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Objective: Model trajectories of viral load measurements from time of starting com-
bination antiretroviral therapy (cART), and use the model to predict whether patients
will achieve suppressed viral load (�200 copies/ml) within 6-months of starting cART.

Design: Prospective cohort study including HIV-positive adults (UK Collaborative HIV
Cohort Study).

Methods: Eligible patients were antiretroviral naive and started cART after 1997.
Random effects models were used to estimate viral load trends. Patients were
randomly selected to form a validation dataset with those remaining used to fit
the model. We evaluated predictions of suppression using indices of diagnostic test
performance.

Results: Of 9562 eligible patients 6435 were used to fit the model and 3127 for
validation. Mean log10 viral load trajectories declined rapidly during the first 2 weeks
post-cART, moderately between 2 weeks and 3 months, and more slowly thereafter.
Higher pretreatment viral load predicted steeper declines, whereas older age, white
ethnicity, and boosted protease inhibitor/non-nucleoside reverse transcriptase inhibi-
tors based cART-regimen predicted a steeper decline from 3 months onwards. Speci-
ficity of predictions and the diagnostic odds ratio substantially improved when
predictions were based on viral load measurements up to the 4-month visit compared
with the 2 or 3-month visits. Diagnostic performance improved when suppression was
defined by two consecutive suppressed viral loads compared with one.

Conclusions: Viral load measurements can be used to predict if a patient will be
suppressed by 6-month post-cART. Graphical presentations of this information could
help clinicians decide the optimum time to switch treatment regimen during the first
months of cART. Copyright � 2016 Wolters Kluwer Health, Inc. All rights reserved.
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Keywords: CD4R cell count, combination antiretroviral therapy, HIV-1,
predicted virological suppression, treatment switch, viral load
Introduction

Combination antiretroviral therapy (cART) based on at
least three antiretroviral drugs from at least two drug
classes slows HIV replication and prevents transmission of
HIV. Factors taken into consideration when selecting a
patient’s first cART-regimen include: the presence/
absence of genotypic resistance against specific antire-
troviral drugs; potential side-effects; comorbidities; drug
 Copyright © 2016 Wolters Kluwe
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interactions and patient preference [1]. Current guide-
lines recommend monitoring the effectiveness of first-
line cART using routine viral load measurements (copies
of HIV-1 RNA/millilitre of plasma) [1–3], at about
4-weeks after initiation of treatment and then every
3-months to confirm undetectable viral load levels [1].

HIV-dynamic studies have improved our understanding
of the process of virus elimination after initiation of
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cART [4–5]. During the first few weeks of treatment
there is a rapid decline in viral load, primarily because of
the decay of productively infected cells [4,6–8]. The rate
of decay becomes slower thereafter because of the release
of HIV viruses by macrophages and other long-lived cells
of the lymph nodes [4,5,8]. Finally, the decline levels off,
probably because of reservoirs of long-lived cells still
producing HIV virus [4]. In some cases the viral load level
may rise again, for example, because of nonadherence to
the cART regimen or emergence of resistant virus [4].

Clinicians may be tempted to increase monitoring or
switch drug therapy during the phase of slow viral load
decline, even though this is predictable and the patient is
likely to achieve viral suppression. Early treatment
switching may be unnecessary and has disadvantages,
including that the new regimen may be less effective than
the current one, a reduction in the number of available
future treatment options, and the possibility of side-effects
associated with the new regimen. Conversely, delays in
switching regimen after virologic failure has occurred
could result in the accumulation of resistance mutations,
immunologic decline, and an increased risk of clinical
events. Guidelines recommend that a switch of cART-
regimen should be considered if a patient’s viral load
fails to fall to undetectable levels (<50 copies/ml) after
24–36 weeks of treatment [1,2].

In this article we model repeated measurements of viral
load from start of cART to the first suppressed viral load.
Among patients with at least two observed measurements,
we use this model to predict a patient’s future post-cART
viral load measurements given their observed measure-
ments up to 2,3, or 4 months post-cART. Based on these
future measurements we predict whether patients will
achieve a suppressed viral load measurement within 26-
weeks of start of cART, test the reliability of these
predictions, and show how this information can be used
to enhance decisions on when to switch first-line cART.
Methods

Study patients
The UK Collaborative HIV Cohort study was initiated in
2001 and collates routine data on HIV-positive patients
attending some of the largest clinical centres in the UK
since 1 January 1996. The project was approved by a
Multicentre Research Ethics committee and local ethics
committees. Patients are included in the study provided
they are HIV-positive, have attended one of the
collaborating centres at any time since 1996 and are
aged 16 years or over [9]. Analyses are based on data
collected up to 31 December 2012.

Patients were eligible for analysis if they were anti-
retroviral naive, started cART after 1997, had at least one
 Copyright © 2016 Wolters Kluwer H
CD4þ measurement within the period 90 days before to
6 days after starting cART, at least one viral load
measurement within the period 90 days before to 0 days
after starting cART, and at least two post-cART viral load
measurements observed within the first year of starting
cART, where the first measurement was more than
200 copies/ml. Suppression was a priori defined as a
single viral load 200 copies/ml or less.

Statistical analyses
Because we were only concerned with modelling the viral
decay phase from start of treatment to time of first
suppression within the first year of cART, viral load
measurements after time of first suppression or first year of
cART were censored. Patients may stop or switch
treatment regimens because of toxicities, side-effects,
suspected treatment nonresponse, and other problems.
Because stopping or switching treatment due to suspected
treatment nonresponse could have biased our analyses and
reasons for switching were sparsely recorded, we censored
viral load measurements after a patient stopped treatment
for at least 7 days or switched treatment. For a minority of
patients their first suppressed viral load, included in the
analysis, was below the detection limit and was replaced
with the detection limit value.

Viral load measurements were log10 transformed to
stabilize the variance and to meet normality assumptions
of the residuals [10]. When modelling the relationship
between log10-transformed viral load and time we
considered a fractional polynomial of one and two
degrees with powers�2,�1,�0.5, 0, 0.5, 1, 2, 3 (power
zero is interpreted as a natural-log transformation) [11]
and linear-spline models of one and two knots with the
first knot at 2, 4, or 6 weeks and the second knot at 2, 3, or
4 months. We fitted random effects models with the
intercept and trajectory terms random at the patient level,
thus allowing viral load trajectories to vary between
patients. We compared the fractional polynomials and
linear spline models with respect to the Bayesian
Information Criterion and satisfaction of the model’s
assumptions [12].

Patients were classified by their first-line cART regimen
(non-nucleoside reverse transcriptase inhibitors (NNRTI-
based), protease inhibitors (PI-based), boosted-PI, other),
pretreatment CD4þ cell count (<25, 25–49, 50–99, 100–
199, 200–349, 350–499,�500 cells/ml) and pretreatment
viral load (<10 000, 10 000 to <100 000, 100 000 to
<500 000, �500 000 copies/ml). Patients with more than
one measurement within the pretreatment period were
classified using the measurement closest to the start
of cART.

We included covariates sex, age at start of cART,
ethnicity, exposure, type of first-line cART regimen,
pretreatment CD4þ cell count, and pretreatment viral
load. For each covariate, interactions between the
ealth, Inc. All rights reserved.
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covariate and the intercept and trajectory terms were
considered. We compared the Bayesian Information
Criterion statistic of all models with up to five
interactions.

Predictions of future viral-load measurements and the
associated prediction error (the measure of uncertainty
about those predictions) depend upon the fixed-effect
coefficients and the variance parameters [13,14]. See
Appendix for details about generation of these predictions
and prediction error, http://links.lww.com/QAD/A919.

We validated the prediction model by randomly selecting
patients to form a validation dataset. Because our aim was
to predict suppression within the first 6 months of a
patient starting (and continuing on) their first cART
regimen, to form the validation dataset we randomly
selected 40% of those patients who did not switch or stop
treatment either before their first suppressed viral load or
during the first 6 months since starting cART. The
remaining patients (including those ineligible for random
selection) formed the model-fitting dataset.

All patients in the model-fitting and validation datasets
were used in the analysis to validate the prediction model.
The model-fitting dataset was the training data for our
prediction model. Using this model we predicted future
viral load measurements for patients of the validation
dataset. For patients in the model-fitting dataset we used
all of their observed viral load measurements up to 1-year
post-cART; and, for patients in the validation dataset we
categorized viral load measurements within specific clinic
visits by rounding the measurement time to the nearest
month (e.g. measurements at 2.7 and 3.12 months were
categorized as observed at the 3-month visit). Observed
viral load measurements up to and including specified
clinic visits were used to predict future measurements. We
only predicted future measurements among patients who
were not censored (because of suppression, treatment
switching, or dropout) at the follow-up prior to the time
interval being predicted.

Based on the predicted future viral load trajectories we
predicted whether each patient would achieve suppres-
sion (single predicted viral load �200 copies/ml) within
6 months of starting cART. We also classified patients in
the validation dataset according to whether they were
observed to achieve suppression (single observed viral
load� 200 copies/ml) within 6 months of starting cART.
We evaluated prediction of suppression using common
indices of diagnostic test performance: sensitivity,
specificity, positive-predictive value, negative-predictive
value, likelihood-ratio of a positive result, likelihood-
ratio of a negative result and the diagnostic odds ratio [15].
We conducted four sensitivity analyses: suppression
defined by two consecutive viral load measurements
�200 copies/ml, patients of the validation dataset
randomly selected from all eligible patients, viral load
 Copyright © 2016 Wolters Kluwe
measurements not censored after a patient stopped or
switched treatment, and among the first suppressed viral
load measurements we censored those measurements
below the detection limit.

Following Taylor, Yu, and Sandler [16], we derived
prediction graphs depicting patients’ predicted viral load
measurements (with 95% prediction intervals) up to 6
months post-cART, patients’ observed measurements
from previous visits and their measurement from the
current visit. Using this most recent measurement, a new
graph can be produced, allowing real time monitoring of
patients’ progression.
Results

Of 47 201 patients included in UK Collaborative HIV
Cohort study up to 31 December 2012, 24 135 started
cART before 1998 or before entering the study, or did
not start cART. A further 5235 had no CD4 or viral load
measurements within the specified pretreatment periods.
Of the remaining patients, 1617 were suppressed before
start of cART, 519 had zero post-cART viral load
measurements, 385 had one (unsuppressed) post-cART
viral load measurement, and for 5748 their first post-
cART viral load measurement was suppressed, leaving
9562 eligible for analyses. Table 1 presents patient
characteristics according to pretreatment viral load. Most
were men, approximately half were homosexual or
bisexual, of white ethnicity and started on a NNRTI-
based cART regimen. Compared with patients with
pretreatment viral load of at least 10 000 copies/ml, a
higher proportion of patients with pretreatment viral load
less than 10 000 copies/ml were women, Black African,
heterosexual, and started on a boosted-PI cARTregimen.
Median pretreatment CD4þ decreased with increasing
pretreatment viral load.

A total of 7249 (76%) patients achieved at least one
suppressed viral load measurement within the first year of
cART. Among these, the median time to first suppressed
viral load measurement was 2.76 [interquartile range
(IQR) 1.91–3.91] months and the median number of
viral load measurements, up to and including the first
suppressed measurement, was 4 [IQR 3–5] measure-
ments. Of the 2313 (24%) patients who did not achieve at
least one suppressed viral load, the median number of viral
load measurements was 3 [IQR 2–4].

Among the 9562 patients eligible for analysis, 1649 (17%)
stopped their first-line cART regimen (for at least 7 days)
or switched to a second-line cARTregimen either before
their first suppressed viral load or during the first
6 months after starting cART. We randomly selected
3127 (40%) of the remaining 7913 patients to form the
validation dataset. The 6435 patients not randomly
r Health, Inc. All rights reserved.
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Table 1. Characteristics of the 9562 eligible patients.

Pretreatment HIV-1 RNA (copies/ml)

<10 kb 10 k to <100 k 100 k to <500 k �500 k

Number of patients 756 3372 3825 1609
Median (IQR)a age (years) 36 (31–42) 37 (31–43) 37 (32–44) 38 (33–45)
Male (%) 56 74 79 79
Risk group (%)

Homo/bisexual 35 55 61 59
IDU 4 2 2 2
Heterosexual 55 37 32 35
Other/not known 6 5 4 4

Ethnicity (%)
White 40 57 61 62
Black African 43 27 23 25
Other 14 14 14 12
Not known 3 2 2 1

First-line cART-regimen (%)
NNRTI-based 52 63 67 63
PI-based 8 5 5 5
Boosted-PI 33 27 23 27
Other 7 5 5 5

Median (IQR) pretreatment HIV-1 RNA (log10 copies/ml) 3.43 (2.86–3.78) 4.67 (4.43–4.86) 5.32 (5.15–5.50) 5.88 (5.71–6.00)
Median (IQR) pretreatment CD4þ cell count (cells/ml) 272 (180–400) 236 (159–320) 180 (84–270) 114 (42–218)

aIQR, Inter quartile range.
bk, A thousand.
cART, combination antiretroviral therapy.
selected (including the 1649 ineligible for random
selection) formed the model-fitting dataset. Figure 1
shows how the patients eligible for analysis were assigned
to the validation and model-fitting datasets. The patients’
characteristics in the model-fitting (Appendix-table 2,
http://links.lww.com/QAD/A919) and validation
(Appendix-table 3, http://links.lww.com/QAD/A919)
datasets were similar.

Figure 2 shows mean log10 viral load trajectories
predicted by the best fitting model, a linear spline with
 Copyright © 2016 Wolters Kluwer H

9562 patients
eligible for analysis

7913 patients eligible for
inclusion in validation dataset

3127 patients randomly
selected for inclusion in
the validation dataset

4786 patie
selected
the vali

Fig. 1. A flowchart depicting assignment of the patients eligible
knots at 2 weeks and 3 months post-cART, in which
mean log10 viral load trajectories varied between patients
with different pretreatment viral load group, age at start of
cART, ethnic group, and type of first-line cARTregimen.
For all patient groups except those with pretreatment viral
load less than 10 000 copies/ml, mean log10 viral load
trajectories declined rapidly between start of cART and
2 weeks post-cART, moderately between 2 weeks and
3 months and more slowly from 3 months onwards.
Higher pretreatment viral load predicted a steeper decline
in mean log10 viral load for all three phases. For example,
ealth, Inc. All rights reserved.

4786 + 1649 = 6435
patients included in

the model-fitting dataset

1649 patients stopped
or switch treatment

nts not randomly
 for inclusion in
dation dataset

for analysis to the validation and model-fitting datasets.

http://links.lww.com/QAD/A919
http://links.lww.com/QAD/A919


Viral decay on first-line cART UK CHIC Writing Committee 1821

6

5

4

3

2

1

0

0 3 6 9 12

Lo
g 1

0 
H

IV
-1

 R
N

A
 (

co
pi

es
/m

l)

Time since start of cART (months)

6

5

4

3

2

1

0

0 3 6 9 12

Lo
g 1

0 
H

IV
-1

 R
N

A
 (

co
pi

es
/m

l)

Time since start of cART (months)

6

5

4

3

2

1

0

0 3 6 9 12

Lo
g 1

0 
H

IV
-1

 R
N

A
 (

co
pi

es
/m

l)

Time since start of cART (months)

6

5

4

3

2

1

0

0 3 6 9 12

Lo
g 1

0 
H

IV
-1

 R
N

A
 (

co
pi

es
/m

l)

Time since start of cART (months)

Baseline viral load (copies/ml)

(a) (b)

(c) (d)
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≥ 500,000

Age at start of cART
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Ethnicity
White
Black African
Other
Unknown

cART regimen
NNRTI
PI
Bosted PI
Other

Fig. 2. Predicted mean log10 HIV-1 RNA trajectories within the first year of starting combination cART according to (a) baseline
viral load groups, (b) age at start of cART, (c) ethnic group and (d) type of cART-regimen. cART, combination antiretroviral
therapy. The solid black line in each graph denotes the predicted mean log10 HIV-1 RNA trajectory for the reference patient: white
men, aged 35 years at start of cART, homosexual or bisexual, first-line cART-regimen includes a NNRTI, pretreatment CD4þ cell
count between 200 and 349 cells/ml and pretreatment viral load between 100 000 and less than 500 000 copies/ml.
among patients with pretreatment viral load between
10 000 and less than 100 000 copies/ml estimated decline
in mean log10 viral load during phases 1,2, and 3 were
respectively 3.58 [95% CI 3.52, 3.65], 0.39 [95% CI 0.36,
0.41] and 0.06 [95% CI 0.03, 0.08] log10 copies/ml/
month, whereas among patients with pretreatment viral
load of at least 500 000 copies/ml the corresponding
declines were 4.46 [95% CI 4.38, 4.54], 0.56 [95% CI
0.53, 0.59], and 0.15 [95% CI 0.12, 0.17] log10 copies/
ml/month. For the first and second phases there was little
difference according to age and ethnic group, and the
decline of mean log10 viral load was more gradual for PI-
based regimen than for the other cART-regimen groups.
During the third phase, older age at start of cART
predicted a steeper decline, the decline was steeper for
White than non-White patients, and steeper for boosted-
PI and NNRTI-based regimens than for PI-based or
other regimens.

Table 2 compares observed and predicted viral suppres-
sion within 6-months of start of cARTamong patients in
the validation dataset, based on observed viral load
 Copyright © 2016 Wolters Kluwe
measurements up to and including the 2, 3, and 4-month
visits. Because predictions were not generated for patients
who were censored on or before the specified visit or who
did not have an observed measurement at the specified
visit, the number of patients in the validation dataset
decreases from the 2-month to the 4-month visit.
Between the 2 and 4-month visits, specificity of the
predictions substantially improved whereas sensitivity of
the predictions slightly decreased. Also diagnostic
accuracy improved substantially, from diagnostic odds
ratio 5.25 [95% CI 4.09, 6.74] at 2 months to 15.60
[10.77, 22.56] at 4 months.

Compared with suppression defined by a single viral load
200 copies/ml or less, under the stricter definition of
suppression based on two consecutive viral loads
200 copies/ml or less then, at each specified visit, the
number of patients at risk (i.e. not previously suppressed)
was higher and the percentage of patients observed and
predicted to be suppressed was lower (Appendix-table 4,
http://links.lww.com/QAD/A919). Specificity and
negative-predictive value were substantially higher under
r Health, Inc. All rights reserved.
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Table 2. Validation of the model for predicting future suppression by 6 months since start of treatment given observations up to a specified visit.

2-month visit 3-month visit 4-month visit

Number patientsa 1927 1127 698
Observed suppressed 81% 69% 51%
Predicted suppressed 80% 67% 51%
Sensitivity [95% CI] 86% [84%, 88%] 81% [79%, 84%] 80% [76%, 85%]
Specificity [95% CI] 46% [41%, 51%] 63% [58%, 68%] 79% [75%, 83%]
PPV [95% CI] 87% [85%, 89%] 83% [80%, 86%] 80% [76%, 84%]
NPV [95% CI] 44% [39%, 49%] 60% [55%, 65%] 79% [75%, 84%]
LRþ [95% CI] 1.60 [1.45, 1.76] 2.21 [1.92, 2.55] 3.86 [3.12, 4.78]
LR� [95% CI] 0.30 [0.26, 0.36] 0.30 [0.25, 0.35] 0.25 [0.20, 0.31]
DOR [95% CI] 5.25 [4.09, 6.74] 7.49 [5.65, 9.93] 15.60 [10.77, 22.56]

aNumber of patients not suppressed at the specified visit and with at least one future measurement.
CI, confidence interval; DOR, diagnostic odds-ratio; LR�, likelihood ratio of a negative result; LRþ, likelihood ratio of a positive result; NPV,
negative predictive value; PPV, positive predictive value.
the stricter definition of suppression. All indicators of
diagnostic performance showed greater accuracy of
predicting suppression when suppression was defined
by two consecutive viral loads of 200 copies/ml or less
compared with a single viral load 200 copies/ml or less.

The results of the remaining sensitivity analyses, where:
the validation dataset was a random sample of all patients
eligible for analysis (Appendix-table 5, http://links.lww.
com/QAD/A919), measurements after stopping or
switching treatment were not censored (Appendix-
table 6, http://links.lww.com/QAD/A919), and first
suppressed viral loads below the detection limit were
censored (Appendix-table 7, http://links.lww.com/
QAD/A919), were similar to the results of the main
analysis (Table 2).

Predicting time to suppression
Figure 3 compares observed with predicted future viral
load measurements before and after the 3-month visit, for
patients who were selected to illustrate a range of viral
load patterns and predictions. The shaded areas denote
95% prediction intervals for each patient. Because patients
had a small number of observed measurements the
prediction intervals were wide.

At the 3-month visit patient-A was not predicted to
achieve suppression within 6 months of starting cART
(left-hand graph). The new measurement (labelled þ)
was better than expected (below the predicted trajectory)
and the updated graph predicted a steeper decline from 3
to 6 months (right-hand graph), although still not
predicted to be suppressed by 6 months. Patient-B was
predicted to be suppressed approximately 3 months post-
cART (left-hand graph) and the new measurement agrees
with the predicted trajectory, and so very little has
changed in the updated prediction (right-hand graph).
Based on these graphs, a clinician may decide that patients
A and B should continue on their first-line cART
regimen, as they are predicted to decline steadily, and to
next measure the patients’ viral load at the 5-month visit
to confirm that they have become suppressed. Patient-C
 Copyright © 2016 Wolters Kluwer H
was initially predicted to achieve suppression by 3 months
post-cART and patient-D was predicted to steadily
decline almost achieving suppression by 6 months. Their
3-month measurements were worse than expected (above
the predicted trajectory) and the updated graphs show
that they were less likely to be suppressed by 6 months,
which is consistent with their future measurements. For
patient-C a clinician may decide at the 3-month visit to
switch to second-line cART therapy as the patient’s
trajectory is predicted to level off to above 200 copies/ml.
For patient-D a clinician may decide to continue with
the first-line cART therapy and to measure the patient’s
viral load at 4 months post-cART to confirm that the
decline has slowed down. The clinician could then update
the prediction graph using the 4-month measurement
and review the decision to maintain the first-line
regimen.
Discussion

We fitted a flexible linear mixed-effects model to repeated
viral load measurements from the time of starting cART,
and used this model to predict the effectiveness of the
first cART regimen in achieving viral load suppression
based on individual patients’ pretreatment clinical
information and post-cART viral load measurements.
Mean log10 viral load trajectories declined rapidly
between start of cART and 2 weeks post-cART,
moderately between 2 weeks and 3 months and more
slowly thereafter. Higher pretreatment viral load pre-
dicted a steeper decline in mean log10 viral load for all
three phases. During the third phase, older age at start
of cART predicted a steeper decline, the decline
was steeper for White than non-White patients, and
steeper for boosted-PI and NNRTI-based regimens than
for PI-based or other regimens. The model’s predictive
ability improved markedly when based on viral load
measurements up to the 4-month clinic visit compared
with the 2 or 3-month visits. Patients’ current viral load
trajectory and future viral load predictions can be
graphically presented and used to assess if a patient
ealth, Inc. All rights reserved.
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Fig. 3. Prediction graphs of four selected patients based on observations measured before 3-month visit (left-hand column) and
on observations measured after 3-month visit (right-hand column). The solid line is the patient’s predicted log10 HIV-1 RNA
trajectory with 95% uncertainty intervals (shaded regions). The dashed line indicates the cut-off for suppression (200 copies/ml).
is likely to become virologically suppressed within
6 months of start of treatment whilst on their current
regimen.

Among the patients eligible for analysis 60% (5753) had at
least one post-cART viral load within the first 2 weeks
since starting treatment and so we are confident that our
 Copyright © 2016 Wolters Kluwe
data support estimation of a change in viral load within
the first 2 weeks. A key feature is that the model predicts
future viral load measurements using a series of observed
measurements, making efficient use of all available data.
Furthermore, the predictions can be updated as new
measures are obtained, which further improves prediction
accuracy.
r Health, Inc. All rights reserved.
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This study has several limitations. Patients’ measurements
were censored after the first occurrence of a suppressed
viral load measurement and so those patients who had a
rapid decline in viral load contribute only a few
observations to the model. Our model cannot reliably
predict suppression before 3 months post-cART, which
occurred among 3187 (33%) of the patients eligible for
inclusion in our analyses. Only a few patients were treated
with integrase inhibitors, which are now more widely
used. Our predictions were based on a small number of
observed measurements: the prediction intervals were
consequently wide. Some patients stopped taking
treatment or switched to a second-line cART regimen
before their viral load measurements had dropped below
200 copies/ml. Information on reasons for a change
in treatment was not available. We censored all viral
load measurements that were observed after a patient
stopped or switched treatment and, in a sensitivity
analysis, inclusion of these censored measurements did
not change our conclusions. Lastly, patients may have
dropped out of the study because of reasons unrelated to
virological response, or because of loss to follow-up or
AIDS-related mortality. Random effects models, as used
in this study, are robust to dropout that is predictable
from observed data (‘missing at random’) [17,18] but our
estimates may have been biased by a dropout mechanism
that is not predicted by observed viral load measure-
ments.

Several HIV-dynamic studies, modelling data from start of
treatment up to 8 or 12-weeks posttreatment, have
reported a rapid decline in weeks 1–3 and a slower
decline thereafter [19–28]. A HIV-dynamic study with
72-weeks of follow-up reported three phases of decreas-
ing decay rates, where the transition from phases 1–2 was
estimated at 16.1 days and from phases 2–3 at 15.7 weeks
[29]. A cohort of cART-naive and cART-experienced
patients, with measurements at 2 weeks, 3, 6, and 9
months, modelled viral decay using a linear spline with a
single knot at 3 months [30].

Our finding that higher pretreatment viral load predicted
steeper declines in mean log10 viral load is broadly
consistent with the literature [19,21,28,31]. Findings in
some studies that trends did not differ by pretreatment
viral load [20], or that higher pretreatment viral load
predicted slower decline during phase-1 [22,26], may be
explained by differences in the potency of the treatment
regimens and pretreatment virus clearance ratios and
turnover rates of infected cells [21]. Although a few small
studies (<225 patients) reported that viral load trends did
not differ by age or ethnicity [19,22,30], our findings that
older age predicted steeper declines and that declines were
steeper for White than non-White patients are consistent
with reports that older age predicted a shorter time to
suppression [32–37] and that White patients are more
likely to become suppressed than non-Whites [37–43]. In
keeping with our results Wu et al. [21] reported a steeper
 Copyright © 2016 Wolters Kluwer H
decline for NNRTI-based regimens compared with a
PI-based regimen.

Several studies have reported that declines in viral load
during weeks 1–3 predicted virological response at 8, 12
and 24 weeks [19,23,24,27] and that viral load
measurements at 4 and 8 weeks were strong predictors
of virological response at 24 weeks [44,45]. However, our
study is the first of which we are aware to use all available
viral load measurements to predict first suppression by
24 weeks.

We have shown that frequent viral load monitoring can
reliably predict by 4 months post-cART if a patient will
be suppressed within 6 months of starting treatment.
Presenting the observed and future predicted measure-
ments in a graphical plot could aid clinicians in their
decision whether to change cART regimens in patients
not suppressed by 3 months post-cART. Possible actions
might include: returning at 6 months post-cART to
confirm viral load suppression, returning in 1 month for
next viral load measurement to minimize any uncertainty,
or switch to second-line therapy. We hope that the
information provided in these prediction graphs will
provide reassurance in making robust decisions regarding
future cART regimens, and avoid unnecessary changes
of regimen.

In conclusion, we have shown how a series of viral load
measurements can be utilized to predict future viral load
measurements, and how this information can be
presented graphically. Future work could extend models
to allow for informative dropout and develop a web-
based tool [46], where a clinician inputs the information
into a web-based calculator and the tool outputs a
prediction graph.
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