2.1), then the quotient
Y (U) is naturally the set of complex points of a smooth variety defined over Q.
The same holds for the varieties Y*(U™), Yo(Ug).

For g € G(A;) we have a map

g:YW)—>Y(@Ug™", g-l(h,D)l=I[hg", )],

which gives a left action of G(A /) on the inverse system of varieties Y := {Y (U) :
U C G(Ay) open compact} for varying U, compatible with the usual left action
of G(Q)" C G(A;) on Hp. The same applies verbatim for GL, /Q, and for G*.

REMARK 2.2.3. We shall mostly work with G* rather than G, because the
Shimura varieties Y*(U*) for G* are of PEL type: they are moduli spaces for
abelian varieties with Og-action, as we shall recall in Section 2.5 below.

The chief disadvantage of G* is that automorphic representations of G* do not
satisfy the multiplicity one property, whereas those for G do. In order to work
around this, we shall enlarge the group of transformations acting on the varieties
Y*(U*) using a construction due to Shimura, which we shall now recall.

DEFINITION 2.2.4 (See [37, page 643]). We let G denote the subgroup
GQ)"G*(Ay) S G(Ay).

Then there are bijections Y*(U*) = G(Q)* \ [G x HFrl / U* for each U*, and
we therefore obtain maps of Q-varieties Y*(U*) — Y*(gU*g™!) for any g € G,
which assemble into a left action of G on the pro-variety Y*.

PROPOSITION 2.2.5 [39, Proposition 2.4]. IfU* = UNG?, then there is a natural
map j : Y*(U*) — Y(U), and its fibres are the orbits for an action of the finite
group
Gnu O N (ZX - det(U))
U (Z(G)NU) {et:eeOF, (5% € U}
on Y*(U*). The subgroup stabilizing each component of Y*(U*) is
Oy Ndet(V). O
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2.3. Congruence subgroups. Let us now define the specific level groups U
that we shall use.

DEFINITION 2.3.1. Let 91, 91, a be nonzero ideals of Op. We define open
compact subgroups of G(A ) by

UN,N) =3y € GLZ(@F) :y =1 mod (gﬁ Dﬁ)}

n N
U©(a), M) := 1y :y = 1 mod (%’ITI a;ﬁ)}

M M
U, N(@) :=1y :y =1 mod <a‘ﬁ ‘ﬁ)}
We write U*(9, D) for UON, D) N G* (and similarly U*(ON, D(a)), and so
forth.) We shall often abbreviate U (1, ) as U; (N).
Similarly, for M, N, A nonzero integers, we write Ug(M, N), Ug(M, N(A)),
Uq(M(A), N) for the analogous subgroups of GL,(Ay).

NOTATION 2.3.2. We adopt the general notation scheme that if U(—) is some
subgroup of G, then Y (—) denotes Y (U (—)), and similarly if U*(—) is a subgroup
of G*. Thus Y, ("N), YOV, Y,o(N) are shorthand notations for Y (U;(N)),
Y*(U;(O), Yo(U, g(N)) respectively.

REMARK 2.3.3. Note that if 9T does not divide 2, 3, or A, then U, (1) and U; ()
are sufficiently small [13, Lemma 2.1].

2.4. Hecke algebras. Let 9t and 91 be nonzero ideals of O, with 0 | 9. We
shall now define various elements of the abstract Hecke algebra Z[U*\G/U*],
where U* = U*(91, N) and G is as in Definition 2.2.4.

REMARK 2.4.1. The reason for working with G, rather than the smaller group
G*(Ay), is that G*(A ;) only gives rise to a Hecke operator T (n) when 7 is in Z.
Working with G allows us to consider Hecke operators T (x) for general x € Op
(while still working with a Shimura variety of PEL type).

2.4a. Diamond operators. For x € (Or/91)*, we define (x) to be the double
coset of (*,' %) € SL,(Op), for any lift of x to OF.

2.4b.  Frobenius maps. For x € (Z/Z N M)*, we define o, as the double coset
of (* ) € G*(Z).
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Euler systems for Hilbert modular surfaces 7

2.4c.  Scalar multiplications R(x). For x € F*, we write R(x) for the double
coset of the scalar matrix (";l X(L).

2.4d. The operator S(x). For any x € F* which is a unit at the primes above
N, we write S(x) for (x) R(x).

2.4e. The operator T (x). For x € Of which is totally positive and square-free,
we define T (x) as the double coset of ( 0 l) (That is, x is not divisible by the
square of any nontrivial ideal (principal or otherwise).)

More generally, we may define 7 (x) for any totally positive x € Op, not
necessarily square-free, using the formal sum of all double cosets contained in

the set
a b

.)€ My, (OF) ad —be € x~' - (1 + MZ),

Ca)=(o )me(wn) |

where M is the positive integer generating the ideal 90t N Z. This set is clearly
contained in G, and it is left and right invariant under U* (90, N).

The operators defined above, for all valid choices of x, define a commutative
subalgebra of Z[U*\G/U*]. In this algebra we have the following familiar

identities:
T(xy) =T(x)T(y) ifx and y are coprime, 2.1a)
T(x)*=Skx) ifxe O, (2.1b)
T(x)> = T(x*) + Nmgjq(x) - S(x) if xOp is prime. (2.1¢)

If x divides 1, we denote the double coset T (x) defined above by the more
familiar alternative notation U (x).

2.4f. Hecke operators for G. We shall also need to work with some Hecke
operators for the group G; these will not make an appearance until Section 4.
We denote these by calligraphic letters to reduce the risk of confusion with their
analogues for G*. It will suffice to consider levels of the form U, (D1).

e For m « OF, we denote by 7 (m) the double coset of (" 9) where x is any

element of (’)p generating the ideal mO r. As before, when m | 91 we use the
alternative notation U/ (m) for this element.

e For m an ideal coprime to 91, we let S(m) be the double coset of (’“;)1 XQ, ), where
x is any generator of mOp congruent to 1 modulo .
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Note that if m = ()) is a narrowly principal ideal, and we write the element
T(A) € ZIUFOH\G/U; (D] as a sum of single cosets Y . U (I)g;, then we
also have 7 (m) = ). U;(M)g;. Similarly, if A is coprime to 91 then we can find
a (single) element of G representing both of the double cosets S(m) and S(A).

2.5. Abelian varieties. We now introduce certain abelian varieties over the
Shimura varieties Y*(U*) defined above. (These are the universal objects for
appropriate PEL-type moduli problems, but we will not use this directly in the
present paper.)

DEFINITION 2.5.1. (i) Let P be the subgroup of Resr,q GL; consisting of
matrices of the form

1
0
0

o Q%
QU S =

and let P* be the subgroup with (¢ 5) € G*. We let N = Resy /o A? be the
unipotent radical of P and P*.

(ii) Let Cr = F ®q C. Then we define a left action of P(R)* on the space
Jr =Hp x Cp via

res at+b z4+rt+s
a bl (t,2) = , .
¢ d ct+d ct+d

(This corresponds to identifying (t, z) € Jr with [z : T : 1] € P?>(Cr) and
acting on this by left-multiplication.)

(iii) For V* € P*(A) open compact, we write
AWV = prQ)t \ (P (A x Tr) [ v,
which is an example of a mixed Shimura variety.

PROPOSITION 2.5.2 (See [30, Example VI.1.10]). If the image of V* in G*(Ay)
is sufficiently small, the quotient A(V*) is the complex points of a quasiprojective
algebraic variety over Q; and the natural map J — H makes A(V*) into an
abelian variety of dimension [F : Q] over Y*(U*), where U* is the image of V*
in G*, with endomorphisms by an order in Op.
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Euler systems for Hilbert modular surfaces 9

REMARK 2.5.3. If we define P to be the subgroup of P(A;) with (¢%) € G,
where § is as in Definition 2.2.4, then P*(A ;) C P and we have

AV = PQT\(P x Jp)/ V",

so that the left action of P*(A ) on the system of varieties A(V*) for varying V*
naturally extends to an action of P.

We are particularly interested in subgroups of the form
V= 0% x U*,

where U* C G*(z). The corresponding abelian varieties have endomorphisms
by Or. We shall abuse notation slightly by writing A(U*) for A(O% x U*); this
notation will only be used when U* C G*(Z), so that this object is well-defined.

DEFINITION 2.5.4. Let g € G be such that g~! has entries in O, and let U* C
G*(A ) be a sufficiently small open compact subgroup such that U* and gU*g™"

are both contained in G(Z).
We define an Or-linear isogeny

@, : AU — g*A(gU"g ™)
of abelian varieties over Y*(U*) as the composite map
A0} % U 5+ A0} - g7 % gUg ™) — A} » gU*g ™),

where the first map is the left action of the element g = (} g) € P, and the second
map is the natural quotient map given by the inclusion O% - g=! C O3.

Ifg =97, forx € Op, then @, is simply the endomorphism action of x on
A(U*). We can use this to extend the definition of @, to all g € G as an element
of Hom(A(U*), *A(gU*s™")) ® Q.

REMARK 2.5.5. One easily verifies that the isogenies @, satisfy the obvious co-
cycle condition @,,,, = g5(P,,) o P,, wherever both sides are defined. Thus the
collection of abelian varieties A(U*), for varying U* C G* (Z), defines an abelian
variety A over the pro-variety Y* which is ‘G-equivariant up to isogeny’ (that is it
is a G-equivariant object in the isogeny category of abelian varieties over Y*).

2.6. Hecke correspondences. The Hecke operators defined in Section 2.4
can naturally be regarded as algebraic correspondences on Y*(9, O1), and
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hence as endomorphisms of the cohomology of this variety (for any reasonable
cohomology theory). Using the isogenies @, of the previous section, we can
extend this to define actions (both contravariant and covariant) of Hecke operators
on the cohomology of the abelian varieties A (9%, 1) over Y* (901, D).

We have, in fact, two possible actions of Hecke operators on cohomology,
via contravariant (pullback) and covariant (pushforward) functoriality. We shall
distinguish between the two by using a prime symbol when the covariant action is
intended, so that T'(x) and 7’(x) denote the contravariant and covariant actions of
the same abstract double coset. Since pushforward by an automorphism coincides
with pullback by its inverse, we have (x)' = (x~') and o/ = 0.

(In the norm relations for our Euler system, the covariant Hecke operators T’ (x)
and U’(x) will play the main role; philosophically, this reflects the fact that Euler
systems are in some sense homological rather than cohomological objects). (This
is analogous to the distinction between Picard and Albanese functoriality in the
construction of the Euler system of Heegner points. (We are grateful to one of the
anonymous referees for this observation).)

REMARK 2.6.1. If x € O is totally positive and square-free, the action of T (x)
on the cohomology of A(9JT, N) is given by the composition of the following four
maps:

e pullback along the natural degeneracy map A(ON, (x)) — AN, N);

e pullback via the isomorphism Y (M(x), ) — Y (M, I(x)) given by the
matrix g = ()‘(’)1 9), which corresponds to 7 +> 7/x on Hp;

e pullback along the isogeny
Dy AM(x), N) — g AN, N(x))

of abelian varieties over Y (9%(x), D), which corresponds to the map
(r,zmod O -7 + Of) — (‘L’, z mod OFE + OF)
X

on J;
e pushforward via the natural degeneracy map A((x), ) — AN, N).

The action of T'(x) is exactly the dual of this (that is interchanging pullbacks
and pushforwards). This is the natural analogue for G* of Kato’s description
of the Hecke operators 7 (£) for modular curves in [17, Sections 2.8 and 4.8].
As remarked in [17, Section 4.9.4], the correspondences 7' (x) and T'(x) thus
defined preserve the geometric connected components of Y* (9, ). They do not
commute with the action of SL, (O /M) in the case N = N.
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Euler systems for Hilbert modular surfaces 11

2.7. The Asai Euler factor. We now impose the assumption that [F : Q] = 2.
For a (rational) prime £ 1 A - Nmg/(M), we define the following polynomial
with coefficients in the Hecke algebra of level U* (901, 91) (where we continue to
assume, as before, that 2t | N):

DEFINITION 2.7.1. The Asai Euler factor is the polynomial P,(X) defined as
follows:

e If 7 is inert, we set
P(X)=(1—=T®X +2SO)XH(1 — £25)X?).

e If £ is split, we set

Py(X)=1-TO)X+(T)>*-TUH—L*S)X>*—>SO)T ()X +0*S)>X*.

We shall see in Proposition 4.3.4 that the action of P,(X) on a Hilbert modular
eigenform will give the local factor at £ of the Asai L-function (justifying the
term ‘Asai Euler factor’).

REMARK 2.7.2. If £ is split and the primes above ¢ are narrowly principal, so we
can write £ = AA where A € O7F, then the X? coefficient in P;(X) can also be
written

CAYRO)T (M) + L(AYR(L)T (M) — 202 () R(L).

This latter formula will be used in the proofs of the norm relations, where we
will always be assuming that the primes above £ are narrowly principal. However,
the version using T (¢2) is more general, and in particular it shows that the Hecke
operators appearing in P, always lie in G*(A ), rather than the slightly larger
group G.

3. Asai-Flach classes

We now define a collection of motivic cohomology classes for Hilbert modular
surfaces. We make no claim to originality here: this construction is fundamentally
the same as that of [18], although we express it in a slightly different language
and setup in order to reinforce the similarities to the construction of [20].

3.1. Formalism of relative motives. We begin by recalling the formalism of
‘relative motives’ attached to families of varieties over a base; for more detail
see [11].

3.1a. Relative Chow motives. Let k be a field of characteristic 0, and S a smooth,
connected, quasiprojective k-variety. Then there exists a Q-linear, pseudo-abelian
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tensor category CHM(S)q of relative Chow motives over S, equipped with a
contravariant functor

M : SmPr(S) — CHM(S)o.
Here SmPr(S) denotes the category of smooth projective S-schemes. Similarly,

for any coefficient field L of characteristic O there is a category CHM(S) ., which
coincides with the pseudo-abelian envelope of L ® CHM(S)q.

REMARK 3.1.1. Concretely, an object of CHM(S), is given by a triple
(X, a, n), where X is a smooth projective S-variety, « € CH*™*/9(X x¢ X) is
an idempotent, and n € Z. The Tate object is (S, id, 1).

3.1b.  Realizations. It is well known that Weil cohomology theories, such as de
Rham, Betti, or étale cohomology, give functors on the category CHM(Spec k),
(where L is the appropriate coefficient field for the Weil cohomology). These
naturally take values in graded L-vector spaces, equipped with various extra
structures depending on the choice of cohomology theory.

These have analogues in the relative setting, taking values in categories of
sheaves on S with extra structure:

e if L is a p-adic field, the p-adic étale realization from CHM(S), to lisse étale
L-sheaves on S;

e if k = R or C and L is a subfield of C, then the Hodge realization from
CHM(S), to the category of variations of pure L-Hodge structures on S.

(There are also realizations in de Rham cohomology, Betti cohomology, and
so forth, but we shall not use these here.) If 7 € Obj(CHM(S).), we write Fg,
F3, and so on, for its realizations in the appropriate cohomology theories. These
are naturally graded objects: we have Fy = P i Gr! F., where Gr/ M(X)g =

’HQ(X /S) is the jth relative étale cohomology sheaf of X/, and similarly for the
other realization functors.

REMARK 3.1.2. Note that the grading need not be concentrated in degrees > 0:
indeed, the realizations of the Tate motive over S are concentrated in degree —2.

THEOREM 3.1.3 (Deninger—Murre, [11]). If A/S is an abelian variety, there is a
canonical decomposition in the category CHM(S)q,

2dim A
M(A) = P M'(4),
i=0
such that, if @ denotes any of the above realizations, Gr' M'(A)g is zero ifi # j.
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Euler systems for Hilbert modular surfaces 13

3.1c. Motivic cohomology and regulators. Since a smooth projective S-variety
is in particular a smooth quasiprojective k-variety, one can define motivic
cohomology groups with L-coefficients, Htfml(X ,L(j)), for X € SmPr(S) as
in [3].

We adopt the following convention: if 7 € Obj CHM(S), is given by a triple
(X, a, n) as above, and the realizations of J are nonzero in only one degree r,
then we write

Hio(S, F () = a* Bl (X, L(j +n)).

mot

With this convention, we obtain regulator maps
rr Hyol(S, F(j)) = HE(S, Fr(j))

for each of the above cohomology theories.

REMARK 3.1.4. The shift in indexing occurs because the 7T -realization of F
should be considered as a complex of sheaves concentrated in degree r, but we
are forgetting the grading, that is treating it as if it were concentrated in degree 0.

3.1d. Functoriality in S. Let S, T be two smooth connected quasiprojective k-
varieties, so that the categories CHM(S),; and CHM(T'), are defined. If t : S — T
is a morphism, then there is a pullback functor

" : CHM(T); — CHM(S),,

which maps the motive of a T -variety X to the motive of t*(X) = S x,r X. This
is clearly compatible with the pullback functors for the various realizations.

If we assume ¢ to be a closed immersion of codimension d, there is a Gysin
map

Lo HE (S, 0 F(n)) — HP(T, F(n+d))

for any F € Obj(CHM(S);), compatible with the pushforward maps for the
realizations described above. If ' = M(X) for a variety X/ T, this is just the
pushforward map

H}, (1(X), L(n)) — H2(X, L(n + d))

mot

corresponding to the inclusion t*(X) < X (see [29, Theorem 15.15]).

3.2. Relative motives over Shimura varieties. We will be interested in the
cohomology of certain relative motives (and their realizations) arising from the
universal abelian varieties over modular curves and Hilbert modular surfaces.
(This is an instance of a much more general construction, applying to arbitrary
PEL Shimura varieties, due to Ancona [1, Section 8].)
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3.2a. Modular curves. Let U be an open compact subgroup of GL,(A), and
suppose that U is sufficiently small. Then we have a modular curve Y (U ), which
is a smooth affine Q-variety; and if V = 72 xU C Py(Ay), then we obtain an
elliptic curve £ = Aq(V) over Yo(U).

DEFINITION 3.2.1. We write % (£) for the motive M'(£)(1), where M'(€) is
as given by Theorem 3.1.3; and TSym* .77 (£) for its kth symmetric tensor power.

Here the symmetric tensor power is defined as the invariants for the action of
the symmetric group on .77 (£)®*, whereas the more familiar symmetric power
Symk F6(€) is the coinvariants. These two are in fact isomorphic, since L is a
field of characteristic O and thus k! is invertible in L. However, the definition of
the Clebsch—Gordan map in Section 3.3 below is simpler to describe using the
TSym modules; and we shall also later need to consider analogous coefficient
sheaves in étale cohomology over Z,, where the distinction between Sym* and
TSym’ is significant if k > p. See [21, Section 2.2] for further discussion.

REMARK 3.2.2. This construction is consistent with the ad hoc definition of the
groups H!  (Yo(U), TSym* #,(£)(j)) given in [20, Definition 3.2.2]. (The case
L # Q was not considered loc. cit.) For general L we have

Hy o (Yo(U), TSym" J27.(€)(j)) = L ®q Hypy (Yo(U), TSym* HG(E)())).

3.2b. Shimura varieties for G*. We now suppose U* is an open compact
subgroup in G*(A /), where G* is the group defined in Section 2.1 above, and
we set V* = 612: x U*. Again, we suppose U* to be sufficiently small, so that the
mixed Shimura variety A = A(V*) is an abelian surface over Y*(U*).

We define an object of CHM(Y*(U*)) by

H.(A) = M (A)(2) = M'(A)".

Since Of acts on A by endomorphisms, for each x € Op we have an
endomorphism [x], of 77 (A), and if x € Z then [x], is simply multiplication
by x.

By enlarging L if necessary, we now suppose that there exist nonzero
embeddings F < L, and we let 6;, 6, be the two such embeddings. Then the
relative motive .77 (A) decomposes as .77 (A)V @ 5 (A)® where 7 (A)©
denotes the direct summand where we have

[x], = 6i(x)
for x € Op.
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Euler systems for Hilbert modular surfaces 15

REMARK 3.2.3. We may take .77 (A)" and 77 (A)® to be the images of the
orthogonal idempotents

6,(~'D) + [/ D], ond 6,(v/D) — [V/D].
20,(v/D) 200(vD)

DEFINITION 3.2.4. Let k, k' > 0. The relative Chow motive TSym**1 77, (A)
over Y*(U*) is defined by

TSym* (4, (A)") ® TSym* (4, (A)?).

REMARK 3.2.5. Thus TSym!“*! 7 (A) can be realized as a direct summand of
the motive

MY (A)(@2r) = (M"(A")",

where r = k + k’. Hence, for any i,n € Z, the motivic cohomology group
Hi (Y*(U*), TSym“*1 7 (A)(n)) is a direct summand of H (A", L(n +
2r)). We can also realize it as a direct summand of H ' (A", L(n + r)), since
the canonical polarization gives an isomorphism M?3(A) = M'(A)(—1). One can
check that if k = k', then TSym'“*1 7 (A) can be defined without assuming that

FCL.

Since we have defined the Hecke correspondences 7'(£), T'(£), R(£), and so
on, as correspondences on A, the groups H. (Y*(U*), TSym[k’k’] 4. (A)(n)) for
i, n € Z acquire actions of these operators. Note that R'(x) acts, by construction,
as multiplication by 6; (x)*6,(x)¥ e L*.

3.2c.  Shimura varieties for G. We now consider the case of a sufficiently small
open compact subgroup U C G(A[). This case is not covered by [1], since the
Shimura datum for G is not of PEL type; we are grateful to Giuseppe Ancona for
explaining to us how to extend his construction to this case. We take k, k' > 0
such that k = k" mod 2, and we choose integers ¢, t' such that k + 2t = k' + 2t'.
We write u for the quadruple (k, k', ¢, t').

DEFINITION 3.2.6. Let U* = U N G*. We let 7" be the relative Chow motive
over Y*(U*) defined by

[TSym (7, (A) V) @ det(A, (A) V) 1@ [TSym* (4, (A)?) ® det(H, (A)P)"].

REMARK 3.2.7. In fact both det(.777 (A)") and det(.77 (A)®) are isomorphic
in CHM(Y*(U*)), to the Tate motive L(1), since there is a canonical O-linear
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isogeny from A to its dual (the dual can be identified with A ®, 0~'). However,
this isomorphism is not G-equivariant, so it does not respect the Hecke action on
the cohomology of 7714,

Let Y (U), denote the image of Y*(U™) in Y (U) (which is the union of a subset
of the components of Y (U)), and let H be the finite abelian group (U N G)/U* -
(U N Z(G)) of Proposition 2.2.5, so that

Y(U), =Y*(U"/H.
Letg : Y*(U*) — Y (U), be the quotient map.

PROPOSITION 3.2.8. There is a natural action of H on q*j%g"], acting via
automorphisms in the category CHM(Y (U){),.

Proof. We have defined an action of GN MZXZ(@F) on A by isogenies,
compatible with its action on Y*(U*), and the elements of G N U act as
automorphisms; so it suffices to check that the subgroup U N Z(G) acts trivially
on the direct factor 2" of A x -+ x A.

By construction, pushforward by a scalar matrix x € F* acts on <%}2“J as
multiplication by 6, (x)*26,(x)*+* = Nmy,q(x)", where w is the common
value k + 2t = k' 4+ 2¢'. Since U N Z(G) = 2 - OF*, with the Z* factor acting
trivially, and units in Q" all have norm 1, the action of U N Z(G) is trivial as
required. O

DEFINITION 3.2.9. We let .7, be the relative Chow motive over Y (U), defined
as the direct summand of ¢,.7,"*' cut out by the projector (1/|H|) D onen b

(This makes sense, since for any base S, the category of relative Chow motives
over § is by definition a Karoubian category—a semiabelian category in which
any idempotent endomorphism has a kernel and image.)

We extend this to Y (U) as follows: if gy, ..., g, are a finite set of elements of
G (A ¢) whose determinants are coset representatives for A;J» J(F X*Aa P det(U)),
then Y (U) is isomorphic to the disjoint union of the varieties Y (g;Ug; ., and
we may apply the above construction to each of these varieties individually. The
resulting relative Chow motive over Y (U) is independent (up to a canonical
isomorphism) of the choice of the g;, and its motivic cohomology has natural
covariant and contravariant actions of the Hecke algebra Z[U\G(A,)/U].
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3.3. The Clebsch—-Gordan map. Now let U* be an open compact in G*(Ay),
and let Ugq be its intersection with GL,(A ¢), so there is a closed embedding

[ YQ(UQ) — Y*(U*),

and the abelian variety (*(A) is canonically isomorphic to O ®z £ (compatibly
with the Op-action). Hence both *.577 (A)" and *.77 (A)® can be identified
with 777 (£).

As explained in [21, Section 5.1], we have the following maps:

TSym"** () — TSym* .7, (£) @ TSym* () = *(TSym**1 7, (A)):
and
L) = N\ HE) — HE) ® H(E) = ¢ (Tsym") A (A)).

Combining these two cases using multiplication in the symmetric tensor algebra
TSym*®, we obtain the following:

PROPOSITION 3.3.1. For any integers k, k', j satisfying the inequality
0 < j < min(k, k'),
we have a canonical morphism of relative Chow motives over Yo(Uq),

CGEFIT . TSym* ™' =% 4 (£) — *(TSym™! 7, (A))(—j).

REMARK 3.3.2. Note that CGH;’)/:,J ! does not commute with maps induced by
isogenies of the universal abelian varieties £ and A, since the identification
/\2L J6.(£) = L(1) is not preserved by isogenies. In particular, for n € Z, the
Hecke operator R’'(n) (acting as pushforward via the n-multiplication map on A
and €) acts as n**~2 on the source of the map CGXX"/ and as n*** on the

target.

3.4. Construction of Asai-Flach classes over Q.

DEFINITION 3.4.1. Fork > 0and N > 5, let

Bisk oy € Hoo(Y1.0(N), TSym* #4(E)(1))

mot,

be the class defined in [20, Theorem 4.1.1]. Via base extension, we regard this as
an element of H! (Y o(N), TSym* 27 (£)(1)) for any coefficient field L.
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(In op. cit. this class is denoted by Eis’;mt’ ».v» as it depends on a choice of b €
Z./NZ — {0}; but we shall take b = 1 and drop it from the notation.)

Now let 91 <« Of be a nonzero ideal such that U (M) is sufficiently small
(see Remark 2.3.3 above). We can now define the key objects of this paper:

DEFINITION 3.4.2. For k,k’, j integers satisfying the inequality 0 < j <
min(k, k'), we define the motivic Asai—Flach class

AP € Hao (Y7 OO0, TSym™) 72, (A) 2 - j))

(o)

as the image of Eisfntﬁ;zj under (¢, o C G,[ﬁ(’,]f”j 1, where N = TN Z.

Similarly, we write AFL’:&’ ! for the image of AF&‘;’;;}? in étale cohomology.

3.5. Classes over cyclotomic fields. Note that the Asai—Flach classes of the
previous section are defined on the Hilbert modular varieties Y;*(91), which are
geometrically connected varieties over Q. We now define more general Asai—
Flach classes, which are cohomology classes on the base extensions of these
varieties to cyclotomic fields.

Let M € Z-,, and 91 an ideal of OF as above. Via pullback along the natural
map Y*(M, MN) — Y (MN), we regard AFKOI:,V’,& as a class in the cohomology
of Y*(M, MN).

The variety Y*(M, M1) has an action of O/ M Oy, since the corresponding
subgroup of G*(A y) is normalized by matrices of the form u, = (} ¢) witha € Op.
Moreover, there is a map

sy YH(M, M) — YO x 1,

given by the right action of (¥ : 9); here we identify ¥ (91) x j, with the Shimura
variety of level
{u € U (D) : det(u) = 1 mod M},

as in [21, Section 6.1].

Both the automorphisms u,, and the map s,,, extend naturally to maps on the
universal abelian variety .4, and thus on our motivic coefficient sheaves.
DEFINITION 3.5.1. We define

AR i = (i 0 o) (AR i)
€ H (Y7 () x sy, TSym*™ 1 2 (A)(2 — ).

and AFg:L;’)l( . its étale analogue.
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REMARK 3.5.2. Infact we canreplace Y*(M, MOT) with Y*(M, N') for any ideal
N divisible by M and 91 and having the same prime factors as M91; this will
follow from the norm-compatibility relations below.

THEOREM 3.5.3. The above elements enjoy the following properties.

(1) The class AF*X] depends only on the image of a in Op/(MOF + Z).

mot, M, MN,a

(2) Forb € (Z/MZ)*, we have

Op - AFI[]]’jO}:/]é?m,d = AFx[llfl(’)l:./}liIl],m,b"a’
where o, denotes the image of b in Gal(Q () /Q).
(3) (Level compatibility) If lis a prime and pr, | denotes the natural projection
YN — Y[ (M), then we have

(Prl,[)*(AFr[:éli,}d], a)
AFI[T];)]E/Ag]ma ifl MNorl| MM,
| = 2o ARSI otherwise,
where £ is the rational prime below |.

(4) (Euler system norm relation) If € is prime satisfying one of the conditions
below, and a is a generator of Op /(UM Oy + 1), we have

137 [k, 1 _ [k, j]
NOrmy,, (AFmot,lM,‘ﬁ,a) =A- AFmol,M,‘ﬁ,a’
where A is the Hecke operator given as follows:

o ifl|Nandl | M, then A = U’'(£),

o if (| Nand Lt M, then A = (U'(£) — t/oy);

o if (£, MN) = 1 and either £ is inert, or £ is split and the primes above £
are narrowly principal, then

A=lo (€ — DA =72 ?) —eP(e o),

where P)(X) is the operator-valued Asai Euler factor of Definition 2.7.1,
acting via the covariant Hecke action on cohomology.

The Hecke operators appearing in the theorem are those defined in Section 2.4
above.
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REMARK 3.5.4.

(i) Despite its conceptual importance—asserting the existence of an ‘Euler
system’ in motivic cohomology—we shall not actually use this theorem
directly. The reason for this is that the definition given above of the motivic
Asai—Flach classes, and even of the groups that they live, only makes sense
with coefficients in Q; while the applications of Euler systems to bounding
Selmer groups require uniformly bounded denominators with respect to
some appropriate lattice in the p-adic Asai Galois representation, and it is
manifestly unclear from the above construction how this condition can be
checked.

However, in the next section we shall obtain (as a by-product of our p-adic
interpolation calculations) a second, independent construction of the étale
versions of these classes, from which the integrality will be clear.

(i) A conceptual interpretation of the ‘wrong’ Euler factor appearing above
can be given along the same lines as in the Rankin-Selberg case, see
[24, Section 8].

Sketch of proof. The proof of this theorem is virtually identical to the proof of the
A-adic version, which we shall prove in Section 7 below, so we leave it to the
reader to make the necessary modifications. O

4. Eigenforms and Galois representations

Having constructed our Asai—Flach classes in the cohomology of the varieties
Y (M), we are now interested in projecting to quotients of these cohomology
spaces corresponding to eigenforms. Since the multiplicity one property does not
hold for automorphic representations of G*, but it does hold for those of G (see
[8, Section 3.2]), it is more convenient to work with the varieties Y; (7).

4.1. Hilbert modular forms for G.

NOTATION 4.1.1. (i) Let 0y, 6, be the embeddings F — R. For a pairr = (r,
r) € 2% and 7 € F, we write 7" for 6,(2)"0,(2)"?; and we extend this to
z € F ® C in the obvious fashion.

(i) Forr = (r\,r) € 2% f a function Hr — C, and y = @heGQt =
GL,(F)", we define f |, y by

b
(f | )(1) = Nmpjo(dety)(ct +d) ~ f (Z: - d>'
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(i) If r = (r1, r2) and t = (t1, t,) are pairs of integers, f is a function Hp — C,
andy = (“%) € G(Q)", then we write

fleny =dety) " f |, v

We shall only consider the (r, ¢) action when the integers (r, t) satisfy r; +
2t = r, + 2t; in particular, this implies that r;, = r, mod 2. We let w be the
common value r| + 2t; = r, + 2t,. Then scalar matrices (§ 9 with u € F* act via
Nmpq(u)' ™, and in particular O} acts trivially.

DEFINITION 4.1.2. Let U C G(A[) be open compact. A Hilbert modular form
of weight (r, t) and level U is a function F : G(A;) x Hr — C such that:

(i) for every g € G(Ay), the function F (g, —) is holomorphic on H;
(ii) we have F(gu,7) =F(g,v)forallu e U,g € G(Ay)and v € Hp;
(iii) we have F(yg, —) = F(g, =) l¢.n ¥ ' forally € G(Q)" and g € G(A ).

We let M, (U, C) denote the space of such functions, and S, (U, C) the
subspace of cusp forms.

The space S, (U, C) is the subspace of U-invariants in a smooth right
representation of G(Ay), so it is a right module over the Hecke algebra
CI[U\G(Af)/U]. In particular, if U = U,(97) for some 1, the Hecke operators
T (m) and S(m) defined in Section 2.4f above act on S, (U, (D7), C).

REMARK 4.1.3. To fix normalizations, we point out that if F is a Hilbert cusp
form, then JF has a Fourier—Whittaker expansion

f(()(; 0), ‘E) = [[x||a, Z O[—Lc(ax’}-)ezmn”mﬂ)

aeF*+

where ¢(—, F) is a locally constant C-valued function on A;f. If the level is of
the form U, (N), then c(x, F) only depends on the fractional @) r-ideal n generated
by x, and is zero unless n € 0~'; and the Hecke operators satisfy c(n, 7 (m)F) =
c(mn, F) whenever (m, nd) = 1.

DEFINITION 4.1.4. We say that F € S, »(U;(N), C) is an eigenform if it is
an eigenvector for the Hecke operators 7 (m) for all ideals m. We say F is
normalized if c(0~', F) = D~1+2)/2,
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Note that if F (g, 7) is a Hilbert modular form of weight (r, t), then
F (g, 1) = ||detgll,s F(g. 1)

is a Hilbert modular form of weight (r, ¢ + (s, s)) for any s € Z, and its Fourier—
Whittaker coefficients satisfy c(n, F*) = Nmg/q(m)*c(n, F). Our choice of
normalizations is such that 7 is a normalized eigenform if F is. (Note that
the restrictions of F and F® to Hr are identical.)

If F is an eigenform, then its 7 (m)-eigenvalues A(m) all lie in a number field
L, and there is a finite-order Hecke character ¢ : CIT(F, 91) — L* such that S(m)
acts as Nmy q (m)¥~2g(m). Exactly as in the familiar case F = Q, a normalized
eigenform is uniquely determined by its Hecke eigenvalues.

4.2. Pullback to G*. Let U* C G*(Ay) be open compact, and let (ry, )
be nonnegative integers (not necessarily of the same parity). We define the
space S,(U*, C) of Hilbert cusp forms for G* of weight r and level U* as
functions G*(A ) x Hr — C satistying the analogues of the conditions (i)—(iii)
of Definition 4.1.2, using the weight r action of G*(Q)* in place of the weight
(r, t) action of G(Q)* in (iii).

This space has a right action of the Hecke algebra C[U*\G/U*], where G is as
in Definition 2.2.4. In particular, when U* = U; (M) for some N < O, we have
an action of the operators R, S, T defined in Section 2.4, and R(x) for x € F*
acts as multiplication by x-~2.

If we now impose the assumption that r; = r, mod 2, and choose ¢t =
(t;, 1) € Z? such that r| + 2t; = r, + 2t,, we can compare the theories for G*
and G.

PROPOSITION 4.2.1. If F € S (U, C), then the function j*(F) on G*(Ay) X

Hr defined by
JHF)E, 1) = |l det gl ,F F(g, T)
is an element of S, (U*, C), where U* = U N G*. O

Note that this construction is twist-invariant, that is j*(F®)) = ;*(F) for any s.

PROPOSITION 4.2.2. Let M < Op. Then the action of Oy on S,(U;(N), C) via
x = xtT (x) factors through the finite quotient

T=0:"/{x* 1 x € O, x =1 mod MJ.
The image of the pullback map
75 Se.n (Ui (), C) — S, (U (O, C)
is precisely the T-invariants of S,(U; (M), C).
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Moreover, if wm is a narrowly principal ideal, generated by some x € OF, then
the map j* intertwines the action of the operator T (m) on the source with the
action of x* - T(x) on the target, and similarly for S(m) and x*S(x) if m is
coprime to N.

Proof. Since R(x) acts as Nmz/q(x)""2, and for x a unit we have T (x?) = S(x) =
(x) R(x), the action of O} factors through ¥.

It is easy to see that j* intertwines 7 (n) with x - T (x), since the double cosets
T (n) and T (x) share a common set of single-coset representatives, and similarly
for S(n) and S(x). Since 7 (x) is the identity map for x a unit, this shows in
particular that the image of ;* is contained in the T-invariants.

It remains to prove that any element of S, (U] (1), C) invariant under ‘T lies
in the image of ;. This follows from the fact that S ,,(U; (), C) contains, as a
direct summand, the space of holomorphic functions on H which are invariant
under the weight (r, ¢) action of I7(N) = U; () N GL;“(F ) and vanish at the
cusps. An element of S, (U (), C) gives a function invariant under the subgroup
IF (O = (M) N SLy(OF); and the Hecke operators T (x), for x € OF*, give
representatives for the quotient Iy (1) /I*(ON). (This can be seen as an instance
of the general result of Proposition 2.2.5.) O

REMARK 4.2.3. If the narrow class group of F is trivial, any F € S, ,,(U; (91), C)
is uniquely determined by its restriction to {1} x H r, so j* is injective. Conversely,
if the narrow class group is nontrivial, the map ;* is very rarely injective, because
of the following construction. Let « be a nontrivial character of the narrow class
group of F. Then for any F € S (U (M), C) there is a twisted form F & «
satisfying c(n, F ® «) = k(n)c(n, F). We have j*(F ® k) = j*(F), but F and
F ® « are very unlikely to be equal.

DEFINITION 4.2.4. We say an eigenform F € S, ,,(U;(N), C) is an exceptional
CM form if it has complex multiplication by a quadratic extension E/F contained
in the Hilbert class field of F.

Note that this notion depends only on the newform associated to F; and the
field E is necessarily totally imaginary (that is it is a CM field) and biquadratic
over Q.

LEMMA 4.2.5. Let F € S n(U (D), C) be a normalized eigenform, with r; > 2.
If j*(F) is zero, then F is an exceptional CM form. Conversely, if F is a newform
and an exceptional CM form, then j*(F) = 0.

Proof. Since F is a normalized eigenform, we have c(07!, F) # 0. On the other
hand, j*(F) = 0 if and only if c(x, F) = 0 for all x € F**. Using the relation
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between Hecke eigenvalues and Fourier—Whittaker coefficients, it follows that
J*(F) is zero if and only if the Hecke eigenvalue A (n) of F is zero for every n in
the narrow ideal class of 0.

It is a standard fact that if an eigenform JF satisfies A(p) = O for a positive-
density set of prime ideals p, then F must have CM by some totally imaginary
quadratic extension E/F (for example this follows from the fact that there exist
many primes v for which the standard Galois representation p%', has large image,
see [31, Theorem B.5.2]). Moreover, in the CM case, we have A(p) # O for every
prime p { DN splitin E, since CM forms are automatically ordinary at split primes.
Thus we deduce that every prime in the narrow ideal class of D must be inert in
E/F, from which it follows that E is contained in the narrow class field.

Conversely, suppose F is a newform that is an exceptional CM form, and let «
be the quadratic Hecke character corresponding to E/F. We have «(0) = —1,
so F and —F ® « are normalized newforms. As they have the same Hecke
eigenvalues at almost all primes, they are in fact equal, by the multiplicity one
theorem. Hence we have c(n, F) = —«(n)c(n, F) for all n, and in particular
c(n, F) is zero for all ideals in the kernel of . Thus j*(F) = 0. O

PROPOSITION 4.2.6. Suppose F is a normalized eigenform of level N, with r; >
2, which is not an exceptional CM form. Then any form G € S, (U} (M) satisfying
T(x)G = x7'A(x)G, for all x € OF, is a scalar multiple of j*F.

Proof. Letus write G(1,7) = Y o tc(a, G)e*™ ™@) where the sum runs over
totally positive @ € 9~'. By assumption, c(a, G) depends only on the ideal
generated by «.

Let I denote the set of integral ideals in the narrow ideal class of 9, and for each
n € I, let ¢c(n) be the common value of ¢(«, G) over all totally positive generators
a of the ideal nd~!. Then we have the relation ¢(Bn) = A(B)c(n) for « € OF
coprime to n; and we want to show that this determines all the c(n) up to a scalar.

If 9 is trivial in the narrow class group of F (that is, the fundamental unit has
norm —1) then 7 is simply the set of principal ideals, and we see immediately that
c(n) = A(n)c(1) for all n € I, so we are done.

So let us assume that the fundamental unit has norm +1, so that 7 is the set of
ideals that are principal but not narrowly principal. Since F is not an exceptional
CM form, there exist infinitely many primes p € I such that A(p) # 0. Let p, be
one of these, and define C = A(py) ~'c(po).

Let n € I be arbitrary. We want to show that c(n) = CA(n). Firstly, suppose
po 1 n. Let p; be another prime in / not dividing np, with A(p;) # 0; then we have

A(pop)e(m) = c(npop) = A(mp)c(po),
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and hence c(n) = (A(p)/A(Pop1))c(Po) = CA(n) for all n € I not divisible
by po.

On the other hand, if n € I is divisible by py, we can pick some p, € I with
A(p1) # 0 and p; { n. By the previously handled case we have C = c(p;)/A(py),
and applying the previous argument with p, replaced by p, we are done. O

4.3. Galois representations.

THEOREM 4.3.1 (Blasius—Rogawski-Taylor). Let F be a Hilbert modular
eigenform of weight (r,t), with ri,ry, > 2. Let L be the number field generated
by the Hecke eigenvalues A(n). Then for every finite place v of L, there is an
irreducible two-dimensional ‘standard’ Galois representation

p¥, 1 Gal(F/F) — GLy(L,),

such that for all primes [ { YtNmy ;o (v), the representation ,02‘,1” is unramified at |

and we have

det(1 — Xp3 (Frob; 1)) = 1 — (DX + Nmpo(D" ' e(D) X>.

Moreover, the Hodge numbers of p%‘fu at the primes above Nmyq(v) are

{t,t1 + r — 1} at one embedding and {t,,t, + r, — 1} at the other. (That is,
the negatives of the Hodge—Tate weights. For the complete avoidance of doubt,
we state that in this paper the cyclotomic character has Hodge—Tate weight +1
and Hodge number —1).

We are not actually interested in the standard representation per se, but in its
tensor induction to Gal(a/Q). Recall that if H C G are groups with [G : H] =
2,0 € G — H, and p is a representation of H on some vector space V, we
define ®—Indg (p) to be the isomorphism class of the representation of G whose
underlying space is V ® V, with G acting via

h-w@w)=(h-v)®(c 'ho -w), o-VOW) = (0" w) .

(The isomorphism class of this representation is independent of ¢ .)

DEFINITION 4.3.2. For an eigenform J and place v as above, we define the four-
dimensional ‘Asai’ Galois representation

Py : Gal(Q/Q) — GL4(L,)

by
prY = @-IndP(p},) ® Lyt + 1)
The Hodge numbers of this Galois representation are {0, ry — 1, r, — 1, r{ +r, —2}.
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REMARK 4.3.3. The Asai representation is unramified at all primes not dividing
pANmg,(M). The twist by #; + ¢, implies that the Asai representation of F is
the same as that of the twist 7, for any integer s.

Note also that pé‘f‘:}i actually preserves an orthogonal form up to scaling, that
is its image lands in the general orthogonal group GO4 € GL,. The subgroup
landing in the connected component GSO, is exactly Gal(F/F). This can be
interpreted in terms of an isomorphism between GO, and the Langlands L-group
of G*; this is investigated in more detail in [10, Section 5].

PROPOSITION 4.3.4. Let F be an eigenform of level N with coefficients in L, and
let £ £ ANmg;o(N) be prime.

(i) There is a polynomial P,(F, X) € L[X] such that for all prime v {1 £ of L we
have .
det(1 — X p2™ (Frob, ) = Py(F, X).

(ii) The operator-valued Euler factor Py;(X) defined in Section 2.7 acts on j*(F)
as Py(F, X).
Proof. Since we have defined p* as a twist of the tensor induction of p3,, one
can read off the coefficients of the characteristic polynomial of p%* (Frob, ') from
those of p;‘:‘?v (Frob[_l), for the primes [ | £ of F. These are, in turn, given by the
Hecke eigenvalues of F. This gives a polynomial P,(F, X) € L[X] satisfying
(). (The computation for ¢ split in F is identical to [24, Proposition 4.1.2]; the
inert case is analogous.) Using the fact that ;* intertwines 7 (£) with ¢+ T (¢)
and S(¢£) with £2¢*)5(¢), one sees that this polynomial coincides with the action
of P,(X) on j*(F), which is (ii). O

44. KEtale cohomology of Hilbert modular varieties. We fix a weight (7, )
as above, with r; > 2,7, > 2. We also fix a prime p, a finite extension L/Q
containing F,and aprimev | pof L. Letu = (r; — 2,7, — 2,11, ).

DEFINITION 4.4.1. We let J"fL[j” be the étale sheaf of L,-vector spaces on Y (U),
for each sufficiently small U, that is the étale realization of the relative Chow
motive .7,"") of Section 3.2c above. We write .#,"" for the dual of 7"\

DEFINITION 4.4.2. Let F be a cuspidal Hilbert eigenform of weight (r, t) and
level 1, with Hecke eigenvalues in L. Then we define
My, (F) = Hi(Yi (Mg, A7 (1 + 0)[T () = A(w) VY,

where A(n) is the T (n)-eigenvalue of F.
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We are assuming here that U, () is sufficiently small (the case of eigenforms
of level dividing 2, 3 or A can be dealt with by replacing F with its [-stabilization,
for some auxiliary prime ). We define similarly the JF-eigenspaces Mpeyi(F),
Mg (F) associated to F in Betti and de Rham cohomology, using the Betti and
de Rham realizations of %m ). Note that each of these spaces lifts isomorphically
to compactly supported cohomology, since F is cuspidal, and they are related by
comparison isomorphisms as given in [14].

THEOREM 4.4.3 (Brylinski-Labesse, Nekovar). The space M (F) is four-

dimensional, and isomorphic as a representation of Gal(Q/Q) o péf‘:j.

Proof. See [8, Section 3.4], where the result is shown up to semisimplification by
a comparison of traces, and [32, Theorem 5.20], which establishes that M, (F)
is always semisimple. O

Via Poincaré duality, we can identify the dual M, (F)* with the maximal
quotient of Hézl(Y 1M ,%”L[” ! (2—1t,—1,)) on which the covariant Hecke operators
T’ (n) act as A(n) for all n.

COROLLARY 4.4.4. Let F be an eigenform of level X and weight (r,t), and
supposer = (k + 2, k' +2) for k, k' > 0.
Then there is a canonical Gal(Q/Q)-equivariant map

prr: H2(Y; (Mg, TSym* ! 7 (A)(2)) — M, (F);

and for each prime € { p ANmp,o(N), this intertwines the dual operator-valued
Asai Euler factor P/(X) on the left-hand side with the polynomial P,(F, X) of
Proposition 4.3 4.

Proof. We know that the pullback of the étale sheaf ,%’2["‘ Tto Y (D) is isomorphic
to TSym™**’ A1, (A) (1 + 1), so we have a pushforward map

Je t H2(YF g, TSym* 1 7 (A)(2) — HZ(Y (Mg, A (A2 — 1 —1)).

We define prz to be the composite of this map j, with the projection to the F-
isotypical component for the covariant Hecke operators 7'(m), which we have
seen is canonically isomorphic to M, (F)*.

The map J, intertwines the covariant Hecke operator 7'(x) with x7t7(x),
for all totally positive x € Op, and similarly for S'(x) and S’(x); the same
computation as in Proposition 4.3.4(ii) thus shows that pr - intertwines the action
of P/(X) with Py(F, X). O
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REMARK 4.4.5. It is interesting to consider whether one can give a construction
of M., (F)* using the cohomology of Y;*(J1) alone, without using the
map j. Let us write N, (F)* for the maximal quotient of HéZ[(Yl* Mgs
TSym“*1 7, (A)(2)) on which T'(x) acts as x‘A(x) for every x € OF.
Then we can factor prr as the composite of projection to the quotient N, (F)*,
and a map N, (F)* — M, (F)* induced by j,.

This map N, (F)* — M, (F)* is, perhaps surprisingly, not always an
isomorphism. Using duality and the comparison between étale and de Rham
cohomology, one sees that this map is surjective if and only if j*(F) # 0, and it
is injective if and only if j*(F) spans the F-eigenspace for the Hecke operators
{T(x) : x € Of} acting on S, (U;(N), C). By Lemma 4.2.5 and Proposition 4.2.6,
if F is not an exceptional CM form, both of these conditions are satisfied and thus
Ny, (F)* — M, (F)* is an isomorphism.

Since F is cuspidal, the generalized eigenspace associated to F in the
cohomology Hg (Y (Mg, %”L(” )) is concentrated in degree 2. Hence, if K is a
finite extension of Q, and Oy s is a localization of Ok at some finite set of rational
primes § containing all primes dividing p A Nmp,q(2), then the Hochschild—
Serre spectral sequence allows us to regard prz as a map

H (Y Moy s, TSym* 1 A (A Q2 — ) — H (Ok s, My, (F)*(—))).

DEFINITION 4.4.6. For F an eigenform as in the previous corollary, and 0 < j <
min(k, k'), we define

AR = pry (AFg ") € H! (Z [ } Mz, (F)*(_j)>’

pA NmF/Q(‘ﬁ)
andfor M > landa € Op/(MOr + Z),

AR — AR Y e g 7| My (F)*(—=)) ).
ara =Dz (AR ) ) w DM ANy 0O L (F) (=)

COROLLARY 4.4.7. Let £ { M Nmp,o(N) be a prime, and suppose that either £
is inert in F, or £ is split and the primes above £ are narrowly principal. Then we
have the relation

normy’ (AFg;11.)
= o (6 — (1 = 2626 2(0)) — P(F, ¢ o)) - AR

where € F is the character of F.
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Proof. This is an immediate consequence of Theorem 3.5.3 (or of Theorem
7.1.3b, which we shall prove below). O

This definition and corollary complete the proof of Theorem A of the
introduction.

5. The complex regulator

. .. kK
We now evaluate the image of our motivic cohomology classes AF][m’)t g{] under

Beilinson’s complex-analytic regulator map. We shall follow [18] closely.

Throughout this section, we fix a Hilbert modular eigenform F of level 91 and
some weight (r, t), where r = (k + 2, k' + 2), and a number field L containing
the Hecke eigenvalues of F. We choose a square root of D in F, and normalize
our embeddings such that 6, (+/D) is the positive square root.

5.1. The Asai L-function. For any prime ¢, we define a local Euler factor by
Py(F, X) = det(l — X Frob," : M, (F)")

for any v 1 £. This lies in L[X] and is independent of the choice of v. It agrees with
the definition given (implicitly) in Proposition 4.3.4 above when £ { A Nmp o (97)
(in which case [, acts trivially).

DEFINITION 5.1.1. Define the primitive Asai L-function of JF as the product

Lai(F, ) =[] P(F, €97
4

This Euler product converges for R(s) > (k+k')/2 + 2; it has analytic
continuation to all s € C (except for a possible pole at s = k + 2 if k = k'’
and F is twist-equivalent to its internal conjugate JF°), and satisfies a functional
equation relating s with k + k" + 3 — 5. The form of the functional equation forces
L agi(F, s) to vanish to order exactly 1 at integers s € {1, ..., min(k, £")}, and
also at s = 1 4+ min(k, k') if there is no pole at s = k + 2.

It will be convenient to work instead with an ‘approximation’ to Lag; Which
is more straightforwardly linked to period integrals. We let x be the Dirichlet
character given by the restriction of the nebentype character of F to (Z/NZ)*,
where NZ = Mt NZ.
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DEFINITION 5.1.2. For n € N, let A(n) denote the 7 (n)-eigenvalue of F, and
a(n) = n~“*x(n). Then we define the imprimitive Asai L-function by

IAH:EI(‘F §) =L, 25 +2—k—k)- Za(n)n‘

n>l1

One checks that

?\T:El(]: S) - LAsal(f S) HC[(K A)

ON

where the ‘error terms’ C,(X) are polynomials; see [2]. Moreover, C,(X) always
divides P,(F, X).

PROPOSITION 5.1.3. If [k—Kk'| > 3, then ord,_,, ; L'\".(F, s) = 1 for all integers
Jwith0 < j < min(k, k').

Proof. We have seen that when k # k' the function L g, (F, s) vanishes to order
exactly 1 at all such s, so it suffices to check that the error term [ [, C,(£™*) is
nonzero at these values. However, a case-by-case check similar to [24, Proposition
4.1.3] shows that all zeroes of this error term have real parts in the interval
[(k+K')/2, (k + k" + 2)/2], and the assumption that [k — k'| > 3 implies that
this range has no overlap with the range we consider. O

5.2. Nonholomorphic eigenforms. We define Hilbert modular forms
antiholomorphic at 0, exactly as in Definition 4.1.2, but requiring that for
each g € G(Ay), the function F (g, —) on Hr should be antiholomorphic in T
and holomorphic in t,, and using (¢, 7, + d;)™"" in place of (¢;7; + d;)™" in the
definition of the weight (r, t) action.

Then the Fourier—Whittaker expansion of such a form J can be written as

x 0 _ —t 271 (601 ()T +02 () T2)
f«o 1)”) = Il 3l elarx, Fre :

acF™
01 (x)<0,02(a)>0

LEMMA 5.2.1. If F is a holomorphic normalized eigenform as before, then there
are unique antiholomorphic forms F™! (antiholomorphic at 6, and holomorphic
at 0,) and F™?* (holomorphic at 0, and antiholomorphic at 0,), of the same level
and weight as F, for which the Fourier-Whittaker coefficients c(x, ') coincide
with those of F fori =1, 2.
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Proof. We sketch the construction of F!; the construction of F*? is very
similar. Let € F* be any element such that 6, (n) < 0 and 6,(n) > 0. Define

Flg, 1) = —n“’f< (g ?) g, (617, 92(77)7—'2)>-

This is modular of the same level as F, and is independent of the choice of . A
straightforward computation shows that its Fourier—Whittaker coefficients are the
same as those of F. O

REMARK 5.2.2. If the fundamental unit of F has norm —1, we may choose 7n
to be a unit. In this case, the restriction of 7! to the upper half-plane H can
be described in terms of that of F: up to scalars, it is the pullback of F via the
map given by (71, ) — (1171, N2T2). However, if the fundamental unit of F has
norm +1, there is no direct relation between F and F! at the level of functions

on Hrp.

NOTATION 5.2.3. We write t*(F™™) for the C* function on H defined by T >
FU, (T, 7).

(This is naturally the restriction to H of a function on GL,(A;) x H
satisfying an appropriate automorphy property; but since Y; o (V) is geometrically
connected, no information is lost in treating it as a function on the upper half-
plane.)

5.3. The period integral. Letk € Z and @ € Q/Z, with o # 0. Fort € ‘H
and s € C with kK + 2Re(s) > 2, we define the Eisenstein series
J(7)*

EP(r,5) = (-2mi) a7 T (s +k) Y. T p—lrl

(m,n)eZ?

PROPOSITION 5.3.1 (See [24, Proposition 4.2.2]).

e Forfixedk,t,a, Etftk)(t, s) has meromorphic continuation to the whole s-plane,
which is holomorphic everywhere if k # 0.

o If Na = 0, then for a fixed s the series E®(z, s) is a C* function of T which
is preserved by the weight k action of I'| o(N). It is holomorphic in T ifk > 1
ands =0ors=1—k.

o We have
E"(1,0) = —2log|go«(7)l,
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where g, is the Siegel unit given in Section 2.2 of op. cit. (Note that there is a
sign error in [24]; the minus sign is correct.) ]

Applying the usual Rankin—Selberg ‘unfolding’ technique, one obtains the
following formula, which is the analogue in our present setting of [20, Equation

(3.5.3)1:

THEOREM 5.3.2 (Asai). We have

f CFEMY 0+ iy) ESYO (0 +iyes —k — Dy dx dy
IN(N\H

DI (s — k' — 1) Lim
T Nk 2542 Qk—k+2s (—i k=K p2s=k'=1 L psai

(F,s). O

(This integral was first studied in [2] in the case when k = k', 91 = 1, and F
has narrow class number 1. For a more general treatment see [16].)

REMARK 5.3.3. If 0 < j < K/, then as remarked above, we have L Agal(]: 1+)) =
O,and I"'(s —k'—1) has a 51mple pole at s = j+ 1 with residue (—1)/~* /(K — j)!.
Hence

/ P (x +iy) EUN "(x +iy, j —k)y dxdy
I(N\H

(_1)k,_jD(j+l)/2F(j + 1) d 1m
= N A N A N As'ju(f S)l\ 14+

NAHK=2) Qk=K+2j42 (k=K g 2j+1-K (k — j)! ds

5.4. The regulator formula. Let Xg — SpecR be a separated scheme, and
denote by MHMg (XR) the category of algebraic R-mixed Hodge modules on Xg
(see [15, 35, 36]). For Mx € MHMg(XR), define the absolute Hodge cohomology
groups

H;,(Xr, Mg) = R' Homymmg xg) (R(0), Mg).

For the properties of this cohomology theory, see [20, Section 2.3].

5.4a. The Hodge realization of M(F). Recall that we have defined de Rham
and Betti cohomology spaces Myr (F) and Mp(F) attached to F, which are four-
dimensional L-vector spaces. Via the comparison isomorphism Mg (F) ® C =
Mp(F) ® C, we can regard the pair (Mgr(F), Mp(F)) as defining a pure R-
Hodge structure M3, (F) (whose weight is k + k' + 2).
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Euler systems for Hilbert modular surfaces 33
As in [20, Section 5.4], cup product gives a perfect duality of (L ®¢R)-modules

H(R, My (F)(1 + j)) x H'(R, My (F)*(=j)) > L®R  (5.1)
for any j € Z, and we have
HOR, My (F)(1 + ) = Fil'™ Ma(F)e 08" My (F)™ """ € Myg(Fe.
Here F is the ‘infinite Frobenius’ (the endomorphism of Betti cohomology

induced by complex conjugation on the C-points of Y;(D1)).

PROPOSITION 5.4.1. For 0 < j < min(k, k') the space H*(R, My (F)(1 + j))
is free of rank 1 over L ®q R, and it is spanned by the class in Mqr(F)c of the
C differential form wx, + (—1)"" wx,, where

wr1 = (D) Qi) (1) a7k dZk dt do,

wry = (=D Qri) R F (1) df d7y dvi d,.
Here, 7! and F™? are as defined in Section 5.2.
Proof. The same argument as in [20, Section 5.4] shows that H (R,
My (F)*(—j)) is free of rank 1 over L ®¢ R, so the statement for H°R,
My (F)(1 + j)) follows from (5.1). The argument in Section 6.2 in op. cit.

generalizes immediately to show that wr; + (—1)*/wx, is a basis of this
space. O

5.4b. The Hodge Eisenstein class for GL,. We take N > 1 an integer, and we
write Y = Y o(N)g. On Y we have a natural Hodge module /7%, defined as the
Hodge realization of 7 (£), where £ is the universal elliptic curve over Y. We
write 77, : TSym* J% = TSym* /% ® C — TSym* /(1) for the map induced
by the projection C — R(1), z — (z — 2)/2.

PROPOSITION 5.4.2. The group H,, (Y, TSym* S (1)) is the group of
equivalence classes of pairs (¢, 0tqr), Where

to € I (Y(C), TSym" 3 @ €™)
is a €>®-section of TSym* (%) (1), and
ag € I' (Y, TSym" (Fil’ ) ® 2y, (C))
is an algebraic section with simple poles along C := X{(N) \ Y|(N), such that
V(ts) = m1(0tgr)-
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A pair (o, agr) is equivalent to O if we have
(oo, aqr) = (1(B), V(B)) for some B € I'(X,(N)g, TSym* (Fil’ #3)(C)).

After pulling back to the upper half-plane H, these can be described by
nonholomorphic modular forms. More precisely, the pullback of .77(" is the sheaf
of relative differentials on J = C x H over H, and is thus spanned by dz and
dz, where 7 is the coordinate on C.

DEFINITION 5.4.3. For r + s = k, let w®® be the € section dz” dz* of
Sym* 72/, and w""*) the dual basis of TSym"* .

PROPOSITION 5.4.4 [20, Proposition 4.4.5]. The class
Eisy, y € H; (Y1(N)g, TSym* & (1))
is given by (0o, 0gr) Where
— Nk k

oo 1= —— D (== NI@riY =D B (@, — juwt !
Jj=0

and
ag = N*E3 (r, =1 = k) (=27i) (r — D) w*Md.

5.4c.  The regulator. Let F be a cuspidal Hilbert eigenform, as before, of weight
(k+2, k' +2) and level . Since F is cuspidal, the maximal quotient of the Betti
cohomology space Hj(Y,(91)(C), TSym**"! 5%, (A)) on which the dual Hecke
operators act via the Hecke eigenvalues of F is zero for i # 2, while for i = 2 it
is Mp(F)*, and similarly for the de Rham cohomology. Hence the Leray spectral
sequence of absolute Hodge cohomology gives a projection map

Ay 7 H (Y; g, TSym“ (2 (A)r) (2 — j))
— H,,(Spec R, My (F)*(—j)).

the Abel-Jacobi map for M3, (F)(1 + j).
NOTATION 5.4.5. For0 < j < min(k, k'), we write

vCG[k,k’,jJ . [*(Sym(k,k’) %\/) — Symk+k’72j %v
for the dual of the Clebsch—Gordan map.

Downloaded from https://www.cambridge.org/core. UCL, Institute of Education, on 12 Dec 2018 at 12:39:45, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2018.23


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2018.23
https://www.cambridge.org/core

Euler systems for Hilbert modular surfaces 35

PROPOSITION 5.4.6. If[w] € H% (Spec R, M3 (F)(1+ j)) is the class of the C™
differential form w, we have the formula

1

(Al 7 (AR ). (0], o) = 2mi

f ('CGY T o ") () A e,
Y1,Q(N)

where o, is the differential form in Proposition 5.4.4.

Proof. See [20, Proposition 6.2.2]. L]

PROPOSITION 54.7. Let 0 < j < min{k, k'}, and let (0, agr) be the
representative for the Hodge Eisenstein class described in Proposition 5.4.4.
Then we have

(VCG%J{ Jl o L*)(WJ:,]) N U

_1VJ Nk =2
_ N 1)”\2’ ' <I;)k/!(27ri)k+2(t — D (FMN (1)

x ES (1, j —k)ydrdi
and similarly

(VCch’k Jl o L*)(w_;‘l) N U
(_1)k+k’+1Nk+k’72j

5 (];/)k!(eri)k%(r — DX (F™2) (1)

x E5 P (e, j — k) drdz.

Proof. See the proof of [20, Proposition 6.2.8]. O

THEOREM 5.4.8. If wr is the differential wx | + (—1)/ T @z, then we have

<AJ7-L,f(AF5{(Lki;ij])’ [@F ])Y1 o)
k'K d

— (_l)k/—j(2nl-)k+k/—2jD(j+l)/2 : . -
(k— DK — ) ds

L™ (F,s)

s=1+4j
Proof. By Proposition 5.4.7, we have

1 -1 ij+k’—2j k
— DrIAUoy = (27n')_]L< ,)k’!(zm')k+2
278 Jy, vy 2 J

x /(r — DR FMYOES (r, j — k) dr di.
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By Remark 5.3.3, the right-hand side is equal to

—1 _/+1Nk+k/72_i k
1 ( ) ( .)k/!(zni)k+2(2i)k+l
2 J
(_l)k/—jD(j+l)/21—v(j +1) d Limp
(k/ _ j)!NlH*k/ij Dk—k'+2j+2 (_i)k*k’n2j+lfk’ % Asai

(—D¥ Tk 2 i )k K =2 pU+D/2

Qri)”

(]:v s)|s:1+j

imp
X _LAsai(]:a s)|s:1+j-

2(k — PHIK — j)! ds
Since a., is real-valued, and @, is the complex conjugate of @wr ;, we must
have
1 i
— (@r )+ (1) " @Tr) N =2 X =— TF1 N U,
271 Jy, qv(©) 271 Jy, qv(©)
so we obtain the stated formula. O

imp,/

COROLLARY 5.4.9. If the Asai L-value L, ;. (F,1 + j) is nonzero, then the
ot 51 (Y19, 7, (2)

momt 10 the F-isotypical component of H}

projection of AF
is nontrivial.

ot

Proof. Clear, since the Hodge Asai—Flach class is defined as the image of the
motivic Asai—Flach class under the Hodge realization map, and we have just
shown that this Hodge Asai—Flach class is nontrivial. 0

5.5. Injectivity of regulators. The following conjecture is due to Bloch and
Kato, and (independently) Jannsen:

CONIJECTURE 5.5.1 [5, Conjecture 5.3(1)]. Let X be a smooth proper Q-variety.
Then, for any prime p and integers m, n with m % 2n, the étale realization map
gives an isomorphism

HIL(X, Q) ® Q, — H}(Q, HI ™' (Xg, Q,()),

where Hg1 (Q, —) is a subspace of H'(Q, —) (defined by local conditions as in
Definition 5.1 of op. cit.).

Our elements are defined using nonproper varieties, but for certain weights
we can lift them to proper ones using work of Wildeshaus, as follows. Suppose
(k, k', j) are integers such that the following conditions hold:
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Euler systems for Hilbert modular surfaces 37

o k. kK >1;

e k= k' mod 2;

e 0 < j < min(k, k');

e cither k # k' or j > 0.

Let F be an eigenform of level 91 and weight (k + 2, k' + 2, ¢, '), for some
appropriate ¢, t', where 91 is such that U;(2) is sufficiently small. For simplicity,
we suppose that F is new of level 91, and that the narrow class number of F is 1.
Let L be the coefficient field of /.

Choose a smooth compactification A" of A", where r = k + k’. (These exist,
and can be constructed using the theory of toroidal compactifications of mixed
Shimura varieties; see [40, Section 4].)

PROPOSITION 5.5.2. With the above notations, suppose that Conjecture 5.5.1
holds with X = A", m =3 +r,andn = 2 + r — j, for some prime p; and

suppose also
d -
— Liwi(F, 0.
ds Asal( S) . #
Then the étale Asai—Flach class is nonzero in H'(Q, My, (F)*(—j)), for each
finite place v | p of L.

Proof. The inclusion A" < A" induces a pullback map

HX¥ (A, LQ+r — j) — H¥(A LR +7 — ).

mot mot

As in Remark 3.2.5, the group HJ (Y#(O), TSym**1.7 (A)(2)) can be

regarded as a direct summand of H>!"(A", L(2 + r — j)). It is shown in [40,
Corollaries 3.13 and 3.14] that under the above conditions on (k, k, j), this direct
summand lifts canonically to a direct summand of H3 (A, L2 4+ r — j)), for
any choice of the smooth compactification A”. Since this lifting arises from a
direct sum decomposition of motives, it is compatible under the étale regulator
with an analogous lifting in étale cohomology. In particular, Wildeshaus’ results,
together with the case of Conjecture 5.5.1 that we have assumed, imply the

injectivity of the map
H3 (YO, TSym* 1 27 (A) Q2 — j)) ®. L,
— H'(Q, H2(Y; (M), TSym* 1 577 (A) (2 — j))).

Since F is new and the narrow class number is 1, we may find a Hecke
correspondence T'r acting on Y;*(91) which acts as the identity on the Hecke
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eigenspace corresponding to JF, and as O on all other Hecke eigenspaces at level

1. We consider the motivic cohomology class T - AFLEI By the computations

mot, D
of the previous section, if the L-value does not vanish, we have T~ - Fl[ﬁof g’t] # 0;

hence Tr - AFgff]}t’ Vis also nonzero under our present assumptions. However, this
class projects to 0 in all Hecke eigenspaces other than the F-eigenspace, so if it
is nonzero, it must map to a nonzero element in H'(Q, M, (F)*(—j)). ]

This proposition, combined with Proposition 5.1.3 which gives a sufficient
condition for the nonvanishing of (d/ds)L}w(F, s), proves Theorem D of the
introduction.

REMARK 5.5.3. It seems reasonable to expect that the Asai—Flach elements still
lift naturally to a compactification, even for the small weights not covered by
Wildeshaus’ results; compare [7, Section 8-9] in the Beilinson—Flach case.

In the base case k = k' = j = 0, the Asai-Flach elements lie in the
group H> (Y} (D), L(2)) = H (Y (M), Z(2)) ®z L. A theorem of Suslin [38,
Section 4] shows that the étale realization gives an injective map

Hyo (YY), Z(2)) ® Z/p'L — Hu(Y; (M), Z/p"L(2)),

for any r > 1. However, since we do not know if Hrflot(Y (), Z(2)) contains

p-divisible elements, this is not enough to conclude that the étale Asai—Flach
elements are nonzero.

6. Asai-Iwasawa classes

6.1. Integral coefficient sheaves. As noted in Remark 3.5.4 above, the theory
of relative motives only works well if we take the coefficient ring to be a Q-
algebra; but the theory of étale sheaves has no such restriction.

DEFINITION 6.1.1. Let p be an odd prime, S a regular scheme on which p is
invertible, and .4/S an abelian variety; and let L be a finite extension of Q » With
ring of integers R. We define a lisse étale sheaf of R-modules on S by

Hi(A) := R ®z, (R'(14).2,)",
where 4 : A — S is the structure map.

If we are given an action of O on A by endomorphisms—as in the case of the
abelian varieties A(U*) over Y*(U*)—then the sheaf .77% (A) is in fact a sheaf of
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Euler systems for Hilbert modular surfaces 39

R ®z Op-modules, with the Or-module structure given by pushforward via the
endomorphism action.

We now suppose that p is unramified in F, and that F embeds into the
coefficient field L. Then R ®z Or = R @ R via the embeddings 6, 6,, and we
obtain a direct sum decomposition

Hr(A) = A (A @ Hr(A)P

where (as before) 7#%(A)® denotes the subspace where pushforward by [x], for
x € Op, acts as multiplication by 6, (x).

DEFINITION 6.1.2. We define
TSym* 1 4 (A) := TSym* 74 (A)D @ TSym" % (A)@.

Note that after inverting p this becomes isomorphic to the étale realization of
the relative Chow motive TSym”“kJ 4 (A) defined above.

6.2. Lambda-adic sheaves. We shall now define sheaves of Iwasawa
modules, and maps between them, which are ‘A-adic interpolations’ of the
étale realizations of the relative Chow motives defined in the previous section.
This construction is the analogue in the Asai setting of the constructions of
[21, Section 5.1].

DEFINITION 6.2.1. For A/S as in Definition 6.1.1, and  : § — A a section, we
define

Ar(A()) = lim*[p'.(Z/ p'Z)

r

as an inverse system of lisse étale sheaves on S, where [p"] : A — A is the
p"-multiplication map. If t = 0 we write simply Az (A).

As in [19, Section 2.3], the sheaf Az(A) may be interpreted as the sheaf of
Iwasawa algebras (with R coefficients) associated to the sheaf of abelian groups
A7, (A). It has the following universal property: any map of sheaves of profinite
sets e%ﬂz,, (A) — F, where F is a sheaf of R-modules, extends uniquely to a
morphism of sheaves of R-modules Az(A) — F.

In particular, if A = A(U*) for some U* C G*(z), or if £ = Ag(Ug) for
Ug C GL, (Z) (with U*, respectively Ug, being sufficiently small), then we have
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moment maps ([19, Section 2.5.2], see also [21, Proposition 4.4.1])

mom’ : Ag(£) — TSym* J4(E),
mom®*1 : Ap(A) — TSym**! %4 (A),

for any k > 0, respectively any k, k¥’ > 0.

If Ug = U*NGL,(A ), then there is a natural map of sheaves of sets 77, (£) —
(A, (A)) on Yo(Ug), so we obtain amap Ag(E) — *Ag(A). It is easy to see
from the definitions that the maps just defined fit into the following commutative

diagram:
mom*+~ , ,
Ar(&) TSym*™ S (E) — TSym* J4(E) @k TSym* 4 (E)
. mom*+ . kK]
" Ag(A) ¢ TSym™" 2% (A).

6.3. Cyclotomic twists. We now extend the above construction to include a
Tate twist. For j € Z>(, we define

ARV = Ap(A) ©r TSymi " S (A).
For integers k, k' > j there is a map

mom**1 : Ag(A)VI — TSym“*1 74 (A)
defined as the composition

] moml =i =il @1
—_—

A(A TSymi ! e (A) @ TSymif " A (A)
— TSymi“! S (A)

where the second map is given by the product in the symmetric tensor algebra.
This is analogous to the definition of the moment map mom* in [21, Section 5.1].

PROPOSITION 6.3.1 (See [21, Proposition 5.1.2]). Let j > 0. There is a
morphism of sheaves on Yo(Uq)

CGY': AR(€) = F(AR(AU(=j))
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such that for all integers k, k', j with 0 < j < min(k, k') we have a commutative
diagram

) s
momk+k —2j

Ar(E) TSym* =2 (J#z)

CGU C Gk, i1

mom!%¥1

AR (=) TSym™ 1 524 (A) (— ).

Note that C GU1 satisfies the commutation relation
R'(n) o CGY' = n* CGY' o R'(n) (6.1)

for n € Z,, where R'(n) is the operator corresponding to pushforward via the
n-multiplication map on .4 and £.

6.4. Asai-Iwasawa classes for Hilbert modular surfaces. We now define
Asai-Iwasawa classes, which are cohomology classes taking values in the A-adic
coefficient sheaves of Definition 6.2.1. Their function is to p-adically interpolate
the Asai—Flach classes of the previous section as the parameters k, k' vary.

Recall that for integers N > 4, and ¢ > 1 with (¢, 6pN) = 1, we have the
Eisenstein—Iwasawa class [21, Section 4],

Ly € Hy(Y1(N), Az, (E(ty)) (1),

where ¢y is the canonical order N section. By applying the N-multiplication map
[N]: Ag, (Elty)) — Az, (£), and base-extending to R, we may regard this class
as having coefficients Az (E)(1), for any ring R as above.

REMARK 6.4.1. As with the motivic Eisenstein class considered above, the
Eisenstein—Iwasawa class depends on a choice of b € Z/NZ — {0}, and the class
is denoted by .£Z,, y in op.cit. to emphasize this dependence, but we fix b = 1
here and drop it from the notation.

DEFINITION 6.4.2. Let 9t < O be such that U (N) is sufficiently small, and let
N =NZ as usual. For integers j > 0 and ¢ > 1 with (¢, 6pN) = 1, we define
the jth Asai-Iwasawa class by

AL = (1, 0 CGYN(ETy) € Hy(Y; (M), Ar(A) Q2 — j)).
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Now let M > 1 be an integer. Via pullback along the natural map Y*(M, ) —
Y (1), we may regard L..AIEJQ] as a class in Hgt(Y*(M, M, Ag(AQ2 — j)). If
M | M, then the variety Y*(M, 91) has an action of the operators u, = (} ¢) for
a e OF/MOF

DEFINITION 6.4.3. Let M > 1 and let 0N < OF be divisible by M. For suitable ¢
as before, and a € Op /MOy, we set

AT = ) (CATE).
(Thus AT = ATV )

Since the operator u, for a € Z commutes with its namesake on Yo (M, N), and
the latter operator stabilizes .£Zy, we conclude that the class C.AIE\’} om.q actually
only depends on the image of a in the quotient Or /(M Or + Z).

Finally, we make the following definition:

DEFINITION 6.4.4. Let M > 1, and let 9T < OF be such that U (N) is sufficiently
small (but we do not assume now that M | 91). We define the A-adic Asai—Flach
class

L-A}_%],m,a = (SM)*(C‘AI%],MW,H) < Hg(Yl*(m) X Wags Ar(A2 = 1)),

where sy @ Y*(M, M9 — YO x uj, is the ‘twisted’” degeneracy map
introduced in Section 3.5 above.

From Proposition 6.3.1 and the basic interpolating property of the Eisenstein
class .£Zy [21, Theorem 4.4.3], we have the following interpolation formula:

THEOREM 6.4.5 (Interpolation in &, k’). For any integers 0 < j < min(k, k'), we
have _ . N
mom!*¥! (L.AIE{K]) = (? = Mk (c))AFg;’&’”

and
kK’ [j] 2 2j—k—k' 2 [k,k',j]
mom™*! ((AF 5 ) = (& = ) AF o

where o, is the Frobenius as defined in Section 2.4b.

(Note that 2j — k — k' < 0, so the factor in brackets is always nonzero.) Thus,
these classes interpolate the étale images of the motivic Eisenstein classes, for
varying k and k" but a fixed j. We shall see in due course that these classes can also
be interpolated p-adically as j varies, but this will need some further preparation
and we delay it until Section 8 below.
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REMARK 6.4.6. A slight refinement of the construction is also possible. The
abelian variety A/ Y; (1) has a canonical Of-linear map N~! /O — A[MN] (the
universal level U} (91)-structure). In particular, if n > 1 is an integer dividing )1,
then the image of 1/n (mod OF) defines a canonical section #, of A; and we
may lift CAI%], respectively . AF Elfl]‘ﬂa to classes with coefficients in Ag(A(z,)),
whose images under [n], are the classes defined above. This refinement should
be useful in studying variation in Hida families. We shall not pursue this here,
however, in order to avoid adding yet more subscripts to our notation.

7. Norm relations

In this section, we prove some norm-compatibility relations for the A-adic
Asai-Iwasawa and Asai—Flach classes defined in the previous section. We shall
state these in pairs, consisting of a norm relation for the classes C.AI%],mﬂ and
another for the classes . AF %]ma In each case, it is the version for the .AZ
which we shall actually prove, but the version for the ..AF which will be useful in
applications; the only function of the ‘..AZ versions’ in our theory is as a stepping
stone towards the ‘. AF versions’. (This is exactly parallel to the roles played by
the classes ,RZ and .BF in [21].)

7.1. Statement of the theorems.

The first norm relation: changing 0. Our first two theorems deal with changing
the level 1. Compare [24, Theorems 3.1.1 and 3.1.2]; [20, Theorem 5.3.1].

THEOREM 7.1.1a (Level compatibility for .. AZ). Let M > 1, M an ideal divisible
by M, La prime ideal of OF, and £ > 1 the rational prime lying below . Then the
image of C.AIE"} i.q Under pushforward along the natural projectionpr,  : Y*(M,
IN) — Y*(M,N) is given by

AT .0 ~if €[ Nmg(O),
(1 — YR (00 ) ALY, otherwise.

THEOREM 7.1.1b (Level compatibility for .AF). Let M > 1, N an ideal of OF,
L a prime ideal of OF, and £ > 1 the rational prime lying below . Then the image
of (AF 5"4] im.q Under pushforward along the natural projection pry ( : Y(I91) x
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wy — Y x s, is given by

AF G ~ift] M-NmgO),
(1= YR (00, D) ATy, otherwise.

We shall prove Theorem 7.1.1a in the next section. To deduce Theorem 7.1.1b,
we simply apply Theorem 7.1.1a with (M, 1) replaced by (M, M*1), and note
that the map (s,), commutes with the actions of the operators R’'(£), (£), and o,.

The second norm relation: changing M (wild case). The next pair of theorems
deal with the significantly deeper question of changing M (and thus the
cyclotomic field over which the Asai—Flach elements are defined).

For a € Z,, let pr, , denote the degeneracy map Y*(aM,M) — Y*(M, M)
given by the matrix (¢ ).

THEOREM 7.1.2a (Cyclotomic compatibility for .. AZ). Let M > 1, let £ be prime,
and let M be an ideal of OF divisible by (M. Let a € Op/((MOr + Z), and
suppose that a is a unit at € (that is the image of a generates Op/((Of + Z)).
Then

Bty ) (AT 1) = U'© - (AL .0) felM,
p 2,67*%\c LM, MN,a (U/(E) _ EjO]g) . (CAI%]!m’a) lfﬂ’fM

The corresponding statement for .. AF is considerably simpler. The natural map
Wiy — Mg, corresponds to the inclusion Q (i) C Q(ptenr), so pushforward along
this is simply the Galois norm map. Then we have the following relation:

THEOREM 7.1.2b (Cyclotomic compatibility for .AF). Let M > 1, let N be an
ideal of Or, and let £ be a rational prime such that £ | N. Suppose a is a generator
of Or/(LOr + Z). Then we have

/ [j] .
normQe) (LAFU ) = U'0) - (AFm.0) ife| M,
Q(um) \€ M Na) — / J [j] .
U') = tioy) - ((AFjwa) ifLIM.
Just as before, Theorem 7.1.2b follows readily from Theorem 7.1.2a, but with

the important caveat that we need to assume that £ | 1 in order for the Hecke
operator U’ (£) to commute with (sy;)..
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The second norm relation: changing M (tame case). We now come to the most
intricate, and most important, of our norm-compatibility relations, where we
introduce a new prime to M which does not divide N.

THEOREM 7.1.3a. Let M > 1, M <« O an ideal divisible by M, £ a prime which
does not divide Nmp,q(N), and a € Op/(UMOp + Z) which is a unit at {.
Suppose also that one of the following holds:

(i) Lisinertin F;
(ii) ¢ is split in F and the primes |, [ above { are narrowly principal.
Then pushforward via the composition pr , opArM D Y*UM, ) — YR (M, )
maps (AL o, , 10 the class
o (6 — 1A — YR (©0, %) — P/t o, D] AT 5 s
where P/(X) is the operator-valued Asai Euler factor of Definition 2.7.1.

We shall, in fact, only use case (i) of this theorem in the present paper (since
primes inert in F will suffice for our Euler system arguments). Hence, we shall
not give full details of the proof of case (ii), although we include the statement
(and a brief sketch of the proof) for the sake of completeness.

The ‘. AF version’ of this is the following, which is the fundamental Euler
system norm relation for our A-adic classes:

THEOREM 7.1.3b. Let M > 1, < O an ideal, £ a prime which does not divide
M -Nmg,q(N), and a € Op /(UM Op + Z) which is a unit at £. Suppose also that
one of the following holds:

(1) Lisinertin F;
(i1) £ is split in F and the primes |, [ above € are narrowly principal.

Then the Galois norm map normgﬁl’jﬁg) maps JAFY) o . to the class

Col(€ — 1)1 — R 0072 — P o7 - (AF Y s

where P;(X) is the operator-valued Asai Euler factor of Definition 2.7.1.

It is Theorem 7.1.3b which will furnish us with Kolyvagin derivative classes
in order to bound Selmer groups. As will be clear by this stage, Theorem 7.1.3b
follows immediately from Theorem 7.1.3a.
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REMARK 7.1.4. All of the above norm-compatibility relations also hold (with
exactly the same proofs) for the refined elements mentioned in Remark 6.4.6
above, as long as we restrict to values of 91 divisible by the auxiliary integer n.

7.2. Proof of the first norm relation.

Proof of Theorem 7.1.1a. Let N be the positive integer generating 1 N Z, so that
£ | N if and only if £ | Nmf,q(91). Recall from [21, Theorem 4.3.2] that if pr, , :
Yo(M,{N) — Yo(M, N) is the natural projection coming from the inclusion of
congruence subgroups, then

ETy ife| N,

ELiy) = Y
pry e (c€Len) (I—R’(E)(EO ZOI> )ngN otherwise.

Here (‘(_J1 [91) is considered as an element of the upper-triangular Borel subgroup
of GL, (Z), which normalizes Ug(M, N) and thus acts on Yo(M, N).

Now let N’ be the positive integer generating (91 N Z; we must have either
N’ ={N or N' = N, and the latter case can only occur if £ | N. We fix a lifting

of a to an element of O /M Oy, and consider the commutative diagram

Yo(M, Ny £228 y*(M, 1Y)

Prl,?l \pru

Yo(M, N) 2425 v=(M, ).

(The left vertical arrow is either pr, , or the identity, depending whether N’ = N/
orN'=N.)

By definition, we have (AZy 0q = (Uay © Ly © CGYNY(.ETy), and similarly
L'AIM,[‘J'I,a = (ua* Olyo©0 CG[j])(cEIN’)-

Because the diagram is commutative, and the Clebsch-Gordan map CGUY! is
compatible with the pr, maps (since these act as the identity on each fibre of the
abelian varieties), we have

Py (LAI%]WQ) = (PI} [, Ollqs O Ly O CGYNET, y
= (Uge 0ty 0 CGY'o Pry o) EL N

If £ | N, then N and N’ have the same prime factors, so this is simply
(ua* Olyx O CGUJ)chl,N = C'AI%]O’[“
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In the case ¢ { N, we have N’ = ¢{N. The action of the centre of GL,(Z/NZ)
commutes with t,, u,, and CGU!, and the same is true of R'(£) up to a factor of
£7% arising from the Clebsch-Gordan map (see equation 6.1 above). Since we

have
' 0\ .
(0 K—l> = (¢ ])0452

as automorphisms of Y*(M, D), this gives the result. O

7.3. Proof of the second norm relation. We shall now prove Theorem 7.1.2a,
following closely the arguments of [21, Section 5.4].
We fix M, N, £ and a as in the statement of the theorem, and we fix a lifting of
a to an element of O /LM Op. As usual, we let N be such that MNZ = NZ. We
write
tua : YoM, N) — Y*(M,)

for the composition u, o ¢, and similarly for ¢,y o .. Furthermore, we define
LMy Ma - YQ(ZM: N) — Y* (M), M)

to be the composite of iy m, with the natural projection Y*({M,MN) —
Y*(M (), ).

LEMMA 7.3.1 (see [21, Lemma 5.4.1]). The map ty ) m.q 1S a closed embedding.
If €| M, then the diagram

Yo(eM, N) 208y (pa1(), 1)

P Py (o)
LM,‘J’I,a %
YoM, N) ————— Y*(M, M)

is Cartesian, where the vertical maps are the natural degeneracy maps.
Proof. The image of ¢y, m . is the modular curve of level
GLy(Aj) Nu, ' U*(M(€), Wyu,,.
An easy computation shows that this intersection is precisely those (; ;) € GL, (Z)

such that
r+at s+au—r)—a’t — 1 mod M M
t —at +u o N N
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and since we are assuming £M | 91, we conclude that t = 0, u = 1 mod N, r =
1 mod M,ands +a(r —1) =0 mod £¢M, sothata(r — 1) =0in O /(UM + Z).

Since we assumed that a generates Or/((M + Z), it follows that r — 1 is
divisible by £M, and hence also that s is divisible by £M. So the intersection is
equal to Ug(M, N), and ¢y ;.4 1S an isomorphism onto its image, as required.

To obtain the Cartesian property in the case £ | M we simply compare degrees:
both horizontal maps are injective, and both vertical maps are finite étale of degree
£2, so we are done. O

We now consider the omitted case £ f M. Let a be the unique element of
OF /€M such that @ = 0 mod ¢ and @ = a mod M. Then the following is easily
verified:

LEMMA 7.3.2. Let y : Yo(M(£), N) — Y*(M(£), M) be the diagonal map
composed with the action of (} ). Then, the following diagram is Cartesian:

L as
YolM, NY U Yo(M(€). N) Y020 Y] yearp) oy
(PArl,ev ﬁrl,(i)) 15r1,<e)
Yo(M, N) WNa |y, ).

O

With these ingredients in place, the proof of the Theorem 7.1.2a proceeds
exactly as in [21, Theorem 5.4.4]:

Proof of Theorem 7.1.2a. We first consider the case £ | M. In this case, the
cartesian diagram of Lemma 7.3.1 shows that the pushforward of LAI% v.a along
the degeneracy map Y*(M£, M) — Y*(M(€),N) is equal to the pullback of
CAI%],N,,, along the natural degeneracy map Y*(M (£), N) — Y*(M,N).

Hence the image of CAI% v.q under (pr, ,), is equal to the image of C.AIE&,] N.a
under the composition (ﬁrz,(l))* o (Pry )" where

ﬁrl,(Z)’ PArz,(z) YT M@, N) — Y (M, N

are respectively the natural degeneracy map and the ‘twisted’ degeneracy map
induced by (! ,). This composition (Pry,(¢))« © (Pry )" is exactly the definition of
the Hecke operator U’(£).

In the case £ 1 M, the same argument using Lemma 7.3.2 shows that

u') - cAI%],N,a = PArQ,e*(CAIEiQLN,a) + (I)Ar2,<e)* oY« 0 CGUJ)(CEIN)'
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One checks that there is a commutative diagram

Yo(M(€), Ny —Y— y*(M(&), M)
PArz,(e) PArz,(E)
Yo(M, Ny —2N-Cle yepr omy.

and by [20, Theorem 4.3.3], the left-hand pArzm sends .£Zy to itself, but induces
a factor of £/ in the Clebsch-Gordan map (since it acts as an isogeny of degree ¢
on the elliptic curve £). This gives

(ﬁrz,(e)* O Yx0 CGUN(ELy) = (tm N e-1ax © ﬁrz,(e)* o CGYN(.ELy)
=/ (tp N e-1ax © CGYo ﬁrzﬁ(E)*)(cSIN)
= Ej (LM,N.[*Ia* o CG[j])(CEIN)
= ¢/ ATV =lo, - ALY O

M,N,t"ta M,Nt"la®

7.4. Proof of Theorem 7.1.3a (inert primes). Rather than attack Theorem
7.1.3a head-on, we shall attempt to deduce it from other simpler norm relations,
using compatibilities in the Hecke algebra (the strategy introduced in [25,
Appendix]). We first introduce some notation.

Let M be an integer, and 91 an ideal of O divisible by M, as usual. Let a be a
prime ideal of OF with a totally positive generator «. Then, as well as the obvious
degeneracy map

pr, : Y*(M,aN) — Y*(M, N)

whose effect on Asai—Iwasawa elements was studied in Theorem 7.1.1a, there is
a second degeneracy map

Pry, : Y*(M,aN) — Y*(M, N)

given by 7 — ot on Hp.

(The former map was denoted previously by pr, ., since it is independent of o
and makes sense whether or not a is narrowly principal; but when a generator «
exists, we use the alternative notation pr, , for this map, for harmony with pr, ,,.)

For a € Z, we also have maps Yo(M,aN) — Yo(M, N) defined similarly,
which we denote by the same symbols pr, ,, pr, .

PROPOSITION 7.4.1. Let M | N be integers, and let £ be a prime. Then
the Eisenstein—Iwasawa classes on Yo(M,{N) and Yo(M, N), considered with
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coefficients in Ar(E)(1), satisfy the relation
LR'(E) - EIy ift|N,

(prz,[)*(cgl'lN) = ﬁR’(f)(l _ Rr(z)(e_l g—l) ) . CSIN lfe’fN

Proof. Thisis [21, Corollary 4.3.6]. (Note, however, that in op. cit. the class .EZ y
is considered to have coefficients in Az, (E(ty))(1), so we must apply the map
[N]. to obtain classes in Az, (E)(1); since we are comparing classes with two
different values of N this introduces a factor of R’'(¢) which is not present in
op.cit.) O

COROLLARY 7.4.2. Let M > 1, Mt < O divisible by M, and £ prime. Then

(Pr ) AT 1m.0)
R - AT ifem,
TR @ 0 = R (007 - AT, if .

Proof. This follows from the previous proposition and commutativity of
pushforward maps around the diagram

Yo(M, ZN) —— Y*(M, )
pr, . Pry,
YoM, N) —— Y*(M, ).

(The ¢/ factors appear because of the failure of the map C G/ to commute with
pushforward via isogenies, exactly as in the GL, x GL, situation; cf [21, proof of
Theorem 5.4.1].) O

Proof of Theorem 7.1.3a for £ inert in F. We shall now prove Theorem 7.1.3a in
the inert case. We are interested in the image of AZ'/! im.03.q Under the map
Y(EM, 690 2245 v (M, ey 2 Y (M, M.

By Theorem 7.1.2a (applied with (¢, M, 1) replaced by (£, M, £01)), we know
that

ﬁrz,e*( AI(ZM o, a) = (U'(t) — t/oy) 'CAI%],em,a'
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A double coset computation (using the fact that £Op is a prime ideal) shows that
Pry ¢4 © U')=T'(0)o Pry o« _(£_1> O Pry gy - (7.1)
Hence we have
(pry ¢ Oﬁrz,e)*(cAIEz]/‘tL.m,a) = [pry 4, © (U'(0) — /o)), AI%]EYJ'M:
=[(T'(6) — EJUZ) Priee =€) Py AT, o o

Substltutlng the formulae for pr, ,, (c.AT M o) from Theorem 7.1.1a, and for

pry o (AL M im.o) from Corollary 7.4.2, and rearranging, we obtain the theorem.
O

7.5. The case of split primes (sketch). For completeness, we sketch the proof
of case (ii) of Theorem 7.1.3a, in which £ is split in F" and the primes I, [ above ¢
are narrowly principal. Thus, there is a totally positive element A such that [ = (2),
[ = (%), and Ax = £. We fix, for the duration of this section, a choice of such a A.

THEOREM 7.5.1. For any a € Or/(MOr + Z), the following relation holds,
modulo p-torsion if £ = p:
P2 5k (rAI%],m.a)
CIR'(MW) U ) - AT i,
=30, TR ONT'G) — a7 TR GY - () U OATY o i T M but LN,
o7 TR ONT' M) — o7 TR Q) - (Y T CATY LT

Proof. This is virtually identical to the proof of Theorem 5.5.1 of [21] (which is
the ‘degenerate case F = Q & Q’). O

REMARK 7.5.2. Note that A is only well-defined up to multiplication by O;™.
However, the validity of the theorem is independent of the choice of A, since
replacing A with aA for @ € OF" has the effect of acting on both sides by the
operator (2

Proof of Theorem 7.1.3a for £ splitin F. Asin the inert case, we need to compute
[pry 4. o(U'(0) = 00 ALy i -
We factor pr, , as the composite pr, ; opr, ;, and similarly U'(£) = U'(MU'(L).
Using the analogues of (7.1) with A and A in place of ¢, we obtain
pry o, o(U'(0) — tloy) = (T'() — /o) pry y — (A" ") T'(A) pry,, PLy 5,
— (AT’ Pry s PT2 54 +(7") Pry gy -
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The effect of each of these four degeneracy maps Y*(M, £9) — Y*(M,IN) on
the Asai-Iwasawa element has been calculated above: pr, , by Theorem 7.1.1a,
pr,, by Corollary 7.4.2, and the cross terms pr,, opr,; and pr,, opr,; by
Theorem 7.5.1. Combining all of these ingredients and rearranging gives the
theorem. O

REMARK 7.5.3. Since the results of this paper were initially announced, a
strengthened form of Theorem 7.1.3a has been proved by Giada Grossi (in
preparation); this shows that the assumption that the primes above £ are narrowly
principal when ¢ is split is not needed, and the assertion in fact holds for any
prime £ { Nmy /() unramified in F.

8. Cyclotomic twists

Our next goal is to show that the Asai—Flach elements can be interpolated as
the twist parameter j varies. Recall that we defined

{1 . {1
CA’Fn{,‘J'I,a = (sm)*C’AIni,m‘ﬂ,a

where the map
Syt Y*(m, mO) — Y (N) x u,,

is given by the action of (7" 9).

8.1. Compatibility with cyclotomic twists. We now set M = p’. It is clear
that s, induces a map on the torsion sheaves 7€, , = % (A)/p" 7z (A).

NOTATION 8.1.1. For x € {&, A}, write from now on ) = TSym* 7.,
and A,, = A(I.,). Write x, and y, for the order p" sections of F., over
Yo(p', p'N) (if x = &), respectively over Y*(p", p"N) (if x = A).

REMARK 8.1.2. The sections k*(x 4) and «*(y 4) agree with the images of x¢ and
ve under the map

H(Yo(p', p'N), He,) — H(Yo(p', p'N), k*Hr,)
induced by the injection 7z, < k*. 4.

REMARK 8.1.3. On HO(Y*(p", p'90), TSym“*1 52, ), the map (1), = (u_y)*

1 k=il o [0 K11 [l [k—i] 1 K-
sends X3y, " @ x4y tox vy @ (x4 —ay )y,
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THEOREM 8.1.4. The following diagram commutes:

Hy(Y(p", p'N), Ag (1)) e’ Hy(Y (p', p"N), AZT(1)
CcGU! (a —a)j!

Hy(Y(p", p'N), AG (1 = ) Hy (Y (p", p'N), " AG 7N (1))
Ly Ly

Ha(Y*(p', p), AL @2 = j)) Ha(Y*(p", p'9), A7 (2))
(u4)+ (4«

Hay(Y*(p", p'?), AY7'2 — j)) Ha(Y*(p", p'M), A7 (2))
() CON

HY (Y (O x s, A% 2 - V¢ HA(Y, () x sy, A%7(2)).

Proof. The proof is basically identical to the proof of [21, Theorem 6.2.4]. O

COROLLARY 8.1.5. We have
(@ —a) j!0 @ mom"™ ) (AFW )= AF @y O

prN.a,r pr.Ma,r

8.2. Cyclotomic twists of Asai-Flach elements. Note that for any integers
0 < j < min(k, k') we have maps

id@mom!/! : A, ® A, — AV,
mom{* ¥ @id : AV — (TSym!™ 471 5 ) @ (TSyml 7! 24 ).

We write mom—/¥~/1.id for the composition of mom~/*~/1®id with the
symmetrized tensor product map

(TSym* ™ ) @ (TSym ) Aoy ) —— TSym") Ao,

Denote by u the natural morphism of sheaves A4, — A4, ® A4, .
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LEMMA 8.2.1. For all 0 < j < k, we have the following identity of moment
maps:

L . k\ (K /
(mom®* "+ id) o (1 ® mom/) o u = ( ) < ) mom!**7
J J

Proof. See [21, Lemma 6.3.1]. I

DEFINITION 8.2.2. Let ¢, := lim,_ U'(p)" be the ordinary idempotent

attached to U’(p); and let A (—j) be the Iwasawa algebra of Gal(Q(u,~)/Q),
with Gal(Q/Q) acting by the inverse of the canonical character j, as in [21,
Notation 6.3.3].

THEOREM 8.2.3. For any prime p = 3, N an ideal with p | N, m > 1 an integer
coprime to p, and ¢ > 1 coprime to 6 pm Nmp,o(N), there is a class

EAFmA,‘ﬂ,a € H;(Yl*(m) X /’Lfna AR(%A) ® AF(2 _.]))
such that

(mom™*! @ mom?.) (CAF p.01.a)
GZ)M
c —\ i (k) (K
(@—a)j1()(;)

Proof. Analogous to the proof of [21, Theorem 6.3.3]. O

= (1= p/ U o,)(c* — e

9. Iwasawa theory

9.1. Iwasawa cohomology classes for ordinary eigenforms. Let F be an
eigenform, with eigenvalues in some coefficient field L and weight (k + 2, k' + 2,
t,t'), with k, k' > 0. Let p be a prime dividing the level 91, and unramified in
F/Q.

DEFINITION 9.1.1. We say that F is ordinary at p (with respect to some choice
of prime v | p of L) if its eigenvalue o, (F) for the Hecke operator U(p) :=
p~“HOU(p) is a unit at v,

The normalization factor p~“*" corresponds to the difference between the
Hecke operators I/ (p) on G and U (p) on G*, see Proposition 4.2.2.
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THEOREM 9.1.2. If F is an ordinary eigenform, then for any m > 1 coprime to
D, and any ¢ > 1 coprime to 6 pm Nmy,q(N), there exists a class

CA’FA];,a € Hl (Z|:l‘l'm’ :|’ MLv (f)* ® AF(_j)>

mp NmF/Q Q9]

such that, for every 0 < j < min(k, k') and r > 0, the image of L.Af,ia in
HY (Z[ oy, 1/mp Nmp,q(OD]1, My, (F)*(—))) is given by

r [F.j] .
(62 — Czj—k—klg}_(c)ol) al’(‘/_:) AFet mi) a lfr 21,
a)i i N p’op Fjl
a0 |(1- LAz vr=o
J7 N O[p(./r) ét,m,

Proof. Since F is ordinary, the projection map pr» factors through the ordinary
projector e, , of Definition 8.2.2. We can therefore apply Theorem 8.2.3, which
shows that the images of the A-adic Asai—Flach classes for different j under the
ordinary projector are interpolated by an Iwasawa cohomology class. We define
AF > ., to be the image of this class under prr; the defining property of the class
in Theorem 8.2.3 gives the stated interpolation formula. (|

This is the first part of Theorem B of the introduction.

REMARK 9.1.3. Exactly as in the Rankin—Selberg case, if the Dirichlet character
obtained by restricting &x to Z* does not have conductor dividing mp*, then
we may multiply .AF; 7 . by a suitable element of Ar ® L,[Gal(Q(w,)/ Q)] to
dispense with the ¢ factors Cf. [24, Section 6.8.1].

9.2. Local properties at p. We now turn to the second part of Theorem B,
which is a description of the localization of . AF ia at p. We first need to establish
some local properties of the Galois representation M, (F)* itself. We shall
deduce these from a well-known result of Wiles regarding the local properties
of the standard Galois representation ,omi (which we abbreviate simply as p).

THEOREM 9.2.1 [41, Theorem 2]. Suppose F is ordinary at p. For any prime
p | p of F, the restriction of p to the decomposition group D, at p is reducible,
with a one-dimensional crystalline subrepresentation ,O;r such that the linearized
Frobenius ® = '"»*®V acts on Deris(p;} ) as multiplication by the U (p)-eigenvalue
Ap(F) of F.
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COROLLARY 9.2.2. If F is ordinary at p, then the restriction of My (F)* to the
decomposition group at p has a 3-step filtration

M, (F)* =Fil’ D Fil' D Fil> D Fil’ =0

in which the graded pieces have dimensions 1, 2 and I respectively; and the
quotient Gr° M, (F)* = Fil’ /Fil' is unramified, with arithmetic Frobenius
acting via o, (F).

Proof. Since we have M, (F) = ®—Ind%(p) (t, + 1), the assertion concerning
M, (F)* is equivalent to the assertion that ®-Indg (p) has a filtration with graded
pieces of dimension 1, 2, 1, and the subspace Fil? ®—Ind2(p) is crystalline, with
crystalline Frobenius acting as A ,(F) = P »(F).

We first consider the case when p is split in F. Our coefficient field L is (by
definition) a subfield of C, containing the images of the two embeddings 6, 6, :
F — R. Hence 6 '(v) is a place of F above p whose decomposition group is
identified with D,,; we denote this place by p, and its Galois conjugate by g, so that
D, = 0 D,o~" is a decomposition group at q. As a representation of Gal(F/F),
we have ®—Ind(} (p) = p ® p?, where o denotes some choice of lift to Gal(a/ Q)
of the nontrivial element of Gal(F/Q). By Theorem 9.2.1, the two terms in the
tensor product have one-dimensional D ,-stable subspaces ,o; and p;, which are
crystalline with g-eigenvalues A, and A respectively. Hence the tensor product
p;’ ® ,o; is a one-dimensional subspace of ®—Ind2(p) which is D,-stable and
crystalline, with Frobenius acting as A, (F)Aq(F) = A,(F). This gives the one-
dimensional filtration step; and, similarly, the sum p, ® ,0; + p; ® pq is a three-
dimensional D ,-stable subspace.

The case of p inert is more elaborate. In this case, if p = pOp is the unique
prime above p, the decomposition group D, is an index 2 subgroup of D,, and we
have ®-Ind2(p)|DP = ®-Indg’; (py) as representations of D,, where p, = p|p,.
Since tensor induction is a functor (although not an additive one), one obtains
morphisms of D ,-representations

®-Indy’ (p;) < ®-Indy’ (0,)
and

®-Indy’ (p) — ®-Indy’ (0,/ ;)
whose composition is zero. These give the required D ,-stable filtration. Moreover,
from the explicit construction of tensor induction in Section 4.3, one checks
that the eigenvalue of ¢ on Dcris(®—Ind(,op+ )) coincides with that of @ = ¢? on
Dcris(P;), which is A, (F). O

With this in hand, we can complete the proof of Theorem B:
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COROLLARY 9.2.3. The image ofC.A]:ia in H'(Q,, Gr’ My (F)*®@Ar(=)))is
zero.

Proof. Since . AF Lﬁ,’l is the image of a motivic cohomology class for 0 < j <
min(k, k") and » > 0, it must lie in the Bloch—Kato Hgl subspace, by a theorem
of Nekovér and Niziot [33, Theorem B]. However, an Iwasawa cohomology class
for an unramified Galois representation which is in Hg1 at every finite level must
be zero, by [21, Lemma 8.1.5]. O

9.3. The motivic p-adic L-function. We now assume p is split in F, and
we let p and q be the primes of F above p, with v lying above p, as in the
proof of 9.2.2. We suppose that F is ordinary at p, and we let «, and «, be
the eigenvalues of F for the operators p~'U(p) and p~"U(q); these are in OF ,
and o, = apay.

For convenience we shall also assume that p || 91, and that F is a p-stabilization
of an eigenform of level 21/ p. In particular, the conductor of the character ¢ of
F is coprime to p, so e(p) and £(q) are defined. We set B, = p*le(p)/ay, By =
pk/“e(q) /aq; then the eigenvalues of Frobenius on Deyis (M, (F)) are

{O‘paq’ IBPOZQ’ ap:qu IBp.Bq}-
We shall impose the following hypothesis:

e (NEZ, for ‘no exceptional zero’): None of these four quantities are powers of
p; equivalently, the local Euler factor P,(F, X) does not vanish at p~/ for any
Jj €L

REMARK 9.3.1. All four quantities are p-Weil numbers of weight k + k" + 2, and
their p-adic valuations are {0, k + 1, k" + 1, k + k' + 2}, so hypothesis (NEZ) is
automatic if k # k'.

LEMMA 9.3.2. There exists a one-dimensional quotient Gr' My (F)* - M,
which is crystalline of Hodge—Tate weight k' + 1, and such that Frobenius acts on

Dcris(Mp) by (apﬂq)_l.

Proof. 1t follows easily from the proof of Corollary 9.2.2 that in the split case
Gr' M 1, (F)* is isomorphic to the direct sum of two one-dimensional crystalline
representations, with crystalline Frobenius eigenvalues (a,8,)~" and (eqf,) "

O

REMARK 9.3.3. Note that M,, is uniquely determined if and only if o, 8 # Bpq.
In the exceptional case o,B; = Bp,aq (which can only occur if k = k'), the
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graded piece Gr' M L, (F)* is isomorphic to the direct sum of two copies of the
same representation, and we simply choose an arbitrary one-dimensional quotient.
(This case always occurs if F is a twist of a base change from GL, /Q.)

DEFINITION 9.3.4. We write
£PR : Hl(Qp: Mp ® AF(_j)) - Dcris(Mp) ®Z,, AF

for the Perrin—Riou big logarithm map (see [23, Definition 3.4]).

Because of hypothesis (NEZ), this map is an isomorphism of L, ®z, Ar-
modules (see [21, Theorem 8.2.3 and Remark 8.2.4]). It is characterized by the
following interpolation property: for any character of I" of the form j + n, with
Jj € Z and n a finite-order character of conductor p”, then (after extending L if
necessary, so that n takes values in L) we have a commutative diagram

. £PR
Hl(Qp’ Mp 2 AF(_J)) - Dcris(Mp) ®ZI, AI"

|

H'(Q), My(—j — )

in which the vertical arrows are given by specialization at j = j + 7, and the
bottom horizontal arrow is given by

J -1 ;.
<1— P )(1—“’1’3‘?) ifr =0 (—1)“*11 i<k
qpﬂq p J ] —(k/—])‘ og IjsxK,

I+ \"
<p ) G itr>1] [G—k=Dlexpr ifj>&.
opBq

Dcris (Mp)

Here G(n™") = Y ,cz/przy< N(@) "5 is the Gauss sum, and log and exp* are the
Bloch—Kato logarithm and dual-exponential maps for the de Rham representation
M,(—j —n). See [21, Theorem 8.2.8].

Attached to the eigenform F, we have the Asai-Flach class . AF 7 . The

l,a
localization of this class at p maps to zero in Gr'M L, (F)*, as we have seen;
so we may consider it as a class in the Iwasawa cohomology of Gr' M| L,(F)*, and
project it to the quotient M,,.

DEFINITION 9.3.5. For any integer ¢ > 1 coprime to 6p Nmg,q (1), we define

1,imp (F)= (LMo Pry, OlOCp)(c-A-Ffa) € Ar ® Derig (M),

c™p,Asai
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and

L% (F) = (@ — A K ez (o) Ly (F) € Frac Ar ® Dess (M)

p Asai

(which is independent of c¢). Finally, we set

Ly asai(F) = ( 1—[ CZ(Elj)l>Li;1/§sai(f) € Frac Ar ® Deis (M),

£INmp /()

where C, € L[X] are the polynomials from Definition 5.1.2.

REMARK 9.3.6. (1) Note that L, .(F) can be viewed as a p-adic

meromorphic function on the weight space VW = Spec A . Since L.Li'fgsai (F)

imp

p.Asai(F) are at zeroes of the

is analytic, the only possible poles of L

2j—k—k' imp

factor (c? — ¢ ¢ 7(c)). In particular, the function L, Asai () 1s analytic
everywhere if er|;. is nontrivial; and if ex|;. is trivial then it has at most
two poles,one atj = (k +k')/2+ 1 and the otheratj= (k+k')/2+1+1n

where 7 is the nontrivial quadratic character of I".

(2) The definition of these L-functions still makes sense if (NEZ) is not satisfied;
in this case L™® takes values in D (M,) ® 17!, where I is a certain ideal
in A[‘.

(3) Thus there are three possible sources of poles for the primitive L-function
L, asi in general: those arising from the cancellation of the ¢ factor,
those arising from zeroes of the polynomials C,, and those arising from
singularities of the Perrin—Riou map when (NEZ) does not hold. We expect,
nonetheless, that if F is non-CM and not a twist of a base change from
GL, /Q, then L, asi(F) should be analytic everywhere.

We formulate the following conjecture relating the p-adic and complex L-
functions:

CONJECTURE 9.3.7. Suppose k > k', and let j be an integer with k' < j < k.

Then Ly aci(F) and LS . (F) are analytic at j = j, and we have

pAsai(f)(j) =0 LAsai(fv 1+ .]) = 07
;Jm}iqal(f)(J) =0 Lif:gi(]:, 1+j)=0.
REMARK 9.3.8. As we have emphasized in the introduction, we cannot prove

this conjecture, so we cannot rule out the possibility that Li;]}isai (F) is identically
zero.
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9.4. Big image results. Let F be any Hilbert modular eigenform for F, of
level U; () for some N, and weight (k + 2, k' + 2, ¢, t') with k, kK’ > 0. (We do
not assume in this section that F be ordinary, that p | 9%, or that p be splitin F.)

DEFINITION 9.4.1. We say that F satisfies condition (BI) (for ‘big image’) at v
if the following two statements hold for some (or, equivalently, any) Gal(Q/Q)-
stable O, ,-lattice T in p2™:
(i) T ®k, is an irreducible k, [Gal(ﬁ/ Q(p~))]-module, where k, is the residue
field of Oy ,.

(ii) There exists T € Gal(G/Q(,LLpoo)), lifting the nontrivial element o €
Gal(F/Q), such that T/(t — 1)T is free of rank 1 over O ,.

This is a slight strengthening of Hyp(K, T') of [34], with the field K, in
op.cit. taken to be Q(u,~). (Our condition on 7 is slightly more restrictive, since
we also require t to act nontrivially on F.)

In the remainder of this section, we shall give some criteria which imply that
condition (BI) is satisfied for a plentiful supply of primes v. As the isomorphism
class of p}fzj depends only on the newform associated to J, we may assume
without loss of generality that F is itself a newform. We impose the following

hypotheses on JF:
(1) Fis not of CM type;

(2) F is not a twist of a base change from GL, /Q.

THEOREM 9.4.2 (Lapid-Rogawski). Let o be the nontrivial element of
Gal(F/Q), and let F° be the internal conjugate of F (the unique newform
whose T (n)-eigenvalue is A(n°) for all n). Then there is no Hecke character k
such that F° = F Q@ k.

Proof. This is a special case of the main theorem of [22]. O

We have defined above Galois representations p2* and p5 | for every prime

v of L, which are unique up to conjugation in GL,(L,). After conjugating
appropriately, we can and do assume that the images of these representations lie
in GL,(Oy ,).

PROPOSITION 9.4.3. The representation p% is absolutely irreducible, and
remains so as a representation of G ga, for all primes v of L. For all but finitely
many v this remains true after reduction modulo v.
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Proof. The characteristic 0 statement, for all v, follows from [32, Remark 5.21];
so let us prove the statement regarding reduction modulo v for almost all v.

We first consider the case where JF is not only not twist-equivalent to JF°,
but is not twist-equivalent to any Galois conjugate of F?. Then we may apply
[27, Theorem 3.4.1] to F and JF°. The theorem is stated in op.cit. for elliptic
modular forms, but it applies also to Hilbert modular forms (as noted in Remark
2.3.2 of op.cit.). This shows that there is a subfield K of L such that for all
but finitely many v, the image of Grw under p$¢ x pjé‘f,,v is conjugate to
SL,(Ok..) x SLy(Ok..), where u is the prime of K below v. Hence the tensor
product of these two representations is irreducible mod v as a representation of
G r, and this coincides with the restriction of p%*4.

We now consider the case where F is Galois-conjugate to a twist of 77, but not
equal to a twist of F7. In this case, the same argument shows that for almost all v,
either the image of G r» under pj‘r‘fv X p%‘i’v is conjugate to SL, (O ,.) X SL,(Ok ),
or [K, : Q,] > 1 and the image of G = is conjugate to the image of SL,(Ok ,)
under a map of the form (id, ) for some o € Gal(K,/Q,). Finally, « cannot be
the identity, since otherwise J would be twist-equivalent to F7. If v is not one of
the finitely many primes ramifying in L/Q, it follows that « acts nontrivially on
the residue field &, of K,. Since the tensor product of the standard representation
of SL,(k,) and its conjugate by « is irreducible (a simple case of the classification
of irreducible representations of SL, of a finite field in defining characteristic [6,

Section 30]), we are done. |

THEOREM 9.4.4. Suppose there is at least one ramified prime of F which does
not divide the level of F.

If F is not Galois-conjugate to any twist of F°, then Condition (BI) is satisfied
at all but finitely many primes v of L. If F is Galois-conjugate to a twist of F°,
then Condition (BI) is satisfied at all but finitely many degree 1 primes v of L.

The proof of Theorem 9.4.4 will take several steps. We assume without loss of
generality that L is the smallest extension of Q containing the Hecke eigenvalues
of F.

DEFINITION 9.4.5 (See [31, Section B.3]). An inner twist of F is a pair
(o, x), where « is an embedding L < Q and y is a finite-order Q-valued Hecke
character of F, such that a(F) = F ® x.

One knows that if (o, x) is an inner twist, then «(L) = L and x takes
values in L; since F is non-CM-type, x is uniquely determined by «, and the
o € Aut(L/Q) which give inner twists are precisely those which are trivial on the
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subfield K C L generated by the quotients A, (F)?/&(p), as p ranges over primes
of F. Moreover, for all inner twists («, x), the character y is unramified outside
the primes dividing the level of F.

Note that («t, x) — (, x°) gives a bijection between the inner twists of F and
those of F7.

LEMMA 9.4.6. Suppose there is at least one ramified prime of F which does not
divide the level of F.

Then, for all but finitely many primes p, there exists T € Go — G such that
T acts trivially on Q(u =), and for any inner twist («, x) of F or F°, we have
x(@) =1

Proof. By assumption, there is some prime £ | D which is coprime to the level
of F, and hence coprime to the conductors of all of the Dirichlet characters x |;.
where (o, x) varies over the inner twists of F or F°. Therefore, we may find
primes ¢ which are quadratic nonresidues modulo D and such that x (¢) = 1 for
all such g.

Let F’ be the finite abelian extension of F' cut out by all of the characters y and
x?. Then F’/Q is Galois, and if 7, is the conjugacy class of any g as above, we
have 7§ = 1in Gal(F'/F).

If p is not one of the finitely many primes ramifying in F’/Q, then F” is linearly
disjoint from Q(u,~) over Q (since one field is unramified at p and the other
totally ramified). So we may find T € G which acts trivially on the cyclotomic
field and as 1y on F’, and this 7 satisfies the conditions. O

COROLLARY 9.4.7. In the setting of the previous lemma, if F is not Galois-
conjugate to a twist of F°, then for all but finitely many primes v of L we have

SLy(Ok ) S {p(?) : T € Gouuym)» T ¢ G,

where p = ,ojé‘fu and u is the prime of K below v. If F is Galois-conjugate to

some twist of F°, then this holds for all but finitely many v of degree 1.

Proof. Let Tt be any element as in the previous lemma. Then p(z?) lies in
SL,(Ok ), since 7?2 is in the kernel of all the inner twists of F and of the
cyclotomic character.

However, if 7 satisfies the conclusions of the lemma, so does yt for any y €
G pw; and replacing T by y T replaces p(t2) by p(y)p(t>)p(t 7y 1).

If F is not Galois-conjugate to any twist of F°, then (as we have seen in the
proof of Proposition 9.4.3) as y varies over G pw, the pair (o(y), p(t 'y 1)) hits
every element of SL,(Ox ,,) x SL,(Ok.,), so in particular p((y t)*) can take every
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value in SL,(Ok ). The same holds if F is Galois-conjugate to some twist of F7,
as long as the automorphism of K mapping F to a twist of F° is not contained in
the decomposition group of u; in particular this holds if K, = Q,, as claimed. [

PROPOSITION 9.4.8. If p # 2, and t € Gq is such that T ¢ G and p% (t?) is
conjugate in GLy(Oy,) to (} 1), then the quotient OF, /(p¥%(z) — 1) is free of
rank 1 over Oy .

Proof. 1If we fix a basis (v, vy) of the underlying space of ,ojé‘fv in which 72 acts

as ({ 1), then (v; ® vy, v ® V1, V] ® V2, V2 ® Vy) is a basis of p}ff and the matrix

010 1100

of 7 in this basis is { 39§ 9 ). The Jordan normal form of this matrix is <8 o ),

001 000 —1

and one can check that the similarity transformation relating these matrices lies
Asai

in GL4(Z,) for any p # 2. So the space of coinvariants of p%7(7) is free of rank
1 as required. O

A~
oSoOoO—
SO ==

This completes the proof of Theorem 9.4.4.

9.5. Bounding Selmer groups. We shall now give the proof of Theorem C
of the introduction. For the convenience of the reader, we shall recall the list of
hypotheses we are imposing.

e F is an eigenform of level 91, with coefficients in a number field L O F and
weight (k +2, k' 4+ 2,¢,t"), where k, k' > 0.

e p is arational prime, with p = pq splitin F and p || 1.
e v isaprime of L above p.

e Fisordinary at p (with respect to v), and is the p-stabilization of an eigenform
of level 91/ p.

The hypotheses (NEZ) of Section 9.3 and (BI) of Section 9.4 hold.

p=k+k+3.

We also fix a choice of one-dimensional subquotient M, of M, (F)* as in
Lemma 9.3.2, and a basis §2, of the one-dimensional L,-vector space Ds(M,).
Finally, we choose an integer ¢ > 1 coprime to 6p Nmg,q ().

Let R = O ,. We let Mg(F)* be the R-submodule of M, (F)* generated by
the image of H>(Y} Mg, TSym[k’k/] Fx(A)(2)); this is nonzero (by comparison
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with de Rham cohomology) and stable under Gal(ﬁ/ Q), and hence must be a
lattice of full rank, since we have shown that M, (F)* is irreducible.

LEMMA 9.5.1. For every finite extension K/Q, every finite set of primes S
containing all primes dividing p Nmpg,o(), and every j € Z, the projection map

pry: H* (Y Moy s, TSYym* X S4(A) 2 — j)) = H' Ok s, ML, (F)*(=)))
factors through H'(Og s, Mg (F)*(—j)).

Proof. Letm denote the maximal ideal of the Hecke algebra of level U, (D7) (with
R coefficients) corresponding to F. Our conditions on v imply that m satisfies the
condition (LIyq5) of [12] (this is where p > k + k" 4 3 is used); so by Theorem
0.3(ii) of op.cit., the localization of the cohomology of Y;(D%) at m vanishes
outside the middle degree. Thus the projection map pr ~ is defined over R. O

We now define an appropriate Selmer group. We define A = Mz(F)(1) ®
Q,/Z,; and we let Fil’ A be the submodule of A (of corank 2) dual to the kernel
of Fil' Mg(F)* — M,.

DEFINITION 9.5.2. We set

Sel®) Qi ), A) = {x € H'(Q(up=), F) : locy(x) = 0 for £ # p,}

loc,(x) € image H'(Q, (1), Fil* A)

and
XPQup), F) = Sel® (Q(pp), F)¥

(where Vv denotes Pontryagin dual).
THEOREM 9.5.3 (Theorem C). There exists an integer n such that

ncLimp”. f
char,, X®(Q(u,~), A) pp[,z—As‘u().
p

Proof. This follows by exactly the same Euler system argument as in [21,
Theorem 11.6.4]. (Note that the Euler system norm relations are only used for
primes £ whose Frobenii act on M, (F)* as a conjugate of 7; all such primes £
are necessarily inert in F', because T maps to o in Gal(F/Q). Hence the fact that
we have not established the norm relations for all primes split in ' does not cause
any trouble here.) O
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