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Abstract 

Cervical cancer is a significant worldwide health burden despite primary and secondary 

prevention measures in developed countries. Survival rates for locally advanced cervical 

cancers treated with radical chemoradiation (FIGO stage IB2 to IVA) ranges from 10 to 85% 

at 5 years. A significant proportion of patients relapse within the pelvis and therefore the 

quality and accuracy of radiotherapy delivery is paramount. This thesis aims to review the 

extent of potential uncertainties within cervical cancer radiotherapy with the aim of 

developing and assessing methods to optimise and standardise those uncertainties.  

To date, the INTERLACE trial radiotherapy quality assurance (RTQA) programme has been 

completed by over half of United Kingdom (UK) centres treating cervical cancer. Using these 

RTQA test cases, I analysed one of largest known uncertainties in radiotherapy planning; 

target volume delineation. Having quantified the variation in comparison to a gold standard 

I investigated the dosimetric impact of the observed variation. I also produced a step-by-step 

pictorial delineation atlas, having reviewed all available published guidance, and assessed its 

impact on delineation variation. 

Daily variation in pelvic organ position is the second uncertainty investigated within this 

thesis. By retrospectively reviewing computed tomography (CT) imaging during 

chemoradiation for cervical cancer I analysed the variation of bladder and bowel filling and 

its relationship with target volume position and coverage. The movements that I measured 

allowed me to calculate margins necessary to maintain acceptable coverage. However, by 

understanding the variation observed I propose methods of standardisation that can be 

applied in UK clinical practice without the need to increase margin size. I also estimated the 

dosimetric impact of this variation and the subsequent potential dosimetric gain of the 

standardisation methods.   
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1.1. Epidemiology 

Worldwide, cervical carcinoma is the fourth most common cancer in women and seventh most 

common overall (GLOBOCAN 2012). In 2012, 528000 women across the world were 

diagnosed with cervical cancer, predominantly in the developing world. In Eastern and Mid 

Africa cervical cancer remains the most common cancer in women and in England it remains 

the most common cancer in women aged 15-34 (ONS 2013). The worldwide age standardised 

incidence varies from 42.7 per 100000 population in Eastern Africa to 4.4 per 100,000 in 

Western Asia (GLOBOCAN 2012). In England the age standardised incidence was 8.7 per 

100,000 women in 2011 (ONS 2013). 

1.2. Aetiology 

Human papilloma virus (HPV) infection causes cervical cancer and is prevalent in almost 

100% of cases (Walboomers et al. 1999; Smith et al. 2007). HPV16 and HPV18 are the most 

common carcinogenic types, associated with 55% and 15% of cervical cancer cases 

respectively (Smith et al. 2007; De Sanjose et al. 2010; Saslow et al. 2012). HPV18 is 

associated with poorly differentiated histology, adeno-squamous and adenocarcinomas, 

whilst other types are associated with squamous cell cancers (Smith et al. 2007).  

Carcinogenic forms of HPV are found in up to 18-22% of women, peaking at ages 20-25. 

Higher risk groups are women of black ethnicity, smokers, with low educational level, multiple 

sexual partners, early age at first intercourse or pregnancy and concomitant infections (e.g. 

bacterial vaginosis, chlamydia trachomatis) (McCormish 2011; Oakeshott et al. 2012; Tay et 

al. 2014). 

70% of HPV infection clears within one year and 90% within two (Franco et al. 1999; Oakeshott 

et al. 2012). Persistent infection is key to cervical intra-epithelial neoplasia (CIN) development, 

the precursor to cervical cancer (Saslow et al. 2012). 20% of women with persistent HPV 

infection at one year develop CIN or cancer within 5 years (Oakeshott et al. 2012).  

Risk factors for HPV persistence include immunocompromised state (human 

immunodeficiency virus (HIV), post organ transplantation) (McCormish 2011), potential 

genetic host susceptibility (Oakeshott et al. 2012) and smoking (Roura et al. 2014). 
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Interestingly, the two fold increased CIN3 and cervical cancer risk with smoking is potentially 

independent of HPV status (McCormish 2011). Passive smoking data is conflicting but a meta-

analysis demonstrated a 73% increased risk in passive smokers (Louie et al. 2011; Zeng et 

al. 2012).  

Other factors increasing cervical cancer risk include the oral contraceptive pill (McCormish 

2011), hormone replacement therapy (adenocarcinomas) (Jaakkola et al. 2012) and prenatal 

diethylstilboestrol exposure (clear cell adenocarcinomas) (McCormish 2011).  

1.3. Presentation 

Clinical presentation of cervical cancer depends upon disease extent at time of presentation.  

1.3.1. Microscopic disease 

Microscopic disease does not commonly cause symptoms. Patients therefore usually present 

following a positive screening test, as discussed in section 1.4.  

1.3.2. Locally advanced disease 

The majority of cases are locally advanced at diagnosis and most commonly present with 

abnormal bleeding, usually intermenstrual, post-coital or post-menopausal. Women may also 

complain of vaginal discharge or dyspareunia. If disease is locally infiltrative, pelvic pain, 

sciatic nerve symptoms or, rarely, bladder and bowel symptoms can occur (Benedet et al. 

2000). Renal impairment secondary to ureteric obstruction is indicative of pelvic sidewall 

disease but enlarged para-aortic nodes must be ruled out as a potential obstructive site. 

1.3.3. Metastatic disease 

Only a small number of patients present with metastatic disease. Pattern of spread is locally 

within the pelvis and via lymph nodes. First sites of metastases are therefore aortic and 

mediastinal lymph nodes (Benedet et al. 2000). Blood borne spread to liver, lungs and bone 

is also seen but less commonly.  

1.4. Prevention and early detection 

1.4.1. Screening 
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National screening programmes, i.e. secondary prevention interventions, have successfully 

been implemented in the United Kingdom (UK) and other western countries. Screening 

introduced in the UK in 1988 uses cytological smear tests for women aged 25 to 64 years old 

every 3 to 5 years. It has reduced the number of invasive cancers diagnosed from 4082 in 

1988 to 2511 in 2011 and is estimated to prevent approximately 5000 deaths per year (Peto 

et al. 2004).  

The American Cancer Society (ACS) recommends a ‘risk adapted approach’ using either 3 

yearly cytology or 5 yearly cytology and HPV co-testing at ages 30-65 following a systematic 

evidence review (Saslow et al. 2012). Four large European randomised trials showed that 

HPV based approaches can protect 60-70% better against cervical cancer than cytology alone 

(Ronco et al. 2014).  

Unfortunately not all women are compliant with screening attendance and half of reported 

cervical cancer cases are in these un-screened women (Saslow et al. 2012).  

1.4.2. Primary prevention 

HPV16 and 18 can be vaccinated against, with over 99% effectiveness in preventing HPV 

related cervical changes providing no active infection is present (Lu et al. 2011). Therefore, 

the UK national immunisation programme for school girls aged 12-13 was introduced in 2008, 

capturing females before the peak HPV prevalence. The true benefit will hopefully be seen in 

time.  

1.5. Diagnosis and staging 

1.5.1. Clinical examination 

Clinical examination is the primary staging tool for cervical cancer. Vaginal and rectal 

examination can show the local disease extent including parametrial or pelvic sidewall 

extension. Full external examination may detect distant disease, for example supraclavicular 

fossa lymphadenopathy. Pelvic examination is tolerated better under anaesthetic 

(examination under anaesthetic; EUA) allowing biopsy, cystoscopy or sigmoidoscopy if 

necessary. Suspected bladder and/or rectal involvement must be confirmed on biopsy. 

Bullous oedema does not determine local organ invasion (Benedet et al. 2000). Clinical 
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drawings (Fig.1.1) are useful to facilitate staging and, if treated with chemoradiation, can guide 

targeted treatment delivery. Additional investigations do not alter the International federation 

of Obstetricians and Gynaecologist (FIGO) staging but are useful to guide treatment planning 

(Benedet et al. 2000).  

 

Figure 1.1: Example clinical drawing of cervical cancer extending to right sidewall (FIGO IIIB) 
using the EMBRACE study template: red=cervical tumour, blue=parametrial invasion, 
green=vaginal invasion 

 

1.5.2. Histological confirmation 

Diagnosis must be confirmed histologically, usually by biopsy at colposcopy or EUA. 

Approximately 80-90% are squamous cell carcinomas (Benedet et al. 2000; Saslow et al. 

2012). Other pathologies include adenocarcinoma (10-15%), adeno-squamous carcinoma (3-

5%), clear cell carcinoma (rare), and neuroendocrine carcinomas (rare) (Benedet et al. 2000).  

CIN is the pre-invasive stage of squamous cell cancer with a 15 year lag. CIN1 (mild 

dyskaryosis) resolves spontaneously in 50% and CIN 2/3 (moderate/severe dyskaryosis) 

resolves spontaneously in one third. 30% of untreated CIN3 will result in cancer over a 30 

year period (Saslow et al. 2012).  

In general, squamous cell carcinoma represents a chemotherapy and radiotherapy (RT) 

sensitive group whereas adenocarcinomas are less chemotherapy and RT sensitive. 
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1.5.3. Imaging modalities 

In the western world, Computed Tomography (CT) chest and abdomen is routine to rule out 

distant disease before proceeding with curative treatment. Magnetic Resonance Imaging 

(MRI) is superior to CT for pelvic tissues due to the high spatial and contrast resolution 

(Fig.1.2). MRI has high local staging accuracy of 92% and is up to 100% sensitive with a 98% 

negative predictive value for parametrial and 93% accuracy for vaginal extension (Camisão et 

al. 2007). The European Society of Urogenital Radiology advocates T2 weighted MRI to 

characterise local disease and T1 weighted axial images to assess lymph node status 

(Balleyguier et al. 2011). 

 
Figure 1.2: Anonymised diagnostic T2 weighted sagittal MRI confirming cervical cancer 

(arrowed). 
 

Additional imaging modalities can provide functional data, including 18fluorodeoxyglucose-

positron emission tomography (FDG-PET) and diffusion weighted-(DW-)MRI (Downey et al. 

2011). For staging purposes PET-CT is sensitive (80-90%) and specific (90-100%) (Nogami 

et al. 2014) and is useful in unclear or ambiguous cases. It can also distinguish between post-

RT change and residual or recurrent disease in follow-up. Additional functional data may have 

prognostic and predictive benefits and is an area of ongoing research (Downey et al. 2011).  
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1.5.4. Nodal staging 

The risk of nodal spread increases with increasing stage. For stage IB2, approximately 15-

20% will have pelvic lymph node involvement, 30% in IIB, 50% IIIB and 80% FIGO stage IVA. 

For para-aortic nodal involvement the percentages are 5-10%, 15%, 30% and 50% for IB2, 

IIB, IIIB, and IVA respectively (Taylor et al. 2006). Lymph node status is not included in the 

FIGO staging detailed in 1.5.5. However, accurate nodal staging is essential for 

chemoradiation to guide the superior radiation field border.  

Nodal staging with CT alone does not detect microscopic disease and therefore para-aortic 

nodal sampling may be used. This has risks including lymphocyst development but provides 

more accurate staging information (Tsunoda et al. 2015). Patients unsuitable for nodal 

sampling may undergo FDG-PET/CT (Fig.1.3.) as an alternative due to sensitivity of 72-100% 

and specificity of 95-99% for para-aortic nodal metastases (Nogami et al. 2014).  

 
Figure 1.3: Example anonymised transverse FDG-PET/CT image highlighting a positive para-
aortic node (arrowed). 
 

1.5.5. Staging definition and associated survival rates 

Staging is documented as per the FIGO staging (Camisão et al. 2007; Mutch 2009) (Table 

1.1, Fig.1.4). As FIGO stage increases 5 year survival decreases, see Table 1.1. The 

American Joint Committee on Cancer (AJCC) ‘TNM’ staging system also exists which 
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individually scores tumour (T), nodes (N) and metastases (M). This is more commonly used 

when describing the pathological staging if treated with surgery (Benedet et al. 2000).  

 

Table 1.1: FIGO 2008 staging and survival rates (Mutch 2009) 

Stage Clinical findings TNM 5 yr surv 

I   Limited to cervix T1M0  
 IA  Micro-invasion limited to cervix  >95% 
  IA1 ≤3mm depth invasion, largest extension ≤7mm T1a1M0  
  IA2 3-5mm depth invasion, extension ≤7mm T1a2M0  
 IB  Clinically visible, larger than IA, limited to cervix   
  IB1 ≤4cm in greatest dimension T1b1M0 ~90% 
  IB2 >4cm in greatest dimension T1b2M0 80-85% 

II   Invades beyond uterus but not to pelvic sidewall 
or lower third of vagina 

 75-78% 

 IIA  No parametrial invasion T2aM0  
  IIA1 ≤4cm in greatest dimension   
  IIA2 >4cm in greatest dimension   
 IIB  Parametrial invasion T2bM0  

III IIIA  Invades lower third of vagina T3aM0 35-50% 
 IIIB  Extends to pelvic sidewall and/or 

hydronephrosis/non-functioning kidney 
T3bM0  

IV   Extends beyond true pelvis or biopsy proven 
bladder/rectal invasion 

  

 IVA  Invading bladder/rectum T4M0 15-30% 
 IVB  Distant metastases Any M1 <10% 
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Figure 1.4: Pictorial images demonstrating FIGO staging for cervical cancer (Camisão et al. 

2007).  
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1.6. Management overview 

Treatment depends upon disease stage and analysis of prognostic factors such as tumour 

volume, presence of lymphovascular space invasion (LVSI) and to a lesser extent the 

histological subtype and grade (Benedet et al. 2000). See Table 1.2 for an overview. Here, I 

briefly discuss management of all stages, and, beyond this section, will focus on locally 

advanced cervical cancer only as this is where chemoradiation is used.  

1.6.1. Abnormal screening results 

Non-invasive disease is most commonly detected via screening (Screening and 

Immunisations team Health and Social Care Information Centre 2013). Referral for colposcopy 

is triggered if the cytology results show inadequate or borderline x3, mild dyskaryosis x2, 

moderate or severe dyskaryosis x1 or possible invasion x1 (urgent referral). If mild dyskaryosis 

is reported once, a repeat is performed at 6 months, and if changes are persistent then 

colposcopy should be performed. 

At colposcopy visualisation with 15x magnification is performed and biopsy, conisation, loop 

electrosurgical excisional procedure (LEEP) or laser or cryotherapy ablation can be 

performed. If tumour is visible at colposcopy then biopsy and appropriate staging is performed.  

1.6.2. Localised early stage disease 

Disease localised to the cervix (FIGO stage I) is generally treated surgically with total 

abdominal hysterectomy or radical hysterectomy and consideration of lymph node dissection. 

In bulky cases i.e. FIGO IB2, management is as for locally advanced disease. RT alone can 

achieve equal disease control and survival. A randomised trial allocated stage Ib-IIa patients 

between surgery and RT finding equal survival outcomes but less severe morbidity in RT 

patients (Landoni et al. 1997).  

Post-operative RT is advised if there are positive or close margins, more than two positive 

lymph nodes or parametrial extension (Benedet et al. 2000). The definition of ‘close margins’ 

is not well defined and usually ranges from 2 to 5mm, in general extrapolated from evidence 

in other tumour sites. If an incidental malignancy is diagnosed at hysterectomy for suspected 

benign pathology, full surgical management is necessary or post-operative RT. 
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Trachelectomy is a surgical approach in patients wishing to preserve fertility and should only 

be performed by experienced clinicians in small tumours.  

If a patient with stage I disease is unfit for surgery they may be suitable for radical RT alone, 

delivered as detailed in section 1.7. 

1.6.3. Locally advanced disease 

Locally advanced disease includes a wide range of stages including FIGO IIA to IVA. These 

are treated with a combination of RT, brachytherapy and chemotherapy. Section 1.7 

describes this in detail. This is the patient cohort that this work focuses on.  

1.6.4. Metastatic disease 

Treatment of metastatic disease depends upon symptoms, disease location and patient 

fitness. Patients with para-aortic nodes, even though metastatic, can still be treated radically 

with chemoradiation. Otherwise patients with recurrent or metastatic disease beyond the para-

aortic nodes, if fit enough, are managed with combination chemotherapy. First line is usually 

a doublet combination of carboplatin or cisplatin, paclitaxel, topotecan, or gemcitabine, most 

commonly carboplatin and paclitaxel. Bevacizumab increases median overall survival (OS) by 

almost 4 months in addition to chemotherapy (Tewari et al. 2014). Second line treatment is 

not effective with a wide range of options due to limited evidence. Trials are therefore 

encouraged in patients with a good performance status.  Otherwise, localised treatment such 

as RT or surgery can palliate symptoms such as bleeding or pain.  
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Table 1.2: Overview of management according to FIGO stage  

FIGO stage Recommended Treatment 

Pre-invasive Ablative e.g. cryotherapy, laser vaporisation, electrocautery 
Excisional e.g. cold conization, LEEP (Loop electrosurgical excisional 
procedure), laser 
Simple hysterectomy ( if fertility preservation not necessary) 

IA Cone biopsy and careful follow-up, if invasion<3mm from basement 
membrane and clear margins 
Total abdominal hysterectomy (preferred if IA2) 
Brachytherapy alone 

IB1 Radical hysterectomy with pelvic node dissection 
Definitive radiotherapy: whole pelvis and brachytherapy 
Trachelectomy with pelvic node dissection (fertility preserving) 

IB2-IVA Nodal staging with para-aortic sampling or FDG-PET/CT 
Concurrent chemoradiation: cisplatin with whole pelvis radiotherapy 
and brachytherapy 

Node positive Consider para-aortic nodal radiotherapy if common iliac or para-aortic 
nodes involved 

IVB Combination chemotherapy 
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1.7. Current practice in cervical RT 

1.7.1. RT planning and delivery  

RT for locally advanced cervical cancer can be delivered using two-dimensional radiotherapy 

(2D-RT), three-dimensional conformal radiotherapy (3D-CRT) or intensity modulated 

radiotherapy (IMRT) (Taylor et al. 2006; Barrett et al. 2009). Most western world centres treat 

with 3D-CRT or IMRT. In less developed countries, 2D-RT is still used. IMRT is detailed in 

section 1.8.1 including a review of evidence supporting this technique.  

Irrespective of delivery method, all patients undergo a planning appointment. For 2D-RT plain 

X-Rays are acquired whereas for 3D-CRT and IMRT a planning CT scan is acquired. These 

are performed in the treatment position, most commonly supine, arms on chest with a knee 

rest and ankle stocks. Patients may be treated lying supine on a belly board. The belly board 

aims to push small bowel out of the radiation field but set-up is more difficult and less 

reproducible.  

In general, a ‘comfortably full bladder’ and empty rectum is aimed for at planning and during 

treatment. The ‘comfortably full bladder’ is another method of displacing small bowel out of 

the radiation field. Bladder and rectal filling is discussed in more detail in section 1.9.2 and 

Chapter 5 and 6.  

Ideally, a patient’s position should be identical daily to ensure treatment accuracy. This ‘set-

up’ can be verified by imaging with an electronic portal imaging device (EPID) usually on day 

1-3 or 1-5 then once weekly. This creates digitally reconstructed radiographs (DRRs) which 

are compared with the planning imaging. If necessary, position shifts can be applied to match 

the planning set-up. Daily imaging may be necessary in patients with a difficult set-up e.g. 

obese patients.  

The dose prescription varies across the UK and Europe. Most UK centres prescribe 50.4Gray 

(Gy) in 28 daily fractions over 5.5 weeks to the pelvis but in Europe 45Gy in 25 daily fractions 

over 5 weeks is more common. Para-aortic nodes, if treated, are prescribed to 45Gy in 25 

daily fractions. This is followed by brachytherapy, described in section 1.7.4, to an ideal 

equivalent dose in 2Gy fractions (EQD2) of minimum 80-85Gy. Use of 45Gy to the pelvis, 
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instead of 50.4, increases the likelihood of achieving higher brachytherapy doses and is 

therefore favoured within many centres.   

1.7.2. Two-dimensional radiotherapy (2D-RT) 

2D-RT uses X-Rays to conventionally simulate treatment if cross-sectional imaging is not 

available. The patient is clinically examined in the treatment position. The lower border of 

vaginal disease or the level of introitus is marked with a radio-opaque marker. X-Ray images 

are then taken anterior-posterior and laterally. The field borders are defined on these X-Rays 

according to anatomy as per Table 1.3 and Fig.1.5. Diagnostic imaging can aid adaptation of 

borders to ensure adequate target coverage. Shielding can be added over the posterior 

sacrum on lateral X-Ray and small bowel superior-laterally on the anterior-posterior X-Ray. 

These fields are then used to create a four-field brick arrangement.  

If available, 3D-CRT is preferred as 2D-RT has a high risk of unnecessary normal tissue 

irradiation.  

 

Figure 1.5: Cervical pelvic RT treatment fields on anterior-posterior and lateral X-Rays. 

 

Border Anatomical position (4 field) 

Superior L4/5 

Inferior 3cm below vaginal disease (inferior obturator foramen) 

Lateral 1-2cm lateral to pelvic brim 

Anterior 1cm anterior to pubic symphysis 

Posterior S2/3 (Entire sacrum if uterosacral ligament involved) 

Table 1.3: Anatomical borders of pelvis only RT field edges when using 2D-RT. 

 



29 
 

 

1.7.3. Three-dimensional conformal radiotherapy (3D-CRT) 

For 3D-CRT a planning CT is acquired to allow clinical target volume (CTV) localisation and 

creation of the planning target volume (PTV). This uses the patient’s individual anatomy and 

knowledge of disease spread to increase RT accuracy. CTV comprises two distinct volumes; 

primary CTV and nodal CTV (Taylor et al. 2006; Barrett et al. 2009). The primary CTV includes 

the cervical tumour and areas of potential local invasion. The nodal CTV includes the ‘at risk’ 

nodal groups. See Table 1.4. 

Volume Anatomical areas included 

Primary CTV Gross tumour volume (GTV), cervix, entire uterus, upper vagina, 
bilateral parametria 

Nodal CTV (node 
negative) 

Common iliac, internal and external iliac, presacral and obturator 
nodes.  
Created by adding a 7mm margin to the corresponding blood 
vessels, editing for bone and muscle and adding a presacral 
strip.  
Superiorly CTV extends up to aortic bifurcation 
Include inguinal nodes if FIGO IIIA 

Nodal CTV (node 
positive) 

As node negative with at least 2cm margin from involved nodes. 
Include para-aortic region up to T11/12 or T12/L1 if common iliac 
node positive 

Table 1.4: Definition of clinical target volume (CTV) for cervical cancer 

CTV definition can be optimised by fusing diagnostic imaging. Intravenous contrast can be 

administered to highlight blood vessels which facilitates nodal CTV delineation. Guidelines 

exist regarding delineation of CTV (Taylor et al. 2005; Small et al. 2008; Lim et al. 2011) and 

organs at risk (OARs) (Gay et al. 2012), discussed further in Chapters 2 and 4.  

Margins are added to CTVs to account for uncertainties in set-up including daily organ motion, 

discussed further in section 1.9.2 and Chapter 6. In general, margins up to 20 mm are applied 

to the primary CTV and up to 10mm to the nodal CTV. Once the total PTV is defined, a four-

field brick arrangement is applied as for 2D-RT. This is then tailored using small strips of 

shielding (multi-leaf collimators, MLCs) to cover PTV with 95% dose. See Fig. 1.6. Dose 

volume histograms (DVHs) show how much dose is delivered to what volume of targets and 

OARs (Fig. 1.7).  
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When treating the para-aortic nodal region a PTV is created but the approach to planning 

varies. Some centres treat with an anterior and posterior field but most centres use 3 or 4 

fields. The main limitation is kidney dose and often shielding is necessary to reduce this.  

 
Figure 1.6: 3D-CRT fields on anterior-posterior and lateral DRRs showing shaping of beam 
with MLCs; X and Y jaws in thick yellow, MLCs thin yellow (and white lines) 

 
Figure 1.7: Dose volume histogram showing percentage of prescription dose (x axis) and 
percentage volume of structure receiving dose (y axis); PTV=red, Rectum=yellow, 
Bladder=light green, Bowel sac=white, Femurs (individual)=blue and dark green.  

 

1.7.4. Brachytherapy 

Brachytherapy (BT) delivers short distance radiation near to or inside tumour. It is given after 

EBRT to boost primary tumour dose and involves surgical insertion of an intra-uterine tube 

and ovoids or ring at the vaginal fornixes (Fig.1.8.). A radiation source e.g. Iridium 192 (for 
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high dose rate (HDR)) is inserted into these tubes to deliver radiation internally with a steep 

dose drop off allowing high tumour dose and low OAR dose. This traditionally delivers a pear 

shaped radiation distribution prescribed to Point A which is 2cm superior to the lateral fornix 

and 2cm lateral to the central uterine canal (Fig.1.9.). Many different regimens and delivery 

methods are used, including low dose rate (LDR), medium dose rate (MDR), HDR, and pulsed 

BT. For HDR BT, most commonly used due to short treatment delivery time, 21Gy-28Gy in 3-

4 fractions is an established prescription. 

 
Figure 1.8: Sagittal CT of intrauterine tube (red arrow) and ring (green arrow) positioned for 
brachytherapy with packing in vagina (yellow arrow) and urinary catheter balloon (blue arrow) 

 
Figure 1.9: Standard brachytherapy ‘pear-shaped’ dose distribution prescribed to Point A. 
Green dots represent 1cm distance (intra-uterine tube is 4cm long), Red dots are dwell 
positions of radiation source. Point A and B are labelled, left and right. Coloured isodoses 
represent percentage of prescribed dose ranging from 50% to 300%. 
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If a patient is unsuitable for BT, for technical or medical reasons, IMRT can be used as an 

alternative but will not deliver as high EQD2 doses (Schefter et al. 2002; Chan et al. 2006). 

Due to this dose detriment patients who receive an IMRT boost instead of BT have an inferior 

survival, hazard ratio 1.86 (Gill et al. 2014).  

1.7.5. Concurrent chemotherapy 

In 1999 the radiation therapy oncology group (RTOG) 90-01 study,  Gynecologic Oncology 

Group (GOG) 120 study, and GOG 123 study all demonstrated a significant survival 

advantage with the addition of concurrent platinum based chemotherapy to RT (Keys et al. 

1999; Morris et al. 1999; Rose et al. 1999). These trials led to the National Cancer Institute 

(NCI) issuing an alert recommending the use of concurrent cisplatin-based chemotherapy with 

RT in women undergoing curative treatment (NCI 1999). This practice was widely adopted in 

the UK (McCormack et al. 2001).  

More recently, a meta-analysis based on 18 trials from 11 countries confirmed a 6% 

improvement in 5-year OS from 60 to 66%, HR 0.81, and an 8% improvement in DFS from 50 

to 58% with chemotherapy (CCCMAC 2008). Whilst the benefits were seen across all stages 

regardless of age, histology and grade they appeared to be lower in patients with more 

advanced disease. For stage Ib-IIa a 10% 5 year survival benefit was seen but for stage IIB 

the benefit was 7% and for III-IVa 3%. The most common regimen is single agent weekly 

cisplatin 40mg/m2 for five to six cycles.  
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1.8. Recent advances in cervical RT 

1.8.1. Intensity modulated radiotherapy (IMRT) 

Using concurrent chemoradiation as described above leads to significant morbidity. 18%, 45% 

and 53% of patients experience low grade genitourinary, gastrointestinal and haematological 

toxicity with 1.5%, 8% and 28% experiencing grade 3 or 4 genitourinary, gastrointestinal and 

haematological toxicity. Late complications are less well documented and range from 5-25% 

of patients (Loiselle et al. 2010).  

IMRT increases conformality to target volumes compared to 3D-CRT thereby increasing 

normal tissue sparing. It uses numerous beam segments and modulated beam intensity (or 

fluence) to deliver steep dose gradients and shapes, such as concave, that would otherwise 

be unachievable. See Fig. 1.10 comparing dose coverage using 3D-CRT and IMRT.  

IMRT use is established for many tumour sites such as head and neck and urology where 

avoidance of OARs, e.g. spinal cord and rectum respectively, is significantly optimised 

(Wagner et al. 2013).  

IMRT for gynaecological cancer reduces high doses to bladder, rectum, bone marrow and 

small bowel over 3D-CRT. The largest benefit is observed for small bowel with as little as 33cc 

instead of 318cc receiving 45Gy (Igdem et al. 2009). Treating pelvis and para-aortic region 

using four-field, seven-field and nine-field IMRT techniques has been compared with two and 

four-field 3D-CRT. All OARs received less prescription dose (45Gy) with IMRT; small bowel 

volume more than halved (34% to 13%); rectal volume decreased by a factor of 7 (~45% to 

6%); bladder volume halved (~60% to 30%) (Portelance et al. 2001). Another study concluded 

similar findings of halved small bowel volume irradiated at 45Gy with IMRT (17% versus 34%) 

and 23% reduction in volume of bladder and rectum receiving 45Gy. Small bowel receiving 

more than 30Gy was also significantly reduced (Roeske et al. 2000). Many further studies to 

date have confirmed this favourable dosimetry of IMRT over 3D-CRT for gynaecological 

cancer (Heron et al. 2003; Lv et al. 2014). 
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Figure 1.10: Transverse CT images showing the dose distribution of 3D-CRT (top) versus 
IMRT (bottom) for cervical RT. Yellow line=95% prescribed dose, orange=100%, red=105%, 
blue=50%. Red structure arrowed(u shaped)=PTV. The IMRT plan (bottom) conforms better 
with concavity anteriorly compared to the 3D-CRT (top) box shape. 
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 Most of these studies include small patient numbers, post-operative patients and applied CTV 

to PTV margins of 5-10mm. This dosimetric benefit may therefore overestimate the true 

benefit for intact cervical cancer as post-operative CTVs are smaller and larger margins are 

likely to be necessary (see section 1.9.2). Increasing margin size decreases OAR dose 

sparing with IMRT, as expected in view of increased volume overlap (Ahamad et al. 2005). 

Retrospective re-planning of 50 cases used margins more representative of clinical practice 

at 15mm anterior-posterior and superior-inferior and up to 30mm if uterine involvement was 

confirmed. This comparison concluded reductions in V30, V40, V45 and V50 for all OARs with 

IMRT even with these larger margins (Forrest et al. 2012).  

Most studies do not detail their delineation or bladder and bowel preparation methods. This is 

important, especially when considering bowel due to variable clinical practice, i.e. bowel loops 

versus part of versus whole abdominal cavity, discussed further in Chapter 4. This could alter 

results, especially if absolute volume benefits are reported. Bladder filling also influences 

bowel sparing. A decrease in IMRT small bowel sparing is seen with an increasingly full 

bladder specifically for patients with intact cervical cancer. Conversely, the same study 

reported that large bowel sparing decreases with increasing bladder size (Georg et al. 2006).  

Even with these factors taken into account, IMRT clearly has a proven dosimetric benefit. The 

question is therefore what clinical benefit this translates to. The most evidence to date is 

regarding reduced bowel toxicity. Statistically significant reductions in grade 3 diarrhoea were 

reported in a randomised cohort of 72 patients; 5.6% versus 30.6% (Yu et al. 2015). Mundt et 

al analysed acute and chronic toxicity with IMRT compared to unmatched control groups 

receiving 3D-CRT showing a reduction in acute gastrointestinal toxicity from 95% to 53% and 

chronic toxicity from 50% to 11% (Mundt et al. 2001; Mundt et al. 2002; Mundt et al. 2003). 

Proportionately more 3D-CRT patients received concomitant chemotherapy and were higher 

stage with subsequently larger CTVs which may confound these findings. Reported reductions 

in acute genitourinary toxicity have not been statistically significant but are arguably clinically 

significant (7% versus 16%) with little data on chronic toxicity (Mundt et al. 2001; Mundt et al. 

2002). Further studies have quoted similar acute and chronic toxicity improvements with IMRT 

(Chen et al. 2007; Hasselle et al. 2011; Du et al. 2012; Gandhi et al. 2013; Ray et al. 2013; 

Chen et al. 2015). Of note, no difference in survival was found in any of these studies.  
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IMRT is more expensive to deliver than 3D-CRT. This initial reduced cost-effectiveness 

becomes increasingly cost-effective over time due to reduced toxicity in gynaecological post-

operative patients (Chen et al. 2015). Interestingly, a similar cost-effectiveness ratio 

calculation concluded that the IMRT initial cost is too expensive except for in extended field 

RT (Lesnock et al. 2013).  

Haematological toxicity in this patient cohort is important due to chemotherapy administration. 

Anaemia, leukopenia, neutropenia and thrombocytopenia rates with IMRT have therefore 

been investigated. No statistical difference in acute but a trend of higher chronic toxicity with 

IMRT despite reduced bone marrow V30Gy and V40Gy was reported (Erpolat et al. 2014). 

This is possibly because of larger low dose radiation delivery. Other studies found no 

difference in acute haematological toxicity with 3D-CRT and IMRT but on further analyses the 

IMRT group received significantly more chemotherapy. Comparison of concurrent 

chemotherapy patients alone revealed higher grade 2 white cell toxicity with 3D-CRT (60% 

versus 31%) (Brixey et al. 2002) suggesting IMRT increases the likelihood of more 

chemotherapy administration. Further studies have confirmed reduced haematological toxicity 

with IMRT (Albuquerque et al. 2011; Hui et al. 2014). Key parameters predicting acute toxicity 

are V40Gy and median dose (Klopp et al. 2013). Overall, this evidence favours IMRT to 

minimise haematological toxicity thereby increasing the likelihood of administering all 

chemotherapy cycles. 

Pelvic bone irradiation causes direct bone effects in addition to the discussed haematological 

toxicity. Sacral insufficiency fractures, osteonecrosis and osteomyelitis can severely impair 

quality of life. Comparison of 141 3D-CRT with 81 IMRT patients who received gynaecological 

post-operative RT showed no significant fracture rate difference with an approximate 5% risk 

at 5 years. The IMRT cohort received significantly more chemotherapy and no pelvic bone 

dose constraint was documented (Shih et al. 2013). However, using a 45Gy maximum pelvic 

bone dose constraint, 83 cervical IMRT patients were compared with a matched 3D-CRT 

group. A significant reduction in bone complications was reported with IMRT; 4% versus 17% 

and symptomatic complications were reduced at 4% versus 13% (Ioffe et al. 2014). More data 

is needed but it appears IMRT may clinically significantly reduce bone complications.  
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Treating para-aortic nodes with extended field RT increases toxicity. Only small cohort studies 

using IMRT have been published, consistently reporting lower toxicity rates than with 3D-CRT. 

Conventional RT results in grade 3 or greater acute toxicity in up to 49% of cases. In 

comparison, only 2 (15%) out of 13 patients developed grade 3 or greater acute toxicity using 

IMRT (Salama et al. 2006). Out of 36 IMRT patients 28% (10/36) had myelotoxicity, only 3% 

(1/36 for each) experienced acute genitourinary or gastrointestinal toxicity rates and two year 

toxicity was 10% (Beriwal et al. 2007). No grade 3 or greater genitourinary or gastrointestinal 

acute toxicity was reported for a further cohort of 22 patients and, again myelosuppression 

was the treatment limiting toxicity (Gerszten et al. 2006). Further studies have investigated 

feasibility of dose escalating involved para-aortic nodes using IMRT. This has confirmed 

improved dosimetric distributions, reduced acute and late toxicity and improved survival. IMRT 

for para-aortic RT is beneficial as part of a pelvic and para-aortic IMRT plan or in addition to 

a conventional pelvic RT plan (Ahmed et al. 2004; Du et al. 2010; Verma et al. 2014).  

Other investigated applications of IMRT include treatment of isolated para-aortic nodal 

metastases (Aoki et al. 2003) and boosting primary tumour if technical or medical reasons 

prohibit brachytherapy delivery (Schefter et al. 2002; Chan et al. 2006; Gill et al. 2014). The 

doses achieved with IMRT are lower than with brachytherapy and subsequent outcomes are 

suboptimal. This should therefore only be used if an absolute contraindication to 

brachytherapy exists.  

Disadvantages of IMRT include the extra initial cost as already discussed and increasing 

technology and expertise needed. IMRT also conforms so tightly to PTV that concern exists 

regarding recurrences at field edge or worse survival outcomes. However, outcomes so far 

are reassuring with good OS and DFS rates. Reported three year OS is 69-78% with 

chemoradiation using IMRT and three year pelvic failure rate is only 14% with favourable 

toxicity as detailed above (Chen et al. 2011; Hasselle et al. 2011). Accurate target volume 

delineation remains essential to ensure satisfactory outcomes (Wagner et al. 2013), as 

discussed in section 1.9.1. Unknown effects include the consequences of peripheral dose 

increase and the effects of IMRT on late second cancer risk. Peripheral dose does increase 

with IMRT but this increase is very small at 0.12% of prescribed dose (Salz et al. 2012). This 

effect was less with 6MV versus 15MV and the actual clinical consequence is unclear. The 
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absolute risk of second cancers is increased with IMRT to 1.75% at 10 years compared with 

1% for 3D-CRT. This is a combination of increased low dose volume and monitor units 

(absorbed dose measurement), accounting for 0.5% and 0.25% increase respectively (Hall et 

al. 2003). These figures were calculated for 6MV IMRT and will be higher if higher energy is 

used, e.g. 18MV or Tomotherapy. These treatment energy effects are striking with a 6% 

relative increase using 6MV versus a 26% increase using 18MV. Overall, this is still less than 

a 1% absolute increase in risk (Zwahlen et al. 2009).  

IMRT can be delivered using different approaches. The dynamic (sliding window) approach 

moves MLCs across the field whilst the beam is on to alter the intensity. Step-and-shoot uses 

multiple static beams of varying shapes. Volumetric modulated arc therapy (VMAT) delivers 

radiation as the machine is moving around the patient in an arc. VMAT delivers lower 

peripheral tissue doses, lower monitor units and shorter treatment time with similar target dose 

coverage compared to seven-field step-and-shoot IMRT (Jia et al. 2014). Similar findings with 

RapidArc (VMAT delivery method, Varian Medical Systems, Palo Alto, CA) compared with 

five-field IMRT lead to a reduction in normal tissue complication probability with comparable 

target coverage (Cozzi et al. 2008). Twelve and twenty-field IMRT plans showed superior OAR 

sparing and similar PTV coverage but take more than five times longer than single arc VMAT 

(Sharfo et al. 2015). Treatment time is important for service implications and positional 

consistency and therefore volumetric approaches may be favoured in clinical practice.  

The evidence presented here supports IMRT use especially in patients receiving concurrent 

chemotherapy and extended field RT. The practical application however does highlight some 

challenges which are discussed further in section 1.9 and are the focus of this work.  

1.8.2. MRI guided brachytherapy 

Using a pre-defined BT plan, as discussed in section 1.7.4, is not in keeping with targeted RT 

delivery. Therefore, in 2005, the Groupe Europeen de Curietherapie- European Society for 

Radiotherapy and Oncology (GEC-ESTRO) published 3D image-guided brachytherapy 

(IGBT) delivery recommendations (Haie-Meder et al. 2005). Subsequent Royal College of 

Radiologist guidance (RCR 2008) and the EMBRACE study group have established MRI-

guided BT as standard of care across Europe. MRI is used to delineate the high risk CTV (HR-
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CTV) and intermediate risk CTV (IR-CTV) (Table 1.5, Fig. 1.11). Optimisation of the standard 

‘pear-shaped’ plan is then performed to deliver dose to HR-CTV rather than Point A. Dose is 

prescribed to D90 i.e. at least 90% of HR-CTV is receiving prescribed dose.  

Target Description 

HR-CTV Macroscopic tumour extension at time of brachytherapy + whole cervix + 
presumed extra cervical tumour extension  

IR-CTV 

HR-CTV + macroscopic tumour extension at diagnosis providing a minimal 
margin of 10 mm to residual disease at time of brachytherapy in direction of 
potential spread. A reduced margin should be used towards an intact 
anatomical barrier  

Table 1.5: CTV definition according to GEC-ESTRO and EMBRACE guidance 

 
Figure 1.11: Sagittal and para-uterine MRI images with intrauterine tube and ring in-situ for 
cervical brachytherapy. HR-CTV (red), IR-CTV (blue), bladder (yellow) and rectum (maroon) 
outlined.  
 

Interstitial needles may be necessary to ensure tumour coverage, especially in cases with 

parametrial and pelvic sidewall extension. The EMBRACE2 study will investigate dose 

optimisation and continues to develop IGBT.  

BT is not the focus of this work and will therefore not be discussed in any further detail. 

1.8.3. Stereotactic Body Radiotherapy 

Stereotactic Body Radiotherapy (SBRT) uses multiple co-planar beams which intersect at the 

target to deliver highly conformal dose distributions. The dose within target is heterogenous 

mimicking, but not as heterogenous as, dose distributions of BT, i.e. a proportion of target 

receives significantly higher than the prescribed dose. Small case series and retrospective 

studies have been published utilising SBRT in place of BT for cervical cancer or comparing 

the two techniques (Cengiz et al. 2012; Haas et al. 2012; Hsieh et al. 2013). These have 
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shown that SBRT is a feasible alternative with good early outcomes. However, SBRT still 

needs margins to be applied, requires image guidance e.g. real time tracking with fiducial 

markers, and is unlikely to achieve the maximum doses of >300% prescribed achieved with 

BT (Al Feghali et al. 2016). Most evidence is also in the recurrent setting or in patients unable 

to undergo BT. SBRT is therefore not recommended as an alternative to BT unless an 

absolute contraindication exists for BT. SBRT use in the recurrent setting is increasing and is 

under investigation.  

1.9. Challenges in RT delivery 

As IMRT conforms more tightly to target volumes many technical challenges are highlighted. 

This section introduces what I consider to be two of the key challenges in current cervical 

cancer RT, especially in the IMRT era. These are areas where data specific to cervical cancer 

either does not exist or are conflicting. This is therefore the focus of my work presented here.  

Increased conformality with IMRT increases the importance of delineation accuracy. This is 

concerning as target volume delineation is well documented to be one of the largest 

uncertainties in RT planning in many tumour sites. However, there is little evidence 

investigating delineation variation specific to cervical cancer EBRT as discussed in section 

1.9.1. Chapter 2 to 4 therefore investigate this. 

Organ motion is the second important challenge which is emphasised by increased IMRT 

conformality. Bladder and bowel are known to vary in size and shape daily. There are 

published data regarding this but the data on its impact on cervical cancer EBRT are limited 

and lacks consistency, as discussed in section 1.9.2. Also, despite studies investigating this, 

no guidance exists regarding measures to reduce organ motion and little data is published 

regarding the actual dose effect of daily organ position variation. Chapter 5 and 6 address 

these issues.  

1.9.1. Target delineation 

Inter-observer variability has been confirmed across many tumour sites, including 

oesophageal, prostate, head and neck, bladder, breast and lung (Cazzaniga et al. 1998; 

Valley et al. 1998; Meijer et al. 2003; Li et al. 2009; Vorwerk et al. 2009; Gwynne et al. 2011). 

Since the introduction of IGBT, variation has also been documented in cervical brachytherapy 
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(Petric et al. 2008; Dimopoulos et al. 2009; Hellebust et al. 2013; Petric et al. 2013). 

Comparison of HR-CTV delineated on CT versus MRI concluded that small delineation 

differences can lead to altered target dosing when optimising a brachytherapy plan to a 

volume (Eskander et al. 2010; Krishnatry et al. 2012). Dosimetric variations large enough to 

alter treatment optimisation were found when five clinicians delineated OARs for 

brachytherapy (Duane et al. 2014).  

To my knowledge, only three studies have assessed inter-observer variation of EBRT GTV 

and CTV delineation for cervical cancer (Weiss et al. 2003; Wu et al. 2005; Lim et al. 2015). 

A single centre study of 3 cervical cancer cases independently outlined (CTV) by seven 

clinicians was published. Through analysis of anatomical areas included within the outline, 

ratio of largest to smallest volume, ratio of common to encompassing volumes and differences 

in maximum diameters they concluded that large variations were observed despite wide 

agreement between physicians regarding anatomical areas contoured. Up to 19cm variation 

was seen in the craniocaudal direction, and the ratio of largest to smallest CTV volume ranged 

from 3.6 to 4.9 (Weiss et al. 2003).  A further study analysed 6 observers contouring cervical 

GTV alone on MRI for 20 cases (Wu et al. 2005). Statistically significant differences in GTV 

volume on MRI were found. Median difference in maximum to minimum delineated volume 

was more than 40cm3. Percentage volume differences were not published. Challenges 

reported by observers included technical factors, e.g. susceptibility artefacts and partial 

voluming, patient factors including other pathologies such as atypical myxoma and tumour 

factors including parametrial extension and post radiation changes including heterogeneity 

and necrosis. These findings are interesting but the clinical impact is unclear as CTV 

delineation on CT imaging is more representative of current practice. The third study is 

therefore more clinically relevant as it compared primary and nodal CTVs delineated by 12 

experts for 3 complex cases using Simultaneous truth and performance level estimation 

(STAPLE) sensitivity and specificity assessment (Lim et al. 2015). They concluded moderate 

to substantial agreement with heterogeneity greatest for the cervix and vagina.  In Chapter 2, 

using the UK INTERLACE radiotherapy quality assurance (RTQA) test cases I quantify the 

variation witnessed between 21 observers for primary and nodal CTV in two independent 

cases. This is a larger cohort that previously reported on.  
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To estimate the clinical impact, in Chapter 3 I assess the dosimetric impact of the delineation 

variation observed in these RTQA cases. To my knowledge, no previous studies have 

quantified this.  

Delineation guidance has been shown to reduce variation in some tumour sites, discussed 

further in Chapter 4, but not cervical EBRT. I therefore review the available delineation 

guidance for cervical EBRT, create a pictorial delineation atlas and monitor its impact on the 

observed variation in Chapter 4.  

1.9.2. Target position daily variation 

Pelvic organ position variation is seen during chemoradiation, primarily due to bladder and 

rectal filling variations (Wagner et al. 2013; Jadon et al. 2014). Increased conformality with 

IMRT raises concern of target under-coverage if organs move from planning position. Jadon 

et al systematically reviewed the literature investigating organ motion to date (2014), reviewing 

39 studies, 12 of which were conference abstracts. These studies were heterogeneous and in 

general of small case numbers. The patterns observed appear to be patient specific and vary 

largely, from 5mm to 40mm shifts (Jadon et al. 2014). Bladder volume decreases through 

treatment as does uterine volume (Lee et al. 2007; Ahmad et al. 2008). Maximum uterine 

movements are seen superiorly then anterior-posteriorly with small vaginal and cervical 

movements and minimal movement laterally (Chan et al. 2008; Taylor et al. 2008). Some 

studies confirmed a correlation between bladder filling and uterine movement, primarily 

superior-inferiorly, and rectal filling with cervical and vaginal movement, primarily anterior-

posteriorly (Buchali et al. 1999; Taylor et al. 2008), whilst others were unable to explain inter-

scan motion by bladder and rectal filling changes (Chan et al. 2008; van de Bunt et al. 2008). 

Bladder filling alone has reportedly moved the cervix 15mm (Beadle et al. 2009; 

Haripotepornkul et al. 2011). The largest uterine movements reported were up to 65mm with 

a ‘comfortably full bladder’. This was therefore considered an unacceptable set-up error and 

alternative bladder filling was recommended such as variably full bladders (Ahmad et al. 

2011).  

This heterogeneous data from small studies illustrate that pelvic organ motion is at times very 

large and in part predictable. Overall, uterine motion is larger than cervical with bladder filling 

affecting both uterine and cervical motion and rectal filling affecting cervical. Other factors also 
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influence target position which are not fully understood. Use of bladder and bowel preparation 

regimens could minimise this but, to my knowledge, no published recommendations exist.   

Tumour regression may confound some of the above findings. Cervical tumour volume 

reductions are reportedly 31-70% through treatment and can occur rapidly, with time to 50% 

reduction reported at only 21 days (Lee et al. 2004; Beadle et al. 2009; Herrera et al. 2013). 

As tumour regresses cervical motion may increase leading to target under-coverage as, in 

theory, locally invasive tumour fixes cervical position. There is no evidence supporting this. In 

fact, after delivery of 30Gy, target coverage remained adequate despite a 46% mean GTV 

reduction (range 6.1-100%) (van de Bunt et al. 2006). Perhaps the original CTV is large 

enough to cover any additional movement. Of interest, in this situation, replanning reduced 

bowel dose and this approach could therefore optimise OAR dose (van de Bunt et al. 2006).  

Using CBCT imaging taken during the course of cervical chemoradiation for ten patients I 

investigate organ motion to understand organ filling effects on CTV coverage and how to 

minimise variation. I specifically analyse the imaging to create a clinically applicable bladder 

and bowel preparation protocol. Chapter 5 presents this analysis and my proposed protocol. 

As previously stated, no published recommendations exist. 

CTV to PTV margins are applied to account for organ motion and position changes through 

treatment. However, cervical cancer margins applied in the literature are as little as 3mm 

(Stewart et al. 2010) yet target moves up to 65mm. Due to the motion data already discussed, 

variation of margins around uterus and cervix appears a logical approach. Isotropic margins 

of 4cm at the fundus and 1.5cm at the os have been proposed but the importance of soft tissue 

imaging was emphasised as even 4cm did not guarantee coverage (Chan et al. 2008). 

Delineating the cervix and uterus separately on CT is impractical and a large 4cm margin will 

negate IMRT benefit. An alternative is anisotropic margins such as 15mm anterior-posteriorly, 

and superior-inferiorly with 7mm laterally (Taylor et al. 2008). These recommendations are 

based on consecutive day scans and may underestimate movements over a course of RT. 

Other studies propose CTV margins of 8-24mm with some suggesting specified margins for 

each direction (Buchali et al. 1999; van de Bunt et al. 2008). Being so prescriptive is 

unnecessary and clinically questionable. Within the two current UK cervical RT studies 

(DEPICT,  INTERLACE (http://public.ukcrn.org.uk/search/StudyDetail.aspx?StudyID=11775)) 

http://public.ukcrn.org.uk/search/StudyDetail.aspx?StudyID=11775)
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CTV margins of 15-20mm anterior-posteriorly and superior-inferiorly with 7-10mm laterally are 

applied. The European EMBRACE2 study (www.embracestudy.dk) also uses 15mm margins 

with discretionary adaption if less or more movement may be expected. They also suggest 

the internal target volume (ITV) approach, discussed in Chapter 7. Assessing the data 

presented already, 15mm margins are likely to account for cervical variation but not all uterine 

movements. However, the necessary dose for uninvolved uterus is unclear as no recurrences 

are documented there.  

Van herk et al published a mathematical approach to calculating margins using random and 

systematic errors from patient cohorts (van Herk et al. 2000). Using this method in Chapter 5 

I calculate the margin necessary to account for the set up and organ motion errors in my ten 

cases and compare this with the published data. 

The dosimetric impact of organ motion has been investigated in only a few small (~10 cases) 

studies with variable results. Through summing DVHs, a trend of decreasing coverage with 

time was seen without statistically significant dose reductions using a 15mm margin (Han et 

al. 2006) whereas a 1cm margin reduced delivered dose by approximately 5Gy, from 48.75Gy, 

and use of a tapered margin (2.4cm at fundus to 1cm at cervix) improved uterine coverage 

but increased normal tissue doses (Gordon et al. 2011). Conversely, uterine D98% (dose 

delivered to 98% volume) was maintained above 90% of prescribed dose for each fraction 

treated with a 5mm margin IMRT plan (Jensen et al. 2015). Cervix dose was not detailed. 

These findings highlight the importance of margin size but do not inform on overall dose 

delivered to specific points within CTV. This point dose information is difficult to calculate, 

especially when the organ changes shape and dimensions as well as position. This is however 

important to ensure the same area is not consistently under-dosed. Deformable dose 

algorithm software, such as MORFEUS, converts outlines into representative three-

dimensional surface measures and is able to overlay each mesh and estimate dose to each 

point within the structure. This was used to compare a four-field box, large margin IMRT plan 

(20mm margin except inferior 10mm) and small (5mm) margin IMRT plan for 20 cervical 

patients (Lim et al. 2009). No significant difference in planned and delivered dose was found 

but small decreases were seen in GTV and CTV dose with the small margin IMRT plan. The 

accumulated D98% remained ≥95% in all cases for GTV and 19/20 cases for CTV, and 
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therefore the 5mm margin plan was deemed adequate. This is in agreement with Jensen et al 

but not Gordon et al. In a larger cohort (33 women), using 3mm margins, MORFEUS showed 

that, without replanning, acceptable dose, defined as D98≥95% dose, was achieved in only 

73% of cases (Stewart et al. 2010). By weekly replanning, this coverage was achieved in all.  

Interestingly, only Gordon et al detail where dose is compromised. They describe dose 

detriment at the uterine fundus, an area of lower relapse risk and therefore less clinically 

relevant. 5Gy compromise may therefore be accepted. This would be unacceptable in the 

cervical region.  

Together, these studies demonstrate potential dose detriment, the magnitude of which 

remains unclear. Results using dose deformation software are more representative but also 

involve assumptions e.g. weekly imaging represents daily position, and detail is lacking 

regarding where dose is compromised. Absolute minimum dose required is also unclear as 

dose prescriptions between studies varies, ranging from 45 to 50Gy in 25 to 30 fractions, as 

does practice across countries. Despite these uncertainties, processes are clearly needed 

during IMRT to minimise and account for organ motion. Options include patient specific 

margins with anisotropic margins, strict bladder and bowel preparation and adaptive RT 

(Jadon et al. 2014). Adaptive RT, detailed further in Chapter 7, applies approaches to 

compensate for daily changes. An example is creation of an ‘internal target volume’ (ITV) 

based of variable bladder filling scans and selection of a bladder empty-to half-full and half-

full-to-full dependent on daily bladder filling (Bondar et al. 2012). Whilst these methods 

undergo validation ongoing monitoring is essential. 

In Chapter 6 I investigate the dose effect of the observed organ motion in my patient cohort, 

if treatment was delivered using IMRT, using a novel vector-based technique to assess central 

point doses. These results contribute further to the proposed preparation protocol discussed 

in Chapter 5. 
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1.10. Thesis statement 

In the current era of evidence based medicine and with the introduction of advanced RT 

techniques focus must remain on safe treatment delivery. Technological advances are 

increasing the complexity and accuracy of RT for locally advanced cervical cancer. 

Understanding the variabilities within our RT planning process is vital to ensuring treatment 

accuracy. This work therefore studies potential variables within the RT process to understand 

their importance and establish methods of reducing variation, thereby improving the quality 

and hence the therapeutic ratio in this patient group. To achieve this I focus on two key 

challenges; target volume delineation and daily pelvic organ position variation. I quantify the 

variation in cervical cancer target volume delineation (Chapter 2) and assess its dosimetric 

impact if treatment was delivered with IMRT (Chapter 3). I then review the available cervical 

cancer delineation guidance, using this to create a pictorial delineation atlas and after 

implementing this atlas assess for changes in the observed variation (Chapter 4). Using 

imaging taken during chemoradiation for ten patients I analyse bladder and rectal filling and 

its impact on CTV coverage (Chapter 5). I also use this cohort to calculate CTV to PTV margins 

and propose a bladder and bowel preparation protocol (Chapter 5). The dosimetric impact of 

this variation if treatment was delivered with IMRT is evaluated by using a novel vector based 

technique (Chapter 6).  

Overall, the aim of this work is to demonstrate that a better understanding of delineation and 

organ position variation during chemoradiation will improve standardisation of RT and facilitate 

safe introduction of advanced techniques, ultimately improving outcomes and lessening 

toxicity. 
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Chapter 2 

Variation of clinical target volume (CTV) delineation in cervical cancer radiotherapy 

across the UK. 
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2.1. Introduction 

Many centres within Europe and the UK use IMRT for the curative treatment of cervical cancer. 

IMRT reduces the dose delivered to OARs compared with 3D-CRT (Portelance et al. 2001; 

Forrest et al. 2012) thereby leading to reduced toxicity rates (Mundt et al. 2001; Salama et al. 

2004). It does this by conforming the RT dose much closer to the target volumes. Therefore, 

to ensure precise and safe treatment delivery when using IMRT it is vital to delineate the GTV, 

CTV and OARs accurately. However, it is well documented that one of the largest 

uncertainties within RT planning is target volume delineation. Significant inter-observer 

variability has been published across many tumour sites, and in cervical brachytherapy since 

the introduction of MRI-guided techniques as described in Chapter 1, section 1.9.1. There are 

only a few studies which assess inter-observer variation of EBRT GTV and CTV delineation 

for cervical cancer, as detailed in 1.9.1 (Weiss et al. 2003; Wu et al. 2005; Lim et al. 2015). 

Weiss et al, in 2003, studied 3 cervical cancer cases which were independently outlined (CTV) 

by seven clinicians finding significant variations, up to 19cm.  In 2005, Wu et al published (Wu 

et al. 2005) on the variation seen between 6 observers contouring 20 cases’ cervical GTV on 

MRI. Statistically significant volume differences were found. In contrast, moderate to 

substantial agreement was found by Lim et al having compared 12 experts’ primary and nodal 

CTV outlines for 3 complex cases (Lim et al. 2015).  

As part of the INTERLACE RTQA participating centres outline and plan two test locally 

advanced cervical cancer cases following trial protocol. This chapter firstly reviews the 

methods applied in the literature to quantify delineation variation. Then, using the most 

appropriate of these parameters to analyse the outlining variation, I analyse the variation 

between the first RTQA test cases submitted by 21 of the UK INTERLACE centres. My 

analysis of variation witnessed within the INTERLACE RTQA was published in Radiotherapy 

and Oncology (Eminowicz et al. 2015).  

2.2. Assessment methods for delineation variation quantification  

2.2.1. Methods of literature review and quantification method comparison.  

To understand which quantification methods are most frequently used to analyse delineation 

variability, a literature review was performed. The pubmed/medline central database was 
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searched with the MESH term ‘radiotherapy’ in combinations with the terms ‘target volume 

outlining’, ‘target volume delineation’, ‘volume delineation’, ‘volume outlining’, ‘variability’, and 

‘quantification’. All articles presenting delineation comparison between observers and/or 

cases were selected and reviewed for details of publication, primary theme of article, tumour 

sites included, number of observers, number of cases, and number and details of 

quantification parameters selected to represent delineation variation. This provided an 

overview of how delineation variation is quantified and presented in published data. The 

quantification methods published were then examined and the articles that presented methods 

of quantifying delineation variation were reviewed separately to aid understanding of these 

methods. By explaining the theory behind these methods, a combination of parameters is 

selected as an optimum approach to analyse delineation variation in cervical EBRT. This 

selection is based on published parameter combinations in addition to the theoretical 

understanding of these methods.  

2.2.2. Quantification methods literature review results 

The literature review was completed on 3rd April 2014. 113 articles were identified through the 

search methods. 14 of these articles were not included in the full analysis because either they 

did not present any outlining comparison (6) or they focussed on specific techniques of 

assessing delineation variation and were therefore reviewed when discussing the theory 

behind methods used. Therefore, 99 (for summary Table see Appendix 1) articles in total were 

reviewed. These all present results of comparisons in delineation between observers, cases 

or process of delineation. These were published between 1991 and 2014. 54 were published 

between 2007 and 2012. No correlation was found between year of publication and number 

of methods used to quantify delineation variation.  The main theme of the articles include the 

existence of inter-observer variation (29 articles), factors influencing inter-observer variation 

including use of guidelines or specific imaging techniques (53), accuracy of automated 

segmentation (4), RTQA (2), and the presence and impact of inter-observer variation on 

dosimetry (11). These 99 articles were published in 21 different journals, the majority (70%) 

in one of two journals; the ‘International Journal of Radiation Oncology Biology and Physics’ 

and ‘Radiotherapy and Oncology’. The vast majority (97) focus on a single tumour site. The 

most common tumour sites are prostate (29 articles), lung (15), head and neck (11), breast 
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(11) and CNS (9). The number of observers performing delineation ranges from 1 to 48, 

median 6. Only 2 articles use 1 observer. 52 articles use between 3 and 7 observers. The 

number of cases delineated ranges from 1 to 42, median 9. 41 articles use 5 or less cases. 

Overall, the number of cases and observers is negatively correlated (pearson correlation -0.4, 

p<0.001 two tailed sig test) with articles that use a low number of cases being more likely to 

use a high number of observers and vice versa.  

The majority of articles (82) use more than one parameter to quantify delineation variation. 

There appears to be no correlation between whether the articles focus solely on delineation 

variation and the number of methods applied. The following description includes the most 

commonly used methods and is therefore not exhaustive.  

2.2.3. Explanation of quantification methods and parameters 

For the purposes of description the assessment methods are divided into four groups:  

Volumetric, Dimensional, Positional and Statistical measures of agreement.  

Volumetric parameters: volume, volume overlap methods 

Volume 

In line with previous reviews (Jameson et al. 2010; Fotina et al. 2012), the most commonly 

used parameter was volume. 87 out of the 99 articles analysed volume in their results. This 

included absolute volume measurements, including changes, and conventional statistics 

(mean, standard deviation (SD)). This is easily computed and easily understood by clinicians 

and gives clinical information as it represents the irradiated tissue volume.  

Maximum to minimum ratio, also termed the maximum volume ratio (MVR) (Logue et al. 1998), 

gives a simple useful assessment of inter-observer variation. It is easily computed and 

understood but is significantly affected by outliers and by volume size.  

Coefficient of variance was used to represent volume variation in 18 of the articles; 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑜𝑙𝑢𝑚𝑒

𝑚𝑒𝑎𝑛 𝑣𝑜𝑙𝑢𝑚𝑒
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This calculation eliminates bias due to volume size and conventional statistics can still be 

applied.  

The calculations discussed so far do not give any information on position or shape of the 

structures: as seen in Fig. 2.1 similar volumes can have very different shapes and locations. 

 

Figure 2.1: Three differing outlines with the same volume. 

Volume overlap measures  

Volume overlap measures were the second most common method applied, in 54 articles. 

There are many differing calculations which fall into this category but the underlying concept 

is the same. Terminology lacks consistency. Some calculations are identical but have differing 

names. The terms used include conformity index, conformality index, concordance index, 

concordance volume, ratio of common to encompassing volume, and percentage overlap. The 

most commonly used is the index that Paul Jaccard created in 1901 for botanic comparisons 

and originally called it the ‘coefficient de communaute’ (Jaccard 1901). This has subsequently 

been adopted for delineation comparisons and forms the Jaccard conformity index (JCI).  

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐶𝐼 =  
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑛𝐵 (𝑖. 𝑒. 𝑐𝑜𝑚𝑚𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒)

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛 𝐴𝑢𝐵 (𝑖. 𝑒. 𝑒𝑛𝑐𝑜𝑚𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑣𝑜𝑙𝑢𝑚𝑒)
 

Fig. 2.2 illustrates this calculation. Perfectly overlapping outlines have a JCI of 1.0, and a JCI 

of 0.5 equates to a 66% overlap, JCI 0.6 75% overlap, 0.7 approximately 82% overlap and 

0.82 90% overlap.  
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Figure 2.2: Diagram illustrating Jaccard Conformity Index (JCI) 

The JCI compares two outlines only, can be calculated easily and takes into account volume 

and position. Ideally a reference volume is needed and the results are affected by volume 

size. The JCI gives no information on the shape or location of the structures. It is also not clear 

what is an ‘acceptable’ result, despite knowing 1 is perfect agreement and 0 is no agreement. 

Other terms such as percent volume overlap (Rao et al. 2005; Li et al. 2009) use the same 

calculation. 

The Kouwenhoven is a generalised conformity index that can compute multiple volumes in 

one equation by using confidence levels, i.e. the proportionate number of outlines including 

each point (Kouwenhoven et al. 2009). This is not as simple to calculate but does not need a 

reference volume and facilitates analysis of multiple volumes in one calculation.  

Dimensional parameters: encompassing and surface 

Dimensional parameters were used in 46 articles. They can be categorised into two distinct 

groups; encompassing dimensions, e.g. diameter, and surface dimensions.  

Encompassing dimensions 

Distance measurements are termed encompassing dimensional parameters. They provide 

information on the overall size of the structure. This includes length, width, and boundary 

distances i.e. distance from centre of volume in certain axis, maximum X, Y, Z limit in all 6 

directions (anterior, posterior, inferior, superior, left and right lateral). 
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These are useful in the clinical situation where you are expecting the volume to be regular or 

spherical e.g. prostate (Cazzaniga et al. 1998; Debois et al. 1999) or where it is clinically 

relevant e.g. length in oesophageal cancer (Schreurs et al. 2010). These measurements are 

also easily understood and processed.  

Surface dimensions 

Other dimensional parameters assess small differences in the surface location of two outlines. 

These include the average surface distance (Li et al. 2009; Shaikh et al. 2010), median surface 

distance (Deurloo et al. 2005), surface congruence analysis (Wijesooriya et al. 2008), 

maximum surface separation (Hausdorff) (Rao et al. 2005), and radial line measurement 

variation (Seddon et al. 2000). These calculations are variations of assessing distances along 

different angles or points of the outline, usually from the centre of the volume. The average 

surface distance was the most commonly used of these parameters, applied in 11 articles. It 

involves calculating the average of the minimum distance from a point on one outline to the 

other for all pixels (Li et al. 2009; Shaikh et al. 2010). The Hausdorff maximum surface 

separation is similar, calculating the average distance between 2562 points on 2 outlines. 

These are complex calculations which cannot be performed using a treatment planning 

system (TPS). However, interpretation is relatively simple. Clinicians can understand an 

average distance difference and the results are clinically relevant. A specific cut off figure 

cannot be used for these parameters as the result is biased by volume size and the clinical 

implications of the same distance may be very different for a small versus large volume. 

Positional 

COM and Shift in COM 

Centre of mass (COM) or shift in COM were applied in 23 out of the 99 articles. COM is a 

simple calculation which can be performed on all TPSs. It is not useful as a single parameter 

as it does not inform on anything other than the central position of a structure. As can be seen 

in Fig. 2.3 two outlines can be very different with an identical COM.  
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Figure 2.3: Illustrations of outlines with the same COM. 

Shift in COM is more clinically useful and is another understandable concept for clinicians as 

it is clinically relevant. These parameters are most useful if the outline is a spherical or uniform 

structure e.g. prostate (Villeirs et al. 2005; Song et al. 2006).  

Statistical measure of agreement 

Intraclass correlation coefficient 

Intraclass correlation coefficient is a statistical measure of proportion of variance which 

creates a result that can be interpreted in the same way as the pearson correlation coefficient. 

This was originally described as a method of quantifying the variation of assessing dental 

caries in a trial setting (Fleiss et al. 1979). Multiple outlines can be compared simultaneously. 

It is complex, makes assumptions of uniform error variance, and many options apply e.g. one 

way versus two way, consistency versus agreement etc. This cannot be calculated using a 

TPS and is more difficult to interpret than the previously discussed parameters. This is the 

likely reason that it was only used in 6 of the papers reviewed. This is also referred to as the 

concordance correlation coefficient (Buis et al. 2007). 

Suggestions for reporting 

None of the parameters detailed here are sufficient alone to describe the detail necessary for 

outline variation. Conformity index is the most useful single parameter because it informs on 

volume and position together. Application of more than three parameters is unnecessary and 

becomes complicated and confusing. My recommendation is therefore that 2 or 3 parameters 

are used which includes at least 1 volumetric parameter. The combination should depend 

upon what type of outline is being compared. For example, prostate outlines can be compared 
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by COM, JCI and encompassing dimensions whereas a pelvic nodal outline should be 

compared by total volume, JCI, and encompassing dimensions. Alongside any quantitative 

review a qualitative assessment is always necessary. For some outlines qualitative 

assessment can be quantified e.g. in a pelvic nodal outline the proportion of outlines including 

certain anatomical regions can be calculated.  

The following analyses of the cervical primary and nodal CTV will therefore include total 

volume, JCI, and maximum X, Y, Z limit in all 6 directions (anterior, posterior, inferior, superior, 

left and right lateral). Within the qualitative assessment the proportion of centres including 

specified anatomical areas will also be reported. 

2.3. Methods of delineation variation analysis 

2.3.1. Delineation process 

To complete the INTERLACE RTQA each investigator delineated two test cases (as detailed 

in the INTERLACE RTQA pack v1.4; see Appendix 2). Case 1 was a 64 year old with a bulky 

barrel shaped FIGO stage 3B squamous carcinoma with bilateral parametrial extension, right 

pelvic sidewall extension and ureteric obstruction. Case 2 was a 64 year old with a smaller 

FIGO stage 2B squamous carcinoma with bilateral parametrial extension and involvement of 

the lower uterus extending 2cm proximal to internal os. All investigators had access to the 

RTQA pack (v1.4 seen in Appendix 2). This includes the anonymised patient history, EUA 

findings and imaging reports. The investigators did not have the diagnostic MRI images, which 

would standardly be used for reference when outlining on designated planning CT. The 

planning CT, acquired with 0.25cm slice thickness, was available in ‘digital imaging and 

communications in medicine’ (DICOM) format and could be imported into any TPS. This 

allowed the investigator to outline the cases on the TPS which they are familiar with and use 

in their normal daily practice. The first 10 centres completed delineation using the INTERLACE 

protocol version 1 (V1) and the subsequent 11 centres used an updated version (V1.4). V1 

and V1.4 differ regarding inclusion of upper vagina and bilateral parametria in CTV2 for V1 

and CTV1 for V1.4. There is no other difference in the outlining guidance or resources supplied 

between V1 and V1.4. Therefore, both protocols recommend inclusion of the same anatomical 

areas within the combined CTV1 and CTV2. This includes tumour, entire cervix, bilateral 



56 
 

parametria, ovaries if seen, upper vagina, entire uterus, and high risk pelvic nodal areas as 

discussed later. Delineation review by the INTERLACE RTQA team was performed. This 

involved assessment of protocol compliance and compilation of a report detailing areas of 

variation from protocol. All cases that were deemed not protocol compliant were returned to 

the relevant centre with the report and had to be edited according to the report and 

resubmitted. The resubmissions were only approved once fully protocol compliant.  

2.3.2. Gold standard delineation 

To facilitate the assessment of protocol compliance gold standard outlines for case 1 and case 

2 were required. To create these gold standard outlines 5 members of the trial management 

group (TMG) who were experienced RT clinicians working in 5 different UK centres 

independently completed the two RTQA test cases. The TMG is a consortium of 15 

professionals, including 4 consultant clinical oncologists, 2 clinical oncology research fellows 

(including myself), 1 RTQA physicist and 3 medical oncologists. The 5 RT clinicians 

downloaded the two test cases onto their TPS and delineated them following protocol as each 

participating centre would do. These independent outlines were then imported in DICOM 

format onto one planning CT and were simultaneously and anonymously visually and 

qualitatively reviewed by the TMG. A consensus outline for each OAR and CTV was then 

manually created and this is the ‘TMG gold standard’. 

Due to the lack of a mathematical or computational approach to the creation of this TMG gold 

standard I decided to quantitatively validate this outline. Therefore, a separate STAPLE 

outline, as described by Warfield et al was created for both test cases (Warfield et al. 2004). 

This STAPLE algorithm applies an expectation-maximisation algorithm to multiple outlines of 

one case to compute a probabilistic estimate of the true (gold standard) outline. By using all 

of the submitted outlines together STAPLE estimates the optimal outline combination by 

weighting each outline depending upon the estimated performance level. It also incorporates 

spatial distribution and spatial homogeneity constraints models (Warfield et al. 2004). To 

create the STAPLE, a confidence level in outline agreement must be selected. For our 

algorithm we applied a 95% confidence level. Using this 95% confidence level I imported all 

21 centres’ outlines into CERR (a computational environment for radiotherapy research 
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software) (Deasy et al. 2003) and created the STAPLE outline. I then imported the TMG gold 

standard outline into CERR to allow direct comparison and validation. Areas of variation 

between the TMG and STAPLE outline were reviewed and alterations were made to the TMG 

gold standard if clinically relevant differences were observed. This led to the creation of an 

‘optimised gold standard’ outline (GSCTV1+2) which is the reference volume I used. 

2.3.3. Delineation comparison 

The combined ‘CTV1+2’ was analysed to allow comparison of all cases together as individual 

analysis of CTV1 and CTV2 would highlight inconsistencies due to variation in upper vagina 

and parametrial inclusion between protocols as explained earlier (section 2.3.1). The 

anatomical areas included in the combined CTV1+2 was identical for V1 and V1.4; tumour, 

entire cervix, bilateral parametria, ovaries if seen, upper vagina, entire uterus, and high risk 

pelvic nodal areas. Each CTV1+2 outline was imported into CERR and SHERRI (surrey 

heuristic engine for radiotherapy radiobiology and imaging). The maximum distance from the 

DICOM centre (i.e. CT reference point), total volume (CTV1+2), JCI and anatomical regions 

included were analysed on CERR. Volume and JCI were also calculated using SHERRI to 

validate the CERR results.  

CTV1+2 total volume was calculated on CERR and SHERRI separately. The average of these 

two calculations was recorded as the result. 

The maximum distance from the DICOM centre in all 6 directions was calculated by recording 

the most extreme X, Y or Z coordinate in all 6 directions (anterior, posterior, inferior, superior, 

left and right lateral) on which CTV1+2 is seen. The X, Y and Z coordinates represent the 

distance in centimetres from the DICOM centre. The most extreme point in one direction for 

two independent outlines are not necessarily at the same point along the axis. This means 

they may be in different anatomical regions.  

The JCI, as explained above, was calculated for each outline against the optimised gold 

standard outline (GSCTV1+2). This calculation is programmed into SHERRI. Manual 

calculations on CERR were performed to validate the SHERRI result. The optimal JCI result 

is unclear from the literature even though clearly closer to 1 is better. A poor correlation of 

outlines has previously been documented as JCI<0.5 (Peterson et al. 2007; Jena et al. 2010) 
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and Gwynne et al suggested JCI >0.7 is acceptable (Gwynne et al. 2013). This level of JCI>0.7 

is what I applied for my analysis and equates to approximately 82% overlap. 

A visual review of each outline was performed on CERR to record the proportion of outlines 

which included the following anatomical areas:  

 Common iliac nodal region 

 Internal iliac nodal region 

 External iliac nodal region 

 Obturator nodal region 

 Pudendal nodal region 

 Inguinofemoral nodal region 

 Presacral nodal region 

 Sacral foramina 

According to the protocols the common iliac, internal iliac, external iliac, obturator and 

presacral nodal regions should be outlined. The pudendal and inguinofemoral regions should 

not be included. There was no guidance regarding inclusion of sacral foramina, and one can 

conclude that this therefore may represent each centres’ local practice. 

The following were also reviewed  

 The most superior CTV1+2 extent, representing the level of the aortic bifurcation  

 The most inferior CTV1+2 extent, representing the length of vagina included 

 Overlap with muscle and/or bone 

 Spaces laterally between CTV and muscle and/or bone 

Neither of the two test cases had any vaginal tumour extension. This therefore means that the 

protocol advises the upper half of the vagina should be outlined. Muscle and bone should be 

edited out of CTV and there should be no gaps laterally between muscle and/or bone of the 

pelvic sidewall and CTV.  

2.3.4. Statistical analysis 
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Mean, standard deviations (SDs) and 95% confidence intervals (Cis) were calculated following 

review of the Q-Q plots confirming normality using IBM SPSS Statistics 22. One sample t-

tests were calculated for all parameters versus the optimised gold standard to assess for 

variation between centres. The percentage of centres including the specified anatomical 

regions was calculated and 95% CIs were derived using the Exact Confidence Limits for p 

tables.  

2.4. Results of analysis of UK cervical cancer delineation comparison 

2.4.1. Gold standard validation 

The STAPLE algorithm created a larger CTV than the TMG for both cases. Case 1 STAPLE 

volume was 647cc compared to 598cc (TMG). Case 2 STAPLE volume was 773cc compared 

to 735cc (TMG).  The mean volume of all centres’ CTVs was lower than the TMG and STAPLE 

volumes at 518cc for case 1 (95%CI 483cc-553cc) and 629cc for case 2 (95%CI 592cc-

666cc). The TMG and STAPLE volumes are therefore not within these 95% CIs; the TMG 

outline was 45cc larger than the upper limit of the 95%CI for case 1 and 69cc larger for case 

2.  

The superior border of the TMG and STAPLE outlines for both cases were within 0.25cm of 

each other. The extreme points along each axis were within 0.3cm of each other for case 1, 

0.5cm for case 2. These results suggest similarity between the two outlines and the 

differences will have minimal clinical implications.  

The JCI was 0.76 for case 1 and 0.79 for case 2, corresponding to approximately 86% and 

89% overlap. Both of these values are above the ‘acceptable’ cut-off of 0.7. The only 

discrepancies between areas included in CTV were the sacral foramina and pudendal nodal 

region; the TMG outline included the sacral foramina whereas the STAPLE did not; the TMG 

did not include the pudendal nodal region and the STAPLE did. The most evident clinically 

important variation between the TMG and STAPLE outline was the length of vagina included. 

The TMG outline included a longer proportion of vagina; 0.75cm longer in case 1 and 1cm 

longer in case 2. The mean vaginal length of all centres’ was 1.5cm shorter than the TMG for 

case 1 and 1cm shorter for case 2. We therefore applied the mean length from all outlines to 

the gold standard. We edited the TMG gold standard inferior border to create an ‘optimised 
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gold standard’ and this is our reference outline (GSCTV1+2). This GSCTV1+2 has an 

improved JCI of 0.77 for case 1 and 0.81 for case 2 compared with the STAPLE CTV. 

2.4.2. Variation between centres 

Variation between centres: Volume. (Table 2.1, and Figure 2.4) 

Case 1 

Mean volume was 518cc (SD 82cc, 95%CI 483-553), ranging from 340cc to 676cc, 

representing a maximum 1.99 fold difference.  

Case 2 

Mean volume was 615cc (SD 89cc, 95%CI 592-666), ranging from 458cc to 806cc, 

representing a maximum 1.76 fold difference.  

 

Figure 2.4: Histogram of volume distribution for case 1 (A) and 2(B) 
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Variation between centres: Maximum distance from CT reference point (Table 2.1, Fig. 2.5) 

Case 1 

Differences of up to 2 to 3cm are seen in the most extreme points along the anterior posterior 

and lateral axis. Anteriorly the range was 2.1cm, posteriorly 3.2cm, right lateral 2cm and left 

lateral 2.9cm with SD 0.6 to 0.8. Fig. 2.5 illustrates these results, showing a 2cm range 

posteriorly if 2 outliers are excluded and 1.25cm left laterally if 4 outliers are excluded. The 

extreme points in these directions are of very small volume and therefore minimal importance. 

 Table 2.1: Variation in CTV1+2 outline between centres for Case 1 and Case 2 

 

The largest variation was in the superior and inferior borders. These correspond to anatomical 

locations which clinicians specifically define and are of larger volume than the lateral and 

anterior-posterior directions. Case 1 displayed a range of 4cm for the aortic bifurcation (most 

superior transverse slice) and 2.5cm for inferior vagina (most inferior transverse slice). 

Superiorly (see Fig. 2.5) 15 out of 21 centres were within 1.25cm agreement and 6 centres 

were outliers to this. Inferiorly it is less clear which results are outliers. 

Case 2 

Case 2 results are similar to case 1 (Table 2.1, Fig. 2.5). A 2-2.2 cm range in the anterior, 

posterior and lateral directions is seen with SD of maximum 0.6cm. These are all small volume 

points. The aortic bifurcation was defined more consistently than case 1, with a range of 1cm, 

SD 0.4cm. The inferior vagina was less consistently defined with a range of 3.5cm, SD 0.8cm. 

Fig. 2.5 illustrates the range is 1.25cm if 6 outliers are excluded, but in this situation 27% of 

centres are ‘outliers’.  

 CASE 1 CASE 2 

 Mean Min;Max SD 95% CI Mean Min;Max SD 95% CI 

Volume (cc) 518 340;676 82 483;553 629 458;806 89 592;666 

Sup (aortic 
bifurcation)  (Z cm) 

-13.1 -14.75;-
10.75 

0.85 -13.26;-
12.94 

-13.5 -14.0;-13.0 0.37 -13.65;-
13.35 

Inf (vagina) (Z cm) 4.2 3.25;5.75 0.71 3.9;4.5 3.9 2.5;6.0 0.84 3.55;4.25 

Ant ( Y cm) 5.0 3.71;5.86 0.60 4.74;5.26 6.6 5.08;7.32 0.57 6.36;6.84 

Post (Y cm) -7.8 -9.86;-6.64 0.78 -8.13;-7.47 -6.4 -8.11;-5.86 0.48 -6.6;-6.2 

Right lat (X cm) -8.8 -8.96;-6.93 0.72 -9.11;-8.49 -8.6 -9.67;-7.52 0.54 -8.83;-8.37 

Left lateral (X cm) 7.6 5.96;8.89 0.68 7.31;7.89 7.5 6.54;8.50 0.48 7.3;7.7 

JCI 0.64 0.51;0.81 0.07 0.61;0.67 0.67 0.57;0.79 0.06 0.65;0.69 
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Figure 2.5: Graph illustrating furthest point along each axis in which CTV1+2 is visible, plotted 
as distance (cm) from GSCTV1+2. 
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2.4.3. Variation from GSCTV1+2 and protocol 

Variation from GSCTV1+2: JCI. (Table 2.1, Fig. 2.6 and 2.7). 

Case 1 

The mean JCI was 0.64, corresponding to an approximate 78% overlap, SD 0.07, 95%CI 0.61-

0.67. The range was 0.51 to 0.81. No cases demonstrated poor concordance (JCI<0.5). 3 out 

of 21 (14%) achieved acceptable concordance (JCI≥0.7).  

 

Figure 2.6: JCI for all centres including mean and standard deviation. 

Case2 

The mean JCI for case 2 was higher at 0.67, SD 0.06, 95%CI 0.65-0.69. The results ranged 

from 0.57 to 0.81 suggesting more agreement compared to case 1. No cases demonstrated 

poor concordance (JCI<0.5). 7 out of 22 outlines (32%) achieved good concordance (JCI≥0.7). 

Fig. 2.7 shows transverse CT slices with all centres’ outlines (white) and the gold standard 

(black) for case 1 (Fig. 2.7a&b) and 2 (Fig. 2.7c&d).  

Anatomical regions included and nodal outlining (Table 2.2) 

The anatomical regions to be included within CTV1+2 according to the INTERLACE protocol 

are discussed within the methods. Table 2.2 shows the anatomical regions (column one), the 

percentage of centres’ outlines including those regions (case 1 column two, case 2 column 

three) and the protocol recommendations (column four).  



64 
 

The largest discrepancy between the centres and protocol recommendation was in coverage 

of obturator, pudendal and presacral nodal regions. The obturator and presacral regions 

should be included. 52% of case 1 outlines and 50% of case 2 outlines included the obturator 

and 67% of case 1 and 59% of case 2 included the presacral region.  The pudendal region 

should not be included but was included in 43% of case 1 and 73% of case 2 outlines.  

 Table 2.2: Percentage of CTV outlines that complied with protocol for anatomical region 

 

 
Figure.2.7: Transverse CT images of CTVs (white) and GSCTV1+2(black) for case 1 (a&b) 
and 2 (c&d) at sacro-iliac level (a&c) and superior to femoral heads (b&d). 

Anatomical region Case 1 (%,95% 
CI) 

Case 2 (%,95% CI) Protocol 

Common iliac nodal region 95% (76.2-99.9) 100% (84.6-100) Yes 
Internal iliac nodal region 100% (83.9-100) 100% (84.2-100) Yes 
External iliac nodal region 86% (63.7-97.0) 95% (77.2-99.9) Yes 
Obturator nodal region 52% (29.8-74.3) 50% (28.2-71.8) Yes 
Pudendal nodal region 43% (21.8-66.0) 73% (49.8-89.3) No 
Inguinofemoral nodal region 33% (14.6-57.0) 18% (5.2-40.3)) No 
Presacral nodal region 67% (43.0-85.4)) 59% (36.3-79.3) Yes 
Sacral foramina 29% (11.3-52.2) 41% (20.7-63.6) No guide 
Aortic bifurcation GS+/- 0.5cm 71% (47.8-88.7) 91% (70.8-98.9)  
Vaginal length mean +/-0.5cm 67% (43.0-85.4) 64% (40.7-82.8)  
Overlap with muscle/bone 10% (1.2-30.4) 23% (7.8-45.4) No 
Lateral Gaps 24% (8.2-47.2) 23% (7.8-45.4) No 
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2.5. Discussion 

This data confirms that cervical cancer delineation varies between UK centres. This is, to my 

knowledge, the first time such detailed quantification has been performed for cervical primary 

and nodal CTV between so many UK centres. These results are not unexpected given 

previous publications in other tumours sites as well as smaller cervical cancer studies 

(Cazzaniga et al. 1998; Valley et al. 1998; Meijer et al. 2003; Weiss et al. 2003; Wu et al. 

2005; Li et al. 2009; Vorwerk et al. 2009; Gwynne et al. 2011). However, they are still of 

significant interest and concern. 

A large range in CTV1+2 volume between all UK centres’ outlines is demonstrated with a 

maximum two-fold difference in case 1 and 1.8 fold difference in case 2. This has clinical 

implications regarding the irradiated tissue volume and hence normal tissue toxicity in the 

short and long term. Multiple areas of variation contribute to these volume differences. Lateral 

and anterior posterior variations are small points and therefore unlikely to contribute greatly to 

volume discrepancies. Larger variations are seen superiorly and inferiorly which will impact 

on volume variation. What is of concern is that the inferior and superior margins are specified 

anatomical landmarks that the clinicians decide upon. There was a clinically relevant 

maximum 4cm variation in defining the aortic bifurcation. This is a well defined anatomical 

landmark which can be seen clearly on CT. Similarly a maximum 3.5cm variation was 

observed in defining the mid-vagina. Difficulty visualising the superior and inferior extent of 

vagina on CT will account for some of this variation as it is well known that CT is suboptimal 

for this. As MRI is being used more frequently for planning this will hopefully improve. 

Techniques such as use of introitus marker, vaginal dobbie or surgical clips at the top of vagina 

can also potentially help reduce this variation. Other factors contributing to volume variation 

are differences in obturator, pudendal, inguinofemoral and presacral nodal coverage. For both 

test cases mean nodal CTV volume was more than double mean primary CTV volume. 

Therefore nodal variations will contribute more to overall volume variation. A high proportion 

of centres did not include the presacral and obturator nodal regions (33%/41% and 48%/50% 

respectively for case 1/2). The pudendal and inguinofemoral nodes were included in 43%/73% 

and 33%/18% respectively for case 1/2. These variations are highly likely to contribute to the 
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volume variation and were observed despite the use of a protocol. Some of this variation may 

reflect changes to usual practice in an attempt to comply with a new protocol or represent 

what is each centre’s usual practice. However, the difference in percentage including 

presacral, pudendal and inguinofemoral nodes between case 1 and 2 suggests inconsistency 

which could be more readily explained by a lack of anatomical knowledge.  

On visual qualitative review, another area of variation is the lateral parametria. Some centres 

did not extend laterally to cover the whole parametria, some extended to the muscle and bone 

of the pelvic sidewall and others were in-between. In clinical practice it is well known that the 

lateral parametria are difficult to define, especially on CT. I review this in more detail in Chapter 

4. This variation however has not affected my results here as the lateral border is nodal (CTV2) 

not from CTV1. This is also unlikely to currently have any clinical impact as the prescription 

dose is the same for PTV1 and PTV2 and the nodal border should ensure adequate 

parametria coverage. This is still an important area to clarify as dose delivery is becoming 

more complex and delineation of GTV/high risk CTV etc. is necessary.  

Overall 86% of case 1 outlines and 68% of case 2 outlines demonstrated a JCI of 0.5-0.7 

compared to GSCTV1+2, corresponding to 66%-82% overlap. This confirms the inter-

observer variation in cervical CTV delineation reported by Weiss et al (Weiss et al. 2003). 

However, their qualitative conclusion that wide agreement existed between physicians 

regarding anatomical areas contoured differs from my findings. This may be because my study 

reviews UK practice rather than single centre practice as one would expect more consistency 

within one centre. Their other results (maximum variation was 19cm craniocaudally; ratio of 

largest to smallest CTV volume was 3.6 to 4.9) are in keeping but of a greater magnitude than 

observed within my study.  In 2005, Wu et al published (Wu et al. 2005) on the variation seen 

between 6 observers contouring cervical GTV on MRI for 20 cases. This study is of interest, 

especially as it attempts to illicit the reasons behind variation, but the largest differences seen 

in my cases relate to nodal anatomy and superior/inferior aspects rather than GTV. It is 

therefore difficult to compare results. It is important to note that Wu et al studied many more 

cases than I did. One may speculate therefore that a limitation of my study is only comparing 

two cases. However, I believe a huge strength of my study is analysing 21 different outlines 

which is a large observer number and is not easily replicated. In 2012 50 trusts were delivering 
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RT treatment within the UK and not all of those treat cervical cancer. These 21 centres 

therefore represent approximately 45-50% of the entire UK. Also, referring back to the 

literature review of inter-observer variation studies it is common that studies with a lot of 

observers have a small number of cases. On review of the statistical results, the 95% CIs 

overlap for both cases JCI and deviation of X, Y, Z furthest points compared with GSCTV1+2. 

This demonstrates no statistical difference between the two cases overall suggesting that both 

are giving similar results compared with GSCTV1+2 and are therefore representative.   

Having analysed these outlines I can speculate that reasons for protocol deviation are 

multifactorial. Key reasons include differences in usual clinical practice between centres, 

insufficient protocol detail and lack of sufficient anatomy training. What my data does confirm 

is that protocol use alone is not sufficient in eliminating inter-observer variation. 

I suspect that differences in clinical practice as well as published guidelines contribute to the 

variation identified. This is illustrated by considering the inferior nodal CTV extent. There are 

multiple guidelines for pelvic nodal anatomy in gynaecological cancer, detailed in Chapter 4. 

Taylor et al depict inferior nodal CTV as mid-femoral heads (Taylor et al. 2007), whilst the 

Japan clinical oncology group (JCOG) recommend the superior aspect of obturator foramen 

(Toita et al. 2010) and RTOG recommend superior femoral heads (Small et al. 2008). This 

therefore leads to differences in clinical practice between centres even in the ‘evidence based 

medicine’ era. I noted this to be an area of considerable variation when visual qualitative 

review was completed. Obturator coverage was 52% for case 1 and 50% for case 2. Sacral 

foramina inclusion was neither addressed by the protocols nor published guidelines (Taylor et 

al. 2005; Small et al. 2008) and 29% of centres included the sacral foramina in case 1 and 

41% in case 2. Some of this variation may be due to a lack of consensus and differing practice 

between centres. I suspect this explains the variation in obturator coverage. However, if 

differing practice between centres was the sole explanation for sacral foramina inclusion, one 

would expect consistency in the proportion included between case 1 and 2 which there is not.   

Lack of protocol clarity will certainly account for some variation. The use of detailed protocols 

has been documented to minimise inter-observer variation for other trials in prostate bed RT 

and head and neck RT (Valley et al. 1998; Mitchell et al. 2009). Attempting to improve this, I 
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have reviewed the available guidance and created a pictorial atlas focusing on anatomical 

areas of greatest observed variation (see Chapter 4).  Central review of cases with regular 

feedback in a trial setting and review of cases with a radiologist are other methods of reducing 

variation (Valley et al. 1998). Within INTERLACE real time delineation review for all 

INTERLACE patients is offered, providing a detailed step-by-step report with snapshots to aid 

explanation. Interestingly, the vast majority of centres still request real time review even 

though this is no longer compulsory. I believe this illustrates an increase in willingness to 

improve our standards of delineation and planning. 

Within the UK clinical oncologists do not receive specific anatomy or radiology training. Most 

clinicians are self-taught.  This lack of formal education needs to be addressed as more 

conformal RT techniques become routine practice. Published guidelines e.g. nodal mapping 

guidance (Taylor et al. 2005; Small et al. 2008) and primary CTV consensus guidelines (Lim 

et al. 2011) exist and their use is strongly encouraged. However, time and resource constraints 

may lead to UK clinicians not accessing these whilst outlining. These guidelines are 

referenced at online and face-to-face ESTRO and RCR courses on which practice cases are 

outlined and compared anonymously. This use of consensus guidelines, training and 

collaboration between clinicians is vital to ensure that all clinically relevant areas are treated 

whilst minimising normal tissue radiation exposure especially in the era of advanced RT 

techniques. It may also be appropriate to incorporate formal radiology teaching into the UK 

clinical oncology training programme or even radiology placements within the training 

rotations.  

The data I have presented here has clearly demonstrated delineation variations for cervical 

cancer. Methods to reduce the systematic reasons for this variation are necessary, especially 

with emerging IMRT use. This includes implementation of clear guidelines, ongoing education 

and collaboration between clinicians. However, this variation highlights the question of what 

the clinical consequences are. This is of major interest. Parameters such as volume variation 

give an impression of the magnitude of difference in irradiated volume which could have 

clinical implications particularly for normal tissue toxicity. However, the direct dosimetric 

impact of these variations is the real question. Using these RTQA cases I can investigate the 

direct dosimetric impact of this variation if IMRT was to be adopted. The next chapter therefore 
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aims to answer this question: how different is what we plan to deliver to what the gold standard 

receives.   
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Chapter 3 

The dosimetric impact of the observed delineation variation for clinical target volume 

(CTV) in cervical cancer radiotherapy. 
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3.1. Introduction 

My analysis of INTERLACE RTQA has demonstrated variation in UK cervical EBRT CTV 

delineation, as discussed in Chapter 2 (Eminowicz et al. 2015). Wide variation was shown 

with an almost two fold difference in CTV1+2 volume and a minimum JCI of 0.51 versus gold 

standard. This is of alarming magnitude. However, the potential clinical impact of such 

variation remains unclear. This can be estimated by calculating the dosimetric impact.  

Following the adoption of MRI guided cervical brachytherapy, HR-CTV delineation variation 

has been reported. Subsequent dosimetric studies have shown potential dose uncertainties 

up to 5Gy (Hellebust et al. 2013) but the dosimetric impact of variation in EBRT cervical target 

volume delineation has not been quantified.  

In other tumour sites EBRT inter-observer delineation variation has led to lower tumour control 

probability and differing OAR doses (Loo et al. 2012; Lobefalo et al. 2013; Jameson et al. 

2014). In lung cancer, Jameson et al demonstrated that variations in outline volume, 

dimension and conformity indices led to lower tumour control probability due to poorer plan 

coverage (Jameson et al. 2014). In head and neck RT, when 7 clinicians outlined parotids for 

10 cases, Loo et al found that almost half of outlines varied enough from the initial to 

necessitate re-planning (Loo et al. 2012). In a rectal cancer study, Lobefalo et al evaluated 4 

clinicians outlining 10 cases. Plans were created for each PTV and the dose to the other 

clinicians’ (non-target) PTVs was calculated. Mean V95% to non-target PTV was 93.7% with 

3D conformal EBRT and 86.5% with IMRT. However, the mean V95% improved from 86.5% 

to 94.5% following the introduction of guidelines (Lobefalo et al. 2013). 

As modern RT techniques such as IMRT are increasingly used for cervical cancer the 

accuracy of delineation becomes more important, as emphasised by Lobefalo et al’s results. 

The aim of this chapter is to quantify the dosimetric impact of the reported delineation variation 

from Chapter 2, if treatment was delivered with IMRT. This work has been accepted for 

publication in Radiotherapy and Oncology (Eminowicz et al. 2016). 

3.2. Methods 

3.2.1.  Delineation process and creation of GSPTV 
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The delineation process, outlining comparison methods and CTV results are presented in 

Chapter 2 and have been published (Eminowicz et al. 2015). As detailed in section 2.3.2. the 

INTERLACE GSCTV1+2 was created from an expert consensus outline and was then 

validated using the STAPLE algorithm (Warfield et al. 2004; Eminowicz et al. 2015). The 

INTERLACE protocol recommended a range of CTV to PTV margins; 15-20mm anteriorly, 

posteriorly, superiorly and inferiorly and 7-10mm laterally for primary CTV (CTV1) and 

circumferential 7-8mm for nodal CTV (CTV2). To create each centre’s gold standard PTV 

(GSPTV) the GSCTV was grown by margins identical to the individual centre’s margins 

applied. Each centre therefore had its own PTV1+2 (delineated and created by the centre) 

and GSPTV (individual centre’s margins applied to GSCTV). The PTV1+2 is the volume 

planned to and the GSPTV is the gold standard volume that should receive the radiation 

prescription. The application of each centre’s margins reduces potential confounding of results 

due to CTV-PTV margin differences.  

In addition, to assess what impact the margin differences do have, the most commonly applied 

margins were added to the GSCTV to create GSPTVCM. These were 15mm anteriorly, 

posteriorly, superiorly and inferiorly and 7mm laterally for CTV1 and 8mm for CTV2.  

3.2.2.  Planning method 

Each centre’s DICOM structure set and corresponding CT data was imported into Eclipse v11 

[Varian Medical Systems, Palo Alto] TPS. A dual arc RapidArc treatment plan was created for 

each centre’s PTV1+2 outline following the INTERLACE protocol. Prescribed dose was 

50.4Gy in 28 daily fractions delivering 1.8Gy per fraction. Dose delivered to 98%(D98%), 

95%(D95%) and 2%(D2%) of PTV were required to be ≥95%, ≥97% and ≤107% of prescribed 

dose respectively. Lobefalo et al described acceptable plan coverage as V95%>95% 

prescribed dose (Lobefalo et al. 2013). The ‘Body’ outline was created automatically by the 

TPS. Plans were inversely optimised, prioritising PTV coverage. OARs were optimised outside 

of PTV1+2 only. To this end, a ‘RectumOPT’ structure was created by extracting the Rectum 

volume from PTV1+2 with an additional 1-2mm margin. A ‘Steering’ volume was also created 

by outlining the entire abdominal cavity and extracting this from PTV1+2 with an additional 

8mm margin. See Figure 3.1.  
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I calculated the plans using Anisotropic Analytical Algorithm. My optimised plans were then 

evaluated and checked by an experienced Physicist. The DICOM imaging, structure and dose 

data were then exported into CERR (Deasy et al. 2003) for DVH analysis and visual qualitative 

review.  

Figure 3.1: Transverse CT images with PTV (red), Rectum (light green), Body (yellow), 
Steering (blue) and RectumOPT (dark green) structures. 

 

3.2.3. Dosimetric comparison 

Each GSPTV outline was imported into each corresponding individual plan on CERR and 

DVHs were analysed. The D99%, D98%, D95%, D2%, D1% and mean dose delivered 

(Dmean) for each centre’s PTV1+2 and GSPTV were extracted using CERR. In addition, for 

each PTV1+2 and GSPTV, the percentage volume receiving at least 95% dose (V95%) was 

calculated. This process was also performed for the GSPTVCM. This selection of parameters 

gives an overview of dose delivered and are often those reported in the clinical setting.  

Visual qualitative review of GSCTV and GSPTV coverage by 95% dose was also performed 

using CERR. The 95% isodose was exported as a structure and visually compared 

simultaneously with GSCTV and GSPTV. This highlighted clear areas of under-dosage where 
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the 95% isodose did not cover GSCTV or GSPTV. This visual review was also performed 

using the GSPTVCM.  

3.2.4. Statistical analysis 

Mean, SD, and 95% CIs were calculated following QQ plots review confirming normality using 

IBM SPSS Statistics 22. P values were derived from one sample t-tests (compared against 

set value) and paired t-tests (comparing PTV1+2 and GSPTV DVH parameters and GSPTV 

with GSPTVCM). 

3.3. Results 

3.3.1. DVH parameters for PTV1+2 and GSPTV 

Dose delivered to 99%(D99%), 98%(D98%), 95%(D95%), 2%(D2%) and 1%(D1%) of PTV 

D98%≥95%, D95%≥97% and D1%≤105% were achieved for all PTV1+2 structures as this 

was the structure planned to. For GSPTV, D1% was achieved for all plans. However, GSPTV 

D98% and D95% were achieved for no plans. Using Lobefalo et al’s definition of acceptable 

plan coverage (V95%>95%) only 1 plan in total achieved acceptable coverage. GSPTV D95% 

was greater than or equal to 95% for 1 plan for case 1 and no plans for case 2. Table 3.1 

shows mean (in Gy and percentage of prescribed dose (50.4Gy)) and standard deviations for 

all parameters for both cases. A paired t-test showed significant differences (Table 3.2) for all 

parameters except D2% and D1% (maximum doses). Figure 3.2 illustrates the cumulative 

DVHs for all of the GSPTVs for case 1 (Fig.3.2a) and case 2 (Fig.3.2b). Figure 3.3 shows 

direct DVH comparisons for representative cases of PTV1+2 (planned) and GSPTV (ideal 

treated volume) coverage. 
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Fig 3.2a:Cumulative DVH showing dose delivered to GSPTV for all centre’s plans for case 1. 

 

Fig 3.2b:Cumulative DVH showing dose delivered to GSPTV for all centre’s plans for case 2. 

 

 



76 
 

 

Figure 3.3: Cumulative DVHs directly comparing dose to centre’s PTV1+2 (planned volume) 

and GSPTV (ideal treated volume) for four representative cases.   
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Mean dose (Dmean) delivered to PTV 

Dmean was statistically significantly lower for GSPTV compared with planned PTV1+2 for 

both cases. The magnitude of difference was 2-3% of prescribed dose; 3.3% for case 1 and 

2.3% for case2.  Dmean was less than 98% prescribed dose in 15 (71%, case 1) and 10 (45%, 

case 2) plans and less than 95% in 4 (19%, case 1) and 1 (5%, case 2) plans. 

Table 3.1: Mean and SD of DVH parameters including V95 for each centre’s PTV1+2 (planned 
volume) and the GSPTV (ideal treated volume) for Case 1 and 2. 
 
 
Percentage PTV volume receiving at least 95% prescribed dose (V95%) 

No plans achieved GSPTV V95% of 95% or higher. V95% of 90% or higher was not achieved 

in 15 (case 1) and 14 (case 2) plans, 71% and 64% overall. 2 (case 1) and 2 (case 2) plans 

did not achieve V95% of 80% or higher. The absolute GSPTV volume outside the 95% isodose 

ranged from 83cc to 458cc (case 1) and 94cc to 425cc (case 2). Overall, case 1 GSPTV V95% 

ranged from 70% to 95%, mean 85.9% (SD 6%). For case 2, mean was 87.9% (SD 5%) with 

results ranging from 76% to 95%. For case 1, PTV1+2 V95% was minimum 99.8%, mean 

99.9%, and case 2 was minimum 99.7%, mean 99.8%. This is a statistically significant (p<10-

  Case1  Case 2 

Parameter  Centres’ PTV1+2  GSPTV  Centres’ 

PTV1+2 

 GSPTV 

  Mean SD  Mean SD  Mean SD  Mean SD 

D99% (Gy) 

[% of 50.4] 

 48.06 

[95.3] 

0.17  23.92 

[47.5] 

11.8  48.03 

[95.3] 

0.15  30.39 

[60.3] 

7.0 

D98% (Gy) 

[% of 50.4] 

 48.48 

[96.2] 

0.14  30.83 

[61.2] 

9.8  48.47 

[96.2] 

0.12  35.70 

[70.8] 

5.0 

D95% (Gy) 

[% of 50.4] 

 49.04 

[97.3] 

0.10  39.13 

[77.6] 

6.2  49.04 

[97.3] 

0.08  42.12 

[83.6] 

4.0 

D2% (Gy) 

[%of 50.4] 

 51.7 

[102.6] 

0.14  51.71 

[102.6] 

0.11  51.7 

[102.6] 

0.08  51.68 

[102.5] 

0.09 

D1% (Gy) 

[% of 50.4] 

 51.9 

[103.0] 

0.11  51.9 

[103.0] 

0.11  51.9 

[103.0] 

0.11  51.9 

[103.0] 

0.09 

V95% (%)  99.9 0.07  85.88 6.2  99.8 0.07  87.9 5.0 

Dmean (Gy) 

[% of 50.4] 

 50.4 

[100] 

  48.76 

[96.7] 

1.01  50.4 

[100] 

  49.25 

[97.7] 

0.64 
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8) mean difference of 14% for case 1 (95%CI 11.2%-16.9%), and 12% for case 2 (95%CI 

9.7%-14.1%).  

Table 3.2: DVH parameter differences between PTV1+2 dose (planned volume) and GSPTV 
dose (ideal treated volume) 
 
 
3.3.2. Comparison of GSPTV with GSPTVCM 

The results for GSPTVCM are very similar to those for each centre’s GSPTV. Table 3.3 depicts 

the mean results for each PTV. In general the dose coverage of the GSPTVCM was slightly 

better. This is not surprising as 6 centres had applied the most commonly applied margins in 

their practice, 5 had applied the same margins except for 3 mm less laterally on CTV1, and 5 

had applied an additional 5mm anteriorly, posteriorly, superiorly and inferiorly and were 

therefore bigger overall. This difference was statistically significant for the D98%, D95%, 

V95% and mean dose for case 2 only when analysing the two cases separately using paired 

t-tests. If both cases are analysed together the difference was statistically significant for all 

parameters except D2% (p=1, therefore no difference) and V95% (p=0.051 therefore 

borderline). If the cases which applied the most commonly used margins for their GSPTV were 

excluded, the difference observed was bigger but the statistical significance remained almost 

identical. Despite statistical significance I would argue that these differences were not clinically 

significant. Table 3.4 shows the differences for all cases excluding those with the most 

Parameter  Case 1  Case 2 

  Difference 95%CI P value  Difference 95%CI P value 

D99% (Gy)  

[%of 50.4] 

 24.1 

[47.9] 

18.7-29.6  1x10-8  17.6 

[34.9] 

14.5-20.7 1x10-10 

D98% (Gy)  

[%of 50.4] 

 17.6 

[34.9] 

13.2-22.1  7x10-8  12.8 

[25.4] 

10.5-15.0  8x10-11 

D95% (Gy)  

[%of 50.4] 

 9.9 

[19.6] 

7.0-12.8 5x10-7  6.9 

[13.4] 

5.1-8.7 7x10-8 

D2% (Gy) 

[%of 50.4] 

 0.02 

[0] 

-0.06-0.03 0.68  0.00 

[0] 

-0.03-0.04 0.77 

D1% (Gy) 

[%of50.4] 

 0.00 

[0] 

-0.02-0.03 0.77  0.00 

[0] 

-0.01-0.02 0.58 

V95% (%)  14.0 11.2-16.9 2x10-9  11.9 9.7-14.1  3x10-10 

Dmean (Gy) 

[%of 50.4] 

 1.6 

[3.2] 

1.2-2.1 3x10-7  1.1 

[2.2] 

0.9-1.4 4x10-8 
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commonly applied margins applied for their GSPTV. This represents the plans with the largest 

difference between GSPTV and GSPTVCM. The D99% was the largest observed difference; 

1.5% dose 95%CI 0.64-2.9%. In clinical practice difference is very small compared to the drop 

in coverage overall. This is therefore of minimal clinical significance. Due to the similar results 

I did not perform any further analyses using GSPTVCM. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Table 3.3: Comparison of mean results for each DVH parameter (column 1) using GSPTV 
according to each centre’s applied CTV to PTV margins and the GSPTVCM using the most 

commonly applied margin for case 1 (column 2 and 3) and case 2 (column 4 and 5). 
 

Parameter Difference 95% CI P value 

D99% 1.49 0.64-2.9 0.041 

D98% 1.01 0.14-1.88 0.024 

D95% 0.68 0.104-1.26 0.022 

D2% 0  1.00 

V95 0.79 -0.003-1.59 0.051 

Dmean 0.14 0.3-0.25 0.014 

Table 3.4: Differences between DVH parameters for GSPTV and GSPTVCM with cases 
excluded where GSCTV had most common margins applied. 

 
 

3.3.3.  Qualitative review of extreme cases 

On visual review, the area of CTV1 least likely to be covered by 95% dose was the lower 

aspect i.e. vagina and paravaginal tissue. This area was not covered by 95% dose in 5 plans 

(24%) for case 1 and 8 (36%) for case 2. Cervix and GTV was covered with a minimum margin 

of 9mm in all plans for both cases. Areas of CTV2 least likely to be covered by 95% dose 

  Case1 Case 2 

Parameter  GSPTV GSPTVCM  GSPTV GSPTVCM 

D99% (Gy) 

[% of 50.4] 

 23.92 

[47.5] 

 24.93 

[49.5] 

 30.39 

[60.3] 

31.45 

[62.4] 

D98% (Gy) 

[% of 50.4] 

 30.83 

[61.2] 

 31.31 

[62.1] 

 35.70 

[70.8] 

36.63 

[72.7] 

D95% (Gy) 

[% of 50.4] 

 39.13 

[77.6] 

 39.30 

[78.0] 

 42.12 

[83.6] 

42.86 

[85.0] 

D2% (Gy) 

[%of 50.4] 

 51.7 

[102.6] 

 51.7 

[102.6] 

 51.7 

[102.5] 

51.7 

[102.5] 

D1% (Gy) 

[% of 50.4] 

 51.9 

[103.0] 

 51.9 

[103.0] 

 51.9 

[103.0] 

51.9 

[103.0] 

V95% (%)  85.9  85.8  87.9 89.1 

Dmean (Gy) 

[% of 50.4] 

 48.8 

[96.7] 

 48.8 

[96.8] 

 49.3 

[97.7] 

49.4 

[98.0] 
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include the lower obturator nodes, anterior external iliac nodes and lateral recesses between 

the psoas muscle and vertebrae/bones. Only 4 plans (19%) for case 1 and 9 (41%) for case 

2 delivered 95% dose to the entire obturator nodal outline with as much as 4cm (case 1) and 

5.2cm (case 2) of CTV2 extending anteriorly to the 95% isodose (arrowed in Fig.3.4a, 3.5a). 

Cranial to the femoral heads 6 (29%) plans of case 1 and 5 (23%) of case 2 do not cover the 

entire external iliac nodal region with 95% dose. CTV2 extends up to 4cm (case 1) and 6cm 

(case 2) anterior to the 95% isodose in this region (arrowed in Fig.3.4b, 3.5b).  

Figure 3.4: Transverse (a-e) and sagittal (f) CT images illustrating all 95% isodoses (white 
lines) and GSCTV (black line) for case 1. The regions least frequently covered by 95% 
isodose were the obturator nodes (arrowed in a), external iliac nodes (arrowed in b) and 
lateral recesses between psoas and bones (arrowed in e).The superior common iliac nodes 
were not covered by the 95% isodose in 5 cases (arrowed in f). 

In 13 plans (62%) for case 1 and 16 (73%) for case 2 95% dose does not cover CTV2 in the 

lateral recesses between the psoas and bones by maximum 1.4cm (arrowed in Fig.3.4e, 
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3.5e,f). For case 1 the superior CTV2 aspect was also not covered in 5 (24%) plans with a 

maximum length of 2.5cm outside the 95% isodose (arrowed in Fig.3.4f). In the majority of 

plans there was minimal margin between the GSCTV anteriorly and the 95% isodose (seen in 

Fig.3.4d,e, 3.5d,e,f). The 95% isodose did not cover CTV2 anteriorly in the common iliac 

region in 11 plans (52%) of case 1 and 17 (77%) of case 2. Half of the 95% isodose lines were 

3mm or closer to anterior CTV2 in the iliac region for both cases. 

 
Figure 3.5: Transverse CT images illustrating all 95% isodoses (white lines) and GSCTV (black 
line) for case 2. The regions less likely to be covered by 95% isodose were the obturator 
nodes (arrowed in a), external iliac nodes (arrowed in b) and lateral recesses between 
psoas and bones (arrowed in e,f). 
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3.4. Discussion 

My results suggest that CTV delineation variation leads to significant decreases in dose 

delivered to the ideal treated volume (GSPTV) if treatment is delivered with IMRT. Comparing 

plan coverage of GSPTV with planned PTV1+2, V95% is on average 10-15% lower and D95% 

is on average 10-20% lower. When an IMRT plan was created for each centre’s PTV1+2, 

GSPTV coverage was not acceptable when reviewing all parameters or V95 as a single 

parameter. In clinical practice re-planning would be advised. D95% of at least 95% is argued 

to be an acceptable constraint, whilst using D95% of at least 97% as an objective. Even with 

this lower constraint GSPTV coverage was only achieved for 1 plan in total. 

My findings are in line with conclusions from other tumour sites where detrimental plan 

coverage and need for re-planning are reported. This is especially true regarding the rectal 

cancer study published by Lobefalo et al. My mean V95% to target PTV of 85.9% and 87.9% 

was in line with their results of 86.5% with IMRT. Interestingly, they reported that 3D conformal 

EBRT maintained V95% at 93.7% confirming that this reduction in dose is predominantly due 

to increased conformality with IMRT. The target volume for rectal cancer has many similarities 

to the cervical cancer target volume due to pelvic nodal coverage. On my visual review there 

were large nodal areas not covered by 95% dose and this may account for similarities in 

results between these studies. There are also clear differences in anatomy and the other area 

of poor coverage seen in my study was the vagina which is not included in the rectal CTV.  

To my knowledge, this work is the first to quantify the dosimetric effects of EBRT delineation 

variation in cervical cancer. Following the introduction of IGBT the dosimetric effect of HRCTV 

delineation variation has been investigated resulting in multiple publications. Hellebust et al 

reported that, in 10 cases outlined by 6 clinicians, inter-observer variation led to a +/-5Gy 

uncertainty in HRCTV dose (Hellebust et al. 2013). The dose effect for OARs (rectum and 

bladder) was reported to be less, but still significant with +/-2-3Gy uncertainty. On the contrary, 

Petric et al analysed 13 cases outlined by 2 clinicians in 2 different planes (transverse and 

para-transverse) and reported no significant contour variation or differences in DVH 

parameters when a standard plan was applied (Petric et al. 2008). This concordance was 

attributed to adherence to guidelines which may be true in view of Lobefalo et al’s findings. 
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However, these results may also be due to only 2 observers performing the delineation. Our 

results are not directly comparable to these studies but they do highlight the importance of 

quantifying the impact of EBRT delineation variation on dose as the potential dose detriment 

will be additive. 

To understand the clinical importance of the dose detriment found in my results, I undertook 

a visual qualitative review. This review, discussed in relation to published recurrence patterns, 

gives my results some clinical context. In general, the GTV was well covered with a margin 

because of its central location within PTV. However, the lower vaginal outline, external iliac, 

obturator and superior common iliac nodes/aortic bifurcation were frequently not covered by 

95% dose. The superior nodal area is of particular clinical concern as superior marginal nodal 

recurrences are well documented (Beadle et al. 2010; Rai et al. 2014). This is also an area 

where, as discussed in Chapter 2, variation exists despite a clear consensus regarding the 

definition being the aortic bifurcation which should be relatively easy to define. Pelvic nodal 

recurrences reportedly occur in only a small proportion of patients, approximately 1.5-3% 

(Beadle et al. 2010; Forrest et al. 2010; Rai et al. 2014). Within preliminary EMBRACE analysis 

62 patients were found to have post treatment nodal failures out of 816 patients analysed. The 

vast majority (69%) were para-aortic supporting the importance of accurate superior border 

selection. They also reported 45% had iliac recurrences and 11% obturator recurrences 

(Nomden et al, EMBRACE work in progress). These figures indicate these nodal areas are 

important but in practice affect a very small proportion of patients. Post RT lower vaginal 

recurrences are even less frequently reported. Both the pelvic nodal regions and the vagina 

receive dose from brachytherapy which may contribute to the reduced recurrence rate. With 

the standard brachytherapy distribution vaginal doses are high. However, with evolving IGBT 

techniques and increasing awareness of the importance of vaginal toxicity, reductions in 

vaginal dose are seen. EBRT will then become a proportionately bigger contributor to vaginal 

dose. I am therefore concerned that as we adopt more conformal RT techniques this may lead 

to higher recurrence rates if coverage is compromised. A further step to understand the clinical 

context of the dose effect seen would be to investigate correlation between the variation 

observed and a tumour control probability model as described by Jameson et al for lung 

cancer (Jameson et al. 2014) but this is beyond the scope of this work. From my qualitative 
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review in the context of published recurrence patterns, the superior border of the nodal volume 

appears the most important to correctly define.  

The analysis comparing each centre’s GSPTV and the GSPTV with the most commonly 

applied margins; 15mm anteriorly, posteriorly, superiorly, inferiorly and 10mm laterally for 

CTV1 with 8mm circumferentially for CTV2 (GSPTVCM), presented here was of additional 

interest. Differences were seen that were statistically significant but not of a clinically 

significant magnitude. This suggests the dose variation observed is not strongly affected by 

the variation in CTV to PTV margin size. One method of compensation for the variation in CTV 

delineation would be application of larger CTV to PTV margins to account for this additional 

uncertainty. However, due to such small differences seen with varying margin size the 

magnitude of increase in margin size would be so large that it would negate the benefit of 

more conformal techniques such as IMRT. This is therefore less desirable.  

When drawing conclusions factors that have not been controlled for must be considered that 

could influence or bias my results.  

No single optimal gold standard outline creation method exists leading to uncertainties 

regarding the validity of using a gold standard outline. My previously described strong 

methodology of combining an expert consensus outline and a STAPLE algorithm uses two 

well-established methods (Warfield et al. 2004).  The GSPTV was agreed by multiple UK 

clinicians from different centres and subsequently validated by the mathematically derived 

STAPLE outline using all 21 centre’s submitted outlines. It is therefore a robust gold standard. 

These results are based on RTQA exercises rather than real life cases which may lead to 

biased results. The clinicians performing the delineation did not have access to the diagnostic 

imaging other than the written reports which is not representative of clinical practice. Potential 

lack of time and sense of unimportance when outlining test cases rather than clinical cases 

could in theory lead to more extreme variation than in clinical practice. However, most 

clinicians refer to protocol when outlining trial cases, whether test or not, which may actually 

reduce variation delineation (Mitchell et al. 2009).  

For each centre’s plan we used all outlines delineated and submitted by the centre including 

OARs. This resultant OAR outline variation could in theory lead to dosimetric variations that 



85 
 

may affect results. However, rectum was the only OAR optimised against (predominantly 

D2cc) and minimal variation was observed in this outline other than the superior and inferior 

aspects which would not be likely to impact on optimisation. On DVH review, the gold standard 

rectum D2cc was within 0.1Gy of the planned rectum D2cc for all cases. This therefore 

supports the assumption that rectum delineation variation is unlikely to affect my results. 

It is important to note that at the time of RTQA submission (September 2012 to September 

2014) no centres were routinely using IMRT. All centres were using 3D-CRT and were 

therefore familiar with delineating CTVs and OARs but the dosimetric effect reported here 

would not be seen with 3D-CRT. All centres received detailed descriptive feedback on their 

outlines in comparison with protocol. All centres edited their outlines according to protocol 

before being approved for trial recruitment. Subsequent monitoring of real time cases has 

shown a decrease in the amount of editing required, as discussed further in Chapter 4.  

It is clear from these results that minimising outlining variation is important, especially at a time 

of increasing IMRT use. Centralised review, as occurs within INTERLACE and other RT trials, 

as well as the use of detailed pictorial guidelines or radiology input (Petric et al. 2008; 

Dimopoulos et al. 2009; Mitchell et al. 2009; Lobefalo et al. 2013) are helpful in achieving this 

goal. Published guidelines for nodal CTV (Taylor et al. 2005; Small et al. 2008; Toita et al. 

2010; Bansal et al. 2013) and primary CTV (Lim et al. 2011; Toita et al. 2011; Bansal et al. 

2013) in cervical cancer are available and should be utilised. The evidence from Lobefalo et 

al is striking regarding the positive impact that guideline use can have. I address this in the 

next chapter focussing on cervical EBRT. Finally, educational groups such as ESTRO and 

RCR have acknowledged the need for delineation training and now provide online as well as 

face to face delineation workshops and courses which should be utilised.  
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Chapter 4 

Clinical target volume (CTV) and organs at risk (OAR) delineation atlas for cervical 

cancer radiotherapy: justification, creation and impact. 
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4.1. Introduction 

Inter-observer delineation variation has been shown to exist across multiple tumour sites 

(Cazzaniga et al. 1998; Valley et al. 1998; Meijer et al. 2003; Li et al. 2009; Vorwerk et al. 

2009; Gwynne et al. 2011) including cervical cancer (Petric et al. 2008; Dimopoulos et al. 

2009). Chapter 2 reports on my analysis of the two INTERLACE RTQA EBRT delineation 

cases for 21 UK centres (Eminowicz et al. 2015). Significant variation was demonstrated in 

line with other publications (Weiss et al. 2003; Wu et al. 2005). In Chapter 3 I showed that this 

inter-observer variation leads to statistically and potentially clinically important decreases in 

dosimetric coverage with on average a 10-20% lower D95% and a 10-15% lower V95% than 

planned. Efforts are therefore imperative to reduce this inter-observer variation. Options 

include the introduction of detailed delineation guidelines which has been effective in other 

tumour sites. Six specialists outlined the prostate bed of three cases without guidelines and 

repeated the process three weeks later using the RADICALS trial protocol and outlining 

guidelines. The mean CTV volume increased with the use of the protocol and inter-observer 

variation decreased. This was represented by a 1.3 to 1.8 fold decrease in the maximum 

volume ratio and 1.4 to 2.1 fold decrease in the coefficient of variation (Mitchell et al. 2009). 

For cervical brachytherapy the introduction of the GEC-ESTRO guidelines and systematic 

training facilitated improved inter-observer agreement with no differences in mean volumes 

and good conformity indices (Petric et al. 2008; Dimopoulos et al. 2009). Dosimetric 

differences have also been reduced with the use of guidelines when analysing 4 clinicians 

outlining 10 rectal carcinoma cases without then with guidelines (Lobefalo et al. 2013). The 

V95% to true target PTV was increased from 86.5% to 94.5% with the use of guidelines as 

described in Chapter 3.  

The aim of this chapter is to review current UK clinician education and confidence, review the 

guidance available for cervical cancer EBRT delineation, highlight areas of inconsistency 

within published guidelines and clinical practice observed within INTERLACE RTQA, create a 

delineation atlas and assess the impact of this atlas within the INTERLACE RTQA. The 

delineation atlas presented here is applicable to all patients being treated with EBRT 

independent of their simulation process and RT delivery method. The atlas is not applicable 

for brachytherapy delineation as this differs in some respects and clear guidance already 
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exists (Haie-Meder et al. 2005). This literature review and delineation atlas has been accepted 

for publication in Practical Radiation Oncology (Eminowicz et al. 2016).  

4.2. Methods 

4.2.1 Review of clinicians’ experience and confidence 

To assess experience and confidence of clinicians across the UK I recorded their self-reported 

levels of training and confidence in outlining specific anatomical areas. This data was collected 

anonymously using a questionnaire (see Appendix 3) that was sent out by the clinical trials 

unit to all principal investigators (PIs) registered within the INTERLACE trial at recruiting and 

non-recruiting centres. This questionnaire was sent to all PIs at two separate timepoints; 

before implementation of the atlas and then 18 months later. The questionnaire included 

questions on clinical practice, previous training and level of confidence in anatomy knowledge. 

For level of confidence I asked clinicians to score confidence from 1 to 4 for defining ten 

specified anatomical structures, with 1 equating to ‘unable to identify’, 2 ‘can occasionally 

identify’, 3 ‘confident with most cases’ and 4 ‘confident in all cases with rare exceptions’. The 

maximum score any one clinician could score was 40 and this would equate to complete 

confidence in all areas. The lowest would be 10 meaning unable to identify any areas.  The 

statistical analysis was performed using means, SD, 95%CI and independent sample t-tests.  

4.2.2 Literature search of guidelines for cervical cancer RT delineation 

I performed a literature search using the Pubmed/Medline central database with the MESH 

terms ‘uterine cervical neoplasm’, ‘radiotherapy’ and ‘guidelines as topic’  in combination with 

the Pubmed search terms ‘contouring’, ‘outlining’, ‘atlas’ and ‘target volume definition’. The 

articles that included delineation guidelines for cervical cancer published in the last 10 years 

were selected and reviewed. The references within these articles were also reviewed to 

ensure no key articles were missed. The articles referred to delineation of: 

 the primary CTV, to include GTV, uterus, bilateral ovaries if seen, bilateral parametria, 

uterosacral ligaments, and vagina (referred to as CTV1) 

 the pelvic nodal CTV, to include the common iliac, internal and external iliac, upper 

pre-sacral and obturator nodal regions (referred to as CTV2) 
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 the para-aortic nodal CTV (referred to as CTV3) 

 OARs;  

o anorectum,  

o bladder,  

o femur (right and left),  

o bowel,  

o kidney (right and left), 

o spinal cord 

4.2.3 Positive para-aortic nodal case review 

To assist with CTV3 outlining recommendations I reviewed all cases with involved para-aortic 

nodes treated with chemoradiation between 2010 and 2014 at my institution (UCLH). For each 

case I examined the diagnostic MRI and CT and noted the location of enlarged para-aortic 

nodes in relation to the vascular anatomy.  

4.2.4 Review of variations in guidance and INTERLACE RTQA 

I reviewed the INTERLACE RTQA cases’ outlining from the 21 participating centres using 

CERR and SHERRI as discussed in Chapter 2. In addition to calculating the proportion of 

centres outlining specified anatomical areas, I visualised all 21 centres’ CTV outlines 

simultaneously on CERR to identify other areas of variation.  

I highlighted the inconsistencies within and between the published guidelines, routine UK 

practice and the INTERLACE RTQA experience as variations in practice. These identified 

variations were reviewed within the INTERLACE TMG who discussed each identified variation 

in detail and individual expert opinion was collated.  

4.2.5 Creation of delineation atlas 

Following these detailed discussions, delineation recommendations were agreed between 

TMG members. Following this consensus agreement I anonymised two cases which had been 
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treated at UCLH and used them to demonstrate the agreed step by step instructions and 

produce the complete pictorial atlas. Once I had completed this, an expert gynaecological 

radiologist reviewed this atlas to ensure anatomical accuracy. Oncologists (consultants and 

specialist registrars) at UCLH then applied the atlas in clinical practice to ensure 

comprehension. These guidelines have been incorporated into the INTERLACE RTQA pack 

and are therefore available for use by all clinicians participating in INTERLACE. 

4.2.6 Assessment of impact of delineation atlas implementation 

To assess the impact of this atlas I monitored the INTERLACE RTQA test cases and real time 

review cases. For each RTQA test case and real time review case, a report is generated by 

the RTQA team which recommends outlining changes if necessary. Using these reports I 

recorded the number of structures that did not require any changes for each case out of 

Bladder, Rectum, CTV1 and CTV2. If a case was outlined very well, no changes were 

recommended and the score is 4. If all structures required changes the score is 0. I then 

compared the scores of all cases before and after inclusion of the delineation atlas in the 

RTQA pack by using an independent samples t-test.  

In addition, I compared the clinicians’ confidence questionnaire results before and after atlas 

implementation by using independent samples t-test. 

4.3. Results 

4.3.1 Clinicians’ experience and confidence 

27 questionnaires were sent out anonymously at both time points. 18 (67%) clinicians returned 

them before atlas implementation and 13 (48%) returned them afterwards. Before atlas 

implementation 14 had completed the RTQA process, 5 were routinely using IMRT and 13 

were reportedly self-taught. 4 had completed online courses, 3 completed local courses, 5 

national courses and 10 attended international courses. The areas of least confidence were 

uterosacral ligaments (mean 2.7 SD 0.8), superior border of parametrium (mean 2.6, SD 0.8), 

posterior border of parametrium (mean 2.7 SD 0.8), and inferior border of parametrium (mean 

2.6, SD 1.8). Overall total ranged from 24 to 40, mean 32 and SD 5. The results for after atlas 

implementation are discussed in section 4.3.6.  
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4.3.2 Literature review results 

Seven key articles on gynaecology RT guidelines were identified and reviewed (Table 4.1). 

Five of these articles were written by collaborative groups; RTOG, JCOG, ESTRO and 

National Cancer Institute of Canada (NCIC). The remaining two articles were from a single 

institution. The guideline topics were the delineation of OARs (Gay et al. 2012), primary CTV 

(CTV1) (Lim et al. 2011; Toita et al. 2011), pelvic nodal CTV (CTV2) (Taylor et al. 2005; Small 

et al. 2008; Toita et al. 2010), and both CTV1 and CTV2 (Bansal et al. 2013). All contained 

pictorial images to aid explanation and improve understanding. There were no published 

guidelines for para-aortic nodal (CTV3) delineation but articles were identified describing 

cervical cancer para-aortic node distribution with delineation suggestions (Fontanilla et al. 

2013; Kabolizadeh et al. 2013; Takiar et al. 2013). Additional pelvic nodal outlining articles 

were identified and reviewed (Chao et al. 2002; Shih et al. 2005; Dinniwell et al. 2009). These 

were not classified as key articles as they were not for cervical cancer cases alone.  

RTOG published a consensus panel atlas in 2012 for normal pelvic tissues (Gay et al. 2012) 

as variability had been observed within gynaecological, urological and gastrointestinal trials. 

These are the only guidelines published on OAR delineation.  

In 2011 an international Gynaecology IMRT consortium published guidelines for primary CTV 

(CTV1) delineation in the definitive treatment of cervical cancer in preparation for an RTOG 

proposed prospective phase 2 trial investigating IMRT in cervical cancer (Lim et al. 2011). 

This consortium included representatives from RTOG, NCIC, JCOG and ESTRO. A survey 

was initially completed on the use of IMRT, imaging modalities used for RT planning and CTV 

definition. A meeting, at which current data was reviewed, was held resulting in a draft 

consensus document. This draft document was then tested by all of the consortium members. 

Using the STAPLE algorithm outline (described in Chapter 2) areas of discordance were 

highlighted then discussed and resolved. In the same year the Radiation Therapy Study Group 

of JCOG published their guidelines as a result of increased IMRT use in Japan. They 

undertook a comprehensive literature review and examined multiple test cases via email 

communication and at three face-to-face meetings prior to reaching a consensus (Toita et al. 

2011). In 2013, Bansal et al from the Postgraduate Institute of Medical Education and 
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Research (PGI) in Chandighar, India published a literature review and, following  review of 

cases treated at their institution, their guidelines for both primary and nodal CTV in cervical 

cancer (Bansal et al. 2013).  

Taylor et al (2005) investigated the distribution of pelvic lymph nodes by intravenous 

administration of iron oxide particles before MRI. They demonstrated that a 7 mm margin 

around blood vessels with minor modifications achieves 99% coverage of pelvic nodes. This 

led to their 7 mm margin recommendation for pelvic nodal delineation (Taylor et al. 2005). 

These margins are smaller than the previously recommended 1-2cm margins published by 

Chao et al following lymphangiography of 6 cervical cancer patients (Chao et al. 2002). 

However, Chao et al also recommended further editing due to concern regarding OAR doses 

including truncation of the outline 5mm into bladder and bowel. Dinniwell et al (2009) applied 

a similar investigation method as Taylor et al to a cohort of patients which only included 5 

cervical cancer patients. They recommend a 9-12 mm expansion depending upon the 

anatomic region that you are expanding (Dinniwell et al. 2009). Shih et al recommend a 20mm 

margin after using a similar technique for prostate cancer cases (Shih et al. 2005). This study 

did not consider normal tissue coverage implications which Taylor and Dinniwell did. RTOG 

collaboration, JCOG and PGI have since published guidelines adopting the 7 mm margin 

(Small et al. 2008; Toita et al. 2010; Bansal et al. 2013).  

No published guidelines were found regarding delineation of the para-aortic nodal region. Two 

articles were reviewed which reported on the location of para-aortic nodes in gynaecological 

cancers and made recommendations for para-aortic nodal outlining. Kabolizadeh et al 

retrospectively reviewed the location of 133 malignant lymph nodes from 46 patients with 

pelvic cancers. They found 59% of nodes were in the left para-aortic region, 35% aorto-caval 

and only 6% right para-caval (Kabolizadeh et al. 2013). Takiar et al used FDG-PET/CT to 

identify 72 involved para-aortic nodes in cervical cancer patients. They reported similar 

findings with 51% of nodes in the left para-aortic region, 44% in the aorto-caval and 4% in the 

right para-caval region (Takiar et al. 2013).  

4.3.3 Positive para-aortic nodal case review 
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Eleven patients were identified with enlarged para-aortic nodes on imaging at presentation 

from all cases treated with chemoradiation between 2010 and 2014 in UCLH.  

Review of the imaging for these cases showed  

 3 cases with enlarged left para-aortic nodes only 

 2 cases with enlarged aortocaval and left paraaortic nodes 

 6 cases with enlarged aortocaval nodes only 

 0 cases with enlarged right paracaval nodes 

These findings suggest that nodal risk is highest around the aorta and aortocaval space. This 

is in line with published data on the distribution of para-aortic nodal spread described earlier 

(Kabolizadeh et al. 2013; Takiar et al. 2013). 

4.3.4 Areas of variation and best practice recommendations (Table 4.2) 

Ten areas of variation in practice were identified; three of these were regarding OARs, three 

regarding CTV1 and four regarding CTV2. There was no complete guidance found for para-

aortic nodal CTV delineation which is the eleventh area I discuss in detail here.   

OAR definition 

Discrepancies between RTOG published recommendations (Gay et al. 2012) and clinical 

practice observed in INTERLACE relate to the femur and the bowel outlines (Table 4.2). 

Pragmatically, our atlas includes anus and rectum as one structure. As knowledge increases 

regarding dose toxicity effects, different dose limits may be applicable and therefore anus and 

rectum may be delineated separately. Dose delivered to bone marrow should also be 

considered when using IMRT chemoradiation to minimise haematological toxicity. However, 

no published recommendations exist for bone marrow delineation and many centres use 

automated pelvic bone delineation as a surrogate. We have therefore not included this OAR 

in our atlas. 
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Table 4.1: Published delineation guidelines for cervical cancer RT. 

Authors Year Title Contents 

Bansal et al 
PGI 

2013 Literature review with PGI guidelines for delineation 
of clinical target volume for intact carcinoma cervix 

Definition of nodal and primary CTV; CTV nodal to include common, external 
and internal iliac, pre-sacral and obturator, CTV primary includes GTV, uterine 
cervix, uterine corpus, parametrium, upper vagina and uterosacral ligaments 

Gay et al 
RTOG Panel 

2012 Pelvic Normal Tissue Contouring Guidelines for 
Radiation Therapy: A Radiation Therapy Oncology 
Group Consensus 

Definition of male and female pelvic normal tissue contouring atlas: for gynae 
details AnoRectum, Sigmoid, BowelBag, Bladder, Uterocervix, Adnexa and 
Femur 

Lim et al  
RTOG Gyn 
IMRT 
consortium 

2011 Consensus guidelines for delineation of clinical 
target volume for intensity-modulated pelvic 
radiotherapy for the definitive treatment of cervix 
cancer 

CTV to include GTV, cervix, uterus, parametria (borders defined), ovaries and 
vaginal tissues 

Small et al  
RTOG with 
GOG, 
ESTRO, 
NCIC, 
ACRIN 

2008 Consensus guidelines for delineation of clinical 
target volume for intensity-modulated pelvic 
radiotherapy in postoperative treatment of 
endometrial and cervical cancer 

Definition of CTVs for postoperative cervical/endometrial cancer: Nodal CTV to 
include the common, external and internal iliac, and presacral nodal regions, 
Upper vagina and paravaginal soft tissue lateral to vagina also to be included. 

Taylor et al 2005 Mapping Pelvic Lymph nodes: guidelines for 
delineation in intensity-modulated radiotherapy 

Recommended nodal CTV guidelines based on blood vessels with a modified 
7mm margin; common, internal and external iliac, obturator and presacral 
regions 

Toita et al 
JCOG 

2010 A consensus-based guideline defining the clinical 
target volume for pelvic lymph nodes in external 
beam radiotherapy for uterine cervical cancer 

Definition of pelvic nodal CTV; common, external and internal iliac, obturator and 
presacral regions 

Toita et al 
JCOG 

2011 A consensus-based guideline defining clinical target 
volume for primary disease in external beam 
radiotherapy for intact uterine cervical cancer 

Definition of primary CTV for cervical cancer; GTV, uterine cervix, uterine 
corpus, parametrium (borders defined), vagina and ovaries 
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Table 4.2: Areas of variation regarding OAR and CTV definition for cervical cancer RT 

 Area of variation Published guidance/clinical practice Discussion Our recommendation 

OAR 
(Gay et 
al. 2012) 

Femoral head vs proximal 
femur 

RTOG: proximal femur 
Observed practice variable 

Beams likely to travel through proximal femur 
and osteoradionecrosis aetiology unclear 

Proximal femur 

Bowel bag vs loops RTOG: bowel bag 
Observed practice variable 

Bowel moves daily in abdominal cavity 
therefore bag more representative 

Bowel bag  

Subtract CTV from bowel RTOG: subtraction of ‘any overlapping non-
GI structures’ 

CTV1 should definitely be subtracted 
CTV2 should also be subtracted as bowel 
unlikely to overlap daily 

Subtract CTV1 and 
CTV2 from bowel 

CTV1 
Primary 
(Lim et al. 
2011; 
Toita et 
al. 2011; 
Bansal et 
al. 2013) 

Vaginal length to include RTOG, JCOG and PGI: upper 1/2 if no 
vaginal disease, 2/3 if upper disease, 3/3 if 
extensive disease 
INTERLACE: upper ½/2cm below disease 

Volumes likely to be similar; 2cm below 
disease may be smaller. 2cm margin on known 
disease (EUA and MRI) adequate and clearer 
to define/reproducible 

Upper ½ or 2cm 
below known disease 

Lateral parametrial border RTOG, JCOG and PGI: pelvic sidewall 
defined as muscle/ischial ramus 
Medial sidewall is peritoneal reflection 

Even though the medial sidewall is the 
peritoneal reflection RTOG/JCOG definition is 
more reproducible and practical 

Medial edge of 
internal obturator 
muscle/ischial ramus 

Posterior parametrial border RTOG, PGI: entire mesorectum if FIGO 3b 
JCOG: include perirectal tissue if significant 
parametrial involvement 

Improved imaging techniques allow detection 
of involvement of uterosacral ligaments and 
mesorectum  

Include mesorectum 
only if radiologically or 
clinically involved 

CTV2 
Nodal 
(Taylor et 
al. 2005; 
Small et 
al. 2008; 
Toita et 
al. 2010; 
Bansal et 
al. 2013) 

Inferior border of obturator 
nodes 

PGI, JCOG: superior obturator foramen 
RTOG: superior femoral head 
Taylor et al: mid femoral head 

Obturator nodes are at risk and anatomically 
do not leave the pelvis until just above the 
obturator foramen 

1cm superior to 
obturator foramen or 
mid-femoral head 

Subtraction of bladder/bowel JCOG: bowel not routinely excluded 
RTOG: bowel and bladder excluded 

Bowel and bladder position varies according to 
daily variation, bladder filling  etc. 

Only subtract bone 
and muscle for CTV2 

Inclusion of sacral foramina RTOG, JCOG, PGI: exclude sacral foramina No evidence inclusion necessary and 
increases bone toxicity 

Exclude sacral 
foramina 

Superior border of CTV2 
 

RTOG: bony anatomy 
Taylor et al, JCOG, PGI: aortic bifurcation 

Should not relate to bony anatomy, should 
relate to nodal anatomy 

Aortic bifurcation 

Margin around large nodes PGI: 10mm around enlarged node Nodes well defined on CT but margin needed 3 to 5mm margin 

CTV3 
PAnodes 

Para-aortic volume definition No guidance. Distribution suggests low risk 
lateral to IVC 

From experience nodal disease seen around 
aorta/aortocaval area 

Aorta and medial half 
IVC with 7mm margin 
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Femur definition 

In the INTERLACE study, differences were observed between centres in defining the femoral 

outline. The INTERLACE protocol version 1 recommended delineation of the femoral head 

alone, consistent with many centres’ observed practice. However, it is important to consider 

late radiation effects as this impacts quality of life. Osteoradionecrosis of the hip is a rare but 

significant late complication (Mehmood et al. 2014). The mechanism of osteoradionecrosis 

and bone effects of RT are not fully understood (Higham et al. 2015). Osteoradionecrosis risk 

may be related to femoral neck radiation dose. It was therefore agreed to follow the RTOG 

recommendation to include the whole proximal femur to the inferior margin of the lesser 

trochanter (Gay et al. 2012) as seen in Fig. 1.6a and 1.6b of the delineation atlas. This ensures 

full documentation and minimisation of dose to femoral head and neck. We have amended 

the trial protocol accordingly.  

Bowel definition 

Experience from the INTERLACE RTQA has been that standard practice across the UK varies 

from centre to centre regarding delineation of the bowel. Some centres outline the abdominal 

cavity (bowel bag) whilst others outline individual bowel loops. A well-documented relationship 

exists between dose volume parameters and acute toxicity for bowel loops and bowel bag 

(Roeske et al. 2003; Simpson et al. 2012; Banerjee et al. 2013).  Small bowel volume receiving 

45 Gray significantly correlated with acute toxicity in 50 patients receiving pelvic RT for 

gynaecological cancer (Roeske et al. 2003) and in 50 patients receiving RT for cervical cancer 

(Simpson et al. 2012). In a cohort of 67 rectal cancer patients Banerjee et al found that a 

relationship existed for both bowel loops and the peritoneal space with greatest sensitivity 

associated with the volume receiving between 15 and 25 Gray (Banerjee et al. 2013). 

Approximately 80% of bowel loops moved location during a course of treatment for prostate 

cancer patients. The consequence of this was underestimation of bowel volume receiving 

45Gy by approximately 10% if bowel loops are outlined. Sanguinetti et al therefore 

recommend using a bowel structure which takes into account this internal organ motion to 

ensure the maximum protection of bowel from toxicity (Sanguineti et al. 2008). It was therefore 

agreed best practice is delineation of the RTOG ‘bowel bag’ to ensure safer practice (Gay et 
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al. 2012). This concept of ‘bowel bag’ is novel for some UK centres. Clarity of the steps 

required to create this structure is essential for consistency. The first step is to outline the 

abdominal cavity and this is relatively easily defined. RTOG then recommend clinicians 

‘subtract any overlapping non-GI normal structures’ from the abdominal cavity outline. The 

bladder and uterus (CTV1) should therefore be subtracted. There is no clear guidance 

regarding whether CTV2 (the pelvic nodal CTV) should also be subtracted. CTV2, discussed 

below in detail, represents the location of nodes at risk of microscopic disease. Bowel loops 

can overlap with this area but this is unlikely to happen on a daily basis. Overlapping 

competing structures are problematic for some IMRT TPSs so it was agreed that best practice 

would be to subtract CTV2 from the bowel bag (see Fig. 1.5a-d of delineation atlas).  

CTV1 definition 

The Gyn IMRT consortium, JCOG and PGI guidelines for tissue coverage in CTV1 are 

consistent and include the uterus, ovaries if visible, GTV to include whole cervix and entire 

extent of local disease, vagina and bilateral parametria (see Fig. 2.1, 2.2. and 2.3 of 

delineation atlas). There are differences in practice observed in INTERLACE and these 

guidelines with respect to the extent and definition of vagina and parametria (see Table 4.2).  

Vagina 

The Gyn IMRT consortium, JCOG and PGI guidelines recommend treatment of the upper half 

if there is no vaginal involvement, upper two thirds if the upper vagina is involved and the 

whole vagina if there is extensive involvement. The INTERLACE protocol recommends 

treatment of the upper half of the vagina or 2cm below known disease, whichever is longer. In 

practice, the difference in CTV between these two definitions is small. Sometimes, including 

2cm below known disease creates shorter outlines. It was concluded that best practice is to 

include a 2cm margin below known disease. This is an easier, more consistent method and 

avoids the ambiguity of differentiating ‘upper’ from ‘extensive’ involvement.  

Experience from the INTERLACE RTQA programme also highlighted the difficulty in outlining 

the vagina, in particular defining the superior and inferior (introitus) aspects on CT. Agreement 

was to recommend using the clitoral crura as a marker for the introitus as demonstrated in 

Fig. 2.6 in the delineation atlas (O'Connell et al. 2005).  
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Alternative methods to clinical examination and MRI of localising the vagina and distal tumour 

extent include fiducial markers and vaginal dobbie at simulation. Within the UK and 

internationally some centres insert a vaginal dobbie at RT simulation (Ma et al. 2012). This 

can distort anatomy, and be uncomfortable for patients. Fiducial markers can also highlight 

the inferior vaginal extent of tumour. These are inserted surgically, reproducibility is uncertain 

and there is a risk of markers falling out or moving (Jhingran et al. 2012). Neither method is 

routine UK practice. Neither method is an ideal solution for this ambiguity. As the planning 

process becomes more complex MRI may be more commonly used to delineate the GTV and 

CTV which will significantly aid visualising the inferior and superior vaginal extent.  

Parametria 

The lateral border of the parametrial volume in the Gyn IMRT consortium, JCOG and PGI 

guidelines is quoted as the pelvic sidewall, which they define as the ‘medial edge of the internal 

obturator muscle and ischial ramus’. However observed practice in INTERLACE and 

anatomical definition of the lateral parametria is the peritoneal reflection. Surgically, resection 

of the parametrium will not extend beyond the vessels (Nakamura et al. 2014). Despite these 

discrepancies we agreed to use the medial edge of the muscle or bone as the lateral border 

as this is a more readily reproducible anatomical boundary. The true parametria probably lies 

approximately 1cm medial to this border and some experienced clinicians use this as a rough 

guide. However, when producing guidance for wider use, a slightly over-generous but 

reproducible border is the safest approach. If MRI is adopted for delineation the parametrial 

borders are more visible and this guidance may change. Use of this definition leads to overlap 

between the CTV1 and CTV2 outline which does not need to be edited.  

The definition of the posterior border of the parametria varies between guidelines and 

recommended coverage varies according to FIGO stage.  RTOG and PGI recommend 

inclusion of the whole mesorectum in patients with FIGO IIIb disease. JCOG guidance 

suggests inclusion of the perirectal tissue only when there is bulky central tumour or extensive 

parametrial involvement. These approaches ensure inclusion of mesorectal pre-sacral nodes. 

With advances in modern imaging, involvement of the mesorectum or mesorectal nodes is 

more easily identified. Including the mesorectum within the CTV increases the irradiated 
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volume. On balance, it was decided to only include the mesorectum or perirectal tissue where 

there is clinical or radiological involvement by tumour.  Within the delineation atlas, Table 1 

and Fig. 2.4 define the parametrial borders.    

CTV2 definition 

RTOG, Taylor et al and PGI guidelines are in agreement regarding which nodal groups should 

be included in CTV2. However, variation exists regarding the superior and inferior nodal 

extent, the inclusion or otherwise of the sacral foramina, the subtraction of OARs and the 

margin around enlarged nodes.  

Superior border of CTV2 

RTOG define the superior transverse slice of CTV2 by bony anatomy; 7 mm inferior to the 

L4/5 junction (Small et al. 2008). This approach was previously adopted for conventional RT 

when two-dimensional imaging was used. Taylor et al, JCOG and PGI recommend that CTV2 

should extend to the aortic bifurcation (Taylor et al. 2005; Toita et al. 2010; Bansal et al. 2013). 

At ASTRO 2014 the RTOG consensus group updated their guidelines with recommendations 

based on vascular anatomy (Small et al. 2014). We agree the risk of nodal micro-metastases 

is not limited by bony anatomy. We therefore recommend that best practice is to extend 

contouring up to the aortic bifurcation.   

Inferior border of CTV2 

RTQA experience highlights clinical CTV2 inferior border definition varies widely. This relates 

to obturator nodal coverage which is still debated. Taylor et al illustrated coverage of nodes 

inferiorly to the level of the mid-femoral heads (Taylor et al. 2007). RTOG define the inferior 

extent at the superior border of the femoral heads (when the external iliac vessels finish). 

JCOG extend coverage inferiorly to the level of the superior aspect of the obturator foramen 

(Toita et al. 2010). Anatomically the obturator nodes extend inferiorly to obturator foramen 

which is lower than the superior border of the femoral heads. We therefore agree with Taylor 

et al and recommend including the nodes up to approximately 1cm above the obturator 

foramen. Depending upon pelvic tilt, this often corresponds to the level of the mid femoral 

head. 
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Steps to create CTV2 

RTOG guidance recommends subtraction of bladder and bowel from CTV2. This has been 

observed practice in INTERLACE. However, concern exists because bowel is not a fixed 

structure and bladder filling is variable. For this reason, we recommend not to edit CTV2 for 

bladder and bowel in view of the possible consequence of inadequate nodal coverage.  

Inferiorly, Taylor et al recommend using an 18mm wide strip to cover the obturator nodal 

region. Previously, editing for bladder would narrow this outline. Therefore it was agreed to 

recommend a narrower strip of 10-18mm to cover the obturator nodes. This is only applicable 

below the level of the superior margin of the femoral head, i.e. below the external iliac volume 

(see Fig. 3.7 in the delineation atlas).  

Sacral foramina 

Within the INTERLACE study, variation was observed regarding inclusion of the sacral 

foramina in CTV2 as described in Chapter 2. Published guidelines give no recommendation 

regarding coverage of the foramina. Inclusion of the sacral foramina leads to an increased risk 

of insufficiency fractures and impaired quality of life (Ikushima et al. 2006). In view of this, it 

was decided to exclude the sacral foramina but include the presacral space as seen in the 

delineation altas Fig. 3.3.  

Margin around enlarged nodes 

PGI guidelines suggest a 10 mm margin from enlarged nodes to CTV. RTOG and JCOG 

guidance do not make any recommendation. Enlarged nodes are usually well defined on CT 

and MRI. It was therefore agreed that the CTV2 around an enlarged node would be achieved 

by adding the 7 mm margin around blood vessels plus an additional 5 mm margin to allow for 

extracapsular nodal extension.  

CTV3 definition 

No published guidelines were found addressing delineation of the para-aortic nodal volume. 

Articles describing the anatomical distribution of para-aortic nodes in cervical cancer using 

FDG-PET (Fontanilla et al. 2013; Kabolizadeh et al. 2013; Takiar et al. 2013) were therefore 

reviewed, as discussed in the literature review results. Extrapolating from pelvic nodal 



 

101 
 

contouring the para-aortic nodal outline is often created by adding a 7 mm margin around 

blood vessels and editing for bone and muscle. In practice this is often subsequently edited to 

minimise kidney dose especially on the side of the IVC. Some centres only outline the aorta 

whereas other centres outline aorta and IVC. This is neither consistent nor easily reproducible. 

Following the review of cases at our institution described above, it is proposed that a 7 mm 

margin around the entire IVC is unnecessary. Inclusion of the aortocaval space is essential. 

Our findings and this recommendation is consistent with the published data on para-aortic 

nodal distribution. As discussed earlier, only 4-6% of nodes are reported to be in the right 

para-caval region (Kabolizadeh et al. 2013; Takiar et al. 2013). There are guidelines for para-

aortic nodal delineation for other cancers, e.g. pancreatic cancer which recommend a margin 

around the aorta only. This is unlikely to ensure adequate coverage in cervical cancer 

(Kabolizadeh et al. 2013). To ensure adequate coverage it is proposed that a 7 mm margin is 

used around the aorta and the medial half of the IVC as illustrated in Fig. 4.1 in the delineation 

atlas. This should only then be edited to minimise renal dose as a last resort.  

4.3.5 Complete step-by-step delineation atlas 

I created the following pictorial atlas using example cases to illustrate the entire delineation 

process for CTV1, CTV2, CTV3 and all OARs; the complete atlas is shown here. For CTV2 

outlining, the step-by-step approach can be laborious. Therefore, clinicians with extensive 

experience may freehand delineate CTV2 using a tool such as pearl to ensure a 7mm margin 

around blood vessels.  
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Atlas to facilitate CT outlining of structures for cervical cancer radiotherapy. 

Key: 

OAR = Organs at risk; normal tissue structures which are at risk of receiving radiation dose 

CTV = Clinical Target Volume; the area of known disease and area at risk of sub-clinical disease  

PTV = Planning Target Volume; the area to which radiation is prescribed, usually CTV plus a margin 

to account for set-up error and organ motion.  

Section 1: Organ At Risk (OAR) guidelines (Gay et al. 2012): 

1.1: Bladder (Fig. 1.1). 

Outline the outer wall of the entire bladder (arrowed in Fig. 1.1a and 1.1b). 

Fig. 1.1: Transverse (a) and Sagittal (b) CT with bladder outlined as arrowed. 

1.2: Rectum (Fig. 1.2). 

Outline the outer wall of the rectum (arrowed in Fig. 1.2a and 1.2b) and anus (arrowed in Fig. 1.2c 

and 1.2d) from the anal sphincter to the transition anteriorly into the sigmoid colon (arrowed in Fig. 

1.2e and 1.2f). 

 

1.1a 1.1b 
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Fig. 1.2: Transverse (a) and Sagittal (b) CT at level of mid-femoral heads with rectum outlined 

(arrowed in a and b); Transverse (c) and sagittal (d) CT at level of anus (arrowed in c and d); 

Transverse (e) and sagittal (f) CT at level of transition anteriorly into sigmoid colon (arrowed in e and 

f). 

1.2a 1.2b 

1.2c 1.2d 

1.2e 1.2f 

1.2e 
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1.3: Kidney (Left and Right) (Fig. 1.3) 

If either kidney is within 2 cm of the cranial border of the PTV both kidneys must be outlined. This is 

required in all patients receiving para-aortic nodal radiotherapy and some patients receiving pelvic 

radiotherapy alone. Outline the outer margin of the right kidney (dashed arrow in Fig. 1.3a and 1.3b) 

and left kidney (solid arrow in Fig. 1.3a and 1.3b) individually. 

Fig. 1.3: Transverse (a) and coronal (b) CT of patient receiving para-aortic nodal radiotherapy (PTV 

starred) with left kidney (solid arrow) and right kidney (dashed arrow) outlined.  

1.4: Spinal cord (Fig. 1.4) 

If the cranial border of the PTV (starred in Fig. 1.4b) is within 2 cm of the L2/3 junction the spinal 

canal must be outlined. This will include all patients receiving para-aortic nodal radiotherapy and 

some patients receiving pelvic radiotherapy alone. Outline the whole spinal canal (solid arrow Fig. 

1.4a and 1.4b) from at least 2 cm superior to the PTV to the inferior border of L2. The most inferior 

slice of the spinal cord outline will be level with the inferior border of the L2 vertebra (dashed arrow in 

Fig. 1.4b).  

1.3a 1.3b 
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Fig. 1.4: Transverse (a) and sagittal (b) CT of patient receiving para-aortic radiotherapy where the 

PTV (star) extends to the superior border of L2. The spinal canal is outlined (solid arrow) with the 

most inferior level at the lower border of L2 (dashed arrow). 

 

When Intensity-Modulated Radiotherapy is used, additional Organs At Risk must be outlined:  

1.5: Bowel (‘Bowel bag’ if external beam radiotherapy; bowel loops if Brachytherapy. Fig. 1.5) 

The RTOG recommendation (Gay et al. 2012) for patients receiving external beam radiotherapy for 

gynaecological cancers is to delineate the ‘bowel bag’. The ‘bowel bag’ is the area within the 

abdominal cavity in which the bowel loops move around. For brachytherapy we recommend outlining 

all bowel loops which are close to the high dose region only. 

For the bowel bag, contour the abdominal cavity excluding muscle, bone and great vessels (aorta and 

inferior vena cava) as seen in Fig. 1.5a and 1.5b. On transverse imaging, stop outlining inferiorly 

either at the level of the anorectum or when no bowel loops are seen, select whichever level is most 

inferior, as in Fig. 1.5b. The outline should extend at least 2 cm superiorly to the PTV. Using your 

treatment planning software (Boolean operations or subtraction), subtract out any overlapping 

structures including bladder (triangle in Fig. 1.5c-d), rectum (square in Fig. 1.5c-d), CTV1 (cross in 

Fig. 1.5c-d, includes uterus see section 2) and CTV2 (diamond on Fig. 1.5c, see section 3) from the 

bowel bag to create the final complete outline as seen in Fig. 1.5c. 

 

 

1.4a 1.4b 

L5 

L4 

L3 

L2 

L1 

T12 

T11 
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Fig. 1.5: Transverse (a, b and c) and sagittal (d) CT with bowel bag outlined (arrowed) and bladder 

(triangle on c and d), rectum (square c and d), uterus/CTV1 (cross on c and d) and CTV2 (diamond 

on c) edited out of the initial volume seen in c and d. 

 

TIP: In sections where the abdominal cavity does not change shape rapidly between transverse 

slices, alternate CT slices can be outlined and interpolated by the treatment planning software. It is 

vital to review all CT slices once this has been performed and edit if necessary.  

 

1.6: Femur (Left and Right) 

Separately outline the left and right femoral heads and proximal femurs to the inferior margin of the 

lesser trochanter; left femur (solid arrows in Fig 1.6a and 1.6b), right femur (dashed arrows in Fig. 

1.6a and 1.6b). 

1.5a 1.5b 

1.5d 1.5c 
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Fig. 1.6: Transverse (a) and coronal (b) CT with left femur (solid arrows) and right femur (dashed 

arrows) outlined. 

 

1.6b 1.6a 
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Section 2: CTV1 guidelines (Lim et al. 2011; Toita et al. 2011): 

CTV1 includes the tumour (GTV) and its local extent, the entire uterine cervix, entire uterine corpus, 

both parametria, ovaries if seen, proximal half of the uterosacral ligaments and at least the upper half 

of the vagina depending upon extent of disease. This volume is delineated as a single contiguous 

outline but for the purpose of these instructions, we have separated the structures to aid description.   

Step 1 (Fig. 2.1): Outline the entire uterine corpus (arrowed in Fig. 2.1a and 2.1b). The sagittal 

images (Fig. 2.1b) will help determine the extent of this outline. The uterine cervix (star) and vagina 

(triangle) can be seen outlined on the sagittal CT (Fig. 2.1b) 

Fig. 2.1: Transverse (a) and sagittal (b) CT with the uterine corpus outlined (arrowed). The uterine 

cervix (star) and vagina (triangle) can also be seen in b. 

Step 2 (Fig. 2.2): Outline the ovaries (arrowed in Fig. 2.2a and 2.2b) in continuity with the uterine 

corpus (cross) if they are visible on the radiotherapy planning CT. 

2.1a 2.1b 
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Fig. 2.2 a-d: Transverse CT with uterine corpus (cross) and ovaries (arrowed, a, b and d) outlined in 

continuity. 

Step 3 (Fig. 2.3): Outline the entire uterine cervix including the local tumour extension (gross tumour 

volume) as arrowed in Fig. 2.3a and 2.3b. The uterine corpus (cross) and vagina (triangle) are also 

seen on the sagittal view (Fig. 2.3b)  

Fig. 2.3: Transverse (a) and sagittal (b) CT of the cervix and gross tumour outlined as a single 

structure (arrowed in a and b). The uterine corpus (cross) and vagina (triangle) outlines can also be 

seen on the sagittal image (b).  

2.2a 2.2b 

2.2c 2.2d 

2.3a 2.3b 
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TIP: Use diagnostic imaging, especially the T2 weighted MRI, and examination under anaesthetic 

findings to determine the boundaries of CTV1 (gross tumour, uterine corpus and cervix). 

TIP: The cranial margin of the cervix is at the level of the uterine arteries entering the uterus. 

Step 4: Outline both parametria even if not involved with disease. The borders are described in table 

1 and outlined in Fig. 2.4.  

Border Definition (arrowed and numbered in Fig. 2.4) 

Superior 
Fallopian tube or broad ligament (1)(RTOG) 
Uterine artery enters uterus (2) (JJCO) 

Inferior Levator ani/pelvic floor muscles (3) 

Anterior Posterior bladder (4) or posterior border of external iliac vessels (5) 

Posterior Mesorectal fascia and uterosacral ligaments( 6) 

Lateral Medial internal obturator (7) / piriformis muscle(8) / ischial ramus (9) ie Pelvic sidewall 

Medial Cervix 

 Table 1: Definition of the borders of the parametrial outlines, which forms part of CTV1. 

Fig. 2.4: Transverse (a and c) and coronal (b and d) CT with both parametrial borders outlined; see 

Table 1. 

TIP: The most cranial margin of the parametrial outline is usually at the level where bowel is seen 

adjacent to the uterus on transverse imaging. 

NB: Overlap of CTV1 and CTV2 due to the parametrial volume extending to the lateral pelvic sidewall 

does not need to be edited. 

2.4a 2.4b 

2.4c 2.4d 
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Step 5 (Fig. 2.5): Outline the proximal half of the uterosacral ligaments (arrowed in Fig. 2.5 and arrow 

number 6 in Fig. 2.4a). Extend the volume posteriorly along the uterosacral ligaments if they are 

involved.  

Fig. 2.5: Transverse CT demonstrating the uterosacral ligaments (arrowed) and CTV1 (outlined). 

Step 6 (Fig. 2.6): Outline the upper half of the vagina (arrowed in Fig. 2.6a-d and 2.6f) if there is no 

vaginal involvement. If the vagina is involved with disease, outline to 2 cm below disease. The 

paravaginal tissue should be included in this outline (Fig. 2.6a and 2.6c). The introitus is difficult to 

see on CT and therefore an introital marker can be used. The level of the introitus is just proximal to 

the level of the clitoral crura (arrowed in Fig. 2.6e). 

 

2.5 
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Fig. 2.6: Transverse (a, c, e) and sagittal (b, d, f) CT demonstrating outlining of the upper half of the 

vagina (arrowed in a-d and f); dashed line on d and f follows the full length of the vagina; arrow on e 

demonstrates the clitoral crura corresponding to the introitus. The uterus (cross) and cervix (star) are 

also outlined on the sagittal view (b). 

2.6a 2.6b 

2.6c 2.6d 

2.6e 2.6f 
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Section 3: CTV2: Pelvic nodal guidelines (Taylor et al. 2005; Small et al. 2008): 

The common iliac, internal and external iliac, obturator and presacral nodal groups are at risk of 

microscopic disease and are included in the nodal CTV (CTV2). 

Step 1: Outline the iliac blood vessels (Fig. 3.1a, 3.2a and 3.6a). The cranial transverse margin is at 

the aortic bifurcation. The caudal transverse margin is at the superior border of the femoral head. 

Step 2: Use the treatment planning software to add a circumferential 7mm margin to the blood 

vessels (Fig. 3.1b, 3.2b and 3.6b) except superiorly where 0mm is added. This ensures the cranial 

border of CTV2 is the level of the aortic bifurcation. 

Step 3: Edit the outline using the rollerball, eraser or drawing tools to remove bone and muscle (Fig. 

3.1c, 3.2c and 3.6c). Also edit the CTV, using the same tools, to include all visible nodes or 

lymphoceles. Involved nodes should be included in CTV2 with a minimum 3-5mm margin. Do not edit 

to exclude bladder or bowel. 

Step 4: Extend the outline posterolaterally at the level of the common iliac vessels to ensure the 

space between the psoas muscle and vertebral body is included (Fig. 3.1d) 

Fig. 3.1: Transverse CT image 1cm caudal to the aortic bifurcation showing the steps required to 

outline CTV2. The common iliac vessels are outlined (a), a circumferential 7mm margin added (b), 

muscle and bone is edited out (c) and the outline is extended to include the area between the psoas 

muscle and vertebral body (arrowed in d). D illustrates the complete outline. 

Step 5: Add a presacral strip by adding a 10mm strip joining the left and right outlines over the 

anterior sacrum (dashed arrow in Fig. 3.2d) to the lower level of S2. Do not extend into the sacral 

foramina (arrowed in Fig. 3.3) but do include the sacral notch. 

3.1a 3.1b 

3.1c 3.1d 
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Fig. 3.2: Transverse CT image at the level of the iliac bifurcation showing the steps required to outline 

CTV2. The vessels are outlined (a), a circumferential 7mm margin is added (b), muscle and bone is 

edited out (c), the outline is extended posterolaterally to include the area between the psoas muscle 

and vertebral body (solid arrow, 3.2d) and a presacral strip is added (dashed arrow, d). D illustrates 

the complete outline. 

Fig. 3.3: Transverse CT with CTV2 outlined not including the sacral foramina (arrowed). 

Step 6: Edit the outline to ensure there is no space between the outline and the pelvic bones and/or 

muscles. This ensures the outline extends to the pelvic sidewall (Fig. 3.4). 

3.2a 3.2b 

3.2c 3.2d 

3.4 

3.3a 3.3b 
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Fig. 3.4: Transverse CT showing the CTV2 outline extending fully to the pelvic sidewall (in direction of 

arrows). 

Step 7: When external iliac nodes are involved with tumour extend the outline to include the 

lateral external iliac nodes (Fig. 3.5): Extend the outline 10mm antero-laterally along the ilio-psoas 

muscle in the region of the external iliac vessels (arrowed in Fig. 3.5a and 3.5b). 

Fig. 3.5: Transverse CT at the level of the internal and external iliac vessels showing extension 

antero-laterally (arrowed) along the iliopsoas muscle to include the lateral external iliac nodes.  

Step 8: Join the internal and external iliac outlines together with an 18mm strip parallel/medial to the 

pelvic sidewall (arrowed in Fig. 3.6d). This ensures the obturator and infra-iliac nodes are included. 

3.5a 3.5b 

3.4 
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Fig. 3.6: Transverse CT at the distal level of the internal and external iliac vessels showing the steps 

required to outline CTV2. The vessels are outlined (a), a circumferential 7mm margin is added (b), 

muscle and bone is edited out (c) and an 18mm (solid arrows in d) strip is added to cover the 

obturator/infra-iliac nodal region. The gluteal vessels (dashed arrows) should not be included. D 

illustrates the complete outline. 

TIP:  Stop outlining the external iliac vessels when the femoral heads are visible or when the 

vessels are anterior to the pelvic bone. This ensures you do not include the inguino-femoral 

region. 

TIP:  Only outline the main internal iliac vessels. Do not outline the smaller branching vessels 

as this leads to unwanted coverage of pudendal and gluteal regions (dashed arrow in fig. 3.6a-

c). 

Step 9 (Fig. 3.7): Continue with a 10-18mm diameter strip inferiorly to cover the obturator nodes (Fig. 

3.7d-f). The caudal transverse slice is at the level of mid-femoral heads or approximately 1cm cranial 

to the obturator foramen (demonstrated in Fig. 3.7a-d). This outline should not include muscle or 

bone. Do not edit to exclude bladder or bowel. 

3.6a 3.6b 

3.6c 3.6d 
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Fig. 3.7: Transverse CT showing the caudal slice of CTV2 (outlined and arrowed in d-f).This is at the 

level of the mid-femoral heads (outlined) and approximately 1cm superior from the top of the obturator 

foramen (dashed arrows in a and b).  

TIP: This step-by-step approach can be time consuming. Clinicians with extensive experience 

may therefore delineate the final CTV2 as a freehand structure rather than follow each step. 

This must be done using a tool, e.g. pearl, to ensure a 7mm margin from vessels to edge of 

CTV2. 

3.7a 3.7b 

3.7c 3.7d 

3.7e 3.7f 
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Section 4: CTV3: Para-aortic nodal volume 

Step 1 (Fig. 4.1a): With the aid of intravenous contrast outline the aorta (Fig. 4.1a, solid arrow) and 

medial half of the inferior vena cava ((IVC; Fig 4.1a, dashed arrow). Lymphadenopathy lateral to the 

IVC (paracaval) is uncommon and extension in this direction may increase kidney doses. The 

aortocaval space (between aorta and IVC) is a common location for nodal disease and must be 

included.  

Step 2 (Fig. 4.1b): Add a circumferential margin of 7mm to the blood vessels using your treatment 

planning software.  

Step 3 (Fig. 4.1c): Edit to exclude muscle and bone. 

Step 4 (Fig. 4.1d): Extend the outline postero-laterally along the vertebral body (arrowed in Fig. 4.1d) 

to cover the left para-aortic area. Edit to include any lymphoceles. 

Fig. 4.1: Transverse CT at level of kidneys showing the steps required to outline CTV3; vessels 

(aorta, solid arrow; IVC, dashed arrow) outlined in a, circumferential 7mm margin added (b) and the 

outline is edited for bone and muscle (c) and extended along the vertebrae to the psoas muscle (d, 

arrowed). D illustrates the complete outline. 

NB: Before treating the para-aortic region differential function of each kidney should be assessed.  

4.1a 4.1b 

4.1d 4.1c 
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Section 5: Pelvic nodal regions and anatomy 

Figure 5: Transverse pelvic CT images (a,c,e) with the corresponding level shown on the coronal 

images (b with a, d with c and f with e). Anatomical areas: 1=external iliac vessels; 2=junction of 

gluteal and internal iliac vessels; 3=piriformis muscle; 4=obturator vessels/infra-iliac region; 5=internal 

iliac vessels; 6=gluteal vessels; 7= sacrospinous ligament; 8=sacrotuberous ligament; 9=inguinal 

vessels; 10=femoral head; 11=uterosacral ligaments

5a 5b 

5c 5d 

5e 5f 
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4.3.6 Impact of atlas implementation 

64 outlined cases were reviewed before incorporation of the guidelines within the RTQA pack 

and 30 after. Mean score (maximum of 4) was 1.8 pre implementation and 2.7 post. This is a 

statistically significant difference of 0.9 (95%CI 0.3-1.5 p=0.003). There also appeared to be 

a difference in the distribution of scores for the cases. Before implementation of the atlas 67% 

scored 0-2 and after only 40% (see Table 4.3). 25% less cases scored 0 after, compared to 

before, atlas implementation and 19% more cases scored 3 after, compared with before, 

implementation. All four structures’ compliance improved significantly (p=0.004). Rectum 

improved most (33%) and CTV1 least (18%). As expected, CTV1 and CTV2 were less 

compliant than bladder and rectum.  

  No before 
(64) 

% before No after 
(30) 

% after Difference (%) 

Total score 
(max 4) 0 18 28 1 3 -25 

 1 12 19 3 10 -9 

 2 13 20 8 27 7 

 3 9 14 10 33 19 

 4 12 19 8 27 8 

Structure 
Compliance Bladder 38 59 25 83 24 

 Rectum 30 47 24 80 33 

 CTV1 25 39 17 57 18 

 CTV2 16 25 15 50 25 
Table 4.3: Proportion of protocol compliant outlines represented by total score per case out 
of 4 (rows 2-6) and by specific structures (row 7-10) before and after atlas implementation in 
absolute numbers (column 3, 5) and percentage (column 4,6) and percentage difference 
(column 6). 

 

Exclusion of centres which did not submit cases before and after the atlas implementation 

showed very similar results as seen in Table 4.4. 

  No before 
(34) 

% before No after 
(17) 

% after Difference (%) 

Structure 
Compliance Bladder 19 56 16 94 38 

 Rectum 18 53 13 76 24 

 CTV1 14 41 13 76 35 

 CTV2 6 18 9 53 35 
Table 4.4: Proportion of protocol compliant outlines before and after atlas implementation 
excluding centres not represented both before and after implementation.  
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These results suggest an improvement in delineation standards with atlas use. CTV2 is least 

compliant pre and post atlas despite existing guidance and substantial detail. This may 

represent differences in usual practice.  

Clinician’s confidence in identifying set anatomical areas did not statistically change as seen 

in Table 4.5. 

Anatomical area Mean score PRE Mean score POST 95%CI for difference 

Aortic bifurcation 3.9 3.8 -0.1 to 0.3 

Iliac bifurcation 3.8 3.7 -0.2 to 0.4 

Inferior obturator 3.2 3.2 -0.4 to 0.6 

Ilio-inguinal region 3.4 3.2 -0.2 to 0.5 

Uterosacral ligament 2.7 2.8 -0.7 to 0.4 

Mesorectum 3.5 3.4 -0.5 to 0.6 

Superior parametria 2.6 3 -0.8 to 0.1 

Posterior parametria 2.7 3.1 -0.9 to 0.1 

Inferior parametria 2 3 -0.9 to 0.1 

Upper vagina 3.4 3.4 -0.4 to 0.5 

Total 31.5 32.4  

Table 4.5: Mean scores for clinicians’ self-reported confidence levels in identifying set 
anatomical areas before and after atlas implementation. Max score is 4 with 1 equating to 
‘unable to identify’, 2 ‘can occasionally identify’, 3 ‘confident with most cases’ and 4 ‘confident 
in all cases with rare exceptions’. No differences were statistically significant. 

 

4.4 Discussion 

The delineation atlas detailed here is the first to provide a summary of all the available 

published guidelines along with such detailed pictorial step-by-step instructions for delineation 

of all target organs and OARs. By attempting to address the eleven identified areas of 

discrepancy between different guidelines and clinical practice I have, to some degree, reduced 

the likelihood of different practice between centres if this atlas is used. This atlas is useful for 

educational and training purposes as well as for daily practice attempting to minimise the 

witnessed inter-observer variation. By pictorially detailing each step of the processes 

necessary to create CTVs and OARs this facilitates improved compliance versus the 

published guidelines which often depicts the final outline but not the detail of the steps 

necessary to create that outline. This step-by-step approach also eliminates the variation due 

to lack of anatomy training as anatomical landmarks and regions are visually demonstrated. 
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UK clinicians in general are aware of a lack of adequate training and hence confidence as 

evidenced by the questionnaire results. From my experience, clinicians are keen to learn and 

use guidance such as this delineation atlas. This is especially true in the UK as many centres 

only treat 5-10 cases of cervical cancer a year. This means a clinician may only be delineating 

a cervical cancer case once every other month. This is arguably not frequent enough to 

maintain the expertise necessary. Furthermore, when real time review within INTERLACE was 

made voluntary the vast majority of centres still requested review even though it meant a faster 

than usual turn-around in the clinical setting. This supports my experience of clinicians being 

willing to collaborate and use guidance.  

The comparison of test and real time review cases before and after implementation of the 

atlas within the INTERLACE RTQA pack does suggest an improvement in the delineation 

standards. A higher proportion of the outlines complied with protocol after implementation. 

However, many factors should be considered when interpreting my results. Firstly, I cannot 

be sure that these centres were using the atlas when outlining. Secondly, the post 

implementation outlines were proportionately more real time reviews and it is therefore likely 

that the clinicians were more familiar with the protocol and therefore more likely to be 

compliant. However, often when outlining test cases for a trial, more time is spent referring to 

protocol to ensure compliance and therefore one would expect that compliance to protocol 

should not be less because of this. Thirdly and finally, I have not compared cases outlined by 

the same clinicians as these are random according to what was submitted and therefore the 

results could represent the inter-observer variation that we have already documented. 

However, the analysis of only centres which were represented in both groups shows similar 

improvements and this provides confidence that these observed improvements are real. In 

contrast, the overall confidence of clinicians did not improve following atlas implementation. 

This is self-reported and may therefore not be a reliable indicator. It may also suggest that the 

atlas was not widely used or that the questionnaire was not answered by the clinicians using 

the atlas as not all of the responders would have recruited many, if any, patients. On detailed 

review of each anatomical area there is a suggestion of improvement in the definition of the 

parametrial borders but this is not statistically significant. With a higher response rate after 

implementation we may have found this to be significant and this would increase the evidence 
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of an improvement in relation to atlas use. As INTERLACE keeps growing, with more than half 

of UK centres now open, the use of this atlas will increase and repeated use will lead to 

established practice. The ideal method of redoing the two test cases applying the atlas directly 

to show its potential benefits will not be possible due to clinician’s time constraints. Without 

this option available we can continue to encourage use of the atlas within the INTERLACE 

setting and with time will continue to collect data to validate its use. It must be noted that in 

more contentious and less evidence based areas this guidance is still experience based and 

therefore may be disagreed with. Consequently, this further validation work is essential before 

this atlas could be implemented nationally.  

In this Chapter, I have attempted to refine practice for cervical cancer target and OAR 

delineation by combining data from 7 published guidelines and an in-depth analysis of the 

INTERLACE RTQA. This step by step pictorial atlas to aid delineation can provide an 

additional resource for oncologists and reduce inter-observer variation as it includes more 

detailed images than previously available. So far, an improvement has been documented in 

the delineation standards of test and real cases since implementation of this atlas within the 

INTERLACE RTQA which,  in part, may be due to use of this atlas. This provides support for 

ongoing use and validation of this delineation atlas. 
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Chapter 5 

Bladder and rectum filling variation during radiotherapy, their impact on clinical target 

volume (CTV) coverage and methods to reduce or compensate for variation observed. 
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5.1. Introduction 

In cervical RT the primary CTV lies between bladder and rectum which fill and empty 

throughout the day. Margins around CTV aim to account for daily uncertainties during RT 

including organ motion. It is therefore important to understand and quantify the effects of organ 

filling on target position and coverage, especially in the current era of IMRT due to increased 

conformality to PTV.  

Many studies have investigated cervical and uterine movements during RT as discussed in 

Chapter 1, section 1.9.2. (Lee et al. 2007; Chan et al. 2008; Taylor et al. 2008; Beadle et al. 

2009; Collen et al. 2010; Ahmad et al. 2011; Haripotepornkul et al. 2011). Jadon et al 

systematically reviewed the organ motion literature in 2014 identifying 39 heterogeneous 

studies, 12 of which were conference abstracts (Jadon et al. 2014). Each study used different 

methods to characterise motion and therefore established slightly different conclusions. 

Overall, the cervix and uterus moved by up to 4-6cm (Lee et al. 2007; Chan et al. 2008; Taylor 

et al. 2008; Beadle et al. 2009; Ahmad et al. 2011; Jadon et al. 2014).  

Adequate margins to account for all of this motion would negate the benefits of more conformal 

RT and are therefore not applicable (Jadon et al. 2014). However, asymmetrical margins of 

maximum 15mm were deemed adequate to cover uterine and cervical motion in patients who 

underwent consecutive day MRI scans (Taylor et al. 2008). This may not represent changes 

that occur during a course of RT but is often what is applied in clinical practice, including in 

the DEPICT, INTERLACE and EMBRACE trial protocols. Similar measurements of 16-20mm 

margins have been suggested for postoperative patients around the vaginal cuff (Harris et al. 

2011; Ahmad et al. 2013). Uterine movements are larger than vaginal and cervical implying 

that the cervical RT margin necessary should be larger than for post-operative RT. Supporting 

this, when 15mm margins were applied during chemoradiation for cervical cancer, CTV fell 

outside of PTV for 32% of fractions (Tyagi et al. 2011). Other weekly imaging during 

chemoradiation studies have reported margins up to 24mm are necessary (van de Bunt et al. 

2008). Through analysis of variable bladder filling CTs, 38mm margins were necessary to 

cover the full range of bladder filling (Bondar et al. 2012). This is probably larger than 

necessary during RT as patients should not experience the full range of bladder filling if 
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following instructions daily. Again, margins this large will negatively impact the benefit of more 

conformal RT (Jadon et al. 2014). It therefore remains unclear what margins are truly 

necessary to ensure CTV coverage without adaptive techniques. Furthermore, if margins 

alone are to be used to account for this motion, measures to reduce the magnitude are vital 

to maintain the benefits of advanced RT techniques. 

What is clear is that bladder and rectal filling affect CTV motion, and I propose that this could 

be controlled. However, no published guidance on bladder or bowel preparation exists. Most 

centres aim for a ‘comfortably full bladder’ to push bowel out of the radiation field but a full 

bladder leads to unacceptably large set-up errors (Chan et al. 2008; Ahmad et al. 2011). Most 

centres do not have specified bowel preparation protocols. 

Due to the variation observed and the advanced imaging and technology available alternative 

compensatory approaches to large margins have been sought. Proposals include daily soft 

tissue imaging and matching, adaptive RT with variable bladder filling scans, or individualised 

margins (Bondar et al. 2012; Heijkoop et al. 2014). These are discussed further in Chapter 7. 

The aim of this chapter is to analyse bladder and rectal filling patterns for a cohort of patients 

undergoing a course of cervical chemoradiation, assess the impact on CTV coverage, 

calculate the margins necessary to account for this movement and attempt to produce some 

clinical proposals for patient preparation to minimise this variation.  

Outlining of CBCTs, described in section 5.2.3, was undertaken by myself and Dr Carla Perna. 

Justhna Motlib and Sabina Khan, radiographers, completed the offline Automatching 

described in 5.2.3. All other work including analysis and interpretation of the data is my own. 

Some of the work presented in this Chapter has been accepted for publication in Clinical 

Oncology (Eminowicz et al. 2016). 

5.2. Methods 

5.2.1. Patient selection and preparation 

I retrospectively analysed ten consecutive patients undergoing a course of radical cervical 

chemoradiation at UCLH. Patients followed the standard bowel and bladder preparation for 

gynaecological patients treated with RT at UCLH.  
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For bowel preparation, laxatives were prescribed, either movicol or sodium docusate, for a 

minimum of 5 days before planning and treatment to achieve Bristol stool chart type 5 stool. 

Patients used an information leaflet which detailed the Bristol stool chart with an adjacent table 

to direct the amount of laxatives to be taken as seen in Figure 5.1.  

 Figure 5.1: Illustration of Bristol stool chart with laxative recommendations. 

For bladder preparation, patients were asked to empty their bladder on arrival in the RT 

department then to drink 3 cups of water 30 minutes before both the planning CT scan and 

each daily treatment. The aim was a ‘comfortably full’ bladder’. 

5.2.2. CBCT acquisition 

Twice weekly CBCTs, as per the agreed departmental imaging protocol, were acquired one 

day and three days post chemotherapy. Varian On-Board Imaging (OBI) acquired a 16cm 

length CBCT with 2mm slices around the isocentre. This was shifted to ensure the entire 

bladder and rectum were captured. An example CBCT image can been seen in Fig. 5.2. 
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 Figure 5.2: Example CBCT axial (top) and sagittal (bottom) images. 

5.2.3. Data collection and analysis 

At time of RT, actual bladder filling time was recorded by the treating radiographers.  

Retrospective CBCT review was performed on Eclipse v11 Contouring and ARIA Offline 

Review v11.  

Bony matching to the planning CT was performed to establish and eliminate set up errors. 

The Automatch function was applied using a region of interest which included the coccyx 

posteriorly, pubic symphysis anteriorly, neck of femur laterally, ischium inferiorly and L5 
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superiorly. This Automatch was verified by visual assessment of the bone match. The resultant 

measures of translational discrepancy, i.e. shifts necessary to bone match, were recorded as 

the setup errors.  

CTV1 (cervix, tumour, bilateral parametria, entire uterus and upper vagina), CTV2 (pelvic 

nodes), bladder and rectum were outlined by experienced clinicians on the planning CT. 

These outlines would have been reviewed by one of two known clinicians who follow the same 

protocol. This inter-observer variation introduces potential bias which could impact on results 

due to our small numbers. However, on visual review of the outlines the only difference was 

inclusion of the ovaries and fallopian tubes based on whether or not they could be visualised. 

This may affect the lateral movements calculated, discussed later. No ITV was created. PTV 

was created by adding 8mm to CTV2 and 15mm to CTV1 except laterally where 10mm was 

added. Rectum, Bladder and CTV1 were outlined on all CBCTs by two independent clinicians. 

These two outlines were summed to create a final Rectum, Bladder and CTV1. Along the 

uterine axis, the upper two thirds represents uterus and lower third represents cervix. Where 

the CBCT failed to capture the entire bladder the planning bladder volume was used to 

complete the outline, ensuring total bladder volume was available for each CBCT. This was 

only applied for 11 CBCT, 10% overall.  

Maximum distances on axial imaging between the planning CTV and CBCT CTV were 

measured in the anterior, posterior, right lateral and left lateral directions. This was recorded 

at the level of the mid-cervix (approximately S5) and at the level of the mid-uterus 

(approximately S2/3). For superior motion, the distance was measured on the midline sagittal 

image directly inferior from the L5/S1 bony prominence.  

Bladder volume, rectal volume, length, and maximum anterior-posterior (AP) diameter, and 

whether PTV covered the entirety of CTV1 was recorded for all scans (planning and CBCTs). 

Where CTV was not fully covered by PTV the maximum distance (mm) from PTV edge to CTV 

was recorded. The deviation from planning was then calculated for bladder volume and rectal 

AP diameter.  

Mean, SD and 95%CI were calculated following QQ plots review confirming normality using 

IBM SPSS Statistics 22. Scatter plots and Pearson’s correlation was analysed for overall 
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patterns and relationships. P values were derived from one sample t-tests, and independent 

samples t-tests assuming equal variance. Linear mixed regression modelling was used to 

analyse patterns through time. Fixed effects binary logistic regression was used to assess the 

organ size impact on CTV1 coverage resulting in odds ratios.  

5.2.4. Estimated margin calculation 

Van Herk et al proposed a mathematical margin calculation model to account for random and 

systematic errors using a patient cohort (van Herk et al. 2000). In 2008 the RCR, Institute of 

Physics and Engineering in Medicine (IPEM) and Society and College of Radiographers 

(SCoR) collaborated to produce a document on ensuring geometric accuracy in RT explaining 

these errors, calculations and compensation techniques in detail (RCR IPEM SCoR 2008). 

This Van Herk formula to derive CTV to PTV margins is:  

CTV-PTV margin= aΣ +bσ + c 

Σ is systematic error, σ is random error and a, b and c are constants. C accounts for 

parameters that affect margins in a linear manner e.g. breathing and is therefore not applicable 

in this patient cohort. A and b depend upon beam coverage and chosen coverage probability. 

To ensure a minimum dose of 95% for 90% of the cases a = 2.5 and b = 0.7 and therefore the 

calculation I will apply is: 

CTV-PTV margin= 2.5Σ +0.7σ 

Despite my results from Chapter 2 regarding delineation variation I will only calculate margins 

here to ensure coverage of set-up and organ motion. The following definitions were therefore 

applied for set-up error and organ motion error independently:  

Individual mean error (Mindividual) = sum of error for each fraction ÷ no of fractions 

Overall population mean error (Mpop)= mean of Mindividual  (ideally = 0) 

Population systematic error (Σsetup) = SD of Mindividual around overall population mean  

Individual random error (σindividual) = SD of errors around corresponding individual mean 

Population random error (σerror) = mean of individual random errors 
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For set-up, the distances shifted for bony match were the errors. For organ motion the errors 

were the OAR distances between the CBCT and planning CT. 

5.3. Results 

In total, 10 planning CTs and 109 treatment CBCTs (between 9 and 12 per patient) were 

analysed. Actual bladder filling time was recorded for 98 scans.  

5.3.1. Bladder filling 

Bladder volume ranged from 45-664cc overall, mean 200cc. Bladder volume at planning was 

73-664cc, mean 289cc and through treatment was 45-578cc, mean 192cc. During RT, bladder 

volume was on average smaller by 96cc, 95%CI 9-184, p=0.031. For individual cases the 

range of bladder volume through radiotherapy varied between 116cc and 416cc, mean 306cc. 

9/10 had a minimum bladder volume less than 100cc (Table 5.1). 

Bladder volume increased with increased interval after drinking by approximately 4cc per 

minute.  
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Figure 5.3: Scatter plot of bladder volume (cc) vs time through treatment (days) [each 
symbol=each individual patient] 
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  Bladder volume  Rectum CTV Cervix 

case 
 CBCT 

no 
 plan 

BV(cc) min;max 
cc/day 
(95%CI)  

p 
value 

 plan 
AP min;max 

>1cm 
dev (%) 

 No CTV 
out (%) 

Max 
out(mm) 

Mean 
out(mm) 

 No Cx 
out (%) 

Max 
(mm) 

Mean 
(mm) 

1 11  197 65;456 -1(6.7;-8.6) 0.776  3.2 3.3;5.9 7(73)  10(91)       31 20  2(18) 14 13 

2 11  664 48;394 -8(3.5;12.5) 0.003  3.6 4.7;6.7 11(100)  11(100)       50 33  11(100) 25 11 

3 11  560 77;489 -7(1.6;13.3) 0.018  2.9 2.7;5.3 3(27)  10(91)       46 29  7(64) 12 8 

4 12  430 62;373 -4(0.9;-9.4) 0.094  4.4 3.8-8.7 3(25)  11(92)       29 17  3(25) 20 12 

5 12  355 45;163 -1.4(0.6;-3.3) 0.145  3.1 2.4;5.3 1(8)  12(100)       38 26  0 - - 

6 11  143 62;308 -2(2.7;-6.9) 0.348  4.8 3.3;4.4 4(36)  9(82)       39 8  4(36) 20 9 

7 12  113 81;464 -7(0.7;-13.8) 0.052  2.9 2.8;4.5 2(17)  10(83)      31 11  0 - - 

8 10  180 46;366 -2(6.1;-10.6) 0.546  3.9 3.5;6.2 2(20)  7(70)       45 8  0 - - 

9 9  73 60;176 1(3.5;-1.3) 0.303  5.3 1.6;4.3 8(89)  0(0)       0 0  0 - - 

10 10  183 162;578 -4(3.6;-11.3) 0.264  3.6 3.5;6.3 6(60)  10(100)       23 12  2(20) 10 8 
 

Table 5.1: Individual case data showing planning and treatment bladder volumes (column 3-6) with trend through time (cc/day,  including 95%CI and p 

value for trend through time) , rectal AP diameter (column 7-9) at planning and range through treatment, how frequently CTV was outside PTV (column 10-

12) including maximum and mean distances and how frequently the lower third (cervix) was outside PTV (column 13-15) including maximum and mean 

distances.  
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Bladder volume decreased with time through treatment by 3.6cc per day (Fig.5.3), leading to 

an approximate average 150cc decrease throughout the course of treatment. This decrease 

was larger (5cc per day) in patients with planning bladder volume >300cc. On individual case 

analysis, bladder volume reduced through treatment in 9/10 cases, 1-8cc/day. One case, 

which had a small bladder volume in general, ranging from 60cc to 176cc, displayed a stable 

volume through treatment (95%CI +3 to -1cc/day) (case 9 Table 5.1). 

Mean bladder volume on non-chemotherapy days was 170cc and 219cc on the first day post-

chemotherapy; 49cc increase (95%CI 1-96cc, p=0.045). Analysing each patient 

independently, mean bladder volume difference between post-chemotherapy and non–

chemotherapy days ranged from 0 to 115cc. Therefore, all patients had a larger mean bladder 

volume on post-chemotherapy days.  

5.3.2. Bladder filling effect on CTV coverage 

Fig.5.4 displays bladder volume deviation from planning (y axis) against whether CTV1, uterus 

(upper CTV1) or cervix (lower CTV1) are covered by PTV (x axis). In all cases where deviation 

from planning volume exceeded 130cc CTV1 was not covered by PTV. A deviation exceeding 

130cc was most likely to compromise the superior aspect (uterus) whereas bladder volumes 

much smaller than at planning (>400cc smaller) were most likely to compromise the inferior 

aspect (cervix).  

Mean bladder volume when CTV1 was not covered by PTV was 203cc compared with 150cc 

when CTV1 was covered; 53cc difference (95%CI -9-116, p=0.097). When uterus was not 

covered by PTV mean bladder volume was 209cc versus 147cc when uterus was covered; 

61cc difference (95%CI 7-116cc, p=0.028). When cervix was not covered by PTV mean 

bladder volume was 197cc versus 189cc when cervix was covered; 7cc difference (95%CI -

47-62, p=0.785). This is tabulated in Table 5.2 and again demonstrates bladder volume has 

less impact on cervix coverage than uterine coverage. Despite this lack of difference, on visual 

qualitative review some cases of very large deviation (>200cc) in bladder volume from 

planning the cervix was pulled anteriorly out of PTV. 
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Figure 5.4: Deviation from bladder planning volume (in cc) for when target (CTV1 a, uterus b 

or cervix c) covered or not by PTV. The horizontal line represents no difference from 
planning volume. 
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  Target in/out PTV  Difference IN vs OUT 

 Target IN OUT   95%CI P value 

Bladder volume (cc) CTV 150 203  53 -9 to 116 0.097 

Uterus 147 209  61 7 to 116 0.028 

Cervix 189 197  7 -47 to 62 0.0785 

Rectal AP diam (cm) CTV 3.6 4.5  0.9 0.3 to 1.5 0.002 

Uterus 3.7 4.6  0.9 0.4-1.4 0.0004 

Cervix 4.1 5.1  1 0.5 to 1.4 0.0002 

Table 5.2: Mean bladder volumes and rectal AP diameters when target was covered by PTV 
(IN) or not (OUT). 

Using fixed effects binary logistic regression modelling, the probability of CTV1 being covered 

by PTV decreased by 1.9% for every cc deviation from bladder planning volume. This effect 

was greater for the uterus compared with the cervix, 2.1% and 0.6% respectively.  

5.3.3. Rectal filling 

Total rectal volume and volume per centimetre length correlate well with rectal AP diameter 

(Pearson’s correlation coefficient 0.635, p=8x10-15, Fig.5.5).  

There was no identifiable relationship between rectal volume and time through treatment or 

chemotherapy timing.  

There was an inverse relationship between rectal AP diameter and bladder volume (Pearson’s 

correlation coefficient -0.261, p=0.006). 
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Figure 5.5: Rectal AP diameter correlates with rectal volume [each symbol=each patient] 
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Individual case analysis showed an AP diameter range of 1.1 to 4.9cm, mean 2.6cm. 3 cases 

had a planning AP diameter >4cm; 4.4cm, 4,8cm, 5.3cm. One case (case 9 Table 5.1) with 

5.3cm rectum at planning maintained good coverage through treatment as bladder volume 

was well maintained within 116cc. For the other two cases CTV was outside PTV, maximum 

20mm, in 25% and 36% of CBCTs. On visual review it was difficult to distinguish if this was 

due to bladder or rectal changes.   

5.3.4. Rectal filling effect on CTV coverage 

Fig.5.6 illustrates that a larger rectal AP diameter during treatment was more common when 

CTV1 was not covered by PTV compared to when CTV1 was covered. This is true for the 

whole CTV1 (uterus and cervix).  

The mean AP diameter was 0.9cm (95% CI 0.3-1.5cm, p=0.002) larger in patients with 

compromised CTV1 coverage compared with satisfactory CTV1 coverage; 4.5cm versus 

3.6cm respectively. This difference was consistent at the superior (uterus) and inferior (cervix) 

aspect of CTV; difference 0.9cm (95%CI 0.4-1.4, p=0.0004) and 1cm (95%CI 0.5-1.4, 

p=0.0002) respectively, tabulated in Table 5.2. 

Using fixed effects binary logistic regression modelling, the probability of CTV1 being covered 

by PTV reduced by 5.6% for each mm deviated from rectal planning AP diameter. The 

probability of uterus and cervix being covered by PTV for every mm deviation from planning 

AP diameter decreased by 2.2% and 5.8% respectively. 

Maximum distances which CTV extended outside of PTV were 50mm for the whole CTV and 

25mm for the inferior CTV (cervix) (Table 5.1). Six cases had some area of the inferior CTV 

(cervix) extending outside of PTV, three of which were for a quarter of CBCTs or less. The 

two cases where the cervix was outside PTV for 64% and 100% of CBCTs had very large 

(>500cc) planning bladder volumes; 560cc and 664cc respectively. These two cases had a 

rectal AP diameter range during treatment of 2 and 2.7cm with one case only having a rectal 

AP diameter >1cm different from planning for 27% of the CBCTs. On visual review for both of 

these cases the uterus is so anteverted that it looks as if the cervix is pulled anteriorly out of 

PTV by this movement.  
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Figure 5.6: Deviation from rectal AP diameter (in cm) for when target (CTV1 a, uterus b or 
cervix c) covered or not by PTV. The horizontal line represents no difference from planning 

AP diameter. 
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5.3.5. Margin calculation 

Appendix 4 tabulates the raw data used for these margin calculations. In this section, I only 

present the resultant estimated errors (random and systematic) and subsequent margins for 

set-up and organ motion variation. 

Taking set-up error alone, i.e. shifts necessary to bony match, margins of 4mm vertically and 

5mm longitudinally and 5mm laterally ensure a minimum 95% dose for 90% of this patient 

cohort as seen in Table 5.3. 

 

Table 5.3: Population systematic error (Σ) and 
random error (σ) for set-up. 

 

For organ motion, with the same probability of minimum 95% dose for 90% of cases, margins 

are as large as 3.7cm superiorly, 4.2cm anteriorly and 3.8cm posteriorly for the uterus and 

3cm anteriorly and 2.3cm posteriorly for the cervix.  

In the superior and anterior-posterior directions at the level of the uterus exclusion of patients 

with very large bladders at planning (>300cc) led to a large drop in the calculated systematic 

errors and a small drop in the random errors (see Table 5.4). Use of 300cc as a cut-off follows 

on from the results of sections 5.3.1 to 5.3.4. Margins are therefore less for the uterus as seen 

in Table 5.5; 1.6cm superiorly, 1.8cm anteriorly and 2cm posteriorly. Interestingly, the effect 

on cervical margins is of a much smaller magnitude.  

 Σ Σ if blad<300 σ σ if blad<300cc 

SI 1.189667 0.377864 0.996898 0.970108 

rightUT 0.428572 0.369583 0.690098 0.79927 

leftUT 0.693815 0.814185 0.809421 0.736291 

antUT 1.378516 0.449026 1.02652 0.828566 

postUT 1.237222 0.501387 1.079984 0.735029 

rightCX 0.168973 0.138662 0.280756 0.300057 

leftCX 0.417894 0.434994 0.330512 0.336452 

antCX 1.033699 0.977853 0.585862 0.624323 

postCX 0.757687 0.856214 0.605692 0.595167 
Table 5.4: Population systematic error (Σ) and random error(σ) for organ motion using all 

cases and cases with planning bladder volume<300cc. 

 

 vert long lat 

Σsetup 0.12 0.14 0.15 

σset-up 0.13 0.19 0.22 

Margin (mm) 4 5 5 
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Organ motion 
margin (cm) 

margin if Σ 
bl<300cc (cm) 

Set-up 
margin (cm) 

Total margin 
(cm) 

Total margin if 
bl<300cc (cm) 

SI 3.7 1.6 0.5 4.2 2.1 

rightUT 1.6 1.4 0.5 2.1 1.9 

leftUT 2.3 2.6 0.5 2.8 3.1 

antUT 4.2 1.8 0.4 4.6 2.2 

postUT 3.8 2.0 0.4 4.2 2.4 

rightCX 0.6 0.5 0.5 1.1 1.0 

leftCX 1.3 1.3 0.5 1.8 1.8 

antCX 3.0 2.9 0.4 3.4 3.3 

postCX 2.3 2.6 0.4 2.8 3.0 

Table 5.5:  Calculated margin using van Herk equation for all cases and cases with planning 
bladder volume<300cc. 

Table 5.5 summarises all of the margins calculated for organ motion and set-up and the 

combined total margin to account for both errors. If planning bladder volume is below 300cc, 

overall margins of 2-2.5cm appear large enough to cover uterine motion. Concerningly, in this 

patient cohort, the anterior and posterior margins around the cervix need to be 3cm.  

No difference was seen in these results if patients with large deviations in rectum from 

planning were excluded.  

5.4. Discussion 

This study confirms that, despite a bladder protocol aiming for a ‘comfortably full bladder’, 

large bladder filling variations are seen. However, definite bladder filling patterns were 

identified. These facilitate refinement of patient preparation protocols hopefully leading to 

increasing volume reproducibility.  

With time through treatment bladder volume decreased. This is consistent with published data 

(Lee et al. 2007; Ahmad et al. 2008; Jadon et al. 2014). The magnitude of decrease seen in 

my data (approx. 3.6cc per day, from 248cc in first week to 153cc in final week) was less than 

the 269cc over six weeks Ahmad et al reported in 2008 but is in keeping with Jadon et al who 

described a 44% decrease versus my 38% decrease. Ahmad et al did not report their planning 

bladder volumes and it is therefore difficult to propose possible reasons for this difference. 

Jadon et al’s conclusions are based on a systematic review of published literature and are 

therefore more likely to be truly representative of the population. My data shows a consistent 

decrease in bladder volume week on week. This is different to that reported by Lee et al who 
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noted a similar reduction by week 2 and by week 3 but their data is incomplete in comparison 

to mine as they only analysed bladder volume at weeks 1, 2 and 3.  

Inadequate hydration secondary to poor fluid intake, nausea, diarrhoea and other treatment 

toxicities including radiation cystitis as patients progress through the course of treatment is 

likely to explain the decreasing volume through RT. Bladder volume was smaller on days 

which were not post-chemotherapy. This can also be explained by inadequate hydration as 

intravenous fluids administered with chemotherapy temporarily increased hydration status.  

Planning bladder volumes greater than 300cc were less reproducible and led to greater 

variation during treatment with an increased likelihood of CTV not being covered by PTV. This 

mostly affected uterine position. However, in cases with planning bladder volume >500cc the 

cervix was consistently pulled anteriorly out of PTV due to such large uterine movements.  

To my knowledge, no previously published data has described this effect of chemotherapy 

timing on bladder size nor of a large bladder (>300cc) at planning leading to increased 

variation. These two factors are potentially modifiable factors and could be controlled to 

reduce the magnitude of CTV1 motion. Therefore, a 10 minute shorter waiting time on 

chemotherapy and post-chemotherapy days, due to bladder filling increasing by 4cc/minute, 

and a bladder volume of 150-300cc at planning is proposed to optimise CTV1 coverage. This 

novel concept of strictly maintaining an upper limit is key and can be facilitated by use of 

bladder scanners at planning as detailed in Table 5.6.  

Other findings, such as bladder volume deviations from planning predominantly compromising 

uterine coverage rather than cervical, are in line with previously published data (Jadon et al. 

2014). These findings emphasise the need for regular monitoring of bladder volume as part of 

a treatment pathway, as well as regular monitoring of organ position. Ideally soft tissue 

matching using CBCTs should be undertaken daily if this is possible. This has inevitable 

resource implications for example CBCT availability, radiographer training and confidence to 

analyse online CBCT, patient throughput and cost. Monitoring of bladder volume using 

ultrasound bladder scanners may be effective. Bladder scanner results correlate well with CT 

volumes and can be used at planning and during treatment without any additional radiation 

exposure for the patient (Ahmad et al. 2008).  
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It is very important to highlight that my results strongly suggest that control of bladder volume 

will not significantly reduce daily variation of position of the cervix. This is of concern as it is 

the location of the primary tumour. However, by controlling the bladder volume strictly and 

applying the preparation suggested here it may be that additional patterns will expose 

themselves regarding non-bladder related cervical motion.  

Overall, variation in rectal AP diameter was less predictable than the variation in bladder 

volume. No pattern was seen with time through treatment or following chemotherapy. Many 

variables can affect bowel function which may explain why patterns are less identifiable in this 

small cohort of patients. A clear correlation exists between rectal volume and AP diameter 

which is good for clinical practice as radiographers at planning can measure AP diameter in 

seconds. A rectal AP diameter increase correlated with a bladder volume decrease. This could 

be explained clinically by dehydration and again emphasises the importance of hydration 

throughout treatment. This is also a potential confounding factor when considering my results.  

Larger rectal AP diameter than at planning resulted in increased likelihood of CTV not being 

covered by PTV, affecting the cervix more than the uterus, again consistent with published 

data (Jadon et al. 2014). From my data, patients with a smaller rectum size through treatment 

were more likely to have better CTV coverage. I therefore suggest laxatives to maintain small 

rectal sizes during treatment, aiming for a rectal AP diameter of less than 4cm at all times. If 

necessary, microenema use should be considered to empty the lower part of the rectum. In 

patients where large variations are seen, an alternative approach is to increase the posterior 

margin in the region of the cervix. This can compensate for the less predictable rectal changes 

which impact on cervix and tumour coverage but does increase the rectal dose. However, in 

a lot of cases most of the rectum is within the PTV even without the larger margins.  

The variation in rectal size and lack of clear patterns is most concerning as it appears from 

my data, as well as the published literature, that rectum predominantly affects the cervical 

motion and hence cervical (primary tumour) coverage. It is therefore essential to continue 

investigating this further. 

By maintaining an upper limit of 300cc for bladder volume at planning,  2-2.5cm margins 

appear large enough to cover uterine motion in my patient cohort but 3cm is still needed 
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anterior and posterior around the cervix. One can argue that some of this would be covered 

by the ‘rolling ball effect’, i.e. the inferior margin around the uterus positioned anterior to the 

cervix will actually create a larger margin around the cervix. Therefore, 2.5cm may be 

adequate. I therefore propose margins of 2cm superior, inferior, left lateral and right lateral 

and 2.5cm anterior and posterior. As already stated, this is only applicable if the bladder 

volume at planning is smaller than 300cc. If all cases are included with no maximum planning 

volume applied, margins as large as 4.6cm are necessary. This is not clinically appropriate as 

there is evidence showing that increasing CTV to PTV margins reduces the normal tissue 

sparing benefit of IMRT (Ahamad et al. 2005; Gordon et al. 2011). The margins of 3.4-4.6cm 

anterior, 2.8-4.2 posterior and 4.2 superior would make the PTV so large that the benefit of 

IMRT would be negated. Even with controlling the upper limit of bladder volume at planning, 

proposed margins are 2.2-3.3cm anterior, 2.4-3.0cm posterior and 2.1cm superior, much 

larger than the 0.5-1cm margins that have been applied in the majority of articles 

demonstrating IMRT benefit.  

Of note, when analysing CBCTs at the level of the cervix in patients with large bladder volume 

reductions, the uterus was positioned directly anterior to the cervix which may have biased 

the measurements taken leading to an overestimation of margins necessary.  

It is very important to highlight the limitation of these data being based on only ten cases.  Four 

out of the ten patients had large planning bladder volumes (>300cc), two of which were very 

large, exceeding 500cc. This is clearly much larger than would be achieved daily during 

treatment. However, it can be argued that this is representing true practice as it happened in 

a substantial proportion of my cases.  

Another limitation of this type of study is the CBCT quality and lack of clarity. The poor 

resolution of linear accelerator based CBCTs can lead to distortion and difficulties with reliably 

outlining CTV. To minimise the impact of this on my results two experienced clinicians 

independently outlined all CBCTs. On qualitative review of these two sets of outlines no 

substantial or systematic discrepancies were observed, and therefore the poor CBCT 

resolution is unlikely to have affected our results greatly. These outlines were also summed 
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together to ensure that all the extreme points were included. However, the ovaries were not 

visualised on any CBCTs which may impact the lateral margin calculations.  

Following on from my results I have proposed bladder and bowel preparation for patients 

undergoing cervical chemoradiation, seen in Table 5.6. These proposed instructions are likely 

to have a larger impact on standardising bladder size than rectal size. However, by controlling 

bladder size consistently, further patterns of the impact of rectal size may emerge and 

modifications may be necessary to control rectal size further. These proposals will therefore 

need further validation. 

All of the patients in this study were treated with 3D-CRT and therefore the CTV was always 

adequately covered even when outside PTV. This is due to the brick-like distribution of dose 

delivered which gives a margin around PTV in certain areas. If these patients had been 

undergoing treatment with IMRT this may not be the case. Every time that CTV was out of 

PTV there would be a potential drop in the dose delivered as the benefit of IMRT is the tight 

dose conformity to PTV. This could potentially have dosimetric implications and subsequent 

survival implications. Studies have investigated this with varying conclusions as discussed in 

Chapter 1, section 1.9.2. In view of these conflicting results I analyse the dosimetric effect of 

the observed variation within these cases in Chapter 6.  

Even without knowing the true dosimetric consequence of this data, actions need to be taken 

to reduce the motion observed before moving forward with IMRT and more conformal 

techniques as many centres and countries are doing.  

As discussed, potential solutions, in addition to strict patient preparation, is anisotropic 

margins (Jadon et al. 2014). Non uniform margins, with the largest in the direction of greatest 

movement, allow increased normal tissue sparing than generalised large margins. However, 

from my small cohort of patients the margins derived to ensure minimum 95% dose in 90% of 

cases are still too large as they will reduce the normal tissue sparing benefit gained from IMRT.  

Adaptive RT, as discussed in Chapter 7, is another alternative. This includes creation of an 

ITV or weekly replanning. The ITV combines the CTVs from bladder full and empty scans and 

has been investigated extensively in Rotterdam (Bondar et al. 2012). This does not account 

for rectal changes and requires significant resources and training to be implemented safely. 
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Currently, these compensatory techniques all need further validation before being 

implemented as standard practice.  At this time therefore, measures to reduce and monitor 

this motion must be utilised. The patient preparation proposals detailed here and the 

introduction of robust and regular monitoring of patients with cervical cancer undergoing 

radical RT are some significant first steps. 

General preparation 

 Throughout the entire course of treatment and for at least 5 days before the planning 
CT scan, maintain adequate hydration and drink 2 litres of water spread throughout 
the day. 

 Monitoring of organ motion is essential. Weekly CBCTs is a minimum requirement 
providing the first 3-5 days imaging does not show significant variation which is 
unpredictable. 

 Daily monitoring with the use of bladder scanner or CBCTs is recommended. 

Bladder preparation 

 Before planning and all treatments drink 3 cups of water and wait for 30 minutes. The 
volume of bladder achieved should ideally be 150-300cc. If the bladder does not fall in 
that range at planning, especially if larger, consider rescanning having waited for a 
different time period e.g. 10 minutes shorter if bladder large than 300cc. A bladder 
scanner can be used to facilitate this without extra radiation exposure for patients.  

 On the day of and one day after when patients receive chemotherapy they should drink 
3 cups and wait 10 minutes less than usual. 

 Use of bladder scanners are strongly recommended as these are a non–invasive quick 
imaging method which can improve the likelihood of reproducing similar bladder 
volumes across the radiotherapy course. Record the average of three bladder scanner 
readings. This approximates to 50cc below the CT outlined bladder volume.  

 At planning a bladder scanning volume of 100-250cc should be the trigger for scanning, 
then within 100cc of planning volume for treatment. If a patient is overfull, emptying 
then re-drinking is necessary. As patients progress through treatment this will be less 
frequently required as bladder volume decreases and the individual preparation will 
become more adapted.  

 Patient education and tailoring of bladder preparation through treatment is helpful. 

Rectal preparation 

 Regular laxatives should be administered (sodium docusate preferred) to ensure 
Bristol stool type 5; laxatives twice daily if type 1-3 stool, once daily if type 4-5 stool 
and none if type 6-7 stool. Patients can be given a copy of the Bristol stool chart with 
instructions if this is helpful for them.  

 As patients progress through treatment they may develop diarrhoea and should be 
monitored carefully for this if taking laxatives.  

 If the AP diameter of the rectum is still>4cm at planning, consider micro-enemas and 
if done, do this for all treatments.  

 The posterior margin should be increased by 1cm in the region of the cervix if 
repeatedly large or variable diameters are seen despite these measures. 

Table 5.6: Proposed patient preparation protocol 
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Chapter 6 

The dosimetric impact of the observed organ motion variation on clinical target 

volume (CTV) coverage in cervical cancer radiotherapy. 
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6.1. Introduction 

Large movements in CTV position, such as those discussed in Chapter 5, raise concern that 

target coverage may be compromised if IMRT is delivered using conventional margins. 

Understanding the dose impact, if any, is therefore essential before implementing resource 

intense compensatory techniques such as adaptive radiotherapy (Heijkoop et al. 2014).  

Few studies have investigated this dose impact, perhaps due to difficulties in calculating 

delivered dose to each point of tissue, especially when an organ changes shape and 

dimensions as well as position, as the uterus does. To derive accurate solutions, high contrast 

imaging coupled to an accurate dose calculation algorithm and mathematical process to sum 

doses from different geometric sets is necessary. Deformable dose algorithm software, such 

as MORFEUS, can track anatomical changes and transform and add dose clouds from 

multiple image sets. Even using this software produces varying results as demonstrated by 

Lim et al and Stewart et al (Lim et al. 2009; Stewart et al. 2010). The dosimetric impact of this 

organ position variation therefore remains unclear. 

Within our CBCT analysis during chemo-radiation for cervical cancer (Chapter 5) large organ 

filling variations were seen with subsequent target position variations. Up to 5cm of CTV 

extended beyond PTV for some treatment days. This Chapter therefore aims to understand 

the dosimetric effect of this variation observed and what factors trigger poor coverage, thereby 

allowing definition of methods to reduce any effect. 

The RapidArc planning within this Chapter was completed by Lisa Hall and Vasilis Rompokos. 

The novel vector based method for analysing dosimetric effects was created by Vasilis 

Rompokos and verified by Chris Stacey. Vasilis performed the data extraction from the 

RapidArc plans using his novel technique and the analysis of data and all other work was 

completed by me.   

6.2. Methods 

CBCT acquirement and analysis including the delineation of CTV1, bladder and rectum are 

detailed in Chapter 5 section 5.2.3. 

6.2.1. Planning process 
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Dual arc RapidArc treatment plans were created based on the planning PTV using Eclipse 

v11 [Varian Medical Systems, Palo Alto] TPS. Plans were inversely optimised, prioritising PTV 

coverage and optimising OARs outside of PTV only. Calculation used the Anisotropic 

Analytical Algorithm. Additional plans were created for the four cases which demonstrated 

greatest variation. These cases had planning bladder volumes exceeding 300cc and were 

replanned based on the CBCT CTV1 with bladder volume closest to but not more than 300cc. 

6.2.2. Dose distribution analysis 

All CBCT generated volumes were copied to the planning CT after bone matching. RapidArc 

plan CTV1 dose coverage was evaluated assuming that each CBCT represented the organ 

position for an equal proportion of fractions. CBCTs were excluded if the entire CTV1 was not 

captured. 

To approximate dose delivered within each CBCT we applied a novel vector-based approach. 

Vectorised DVH methods have been recommended due to different dose distributions 

resulting in overlapping curves limiting the reliability of summing DVH parameters (Mayo et al. 

2013). This means that summing DVH parameters dilutes the potential dosimetric effect as it 

is not know if the same point is consistently underdosed (clinical concern) or the dose 

detriment is spread across a larger area (less clinical concern). Our point dosimetry method 

presented here is therefore likely to reliably represent doses to specified points of tissue. 

Three vectors were drawn on the central sagittal slice of the uterus on the planning CT relative 

to the angle between uterus and cervix (Fig. 6.1). The uterus vector follows the central uterine 

canal cranio-caudally with the pivot point at the cervix base. The mid-uterus vector is 

perpendicular to the uterus vector at its midpoint. This is in the lower third of the uterus close 

to the superior cervix.  The cervix vector lies between the posterior and anterior pivot points 

of the cervix. The length of each vector was linearly deformed to match the planning CT length. 

Dose delivered continuously along these vectors was extracted from Eclipse v11. An average 

vector was then derived representing the integrated treatment effect from the average 

amplitude.  
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Figure 6.1: Central sagittal CT showing CTV vectors and dose points; uterine vector (red), 
mid-uterus vector (yellow) and cervix vector (blue) with the three dose points marked as Xs. 

 

Respective dose points were calculated along the three vectors; 10mm caudally from the 

uterine tip (uterus point); 2mm posterior to the anterior CTV surface along the mid-uterus 

vector (anterior mid-uterus point) and cervix vector (anterior cervix point). These points 

represent areas of greatest dose variation along the vectors. Similar points posteriorly and 

inferiorly did not show as much dose discrepancy from planning. Repeated vector delineation 

in the TPS showed 3mm intra-observer reproducibility in point placement. Dose delivered to 

these dose points was calculated for all RapidArc plans.  

6.2.3. Statistical analysis 

All doses are reported as percentage of prescribed dose (50.4Gray/28#). This is because 

dose prescriptions for cervical cancer varies across countries and studies, ranging from 45 to 

50Gy in 25 to 30 fractions. Median and ranges were calculated using IBM SPSS Statistics 22 

following visual review of data confirming non-normal distribution. P values were derived from 

Wilcoxon signed rank test. 

6.3. Results 

105 scans were analysed for 10 cases with 6 to 13 scans per case.  
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Vector analysis revealed CTV1 under-dosing for some fractions if RapidArc treatment is 

delivered using 10mm-15mm margins (10mm laterally, 15mm in all other directions). This 

dose detriment led to less than 95% average vector coverage for all vectors in 2 cases and 

one vector (mid-uterus) in 1 case.  

Absolute minimum doses along the individual average uterus vector was 75%, mid-uterus 

80% and cervix 89%. 

D99 was less than 95% in 50/105 (48%) fractions. 

Patients with the largest variation had over-filled bladders (>300cc) at planning. Replanning 

of these cases using the CTV acquired with the bladder volume closest to, but not larger than, 

300cc led to statistically significantly improved coverage along the vectors (Fig. 6.2) and dose 

points (Table 6.1). These replanned bladder volumes were 239cc, 258cc, 291cc and 163cc. 

 

Table 6.1: Range, median and interquartile (IQ) range for bladder volume (BV) and percentage 

doses delivered to uterus, anterior mid-uterus and anterior cervix points for all cases and those 

with BV below or above 300cc. Replanning led to statistically improved coverage most 

prominent for the anterior mid-uterus point.  

 

 

  Planning PTV % prescribed dose Replanned with BV <300cc 

    min;max median IQ range min; max median IQ range p value 

uterus 

all 49.0;102.9 99.4 98.4-100.7       

BV<300cc 89.5;102.9 99.9 98.8-101     

BV>300cc 49.0;101.9 98.9 82.9-100.2 
86.2; 
102.4 100 

99.4-
100.7 <0.001 

ant 
mid-

uterus 

all 61.8;103.3 98.7 93.5-99.7       

BV<300cc 96.2;103.3 99.3 98.3-100.6     

BV>300cc 61.3;100.1 91.4 83.1-97.8 
94.0; 
101.6 99.2 

98.4-
100.4 <0.001 

ant 
cervix 

all 85.5;103.1 99.3 97.8-100.6       

BV<300cc 96.9;103.1 99.8 98.8-101.2     

BV>300cc 85.5;101.7 98.2 95.3-99.6 94.8;101.5 99.4 
98.4-
100.7 <0.001 
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Figure 6.2: Percentage dose delivered (y axis) along uterus (A,B), mid-uterus (C,D) and cervix 
(E,F) vectors in cm along the CTV length (x axis) for case with large planning bladder volume; 
red vertical line is end of CTV; 0cm (x axis) is posterior or inferior aspect. Dose decreases 
anteriorly and superiorly. Improvement in coverage is seen when replanning with bladder 
volume closest to but less than 300cc (B,D,F) with the average vector (dotted line) remaining 
above 95% dose coverage. 
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The range and medians of dose delivered to the uterus, anterior mid-uterus and anterior cervix 

points are presented in Table 6.1. Planning bladder volumes larger than 300cc were 

associated with lower dose coverage for all three points, most prominently within the anterior 

mid-uterus point. These all significantly improved with replanning, corroborating the suggested 

patient preparation at planning in Chapter 5.  

Smaller bladder volumes during treatment increased the likelihood of below 95% dose 

coverage for all cases. This pattern was more prominent with large planning bladder volumes 

(diamonds on Fig. 6.3), and improves with replans (crosses on Fig. 6.3). This is as expected 

due to the larger difference between the planning and treatment bladder volumes. CTV dose 

coverage was maintained when bladder volume during treatment was closely matched to the 

planning bladder volume. 99% of CTV volume received minimum 95% dose (D99>95%) in 

93% of cases if bladder volume was between 50cc below and 150cc above planning. This fell 

to 24% if bladder volume was outside of this range. Similarly, D95 was maintained above 95% 

in all cases when bladder volume was within this range and fell to 84% outside of this range 

(see Table 6.2). 

 

Bladder deviation-50 to +150cc Outside -50-+150cc 

 total no % total no % 

no fractions 43  62  

D99>95% 40 93% 15 24% 

D95>95% 43 100% 52 84% 
Table 6.2: Proportion of fractions maintaining D99>95%dose and D95>95%dose with bladder 
volume close to planning (-50cc to +150cc)(column 2,3) compared to outside this bladder 
range (column 4,5). 
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Figure 6.3: Bladder volume (x axis) and normalised dose (% prescribed dose, y axis) for all 
fractions in cases with planning bladder volume>300cc (movers). 
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6.4. Discussion 

My results demonstrate clinically significant changes in dose to uterus, mid uterus and cervix 

related to bladder volume changes, correlating well with my findings and recommendations 

within Chapter 5. This is greatest in cases with large planning bladder volumes and is 

corrected with replanning at a bladder volume closer to but not exceeding 300cc. Control of 

bladder volume is therefore key to reducing geometric discrepancies. No pattern was 

observed with regards to rectal volume, again in keeping with my findings in Chapter 5.  

Dose point assessment concluded that the anterior mid-uterus point was the most variable 

regarding dose delivered. This is initially surprising, as one might expect the uterus tip to be 

least covered as it is most mobile. However, this point was more anterior than the uterus point 

and only 2mm from edge of CTV which may explain the difference. Also, outliers significantly 

affect the dose delivered to uterus point as the mean and median values varied widely (90.5 

and 98.9 for BV>300cc respectively) and absolute minimum values are lower for uterus than 

anterior mid-uterus. With replanning, the minimum values for anterior mid-uterus are much 

improved to 94.0% but minimum uterus dose remains at 86.2%. This suggests that the uterus 

tip, an area of less clinical concern, is corrected less by our proposed bladder volume control 

strategy but the more critical variations (mid uterus/cervix) are corrected by these strategies. 

This increases the importance of bladder volume control. 

Through analysis of cumulative dose delivery using weekly MRIs and MORFEUS software for 

33 cases, Stewart et al found that 27% of fractions did not achieve 95% dose coverage to 

98% target volume during treatment (Stewart et al. 2010). This was using small CTV to PTV 

margins of only 3mm. Despite the differences in sample size and margins, my results of 48% 

of fractions not achieving 95% dose coverage to 99% volume are in broad agreement with 

Stewart et al. This is in contrast to Lim et al, who applied a similar methodology using 

MORFEUS with only 20 patients and found no difference between planned and delivered 

dose, despite only 5mm margins (Lim et al. 2009). My cohort is smaller than both of these 

studies with only 10 cases but this is a similar sized cohort as several other published studies 

(Han et al. 2006; Gordon et al. 2011; Jensen et al. 2015). My results are in strongest 

agreement with Stewart et al who analysed the largest patient cohort of 33 cases. I also 
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analyse twice weekly imaging which is more frequent than many published studies (Han et al. 

2006; Lim et al. 2009; Stewart et al. 2010) adding to the strength of our data.  Two studies, 

which analysed DVH parameters rather than using dose deformation software, concluded 

adequate coverage of uterus was maintained with 5mm and 15mm margins despite an 

observed trend of decreased coverage with time through treatment (Han et al. 2006; Jensen 

et al. 2015). In contrast, Gordon et al reported an approximate 5Gy reduction in dose delivered 

for 10 patients having summed DVHs using coverage probabilities and uterine motion 

modelling with a 1cm margin (Gordon et al. 2011), in keeping with my results. Applying a 

tapered margin (1cm cervix, 2.4cm fundus) to this cohort did improve uterine coverage but 

increased normal tissue doses, suggesting that increasing CTV to PTV margins is not an 

adequate solution to this dose reduction observed. Alternative compensation methods are 

therefore necessary.  

From my data, I reinforce the strict bladder volume monitoring proposed in Chapter 5 to reduce 

this organ motion magnitude. This dosimetric data supports my recommendation that the 

bladder should be as close to but not more than 300cc at planning then between 50cc below 

and 150cc above the planning volume throughout treatment. This strategy should reduce 

target position variation and subsequent dosimetric deficit related to bladder filling without the 

intensive resources necessary for adaptive radiotherapy (Heijkoop et al. 2014). These 

prescriptive recommendations can be implemented using ultrasound bladder scanners or 

CBCTs as previously discussed (Ahmad et al. 2008).  

It is important to note that this novel vector and point dose approach guides understanding of 

coverage patterns. It does not represent accurate total dose coverage and is therefore 

insufficient to determine clinical decisions during treatment. For this study, however, it gives 

some insight into the areas and magnitude of dose detriment to allow generalisation of my 

results. Deformable registration between CT and CBCT images for pelvic areas can also 

introduce significant errors when tracking the bladder and rectum (Thor et al. 2011; Zambrano 

et al. 2013). These errors can be even greater if unfavourable CBCT contrast to noise ratio is 

observed. On comparison of the two clinicians’ CBCT outlines in my ten cases no gross 

differences were observed. It is therefore unlikely that the CBCT quality detrimentally affected 

the results in my cohort. 
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Many assumptions have been made when applying our vector approach. This includes twice 

weekly imaging reliably representing daily position. This is a consistent assumption across 

many publications. However, by having up to 12 scans for a single patient allows this data to 

represent the whole treatment course with some confidence. Having one scan close to and 

one longer since chemotherapy administration also attempts to increase the generalisability 

of these results and these CBCTs are likely to represent the whole treatment course. The 

process of linear deformation assumes that tissue deforms equally across its length. If this is 

not true the differences are unlikely to be large enough to affect my results but should be 

considered. Our applied mathematical model only uses a single pivot point which may not fully 

describe the true target motion but again this is a reasonable simplification as the differences 

in results due to this are unlikely to be large.  

With respect to the site of greatest dose variation there is very little published data. The 

Gordon study shows dose detriment at the uterine fundus, which is slightly different to my 

findings. The fundus is an area of lower relapse risk and is therefore less clinically relevant 

and concerning. Compromise of 5Gy may therefore be accepted. If this was the cervix 

however, dose detriment would be less acceptable. My study suggests that dose detriment 

for cases with large planning bladder volumes is seen in the cervix and anterior uterus. This 

is of greater concern and would be especially important in cases with uterine invasion. None 

of my ten cases had uterine or myometrial invasion so it is difficult to comment further but my 

data suggests a risk of under-dosage especially anteriorly. Perhaps, in the clinical situation of 

uterine invasion this area may be more fixed and therefore less mobile. 

Of interest, within my small cohort, large tumours (CTV1 volume>210cc) maintained good 

dosimetric coverage, perhaps due to local tumour fixation limiting movements. Also, as the 

tumour shrinks the large initial CTV1 ensured large margins to account for additional 

movements. One of my cases also had a very small bladder at planning but, as this was 

consistent throughout treatment, good coverage was maintained.  

The dosimetric findings within this Chapter do support the suggestions within Chapter 5, 

especially the impact of having a maximum planning bladder volume of 300cc. The reduced 

variation seen with replanning is of significant interest but this is a small cohort. Ongoing 
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analysis of patients whose bladder volume is strictly controlled using my recommendations is 

therefore necessary to assess if the dosimetric observations in this cohort are sustained. With 

strict bladder volume control it will also be important to monitor for rectal patterns as these 

may be revealed once bladder volume impact is minimised. The next steps of applying strict 

bladder volume control will be key to assess feasibility. I have practical concerns regarding 

how to apply this strict control in a busy clinical unit but I am convinced of it’s importance if 

IMRT is to be routinely applied for cervical cancer radiotherapy. 
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Chapter 7: 

Discussion 
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Cervical cancer remains a significant health burden worldwide despite the introduction of 

primary and secondary prevention. Ongoing efforts to improve the current treatment and 

outcomes are therefore necessary. Chemo-radiation remains the mainstay of curative 

treatment for locally advanced disease which is the focus of this collection of work. 

Survivorship is an important aspect of patient care and minimising late sequelae from cancer 

treatment is a clinical priority. Advanced RT techniques are therefore being applied to reduce 

the volume of irradiated normal tissue and hence minimise normal tissue toxicity.  

In Chapter 1 I reviewed the evidence for use of IMRT in cervical cancer concluding that IMRT 

reduces acute gastrointestinal toxicity and is likely to also reduce genitourinary toxicity and 

late gastrointestinal toxicity. In addition, it has been shown to increase the likelihood of 

administering all prescribed chemotherapy concurrently which in turn may improve cure rates. 

Furthermore, IMRT can be used to boost doses to improve outcomes, the feasibility of which 

is being investigated in the DEPICT study. This is a phase 1/2 multicentre dose escalation 

simultaneous boost with IMRT study sponsored by Cancer Research UK (CRUK) and has 

recently completed recruitment. Despite these proven and potential benefits of IMRT, caution 

must be applied in view of such tight conformity to the outlined targets. This tight conformity 

increases the importance of accurate delineation and CTV position reproducibility. Currently, 

there is no evidence to suggest a change in recurrence rates but as IMRT is more widely 

implemented this must be monitored.  

This collection of work has investigated two major uncertainties within the delivery of radical 

EBRT for cervical cancer that are fundamental to the delivery of safe RT and become 

increasingly important with IMRT. Chapter 2, 3 and 4 investigated target volume delineation 

variation, and Chapter 5 and 6 investigated daily organ and CTV position variation.  

Delineation variation is well described to be one of the largest uncertainties and sources of 

error within EBRT in many tumour sites. My analysis of the RTQA delineation cases from the 

INTERLACE trial represents approximately half of the UK centres that treat cervical cancer. It 

is therefore the largest number of observers analysed for cervical cancer delineation variation. 

Large inter-observer variations were described with up to two fold volume differences and up 

to 4cm and 3.5cm discrepancies in the superior and inferior borders respectively (Chapter 2). 
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Encouragingly JCI was not unacceptable (≤0.5) for any cases compared with gold standard 

but only 14% and 32% achieved acceptable concordance (JCI≥0.7).  

These differences did translate into large dosimetric differences with no plans achieving 

D98%≥95% or D95%≥95% for the GSPTV (Chapter 3). The GSPTV volume receiving 95% 

dose (V95%) was below 95% for all cases and up to 458cc of GSPTV was outside of the 95% 

isodose. This dosimetric effect of delineation variation has never been previously assessed 

for cervical cancer EBRT. The areas with reduced dose were mostly nodal rather than primary 

CTV. This was initially reassuring as primary CTV is the primary tumour location. However, in 

view of brachytherapy delivering a high proportion of the dose to the primary tumour and EBRT 

being the sole source of nodal treatment, we should not be reassured by this. We must 

therefore continue to strive to develop our training and radiology support when outlining.  

INTERLACE (https://clinicaltrials.gov/ct2/show/NCT01566240) is a phase 3 multicentre trial 

of weekly induction chemotherapy followed by standard chemo-radiation versus standard 

chemo-radiation alone in patients with locally advanced cervical cancer. This follows on from 

a phase 2 feasibility study showing manageable toxicity and complete or partial response in 

70% of patients treated with dose dense weekly carboplatin and paclitaxel before 

chemoradiation (McCormack et al. 2013). The radiotherapy delivered within the INTERLACE 

trial is the subject of an intensive prospective RTQA programme as described in Chapter 2 

despite this being a trial investigating the role of chemotherapy. My work here demonstrates 

the importance of delineation consistency and has emphasised the importance of this on-

going RTQA programme.  

The EMBRACE2 study, a large multicentre European study currently in set-up, will focus on 

standardising adaptive EBRT techniques, building on EMBRACE which set the standards for 

image guided brachytherapy. Within EMBRACE2 prospective RTQA with test delineation 

cases are mandatory before patient accrual can start. This supports the conclusions drawn 

from my work regarding the importance of delineation standardisation and strict RTQA.  

Within my qualitative review of delineation variation well defined anatomical areas were 

inconsistent, such as the aortic bifurcation. This again is very concerning. However, for other 

tumour sites, such as prostate and rectum (Mitchell et al. 2009; Lobefalo et al. 2013), which 
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similarly treat nodal areas, delineation variation significantly improved with use of education 

or descriptive guidance. After a thorough evaluation of published guidance I identified areas 

of discrepancies between individual guidelines and RTQA experience and discussed these 

within the INTERLACE TMG to formulate a consensus. Subsequently I produced the detailed 

pictorial delineation atlas seen in Chapter 4. This was added to the RTQA resources within 

INTERLACE and was found to reduce the delineation variation observed, supporting the 

hypothesis of reduced variation with descriptive guidance. This again sets the standards for 

delineation guidance in future trials involving pelvic radiotherapy for gynaecological cancers. 

Prior to implementation of this atlas within the INTERLACE RTQA, published guidelines were 

available. Therefore, an underlying question, not addressed within this work, is why these 

resources have not already improved the delineation standards observed. Perhaps there is 

not enough time to access these resources in an already busy RT planning session. What my 

work shows is that we must make the time. RT centres can upload atlases or guidance onto 

the computer systems within the department which facilitates speedy access. Another 

important consideration is whether Clinical Oncology trainees should have formal radiology 

teaching incorporated into their training programme within the UK. As radiotherapy techniques 

develop our training needs also expand and maybe even a radiology placement will be 

beneficial in the future. My atlas is the first pictorial atlas giving complete guidance for nodal 

target, primary target and OARs in cervical cancer. Publication of this ensures it is readily 

available for use and it is a unified atlas that covers all areas. I am hopeful that clinicians will 

refer to this as my work shows this is of great value. 

Publication of my findings highlighting the extent of delineation variation and its impact at a 

time of increasing IMRT use has hopefully increased awareness of the need to be 

conscientious. This will ensure the potential benefit gained from these advanced RT 

techniques will not be lost due to the detrimental dosimetric effects that I have shown. The 

ongoing INTERLACE trial RTQA, as well as the newly introduced EMBRACE2 RTQA, will 

continue to drive standardisation of delineation across the UK and internationally.  

In clinical practice there will always be inter-observer variation despite improvements with 

atlas implementation and trial RTQA. This should be taken into consideration by the entire 
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radiotherapy team and monitoring of delineation accuracy should be on-going. This is 

especially true as some research groups such as EMBRACE are proposing that 95% dose 

does not need to cover all of the delineated PTV. My hesitation with this is that the areas with 

compromised dose coverage will be the nodal areas at the edge of field where delineation 

variation appeared greatest in the cases which I reviewed. An example that immediately 

comes to mind is the anterior inferior external iliac region just cranial to the inguinal region. 

When creating the RapidArc plans for Chapter 3, coverage of this area was often tight due to 

the sudden change in contour. If overall coverage is relaxed this is likely to be an area under-

dosed and, along with this being an area where I qualitatively observed large variation in 

delineation, actual under-dosage may be considerably greater than expected.   

Future implications of potential target under-dosage on locoregional control rates are currently 

uncertain but with on-going efforts to reduce OAR dose and minimise toxicity at some point 

recurrences may reveal themselves due to reduced target dose. We therefore need to balance 

what toxicity is really unacceptable because if we keep striving to reduce OAR dose and 

compromise on our target coverage how much benefit are we truly gaining?  

The second major uncertainty addressed within this work is target organ daily position 

variation. This is a problem specific to pelvic radiotherapy due to rectal and bladder filling. It 

is especially prominent in intact cervical cancer due to the mobility of CTV.  

Some European centres use adaptive RT routinely to compensate for the effects of bladder 

filling. One approach is to create an ITV by summing the bladder full CTV and bladder empty 

CTV from multiple planning scans. This was introduced for the RTOG trials investigating IMRT 

in the post-operative setting for cervical and endometrial patients (RTOG 0418) and adjuvant 

chemotherapy after post-operative chemo-radiation in cervical cancer (RTOG 0724). For 

intact cervical cancer, compared to post-operative cases, the ITV can become much larger 

due to uterine movements.  

The Rotterdam group have been pivotal in the application of ITV and variable bladder filling 

plans for intact cervical cancer (Bondar et al. 2011; Bondar et al. 2012; Heijkoop et al. 2014). 

Their protocol is to separate patients according to magnitude of uterine movement by 

performing two planning CT scans; bladder full and bladder empty. If the uterus moves more 
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than 2.5cm between these scans two IMRT plans are created; empty-to-half-full and half-full-

to-full. If the uterine movement is less than 2.5cm a single ITV plan is created. ITV to PTV 

margin is 1cm. All patients have a backup 3D-CRT plan. Using daily CBCT, bony matching is 

performed, then the appropriate plan is selected to ensure coverage of vaginal fornix markers 

and uterus. Approximately 18% of fractions are treated with 3D-CRT. This is due to uterus 

being out of PTV (27.5%), markers out (21.3%), both out (21.7%) and poor CBCT quality 

(10.5%). Therefore approximately 13% apply the backup 3D-CRT plan due to either uterus or 

cervix being out of PTV. As with most of these advanced techniques, resource implications 

exist and a significant amount of skill and teaching is necessary. Within the UK, CBCT and 

clinician availability is limited but we can use this data to evidence the need to build on the 

resources that we have and to develop teams of highly skilled radiographers who can ensure 

its safe application. 

Due to the complexity and resource intensity of these techniques I analysed twice weekly 

CBCTs in ten patients undergoing cervical chemo-radiation to understand the extent and 

patterns of CTV position variation and organ filling with a view to reducing this variation. This 

work is presented in Chapter 5 and 6. I demonstrated large variations in target position related 

to bladder and rectum filling (Chapter 5), consistent with published data. My analysis revealed 

patterns already documented such as decreasing bladder volume through treatment, large 

deviations (>130cc) from planning increasing the likelihood of PTV not covering CTV and 

bladder predominantly affecting uterine coverage compared to rectum affecting cervical 

coverage. I also made novel observations of increased variation if bladder volume at planning 

was too large, specifically more than 300cc, and an increased bladder volume on days 

immediately post chemotherapy. Additional work confirmed that these observed changes 

have a clinically significant impact on dose delivered to CTV (Chapter 6). D99≤95% for CTV 

in 48% of fractions overall, and median dose to the uterus point in cases with planning bladder 

volume more than 300cc was 98.9%, mid uterus point 91.4% and cervix point 98.2%. These 

dosimetric findings correlated well with the movement data analysis. Subsequently I replanned 

the cases with large initial bladder volumes using the CTV position from the CBCT with the 

bladder closest to but not more than 300cc. This led to significant improvements in coverage. 

The mean point doses for uterus, mid-uterus and cervix were increased to 100%, 99.2% and 
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99.4% respectively. This corroborated the suggested planning bladder volume range of 150-

300cc rather than a ‘comfortable full bladder’. Of note, the application of newer RT techniques 

increase avoidance of bowel reducing the need for an overfull bladder to spare bowel. 

The recommended patient preparation and bladder monitoring in Chapters 5 and 6 are 

potentially a more feasible intervention than adaptive RT for less resource rich environments 

such as the UK National Health Service (NHS). This is not ‘resource neutral’ however, as I do 

recommend the use of bladder scanners daily to monitor bladder volume. An audit within my 

department showed that bladder scanners are useful to control bladder volume, and can be 

used at planning and during treatment (Ahmad et al. 2013). They also do not expose patients 

to additional radiation, do not need interpretation and are quicker to acquire than CBCTs. 

However, they do not give additional anatomical information such as rectal size. My next 

project is to apply this patient preparation protocol using bladder scanners to a larger cohort 

of patients whilst collecting further data. More experience may allow less frequent imaging 

(bladder scanner or CBCT) during treatment or selection of certain patient cohorts requiring 

less imaging during RT. Building experience will also show that use of bladder scanners on 

the treatment floor by radiographers is feasible and will aid bladder volume control.  

Other approaches for adaptive RT include weekly replanning. Due to tumour shrinkage 

through treatment replanning weekly can reduce the irradiated volume size, improve CTV 

coverage and minimise normal tissue dose whilst using small margins (Kerkhof et al. 2008; 

Stewart et al. 2010; Oh et al. 2014). This approach again has significant resource implications 

and does not really account for organ filling changes. In my patient cohort I observed that 

significant tumour shrinkage can lead to increases in daily target position variation in patients 

with large planning CTV volumes. It would be important to ensure conforming closer to the 

CTV each week is not detrimental to dose delivered to CTV due to CTV motion. The main 

reason that these patients achieved adequate coverage in our cohort was that the initial CTV 

was so large that this ensured larger margins as they progressed through RT. The application 

of my proposed patient preparation to control organ filling may therefore facilitate safe 

introduction of techniques such as this once my proposal has been validated.  
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In clinical practice, adaptive RT is an ideal goal for the future but deciding which approach is 

best clinically and from a health economics perspective is complex. These approaches all 

need further validation before being considered as standard of care. The EMBRACE2 study 

may set these standards across Europe and facilitate a unanimous approach. In the 

meantime, my findings and proposals provide the basis for introducing IMRT safely, providing 

monitoring is ongoing, with less resource intensity of other interventions.  

Moving forward from this work, prospective RTQA will carry on within the INTERLACE and 

EMBRACE2 trials striving to continue to improve the EBRT standards across the world. This 

RTQA has also set standards for future trials involving RT for cervical cancer. Regarding my 

clinical practice, I will implement the strict patient preparation protocol presented in Chapter 5 

and monitor its impact. I will also educate the radiotherapy team regarding the importance of 

controlling bladder volume and will focus my teaching to clinical oncology trainees on 

delineation utilising the atlases available for many tumour sites. Finally, it is essential that we 

track RT patient outcomes to monitor for changing relapse patterns as RT techniques 

advance. Most clinicians do this independently but perhaps it is also time to do this 

collaboratively at a national level.  

As the standards of cervical radiotherapy improve due to the increased understanding of 

delineation and organ motion within this work, IMRT can be applied with increased confidence 

of its safety. We can then investigate exciting avenues of optimising IMRT delivery, such as 

using radiological biomarkers, FDG-PET/CT and DW-MRI, to tailor treatment according to 

response. In current practice, FDG-PET/CT can be used to aid delineation of tumour or 

involved nodes with good outcomes. In theory, FDG-PET/CT and DW-MRI can also give 

functional information regarding tumour response throughout RT to enable dose painting and 

escalation (Esthappan et al. 2004; Kidd et al. 2010). Alongside this collection of work I have 

set up a feasibility study using PET-MRI in this situation. However, to successfully 

demonstrate the therapeutic gain of these exciting advanced approaches we still rely on 

standardisation of delineation and target position to ensure safe delivery.  
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Appendix 1: Table of articles on delineation variation quantification methods 
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Appendix 2: INTERLACE RTQA pack v1.4 
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Appendix 3: INTERLACE clinician experience/confidence questionnaire 
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9th June 2014 

 

 

 

 

Dear Consultant Clinical Oncologist, 

 

Whilst working with the INTERLACE RTQA team we appreciate that there are many areas of 

uncertainty with respect to contouring for 3D planning in cervical cancer. We are therefore 

updating the RTQA pack with detailed pictoral information regarding contouring and anatomy 

to help minimise the uncertainties.  

 

To ensure we are including all relevant information we would be very grateful if you would 

complete this anonymised questionnaire, which will take less than 2 minutes, on the 

contouring for cervical cancer and return it to the clinical trials office in the enclosed self-

addressed envelope. 

 

 

Yours sincerely 

 

 

 

Dr Gemma Eminowicz 
Radiotherapy Research Fellow 
University College London Hospital
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Questionnaire regarding contouring for cervical cancer: 
 

Date of completion       

Specialist Tumour 

sites      

          

No of years specialising in gynaecology oncology at consultant level   

Approximate no of cervical cancer cases treated with radiotherapy per 

year   

Have you completed the RTQA contouring cases for INTERLACE? Yes No 

Do you already treat cervical cancer patients with IMRT? Yes No 

Do you have a radiologist who can dedicate time to review cases with 

you? Yes No 

          

Previous training on gynaecology anatomy or contouring:    

Radiologist led session Yes No if yes details: 

Online course Yes No If yes details: 

Attended local course Yes No if yes details: 

Attended national course Yes No if yes details: 

Attended international 

course Yes No if yes details: 

Attended course for other 

tumour site 
Yes No If yes details: 

Self taught Yes No  

          

Level of confidence in identifying the following anatomical structures   

Please score 

numerically 1 no confidence/unable to identify  

  2 minimal confidence/can occasionally identify  

  3 confident with most cases  

  4 confident in all cases with rare exceptions  
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  1 2 3 4 Please define if possible  

aortic bifurcation         

iliac bifurcation         

inferior level of 

obturator nodes          

external iliac and 

inguinal node 

junction          

uterosacral 

ligaments          

mesorectum          

superior border of 

parametrium          

posterior border of 

parametrium          

inferior border of 

parametrium          

upper half of vagina          

 

Please list any particular areas of uncertainty that you would like us to 

address in the updated RTQA pack which has not been mentioned here 

already: 
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Appendix 4: Raw data for CTV to PTV margin analysis 
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SET UP ERROR 

patient 
no vertical longitudinal lateral 

vert 
from 
mean 

long 
from 
mean 

lateral 
from 
mean 

1 0 -0.1 0.1 0.089 -0.033 -0.122 

1 -0.2 -0.1 0.5 -0.111 -0.033 0.278 

1 -0.5 0.2 -0.1 -0.411 0.267 -0.322 

1 -0.1 0 0.3 -0.011 0.067 0.078 

1 0 -0.1 -0.1 0.089 -0.033 -0.322 

1 -0.1 -0.1 0.2 -0.011 -0.033 -0.022 

1 -0.1 -0.2 0.8 -0.011 -0.133 0.578 

1 0.1 -0.3 0 0.189 -0.233 -0.222 

1 0.1 0.1 0.3 0.189 0.167 0.078 

2 0.1 -0.2 0.1 0 -0.318 0.19 

2 0 0 -0.4 -0.1 -0.118 -0.31 

2 0.2 0 0 0.1 -0.118 0.09 

2 0.2 0.2 0 0.1 0.082 0.09 

2 0.1 0.2 0.2 0 0.082 0.29 

2 0.2 0.2 0.2 0.1 0.082 0.29 

2 0 0 0.1 -0.1 -0.118 0.19 

2 0.1 0.2 0.1 0 0.082 0.19 

2 0 0.1 -0.2 -0.1 -0.018 -0.11 

2 0.1 0.2 -0.1 0 0.082 -0.01 

2 0.1 0.4 -0.1 0 0.282 -0.01 

3 0 -0.2 0.1 0.1 -0.092 -0.15 

3 -0.1 -0.3 0 0 -0.192 -0.25 

3 -0.3 -0.1 0 -0.2 0.008 -0.25 

3 -0.1 -0.1 0.2 0 0.008 -0.05 

3 -0.1 -0.2 0.1 0 -0.092 -0.15 

3 -0.2 -0.1 0.3 -0.1 0.008 0.05 

3 -0.1 -0.1 0.1 0 0.008 -0.15 

3 -0.1 0.2 -0.2 0 0.308 -0.45 

3 -0.1 -0.2 0 0 -0.092 -0.25 

3 -0.1 0.1 -0.2 0 0.208 -0.45 

3 0 -0.1 -0.2 0.1 0.008 -0.45 

3 0 -0.2 0.1 0.1 -0.092 -0.15 

4 -0.1 -0.1 0.1 -0.14 -0.12 0.28 

4 -0.2 -0.2 0 -0.24 -0.22 0.18 

4 0.1 0 -0.5 0.06 -0.02 -0.32 

4 0.1 -0.2 -0.3 0.06 -0.22 -0.12 

4 0 0 -0.3 -0.04 -0.02 -0.12 

4 0.1 0.4 0.1 0.06 0.38 0.28 

4 0.2 0.1 0.1 0.16 0.08 0.28 

4 0.1 0.5 -0.5 0.06 0.48 -0.32 
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4 0.1 -0.2 -0.4 0.06 -0.22 -0.22 

4 0 -0.1 -0.1 -0.04 -0.12 0.08 

5 -0.1 -0.3 -0.1 -0.39 -0.05 -0.06 

5 0.4 -0.3 -0.3 0.11 -0.05 -0.26 

5 0.5 -0.7 0 0.21 -0.45 0.04 

5 0.3 0.1 0.5 0.01 0.35 0.54 

5 0 0.1 0 -0.29 0.35 0.04 

5 0.3 -0.1 -0.2 0.01 0.15 -0.16 

5 0.2 -0.3 -0.1 -0.09 -0.05 -0.06 

5 0.5 -0.1 -0.2 0.21 0.15 -0.16 

5 0.3 -0.7 0 0.01 -0.45 0.04 

5 0.5 -0.2 0 0.21 0.05 0.04 

6 0.1 0 0.1 0.125 -0.025 -0.108 

6 -0.1 -0.1 0 -0.075 -0.125 -0.208 

6 0 -0.2 0.4 0.025 -0.225 0.192 

6 0 0 0 0.025 -0.025 -0.208 

6 0.1 0.3 0.5 0.125 0.275 0.292 

6 0.1 0.2 0.2 0.125 0.175 -0.008 

6 -0.2 0 0.4 -0.175 -0.025 0.192 

6 0 0 0 0.025 -0.025 -0.208 

6 -0.1 0.1 0.2 -0.075 0.075 -0.008 

6 0.1 -0.1 0.1 0.125 -0.125 -0.108 

6 -0.2 -0.5 0.3 -0.175 -0.525 0.092 

6 -0.1 0.6 0.3 -0.075 0.575 0.092 

7 -0.2 0 0 -0.15 0.158 -0.033 

7 0 -0.1 -0.1 0.05 0.058 -0.133 

7 -0.2 -0.1 0.1 -0.15 0.058 0.067 

7 -0.2 -0.2 0.2 -0.15 -0.042 0.167 

7 -0.1 0 -0.1 -0.05 0.158 -0.133 

7 0 -0.4 0.3 0.05 -0.242 0.267 

7 0.2 0 -0.1 0.25 0.158 -0.133 

7 0.1 0 -0.1 0.15 0.158 -0.133 

7 0 -0.3 -0.1 0.05 -0.142 -0.133 

7 0.1 -0.2 0.3 0.15 -0.042 0.267 

7 0.3 -0.1 0 0.35 0.058 -0.033 

7 -0.6 -0.5 0 -0.55 -0.342 -0.033 

8 0.1 -0.1 0.3 -0.02 -0.32 0.15 

8 0.2 0.1 0.1 0.08 -0.12 -0.05 

8 0 0.4 -0.4 -0.12 0.18 -0.55 

8 0 0.3 0.2 -0.12 0.08 0.05 

8 0.2 0.5 0.4 0.08 0.28 0.25 

8 0.1 0.3 0.2 -0.02 0.08 0.05 

8 0.1 -0.2 0.2 -0.02 -0.42 0.05 

8 0.1 0.7 0.2 -0.02 0.48 0.05 

8 0.3 0 0.2 0.18 -0.22 0.05 
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8 0.1 0.2 0.1 -0.02 -0.02 -0.05 

9 0.2 -0.2 0.1 0.13 -0.13 0.06 

9 0.3 -0.2 0.1 0.23 -0.13 0.06 

9 0.1 -0.3 0.2 0.03 -0.23 0.16 

9 0 0.2 0 -0.07 0.27 -0.04 

9 0.2 0.4 -0.2 0.13 0.47 -0.24 

9 0 0 0 -0.07 0.07 -0.04 

9 0 -0.4 0.1 -0.07 -0.33 0.06 

9 -0.3 0.6 -0.1 -0.37 0.67 -0.14 

9 0.1 -0.1 0.1 0.03 -0.03 0.06 

9 0.1 -0.7 0.1 0.03 -0.63 0.06 

10 0.1 -0.2 0.1 0.027 -0.145 -0.08 

10 0.1 -0.2 0.1 0.027 -0.145 -0.08 

10 0.1 -0.1 0 0.027 -0.045 -0.18 

10 0 0 0.1 -0.073 0.055 -0.08 

10 0.1 -0.1 0.1 0.027 -0.045 -0.08 

10 0.1 0.1 0 0.027 0.155 -0.18 

10 0.1 0 0.1 0.027 0.055 -0.08 

10 0.2 -0.1 0 0.127 -0.045 -0.18 

10 0 -0.2 -0.1 -0.073 -0.145 -0.28 

10 0 0.1 -0.1 -0.073 0.155 -0.28 

10 0 0.1 -0.1 -0.073 0.155 -0.28 
 

Individual mean set up errors (mindividual)     

mean 
vert 

mean 
long 

mean 
lateral 

0.1 0.118 -0.09 

0.073 -0.055 0.18 

0.12 0.22 0.15 

-0.05 -0.158 0.033 

0.29 -0.25 -0.04 

-0.1 -0.108 0.25 

0.04 0.02 -0.18 

-0.089 -0.067 0.222 

0.07 -0.07 0.04 

-0.025 0.025 0.208 
 

Individual random error (σindividual):  

vert long mean 

0.17 0.29 0.17 

0.08 0.18 0.14 
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0.09 0.18 0.13 

0.16 0.24 0.23 

0.16 0.21 0.28 

0.11 0.16 0.27 

0.25 0.16 0.18 

0.10 0.22 0.29 

0.16 0.12 0.32 

0.06 0.11 0.22 
 

 

 

 

 

 

  

 vert long lat 

Mpop 0.04 -0.03 0.08 

Σsetup 0.12 0.14 0.15 

σset-up 0.13 0.19 0.22 

Margin (mm) 4 5 5 
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ORGAN MOTION ERROR 

pt SI  rightUT leftUT antUT postUT rightCX leftCX antCX postCX 

1 0.3 -0.2 0.3 1.2 -2.2     2.3 -1.3 

1 0 -0.1 0.4 1.2 -2.1     -0.8 0.5 

1 -1.4 -1.2 -3.8 -4.3 1.2     1.2 -0.95 

1 0.4 1.2 -0.6 1.5 -2.1     1.2 -0.7 

1 -1.4 1.6 -1.2 0.4 -0.4     1.1 -1.3 

1 -1.3 1.7 -1.3 1.5 -1.9     0.5 -1.8 

1 -1 0.7 -1 0.3 -1.1     1.5 -1 

1 1.3 1 -0.8 0.8 -1.9     1.5 0.5 

1 1.2 1.2 -1.7 0.3 -1.1     0.3 -0.6 

1 0 -1.2 -3.8 -2.6 -0.1     1.4 -3.1 

2 1.5 3.6 1.6 2.1 -1 3.2 4.2 1.4 0.1 

2 2.2 3.3 1.3 3.1 -0.8 2.8 3.7 1.8 0.5 

2 1.4 3.3 2.3 3 -1.7 2.9 3.8 2 -0.1 

2 2.5 3.1 3.6 3.3 -1.3 2.6 3.5 2.2 -1.4 

2 1.3 3.5 1.9 2.8 -1.8 2.7 3.5 1.7 -1 

2 3.1 3 2.8 3.5 -2.2 2.7 3 1.8 0.1 

2 3 2.8 1.9 6 -2.9 2.7 3.9 2.3 -1.4 

2 3.9 3 1.7 6.2 -2.2 2.9 0 5.3 -2.5 

2 2.7 2.8 0.7 5.7 -2.4 2.9 3.5 2.2 -0.5 

2 3.8 3.6 0 6 -3.2 2.9 3.5 2.5 -0.8 

2 4.7 3.3 0.7 5.8 -2.4 3 3.6 5.8 -1.5 

3 2 0.9 4.9 4.3 -0.3         

3 1.3 -0.4 3.4 2.3 -0.5         

3 1.3 0.7 4.6 3.2 -0.8         

3 2.8 0.2 4.2 4.6 -0.3         

3 1.4 0.2 4.5 2.8 -0.1     0.2 0.6 

3 3.4 0.1 3.4 5.2 -0.6 0.8 3 0.9 -0.7 

3 2 0.3 4.1 3.6 -0.9 2 3.7 0.9 -0.1 

3 1.6 0.6 3.6 2.9 -0.1 0 0 -0.2 -0.2 

3 1.6 0.1 2.7 4.7 0.4 3.4 3.8 0.8 -0.2 

3 3.9 0.4 1.6 4.5 -2.1 0.4 1.3 4.2 -0.1 

3 2.8 0.4 2.8 4.3 -1 3 4 1.4 -1.4 

3 3.2 0.1 1.7 5 -1.9 2.7 4.7 0.9 -0.2 

4 0     -1.1 -0.2     1.1 0.6 

4 1.6     3.7 -2.6     1.7 0 

4 0.5     1.5 -1.4     0.2 0.9 

4 2.1     2.2 -2.6     1.7 -0.4 

4 3.1 2.9 1.3 6 -4.6     1.9 0.2 

4 2.7 1.9 0.2 4.9 -1.5     1.4 0 

4 2.8 2.8 1.2 6 -4.6     1.7 -1.11 

4 -2.4             0.5 1.4 

4 2.2     3.8 -4.7     2.4 -0.4 
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4 3.2 2.6 1 5.6 -4.8 1.7 0.1 3.8 0 

4 3.8 3.5 0.4 5.5 -6.5     2.4 -0.4 

5 1.4 0.7 1.3 3.1 -1.1 0 3.9 1.5 -1.1 

5 -0.6 1 2.3 1.9 -0.1 0.4 2.9 1 -0.4 

5 0 0 1.9 2 -1.8 0.2 3.8 1.8 0.2 

5 -0.3 0.2 2.8 1 -1 0 3.5 1.1 -0.9 

5 1 0.7 0.4 2.5 -2.9 0.2 2.5 1.8 -1.8 

5 0.7 1.3 0.8 2.1 -2.2 -0.2 2.4 1.6 -1.4 

5 1.1 0.8 1.5 1.6 -2.1 0 0.5 0.3 -1.7 

5 -1.5 0.8 0.5 3.1 -3 1.3 -0.1 1.4 -3.8 

5 1.4 0.3 2.2 0.5 -2.1 0.9 2.2 0.4 -0.8 

5 1.2 -0.5 1.6 0.7 -2.3 0.2 3.2 0.9 -2.4 

5 2.2 -0.9 0.5 1 -2.9 0.5 3.6 1.3 -2.4 

5 0.8 0 1.2 1.4 -3.3 1 3.7 1.7 -3.6 

6 -0.8 -3.9 -4 -1.2 2.3   0 -0.3 1.1 

6 0 -3 -2.6 -0.4 1.4     -0.5 0.8 

6 -1 -3.9 -6.8 -1.7 2     -0.8 0.6 

6 0 -4.3 -2.9 -1.5 -2     -0.7 0.3 

6 -0.4 -3.5 -2.5 -0.7 -1.6     -0.8 0.3 

6 1             -0.8 1.4 

6 0.2 -4.3 -4.2 -0.9 -3.3     -1.3 0.7 

6 0.5 -4.7 -4.4 -1.4 -1.4     -1.6 1.1 

6 -3.6     -3.6 2.5     0.2 -0.6 

6 -0.6 -4.3 -4.3 -1.8 -0.1     -1.7 0.1 

6 0.9             -0.5 1.4 

7 0.6     -0.6 -0.5 -0.2 0 -0.6 -0.5 

7 -0.3     0.9 -0.2 0.1 -0.5 -0.4 -2.2 

7 -0.6     1.2 -0.1 -0.1 0 -0.7 -2 

7 -0.2     0.9 0.2 -0.2 0.2 -1.2 -1.6 

7 1     -1.2 -0.3 -0.3 0.2 -0.3 -1.2 

7 -0.3     1 0.2 -0.2 0.8 -2 -2.6 

7 -0.6     0.7 0.6 -0.2 -0.8 -1.9 -1.3 

7 2.3     -1.1 -1.4 0.6 0.4 3.8 -0.6 

7 0.5     -1.3 0.2 0.1 0.5 -0.8 -1.2 

7 0.6     -0.2 0.1 0.3 0 -1 -3 

7 0.6     -1.1 0.4 0.7 0 1.8 -1.5 

7 0.4     -1.2 0.5 0.2 0.4 1.8 -1.2 

8 -1.1     -3.4 -1.9 -0.1 -0.5 0 -0.2 

8 0.9 2.1 0 2.5 -2.3 0.1 -0.4 0.6 -0.9 

8 -0.4 4.7 -0.5 0.3 -1.1 0.7 -0.5 1.6 -0.4 

8 0.4 4.3 -0.3 -1.2 -3.7 -0.4 -1.2 1.3 -2.5 

8 -1.1     -2.5 -0.9 0.6 -0.7 0.4 -0.3 

8 -0.6 -0.2 0.5 -1.8 -3 0.5 0.4 0.6 0.1 

8 -0.2 0.5 -0.2 -1.3 -2.5 0.1 -0.2 0.5 -1.1 

8 0.1     -3 -1.5 1.4 0.4 0.2 -0.7 
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8 0.2 4.5 -0.4 -1.4 -0.8 -0.7 -1.8 1.8 -1.5 

8 0.4 0 -0.1 -1 -2 -0.7 -1.3 1.3 -1.4 

9 -0.2 -2.7 -1.2 -4.2 -0.9     1.3 -0.9 

9 -0.5   -3.9 -6.3 -1.1     1.3 -2.5 

9 0 0.2 1.4 0.7 -1.3 2.6 3.6 6.2 -1.5 

9 -1.3 -0.9 -0.1 -2.4 -0.4     1.5 -1.1 

9 -0.6 -2.9 -1.3 -4.9 -0.7     0.3 -1.9 

9 -0.2     -7.4 -1     0.7 -1.7 

9 -2.4     -7.9 -0.2     0.3 -1.1 

9 -0.6     -6.8 -0.7     0.7 -1.5 

9 -1.3     -8 -0.5     0.4 -1.2 

9 0.6 -0.3 1.2 0.2 -0.8     0.8 -1 

9 1.6 0.6 -0.9 0.9 -2.6 2.8 3.5 6.6 -1.2 

10 -0.2         0.4 0.1 0.3 0.6 

10 0.1         2.2 0.3 0 0.2 

10 -0.1         4.5 0.4 0.5 -0.3 

10 1         4.1 0.4 0.6 -0.3 

10 0.1         0 -1.8 0.3 0.2 

10 0.8         4.5 0.5 0.5 0 

10 -0.8             -1.1 0.6 

10 0.1             -0.8 0.5 

10 0         -0.9 0.5 -0.3 0.2 

 

individual means         

patient rightUT leftUT antUT postUT rightCX leftCX antCX postCX SI 

 -1.709 0.5 -4.191 -0.927 0 -0.218 1.827 -1.418 -0.445 

 3.209 1.682 4.318 -1.991 0.164 -0.464 2.636 -0.773 2.736 

 -1.05 0.25 0.2 -0.8 -0.318 0.291 1.709 0.72 1.782 

 0.367 1.417 1.742 -2.067 0.375 2.675 1.233 -1.675 0.617 

 -1.1 -1.05 3.95 -0.683 -0.163 -0.375 1.138 -0.288 -0.345 

 -0.6 -0.34 -0.78 0.06 -1.527 -1.245 0.573 0.509 0.333 

 0.175 -1.025 -0.167 -0.025 0.67 0.1 -0.125 -1.575 -0.14 

 -0.28 1.37 0.05 -0.28 0.15 -0.58 0.83 -0.89 0.111 

 -0.378 0.222 0.489 0.122 -0.189 -0.367 -0.067 0.111 -0.19 

 0.47 -1.35 0.03 -1.17 0.06 0.22 0.46 -0.66 2.275 

pop 
mean -0.0896 0.1676 0.5641 

-
0.7761 -0.0778 0.0037 1.0214 

-
0.5939 0.6734 
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 deviation from pop mean      

patient rightUT leftUT antUT postUT rightCX leftCX antCX postCX 

 -1.6194 0.3324 -4.7551 -0.1509 0.0778 -0.2217 0.8056 -0.8241 

 3.2986 1.5144 3.7539 -1.2149 0.2418 -0.4677 1.6146 -0.1791 

 -0.9604 0.0824 -0.3641 -0.0239 -0.2402 0.2873 0.6876 1.3139 

 0.4566 1.2494 1.1779 -1.2909 0.4528 2.6713 0.2116 -1.0811 

 -1.0104 -1.2176 3.3859 0.0931 -0.0852 -0.3787 0.1166 0.3059 

 -0.5104 -0.5076 -1.3441 0.8361 -1.4492 -1.2487 -0.4484 1.1029 

 0.2646 -1.1926 -0.7311 0.7511 0.7478 0.0963 -1.1464 -0.9811 

 -0.1904 1.2024 -0.5141 0.4961 0.2278 -0.5837 -0.1914 -0.2961 

 -0.2884 0.0544 -0.0751 0.8981 -0.1112 -0.3707 -1.0884 0.7049 

 0.5596 -1.5176 -0.5341 -0.3939 0.1378 0.2163 -0.5614 -0.0661 

pop 
mean 1.350641 1.099799 2.417147 0.792008 0.584726 1.039398 0.871703 0.847727 

 

individual random 
errors:        

ID SI rightUT leftUT antUT postUT rightCX leftCX antCX postCX 

 1.04534 1.33900 0.87977 3.502129 0.63889 0.228035 0.188776 2.29917 0.472902 

 1.10749 0.29139 1.01569 1.595505 0.75558 0.269343 0.874383 1.477344 0.895646 

 1.79767     0.423835 0.398634 0.978217 0.692952 

 1.03030 0.64149 0.78257 0.871215 0.94708 0.465393 1.294832 0.508712 1.213653 

 0.90667 0.42817 0.42238 0.954892 0.72843 0.290637 0.363068 1.200347 0.477605 

 1.2612 0.73361 0.29449 0.43212 0.26492 0.601815 0.914728 0.945612 0.590685 

 0.8195 0.51720 0.66895 1.027206 0.5429 0.331205 0.43275 1.719474 0.754532 

 0.6637 0.71771 0.74841 0.865705 0.9235 0.667083 0.708363 0.620125 0.77093 

 0.53020 0.47900 0.29907 0.355121 0.35629 0.261937 0.141421 0.421307 0.169148 

 1.03435 1.0822 1.45010 1.932212 1.11659 0.183787 0.311983 0.794705 0.952424 

mea 1.01964 0.69220 0.7290 1.281789 0.69714 0.372307 0.562894 1.096501 0.699048 

 SI rightUT leftUT antUT postUT rightCX leftCX antCX postCX 

 1.01964 0.69220 0.72905 1.281789 0.69714 0.372307 0.562894 1.096501 0.699048 
 

 Σ Σ if blad<300 σ σ if blad<300cc 

SI 1.189667 0.377864 0.996898 0.970108 

rightUT 0.428572 0.369583 0.690098 0.79927 

leftUT 0.693815 0.814185 0.809421 0.736291 

antUT 1.378516 0.449026 1.02652 0.828566 

postUT 1.237222 0.501387 1.079984 0.735029 

rightCX 0.168973 0.138662 0.280756 0.300057 

leftCX 0.417894 0.434994 0.330512 0.336452 

antCX 1.033699 0.977853 0.585862 0.624323 

postCX 0.757687 0.856214 0.605692 0.595167 
 

 Margin (cm) margin if Σ bl<300 Set-up margin (cm) Total margin (cm) 
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SI 3.7 1.6 0.5 2.1 

rightUT 1.6 1.4 0.5 1.9 

leftUT 2.3 2.6 0.5 3.1 

antUT 4.2 1.8 0.4 2.2 

postUT 3.8 2.0 0.4 2.4 

rightCX 0.6 0.5 0.5 1.0 

leftCX 1.3 1.3 0.5 1.8 

antCX 3.0 2.9 0.4 3.3 

postCX 2.3 2.6 0.4 3.0 
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