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ABSTRACT

The dayside ionosphere of the Saturnian satellite Titan is generated mainly from photoionization of N2 and CH4.
We compare model-derived suprathermal electron intensities with spectra measured by the Cassini Plasma
Spectrometer/Electron Spectrometer (CAPS/ELS) in Titanʼs sunlit ionosphere (altitudes of 970–1250 km)
focusing on the T40, T41, T42, and T48 Titan flybys by the Cassini spacecraft. The model accounts only for
photoelectrons and associated secondary electrons, with a main input being the impinging solar EUV spectra as
measured by the Thermosphere Ionosphere Mesosphere Energy and Dynamics/Solar EUV Experiment and
extrapolated to Saturn. Associated electron-impact electron production rates have been derived from ambient
number densities of N2 and CH4 (measured by the Ion Neutral Mass Spectrometer/Closed Source Neutral mode)
and related energy-dependent electron-impact ionization cross sections. When integrating up to electron energies of
60 eV, covering the bulk of the photoelectrons, the model-based values exceed the observationally based values
typically by factors of ∼3 ± 1. This finding is possibly related to current difficulties in accurately reproducing the
observed electron number densities in Titanʼs dayside ionosphere. We compare the utilized dayside CAPS/ELS
spectra with ones measured in Titanʼs nightside ionosphere during the T55–T59 flybys. The investigated nightside
locations were associated with higher fluxes of high-energy (>100 eV) electrons than the dayside locations. As
expected, for similar neutral number densities, electrons with energies <60 eV give a higher relative contribution
to the total electron-impact ionization rates on the dayside (due to the contribution from photoelectrons) than on the
nightside.
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1. INTRODUCTION

1.1. Briefly on Titan’s Ionosphere and Its Ionization Balance

Titan, the largest satellite of Saturn, has an N2- and CH4-
dominated atmosphere, the upper part of which has been
probed by instruments on the Cassini spacecraft during 115
flybys, since the fall of 2004. The ionosphere, peaking
typically at altitudes of 1000–1100 km, is composed of
hydrocarbon ions, nitrile ions, and other complex organic
molecular ions, including ones being negatively charged, and
is now known to be an important source region for Titanʼs
organic aerosols (e.g., Coates et al. 2007; Vuitton et al. 2007;
Waite et al. 2007; Crary et al. 2009; Wahlund et al. 2009;
Mandt et al. 2012; Lavvas et al. 2013; Wellbrock et al. 2013;
Shebanits et al. 2013). The electron number density profile
displays the basic variations anticipated from Chapman
theory. In particular, on the dayside, the magnitude (altitude)
of the ionospheric peak increases (decreases) with decreasing
solar zenith angle (Ågren et al. 2009; Edberg et al. 2013), and
the variations in the peak electron densities, over longer time
periods, are also tightly linked to the incident solar EUV flux
(Edberg et al. 2013).

There are, however, unresolved questions associated with the
basics of Titanʼs ionosphere. For example, model calculations

(Vuitton et al. 2009; Westlake et al. 2012) overestimate the
number density of HCNH+, the most abundant ion in Titanʼs
ionosphere. Moreover, and probably related, while the shape of
the electron number density profile in Titanʼs sunlit ionosphere
is well understood and reproduced by solar-driven model
calculations (impinging EUV spectra extrapolated from
measurements by the Thermosphere Ionosphere Mesosphere
Energy and Dynamics/Solar EUV Experiment, TIMED/SEE,
Level 3; see Woods et al. 2005), the magnitude is off by a
factor of ∼2, with the models overestimating the Radio Plasma
Wave Science/Langmuir probe (RPWS/LP) observations
(Vigren et al. 2013). Whether the cause of the discrepancy is
overestimated plasma production, underestimated plasma loss
(e.g., due to missing loss processes), or a combination of both
is an open question. Below we elaborate further on model–
observation comparisons of electron number densities in
Titanʼs ionosphere (Section 1.2). The calculated plasma
production can be tested by different independent means, as
described in Sections 1.3 and 1.4. The present study is
primarily devoted to Titanʼs sunlit ionosphere and model–
observation comparisons of suprathermal electron intensities.
Earlier investigations of similar type are briefly summarized in
Section 1.4.1, while Section 1.4.2 gives an overview of the
present study.
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1.2. Model–Observation Comparison of Electron Number
Densities in the Sunlit and Nightside Ionosphere of Titan

The factor of ∼2 discrepancy between modeled and observed
electron number densities in Titanʼs sunlit ionosphere (Vigren
et al. 2013) is contrasted by a good level of agreement in the
nightside ionosphere. Based on ambient suprathermal electron
fluxes measured by the Cassini Plasma Spectrometer/Electron
Spectrometer (CAPS/ELS) and N2 and CH4 number densities
measured by the Ion Neutral Mass Spectrometer in the Closed
Source Neutral mode (INMS/CNS), Vigren et al. (2015)
calculated electron production rates at different locations along
the T55–T59 Titan flybys by the Cassini spacecraft. The
derived electron production rates were combined with estimates
of the effective recombination coefficient, and the resulting
plasma number densities (which were defined as the geometric
mean of the electron and positive ion number densities) agreed
well with values derived from RPWS/LP observations. The
average ratio between modeled and observed plasma number
densities for the nine investigated nightside locations was 1.05
with a standard deviation of 0.16 (for the dayside, when
restricted to the T40 and T48 flybys, the mean ratio was 1.92
with a standard deviation of 0.08).

Introducing R as the ratio of the electron production and loss
(through recombination), the above can be summarized in two
equations roughly applicable at least in the altitude range
1050–1200 km on the dayside and 1100–1200 km on the
nightside:

( )= » 
a

R a3.7 0.3 1
P

nday
e,day

pl
2

eff

( )= » 
a

R b1.1 0.3, 1
P

nnight
e,night

pl
2

eff

where npl denote plasma number densities derived from
RPWS/LP measurements, αeff is the effective rate coefficient
for dissociative recombination (number density weighted
average of individual ion species’ dissociative recombination
rate coefficients; see Equation (4) in Vigren et al. 2013), and Pe

is the electron production rate calculated from INMS/CSN-
derived neutral number densities and impinging solar EUV
spectra from TIMED/SEE (for the dayside) and suprathermal
electron intensity spectra from CAPS/ELS (for the nightside).
Only Pe is associated with a “day” or “night” index, as the
other parameters were derived in similar manners. We note that
Pe,day can be split up into two terms: Pe,ph (contribution from
photoionization) and Pe,EI (contribution from impact ionization
of photoelectrons, their secondaries, tertiaries, etc.). From
model calculations the contribution of Pe,EI to the total dayside
electron production rate is typically ∼20%–30% in the altitude
range 1200–1000 km (see Figure 8 of Vigren et al. 2013). By
equating the expressions for Rday and Rnight and their current
average values of ∼3.7 and ∼1.1, respectively, it is seen that in
order for the average Rday and Rnight to become roughly equal
(not necessarily in the vicinity of 1, although that is ideal), an
increase of Pe,night/Pe,day by a factor of ∼3 is required. The Pe

values depend partly on the neutral number density profiles.
Based on the good agreement in shapes of modeled and
observed electron number density profiles in the dayside
ionosphere (Vigren et al. 2013), we will for the moment
assume that the neutral number density profiles are not
significantly off. Under this assumption, a derived dayside

electron production rate, Pe,day (both the Pe,ph and Pe,EI terms),
changes linearly with systematic changes across the utilized
impinging solar EUV spectra (extrapolated from TIMED/SEE
measurements). Likewise Pe,night changes linearly with sys-
tematic changes across the utilized suprathermal electron
spectra (taken from measurements by CAPS/ELS).

1.3. Studies into Photoionization Rates in Titan’s Ionosphere

Sagnières et al. (2015) compared +N2 and +CH4 production
rates derived from their TIMED/SEE-based solar energy
deposition model with production rates derived from an
empirical chemical model driven by number densities of
neutrals and (short-lived) ions measured by the INMS and
laboratory-derived rate coefficients for key ion–neutral reac-
tions. Below 1200 km the +N2 production rates derived from
the solar energy deposition model agreed in shape but were a
factor of Sday ∼ 1.5–2 higher than corresponding output values
from the empirical chemical model (on the contrary, a good
agreement was found between the model outputs of +CH4

production rates). For the nightside +N2 production rates
derived from their CAPS/ELS-driven electron-impact ioniz-
ation model were instead lower than production rates obtained
from the empirical chemical model; Snight ∼ 0.4–0.7 ( +CH4

production rates were not compared for the nightside iono-
sphere due to too low signal-to-noise ratios). If the discrepancy
of +N2 production rates on any side (dayside or nightside)
would be due to errors in the chemical reaction network (e.g.,
erroneous rate coefficients), then fixing the problem on the
dayside would bring about even worse discrepancy on the
nightside and vice versa. It follows, similar to the situation
addressed in the previous paragraph, that in order for the
dayside and nightside comparisons of +N2 production rates to
become similar (i.e., for Sday and Snight to become similar), the
solar EUV fluxes would need to be reduced (which would
bring an issue on dayside +CH4 production rate comparisons)
and/or the suprathermal electron fluxes would need to be
somewhat enhanced with respect to the CAPS/ELS measure-
ments across the energy bins contributing the greatest to the
ionization of N2. We note that Richard et al. (2015a) found
better agreement between dayside +N2 production rates
calculated from their solar energy deposition model and
empirical chemical model than did Sagnières et al. (2015).
This is most likely due to a combination of various factors: the
calibration factor for INMS ion number densities (updated
factor used by Sagnières et al.), different CH4 and N2 number
densities, the correction factor in the empirical model from the
inclusion of minor reactions, and a different solar flux model.
These differences are discussed in depth in Section 4.6 of
Sagnières et al. (2015).

1.4. Present Work: Suprathermal Electron Intensities in Titan’s
Ionosphere

In the present work we highlight discrepancies between
model-derived (from our solar EUV energy deposition model)
and observed (CAPS/ELS) suprathermal electron intensities in
Titanʼs sunlit ionosphere. Similar model–observation compar-
isons have previously been performed by Robertson et al.
(2009), Lavvas et al. (2011), and Richard et al. (2015a).
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1.4.1. Earlier Investigations

In Robertson et al. (2009) model–observation comparisons
of suprathermal electron fluxes were presented for the
outbound of the T18 flyby at an altitude of 1210 km. For
typical photoelectron energies (<60 eV) the modeled electron
fluxes agreed quite well with CAPS/ELS observations, as
can be seen in their Figure 4. Also Richard et al. (2015a),
who presented comparisons for the outbound of the T40 flyby
at 1020 km, obtained good agreement with CAPS/ELS
observations (see their Figure 4), particularly over the
electron energy range 10–60 eV. Among several potential
sources of differences (not only directly model related; see
Section 3.1), we merely note that Robertson et al. (2009) and
Richard et al. (2015a) used solar flux models in their
calculations (based on the solar F10.7 value), while we in the
present work, similar to that done by Lavvas et al. (2011), use
solar EUV fluxes based on TIMED/SEE measurements.
Regarding Lavvas et al. (2011), their modeled electron
spectra acquired along the T40 flyby agreed reasonably in
shape with CAPS/ELS observations for energies <60 eV.
However, the modeled values were found elevated with
respect to the observations, particularly so for altitudes of
1100 km and higher (see their Figure 7).

1.4.2. Overview and Outline of Present Study

In the present study we focus on a larger set of dayside
flybys and make also quantitative comparisons of electron-
impact electron production rates as calculated across different
electron energy intervals. The solar-energy deposition model,
based on Galand et al. (2010) and Vigren et al. (2013), is
briefly described in Section 2. While Lavvas et al. (2011)
focused only on the T40 flyby and utilized in their calculations
a solar zenith angle fixed to 37°.5, we investigate here locations
along the T40, T41, T42, and T48 flybys (see Table 1 for
information) and use for each location the associated solar
zenith angle. We use CAPS/ELS measurements primarily from
anode 2 (see Section 2.2) rather than using the central anodes 4
and 5 or averaging over all anodes. We implement also updated
neutral number density profiles of N2 and CH4 as deduced from
INMS/CSN (Cui et al. 2012).

Similar to the case studied by Lavvas et al. (2011), we find
(Section 3) that modeled electron intensities (and associated
electron-impact ionization rates) exceed CAPS/ELS-derived
values at energies below ∼60 eV. The discrepancy is
pronounced, typically by a factor of ∼3 ± 1. On the one
hand, application of systematic adjustments of the utilized
spectra, forcing the factor closer to ∼1, would also bring the
Rday and Rnight values, as well as Sday and Snight values, closer to
each other. On the other hand, the discrepancy is difficult to
explain from estimated uncertainties in the involved

measurements. The study, which also includes comparisons
between CAPS/ELS dayside and nightside spectra for similar
ambient neutral number densities (Section 3.2), is summarized
in Section 4.

2. APPROACH APPLIED

2.1. Model

The derivation of electron fluxes is based on Galand et al.
(2010) and only briefly described here. The first step in the
multi-stream model is the generation of photoelectron spectra.
The impinging solar EUV spectra (see Figure 5 of Vigren
et al. 2013) are extrapolated in distance from daily-averaged
observations by the TIMED/SEE (Level 3) (uncertainties
discussed in Section 3.3). The attenuation of the EUV spectra is
modeled through the Beer–Lambert law and is a function of the
number density profiles of N2 and CH4 as derived from
measurements by the INMS/CSN (see Cui et al. 2012;
uncertainties discussed below), associated photoabsorption
cross sections (Samson et al. 1987, 1989), and the local solar
zenith angle. The photoelectron spectrum is retrieved by
combining the attenuated solar EUV flux with ambient neutral
number densities and partial photoionization cross sections
with associated ionization potentials.
In a second step the suprathermal electron intensity spectrum

is obtained by solving the Boltzmann equation assuming
steady-state conditions (Rees 1989). The profiles of the
photoelectron source function and the number densities of N2

and CH4 from INMS/CSN are used as input into the latter
calculation, together with the cross sections and excitation/
ionization energies for electron-impact processes on N2

(Majeed & Strickland 1997; Shemansky & Liu 2005;
Itikawa 2006) and CH4 (Erwin & Kunc 2005, 2008; Liu &
Shemansky 2006).
An alternative, more approximate approach to derive

electron-impact ionization rates is through the Electron Energy
Degradation (EED) model presented by Vigren et al. (2013),
which uses the local approximation (validated below 1200 km
as shown in Lavvas et al. 2011) and also adopts energy-
dependent expectation values for the electron energy loss due
to impact ionization and electronic excitation. The model is
described in the appendix of Vigren et al. (2013). Very briefly
photoelectrons are distributed onto a grid with energy bins of
width 1 eV. Calculations associated with energy bin k dictate
how electrons (energy degraded or newly produced from
electron-impact ionization) are distributed to energy bins <k.
The differential number flux (with units cm−2 s−1 sr−1 eV−1) in
the energy bin k can be retrieved from the number of newly
produced electrons (per s, cm3, and eV), the ambient N2 and
CH4 number densities, and the associated energy-dependent

Table 1
Titan Flybys Considered in the Study with Information on Date, Saturn Local Time (SLT), and Taken at the Closest Approach (C/A), the Altitude of Cassini, the

Solar Zenith Angle (SZA), Latitude, and Longitude

Flyby (Date) SLT (hr) C/A (km) SZA (deg) Latitude (deg) Longitude (deg)

T40 (2008 Jan 5) 11.33 1014 38 12S 130
T41 (2008 Feb 22) 11.22 1000 30 35S 152
T42 (2008 Mar 25) 12.12 999 21 27S 157
T48 (2008 Dec 5) 10.37 961 25 10S 178
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electron-impact ionization cross sections of the species (see
Equation (2) below).

2.2. Cassini Suprathermal Electron Observations

The CAPS/ELS instrument (Linder et al. 1998, pp.
257–262; Young et al. 2004; Lewis et al. 2010) is a
hemispherical top-hat electrostatic analyzer measuring elec-
trons in the energy range 0.6–28,000 eV. Each spectrum
utilized in the present study was averaged from four
consecutive recordings (each with a duration of 2 s, sweeping
63 energy levels). The instrument is equipped with eight
angular sectors (anodes) each covering 20° × 5°. Negative
ions, when present, typically contaminate the measurements in
the central anodes, 4–5. For this reason and others (see
discussion in Vigren et al. 2015) we have in the present study
utilized the measurements from anode 2 of the CAPS/ELS
instrument. By instead using anode 6, we obtain similar (within
15%) results to those presented in Tables 2–3 (see Section 3).
This speaks in favor of the assumption of isotropic electron
fluxes. For proper comparisons with modeled spectra we have

corrected (applying Liouvilleʼs theorem) the measured spectra
for the negative spacecraft potential as derived from RPWS/LP
(around −0.6 to −1 V for all locations).
Apart from counting statistics uncertainties in the CAPS/

ELS anode 2 derived suprathermal electron intensities, there is
also an uncertainty of ∼10% for energies less than 3 keV and
∼20% above 3 keV due to uncertainties in the geometric factor
of the instrument (see Lewis et al. 2010). Moreover, we have
not corrected for (1) uncertainties due to possible local
spacecraft obscuration effects on anode 2 data and (2) RTG
background (Arridge et al. 2009). The uncertainties due to
these effects are expected to be small in comparison to the other
dominant uncertainties described above.

2.3. Calculations of Electron-impact Electron Production
Rates

The electron-impact electron production rates Pe,EI,X

(where X is M if from the model, or O if from CAPS/ELS
spectra) associated with impacting electron energies
between Elow and Ehigh are calculated from modeled or

Table 2
Electron-impact Electron Production Rates (cm−3 s−1) Calculated from Equation (1) from Model-derived and Observationally (CAPS/ELS) Derived Differential

Number Fluxes

Location Information Pe,EI “Full Range”
Pe,EI

12.6 < E < 30 eV Pe,EI 30 < E < 60 eV
Pe,EI

60 eV < E < 10 keV

Model ELS Model ELS Model ELS Model ELS

T40in;1239;56;2.4;57a 0.53 0.28 0.28 0.09 0.24 0.07 0.02 0.11
T40in;1144;254;5.4;52 2.03 0.97 0.99 0.32 0.95 0.27 0.09 0.38
T40in;1074;814;10.8;48 4.47 2.96 1.91 0.88 2.30 0.97 0.25 1.11
T40in;1035;1305;16.2;43 5.07 3.23 1.90 0.93 2.79 0.87 0.37 1.44
T40out;1021;1480;18.3;34 5.64 3.77 2.10 1.02 3.12 1.12 0.42 1.63
T40out;1056;928;12.3;29 5.13 3.40 2.20 0.95 2.64 1.05 0.29 1.40
T40out;1121;382;6.7;25 3.03 1.66 1.47 0.55 1.43 0.42 0.13 0.68
T40out;1201;88;3.0;21 0.83 0.46 0.43 0.14 0.37 0.11 0.03 0.21
T41in;1191;49;1.9;47 0.45 0.22 0.23 0.07 0.21 0.06 0.02 0.09
T41in;1107;223;5.4;43 1.83 0.79 0.90 0.27 0.86 0.17 0.07 0.34
T41in;1054;679;11.4;39 4.50 2.31 2.07 0.71 2.23 0.69 0.21 0.92
T41in;1012;1662;24.6;34 7.44 3.96 2.96 1.13 4.01 1.02 0.47 1.82
T41out;1015;1738;26.2;26 7.84 4.64 3.14 1.16 4.22 0.98 0.49 2.50
T41out;1058;745;12.4;21 5.18 2.16 2.41 0.77 2.54 0.60 0.24 0.79
T41out;1129;140;3.9;18 1.23 0.47 0.62 0.16 0.57 0.13 0.05 0.17
T41out;1200;37;1.7;16 0.35 0.16 0.18 0.06 0.16 0.04 0.01 0.05
T42in;1234;54;3.0;40 0.52 0.47 0.27 0.10 0.23 0.11 0.02 0.26
T42in;1133;220;7.9;36 1.84 1.33 0.91 0.37 0.85 0.31 0.07 0.64
T42in;1066;601;15.7;32 3.96 2.14 1.82 0.70 1.95 0.68 0.19 0.77
T42in;1021;1158;24.8;27 5.64 3.47 2.32 1.02 2.97 0.96 0.34 1.49
T42out;1006;1462;28.7;19 6.10 4.36 2.38 1.13 3.31 1.27 0.42 1.95
T42out;1045;868;19.7;14 5.13 2.67 2.27 0.97 2.59 0.77 0.27 0.93
T42out;1109;362;11.0;12 2.89 1.48 1.41 0.50 1.36 0.40 0.12 0.58
T42out;1191;95;4.1;11 0.89 0.36 0.46 0.14 0.40 0.11 0.03 0.11
T48in;1134;131;6.1;19 0.96 0.52 0.52 0.16 0.40 0.13 0.03 0.23
T48in;1060;523;13.2;19 3.09 1.79 1.58 0.63 1.39 0.45 0.13 0.70
T48in;998;1252;26.2;21 4.88 3.43 2.16 0.95 2.44 0.85 0.27 1.63
T48in;967;2033;39.6;23 5.34 5.43 2.04 1.16 2.90 1.52 0.40 2.75
T48out;984;1868;33.9;29 5.23 4.63 2.05 1.27 2.81 1.31 0.37 2.06
T48out;1110;223;8.5;38 1.48 0.85 0.79 0.27 0.64 0.24 0.06 0.34
T48out;1207;52;3.6;42 0.41 0.25 0.23 0.07 0.17 0.06 0.01 0.11
T48out;1247;30;2.6;43 0.25 0.18 0.14 0.05 0.10 0.05 0.01 0.08

Note. Values are given for the 32 locations investigated and for a series of electron energy intervals as specified (“full range” refers to 12.6 eV < E < 10 keV). From
estimated/quoted uncertainties in involved measurements the uncertainties in the tabulated values (for E < 60 eV) are estimated as ∼20%–25% (this neglects
systematic uncertainties in neutral number densities; sensitivity tested separately).
a T40in;1239;56;2.4;57 should be read as T40 inbound, altitude = 1239 km, n(N2) = 56 × 107 cm−3, n(CH4) = 2.4 × 107 cm−3, solar zenith angle ≈ 57°. Similarly,
T48out means T48 outbound. Altitudes are written in bold only to guide readers.
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observed differential number fluxes Ie,X (where X is M or O)
according to

( ) ( ) ( )òåp s=
=

P n E I E dE a4 , 2
j j

E E

E

je,EI,M
ioni

e,M
low

high

( ) ( ) ( )òåp s=
=

P n E I E dE b4 , 2
j j

E E

E

je,EI,O
ioni

e,O
low

high

where the sum goes over species j = N2 and CH4, n denotes
number density, and s j

ioni(E) is the energy-dependent electron-
impact ionization cross section of species j at energy E. For
each investigated location we derive Pe,EI,M and Pe,EI,O values
from the ionization threshold of CH4 (12.6 eV) to 10 keV (we
call this the “full range” noticing that extending the upper limit
to 28 keV has a negligible influence on the results), in the
energy range 12.6 eV < E < 30 eV, in the energy range
30 eV < E < 60 eV, and in the energy range
60 eV < E < 10 keV. The reason for inspecting separately
the regions 12.6 eV < E < 30 eV and 30 eV < E < 60 eV is
explained in Section 3.1.

The error from counting statistics in the INMS-derived N2

number densities is <1% (Cui et al. 2012). When deriving
neutral number densities from INMS measurements, Cui et al.

(2012) used a calibration factor of 2.9 (see also Koskinen
et al. 2011). While using as default the correction factor 2.9, we
present in Section 3 also Pe,EI,M/Pe,EI,O ratios obtained from
the use of a calibration factor of 2.1 (slightly reduced from the
value of 2.2 suggested by Teolis et al. 2015). A decrease of the
utilized number density profiles by a multiplicative factor of
2.1/2.9 changes CAPS/ELS-derived electron production rates,
Pe,EI,O, by the same multiplicative factor. The model-derived
production rates, Pe,EI,M, are changed in a less straightforward
fashion as the reduced neutral number density profiles affect
the attenuation of the impinging solar EUV flux, moving the
peak of the ion–electron pair formation downward in the
ionosphere.

3. RESULTS AND DISCUSSION

3.1. Comparisons of Modeled and Observed Electron
Intensities

In Figure 1 we show, for the ingress of T40 at ∼1074 km, a
comparison between differential number fluxes from the multi-
stream model and those from CAPS/ELS (anode 2) measure-
ments. Included in the figure are also results from the EED
model, the results of which agree remarkably well with the
more detailed model. Discrepancies between the model results

Table 3
Ratios of Electron-impact Electron Production Rates Derived from Modeled and Observed Differential Number Fluxes, Pe,EI,M/Pe,EI,O

Location Information “Full Range” 12.6 eV < E < 30 eV 30 eV < E < 60 eV 60 eV < E < 10 keV

T40in;1239;56;2.4;57a 1.93 3.02 3.34 0.17
T40in;1144;254;5.4;52 2.09 3.11 3.57 0.23
T40in;1074;814;10.8;48 1.51 2.17 2.37 0.23
T40in;1035;1305;16.2;43 1.57 2.06 3.22 0.26
T40out;1021;1480;18.3;34 1.50 2.07 2.79 0.26
T40out;1056;928;12.3;29 1.51 2.32 2.51 0.21
T40out;1121;382;6.7;25 1.83 2.65 3.42 0.19
T40out;1201;88;3.0;21 1.80 2.97 3.43 0.15
T41in;1191;49;1.9;47 2.04 3.24 3.66 0.18
T41in;1107;223;5.4;43 2.32 3.32 4.90 0.22
T41in;1054;679;11.4;39 1.95 2.92 3.25 0.23
T41in;1012;1662;24.6;34 1.88 2.63 3.93 0.26
T41out;1015;1738;26.2;26 1.69 2.71 4.29 0.20
T41out;1058;745;12.4;21 2.39 3.12 4.25 0.30
T41out;1129;140;3.9;18 2.64 3.87 4.21 0.27
T41out;1200;37;1.7;16 2.25 2.90 3.93 0.24
T42in;1234;54;3.0;40 1.11 (1.12) 2.61 (2.66) 2.06 (2.08) 0.07 (0.07)
T42in;1133;220;7.9;36 1.39 (1.45) 2.47 (2.62) 2.70 (2.79) 0.12 (0.12)
T42in;1066;601;15.7;32 1.85 (2.05) 2.62 (3.00) 2.88 (3.11) 0.25 (0.26)
T42in;1021;1158;24.8;27 1.62 (1.94) 2.28 (2.90) 3.08 (3.54) 0.23 (0.24)
T42out;1006;1462;28.7;19 1.40 (1.73) 2.10 (2.82) 2.60 (3.09) 0.21 (0.22)
T42out;1045;868;19.7;14 1.93 (2.20) 2.35 (2.79) 3.36 (3.71) 0.29 (0.30)
T42out;1109;362;11.0;12 1.95 (2.06) 2.82 (3.02) 3.36 (3.49) 0.21 (0.21)
T42out;1191;95;4.1;11 2.46 (2.50) 3.27 (3.33) 3.67 (3.71) 0.30 (0.30)
T48in;1134;131;6.1;19 1.86 3.29 3.08 0.15
T48in;1060;523;13.2;19 1.73 2.50 3.06 0.18
T48in;998;1252;26.2;21 1.42 2.27 2.86 0.17
T48in;967;2033;39.6;23 0.98 1.76 1.90 0.15
T48out;984;1868;33.9;29 1.13 1.62 2.14 0.18
T48out;1110;223;8.5;38 1.75 2.92 2.67 0.16
T48out;1207;52;3.6;42 1.64 3.15 2.67 0.12
T48out;1247;30;2.6;43 1.37 2.70 2.17 0.10

Note. From estimated/quoted uncertainties in involved measurements; the tabulated values (for E < 60 eV) are estimated uncertain by ∼27%. Values within
parentheses displayed for the T42 flyby are associated with the use of neutral number densities reduced by a multiplicative factor of 2.1/2.9.
a T40in;1239;56;2.4;57 should be read as T40 inbound, altitude = 1239 km, n(N2) = 56 × 107 cm−3, n(CH4) = 2.4 × 107 cm−3, solar zenith angle ≈ 57°. Similarly,
T48out means T48 outbound. Altitudes are written in bold only to guide readers.
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at energies exceeding 0.5 keV are mainly attributed to the use
of different energy grids (the energy bin width is 1 eV in the
EED model, while the energy grid in the multi-stream model is
logarithmically spaced with bin widths spreading from 0.3 eV
to 7 keV). The data in Figure 1 represent, for the investigated
data set, a typical model–observation comparison of differential
number fluxes.

It is seen in Figure 1 that for electron energies <60 eV, the
modeled electron fluxes reasonably follow the variations in the
observations, though being higher in magnitude by a factor of
typically ∼2–2.5. This is reminiscent of the comparisons made
by Lavvas et al. (2011) for the T40 flyby (see their Figure 7),
who found modeled fluxes that were elevated with respect to
CAPS/ELS observations for energies less than ∼60 eV
particularly for altitudes near 1100 km and higher. The dip
seen in the differential number flux between 2 and 5 eV is the
result of vibrational excitation of N2, whose associated
electron-impact cross section peaks in this energy range
(Galand et al. 2006; Lavvas et al. 2011). The model-predicted
peak at ∼24 eV, corresponding to photoelectrons produced
from the photoionization of N2 by the strong solar He II line at
30.4 nm, is not as sharp (likely due to the energy resolution) but
still present in the CAPS/ELS spectrum. The presence of this
photoelectron peak signature has been noted in several earlier
studies (e.g., Cravens et al. 2004; Galand et al. 2006, 2010;
Lavvas et al. 2011; Wellbrock et al. 2012). The small shift in
energy of the dominant peak is partly due to the spectral
resolution but mainly due to the negative spacecraft potential.
Correcting for the latter (dashed line in Figure 1) yields a better
agreement in the position of the peak. For electron energies
near ∼60 eV, the model predicts a sharp decrease in the
electron flux (see Galand et al. 2006), which is not seen in the
CAPS/ELS spectra. As such, for electron energies higher than
∼60 eV the situation reverses, with the modeled values being
lower than the observed ones. This could, as discussed by

Lavvas et al. (2011), be due to electrons of magnetospheric
origin (not captured by the model) or relate to the fact that the
fluxes toward higher energies correspond to count rates
approaching the instrumental one-count level. We will in the
following focus primarily on electron energies <60 eV.
In Table 2 we display for each considered location electron-

impact electron production rates as calculated from Equation
(2) using modeled and observed differential number fluxes
across different energy intervals. In Table 3 we present the
associated Pe,EI,M/Pe,EI,O ratios. For wavelengths in the range
11–27 nm the TIMED/SEE output is based on scaling to
measurements from the XUV Photometer System on the
SORCE satellite (see Woods et al. 2005). Photoelectrons
resulting from the ionization of N2 into the ground state of +N2
are over this wavelength range associated with energies
exceeding 30 eV. This motivates why we present in Table 2
Pe,EI,M and Pe,EI,O calculated separately for
12.6 eV < E < 30 eV and for 30 eV < E < 60 eV. We merely
note from Table 3 that for 27 out of the 32 investigated
locations the Pe,EI,M/Pe,EI,O ratios for the 30 eV < E < 60 eV
interval are slightly higher than the ratios for the E < 30 eV
interval. Most notably, however, both intervals are associated
with Pe,EI,M/Pe,EI,O ratios typically in the range of 2–4. When
considering the two intervals combined (i.e.,
12.6 eV < E < 60 eV), the set of 32 Pe,EI,M/Pe,EI,O ratios has
a mean value of 2.91 (standard deviation of the mean of 0.54).
As mentioned in Section 2.3, we apply as default an INMS/

CSN calibration factor of 2.9. The influence on Pe,EI,M/Pe,EI,O

ratios of decreasing the neutral number densities by a
multiplicative factor of 2.1/2.9 is exemplified from T42 data
and revealed by values within parentheses in Table 3. At high
altitudes (near 1200 km) the ratios remain similar (increases at
most by a few percent), while deeper down (toward 1000 km)
ratios are enhanced by up to ∼20% for the energy interval 30
eV < E < 60 eV and by up to ∼35% for the energy interval

Figure 1. Comparison of model-derived differential number fluxes (blue line) with CAPS/ELS observations (black dots with associated error bars from counting
statistics) for the ingress of the T40 flyby at an altitude near 1074 km. The red dot-dashed line shows results from the EED model, which only provides values at
energies exceeding the lowest ionization potential of CH4. The solid black line indicates the instrumental one-count level. The black dashed line shows the ELS fluxes
corrected for a negative spacecraft potential of −1 V.
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12.6 eV < E < 30 eV. The somewhat more pronounced
influence in the 12.6 eV < E < 30 eV energy interval is
primarily associated with the wavelength dependence of the N2

photoabsorption cross section.
It is interesting to inspect how the differential flux at a given

electron energy changes with altitude. This is shown in
Figure 2, where the modeled fluxes of ∼25 eV electrons are
plotted against altitude along the T40 flyby. Plotted also are
CAPS/ELS-derived intensities from a nearby energy bin
(central energy of 22.2 eV). The profile shape (going from
high to low altitude)—decreasing more and more sharply—
reflects to first approximation a decaying photoionization
frequency due to atmospheric absorption. We observe roughly
similar shapes in the observed and modeled profiles, with the
modeled values being higher by a factor of ∼2–2.5. The
relative difference between modeled and observed values is
somewhat higher at higher altitudes. This behavior could,
similar to the tendency of Pe,EI,M/Pe,EI,O ratios decaying with
decreasing altitude, possibly be caused by the use of slightly
(up to 20% or so) too high neutral number densities. It is
stressed, however, that systematic errors in the utilized neutral
number densities cannot explain the magnitude difference
between modeled and observed electron fluxes. First, the
utilized densities (or calibration factor) match those derived
from measurements by the Cassini Ultraviolet
Spectrograph (Koskinen et al. 2011), as well as those inferred
from the Cassini Attitude and Articulation Control Subsystem
and the Huygens Atmosphere Structure Instrument (Stro-
bel 2010). Second, by systematically changing the utilized
densities by ±50% removes the agreement with observed
profile shapes, regarding both the model output of suprathermal
electron fluxes and thermal electron number densities (see
Vigren et al. 2013).

It was mentioned in Section 1.4.1 that the modeled electron
fluxes by Robertson et al. (2009) and Richard et al. (2015a)
were found to be in good agreement with CAPS/ELS
observations. We plan to investigate in detail how the use of
different solar EUV flux models affects the calculations of
suprathermal electron intensities. In particular, it is of interest

to find out whether discrepancies between such solar EUV flux
models and spectra from TIMED/SEE are a contributing cause
as to why our model predicts electron fluxes typically a factor
of 2–4 higher than observed by CAPS/ELS (for electron
energies <60 eV) while the model results of Robertson et al.
(2009) and Richard et al. (2015a) show good agreement with
observations. The different levels of agreement have several
other potential/known causes as well. The use of somewhat
different cross section sets and INMS neutral number density
calibration factors may cause non-negligible differences in
model output, particularly toward low altitudes. The model–
observation comparison presented in Robertson et al. (2009)
was for a rather high altitude of 1210 km during the outbound
of the T18 flyby, a flyby not investigated in the present study.
The solar zenith angle was ∼80°.5 and so markedly higher than
the range of solar zenith angles encountered in the present
study (only high-altitude points along the inbound of T40 were
associated with solar zenith angles >50°). In Richard et al.
(2015a) the only presented model–observation comparison of
electron fluxes was associated with the egress of T40 at
∼1020 km. The good agreement between modeled and
observed electron fluxes, particularly for electron energies
10 eV < E < 25 eV, is reminiscent of what is shown in Figure
8 of Lavvas et al. (2011). It is noted that the CAPS/ELS
averaged fluxes associated with the outbound of T40 at
∼1020 km, as displayed in Figure 4 of Richard et al. (2015a)
and Figure 8 of Lavvas et al. (2011), are higher in the energy
range ∼10–25 eV compared with the anode 2 based fluxes used
in the present study for roughly the same location. The fluxes
inferred from anode 2 measurements and used in the present
study for T40 outbound at ∼1021 km are ∼3.0, 1.5, 1.7, 0.8,
and 1.2 × 104 cm−2 s−1 eV−1 sr−1 for the energy bins centered
on ∼11.6, 14.0, 16.3, 19.3, and 22.2 eV, respectively. The
associated fluxes inferred from anode 4 (anode 5) measure-
ments are higher by 38%, 99%, 44%, 119%, and 28%,
respectively (62%, 61%, 28%, 58%, and 32%, respectively).
Such pronounced discrepancies between fluxes inferred from
the central anodes and anode 2 are not seen at higher altitudes.
Among the other locations (altitudes of 1056, 1121, and

Figure 2. Shown vs. altitude along the T40 flyby are model-derived fluxes of electrons with energy ∼25 eV. Shown also are CAPS/ELS (anode 2) measured fluxes of
electrons from a nearby energy bin centered on 22.2 eV (not corrected for spacecraft potential). Statistical error margins (not shown) are on the level of 8%–14%.
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1201 km) investigated along the egress of the T40 flyby, the
fluxes measured in the same set of energy bins by the central
anodes are in no case more than 20% elevated above the fluxes
measured by anode 2.

3.2. CAPS/ELS-derived Electron-impact Ionization
Frequencies on the Dayside and Nightside

In this subsection we focus explicitly on CAPS/ELS-derived
electron production rates (Pe,EI,O) and view the present dayside
results against results associated with the nine nightside
locations (sampled from the T55–T59 flybys) investigated in
the study by Vigren et al. (2015). In Figure 3(a) we display the
contribution to the total electron-impact electron production
rate of electrons with energies <60 eV. For comparable neutral
number densities, nN (=n(N2) + n(CH4)), the nightside values
are lower than the dayside values, which can be understood
from the lack of a solar EUV input on the nightside, which on
the dayside contributes with electrons primarily with ener-
gies <60 eV.

Effective electron-impact ionization frequencies are obtained
by dividing electron-impact electron production rates by the
ambient total neutral number density, nN. In Figure 3(b) we
show against nN such ionization frequencies when limited to
impacting electrons with energies <60 eV. We note that the
nightside point associated with the highest nN is markedly
lower than dayside values of similar neutral number density.
However, the mean of the seven nightside points with
nN < 109 cm−3 is equal to (2.4 ± 0.7) × 10−10 s−1, only
slightly lower than (2.8 ± 0.4) × 10−10 s−1, the mean of the
eight (less spread) dayside points associated with
nN < 109 cm−3. The electron-impact ionization frequencies
derived from the full CAPS/ELS energy range are shown in
Figure 3(c). In this case the nightside point with the highest nN

has an ionization frequency comparable with dayside values at
similar nN. The mean of the seven nightside points with
nN < 109 cm−3 is (7.6 ± 2.5) × 10−10 s−1 and so higher than
(5.0 ± 1.2) × 10−10 s−1, the mean of the eight (less spread)
dayside points associated with nN < 109 cm−3.
The comparable dayside and nightside electron-impact

ionization frequencies are interesting in light of the fact that
the solar EUV input is lacking on the nightside. This indicates
extensive differences in the flux levels of high-energy electrons
of magnetospheric origin. Such differences are seen in Figure 4,
which displays CAPS/ELS (anode 2) spectra for two dayside
and two nightside locations, each associated with neutral
number densities within the range (9–11) × 108 cm−3. In this
example, the nightside locations are clearly associated with
higher fluxes of high-energy electrons (E > 100 eV) than the
dayside locations.
Upstream electron fluxes at Titan can indeed vary substan-

tially (see in particular Rymer et al. 2009; Arridge et al. 2011),
and the electron precipitation also depends strongly on the
magnetic field topology (Gronoff et al. 2009; Simon et al.
2013; Snowden et al. 2013; Edberg et al. 2015; Richard et al.
2015b). Clearly, from the limited set of flybys and locations
investigated here we cannot state that magnetospheric electrons
preferably are directed toward Titanʼs nightside. It is noted that
the herein investigated sets of dayside and nightside flybys
were associated with different Saturn Local Times (SLTs) and
magnetospheric conditions (see Simon et al. 2013). The
dayside flybys (T40, T41, T42, and T48) were all associated
with SLTs in the narrow range of ∼10–12 hr (see Table 1) but
occurred in different magnetic environments according to the
classification scheme of Simon et al. (2010, 2013). On the
contrary, all of the considered nightside flybys (T55–T59) were
associated with an SLT of ∼22 hr and occurred within Saturnʼs
oscillating current sheet (Simon et al. 2010, 2013).

Figure 3. Shown as a function of ambient N2 + CH4 number densities (derived from INMS/CSN measurements) are (a) the relative contribution of <60 eV electrons
to the CAPS/ELS-derived electron-impact ionization frequencies (electron energies up to 10 keV considered), (b) electron-impact ionization frequencies when limited
to electrons with energies <60 eV, and (c) electron-impact ionization frequencies when limited to electrons with energies <10 keV. The nightside points (shown by
magenta triangles) are taken from the study by Vigren et al. (2015) and are associated with the T55–T59 flybys.
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In order to look for dependencies of, e.g., the solar zenith
angle, the SLT, and the magnetic environment on the fluxes of
high-energy electrons in Titanʼs upper atmosphere (at locations
with similar neutral number densities), we are planning to
conduct a study making use of CAPS/ELS and INMS/CSN
data from an extended set of Titan flybys. It is noted that
Edberg et al. (2015) performed a somewhat similar study, but
with the focus on electron number densities measured by
RPWS/LP. Using data from 109 Titan flybys and correcting
for solar zenith angle and solar EUV variations, they reported
that electron number densities in the altitude range
1600–2400 km are elevated by a factor of ∼2.5 when Titan is
located on Saturnʼs nightside compared with when located on
the dayside. They also reported that variations in electron
number densities in the altitude range 1100–1600 km are
largely driven by magnetospheric conditions, with densities
being enhanced typically by ∼40% when Titan is located in the
magnetospheric current sheet compared to when it is located in
the magnetospheric lobes. The latter increase was proposed to
reflect enhanced electron-impact ionization of ∼200 eV sheet
electrons.

3.3. Regarding Uncertainties in Measurements

The following error estimates are particularly for electron
energies <60 eV and do not account for systematic errors in
neutral number densities (discussed and sensitivity tested
separately in Section 3.1; see Table 3). Using estimated/
quoted uncertainties of involved input parameters, we arrive at
error estimates of ∼20%–25% for the Pe,EI,M and Pe,EI,O values
listed in the subcolumns of columns (3) and (4) of Table 2. For
the Pe,EI,O values calculated from Equation (2), we used in the

error propagation systematic uncertainties in anode 2 derived Ie,
O of 15% (the statistical uncertainties at energies <60 eV are
small), an additional 15% uncertainty based on inter-anode
variations in derived Ie,O (variations between anode 2 and
anode 6 measurements considered primarily), and a 10%
uncertainty in the electron-impact ionization cross section. This
gives a total uncertainty of ∼23%. For Pe,EI,M values we note
first of all that the utilized cross sections for some of the
electron-impact electronic excitation processes of N2 are
uncertain by as much as 40% (see Itikawa 2006). However,
even when changing the cross sections of all the electron-
impact electronic excitation channels (for both N2 and CH4) by
±40%, the calculated Pe,EI,M values change by less than 7%
(increased cross sections yielding decreased Pe,EI,M values). We
have also tested how computed Pe,EI,M values are affected by
changing (in different combinations) the utilized cross sections
for photoionization, electron-impact electronic excitation, and
electron-impact ionization by ±10% and the utilized impinging
solar EUV fluxes by ±15%. While high-altitude points can
increase by up to 35% (decrease by up to 30%) and low-
altitude points by up to 30% (decrease by up to 25%), this
happens only if all involved parameters are changed in specific
directions. As a consequence, and after inspecting outputs from
models where the involved parameters have been changed in
different directions (or in part not changed at all), we consider
uncertainty estimates of 20%–25% in the tabulated Pe,EI,M

values more appropriate. Noticing that systematic uncertainties
in the electron-impact ionization cross sections affect Pe,EI,O

and Pe,EI,M in the same way, the error estimate of ∼27% in
the Pe,EI,M/Pe,EI,O ratios in Table 3 is slightly reduced from
the value that would emerge if treating the estimated errors in

Figure 4. (a) Differential number fluxes observed by CAPS/ELS (anode 2) at locations during the nightside T56 and T57 flybys (magenta asterisks and triangles,
respectively) and during the dayside T40 and T42 flybys (black and red circles, respectively). Each of the four locations was associated with an ambient neutral
number density within the range (9–11) × 108 cm−3. Errors from counting statistics are shown, and the black solid line is the instrumental one-count level. (b) Same
data set, but over the energy range 10 eV to 1 keV and without error bars being showed.
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Pe,EI,O and Pe,EI,M as completely independent. Clearly, this
estimated error is too low to explain Pe,EI,M/Pe,EI,O ratios
of ∼3 ± 1.

Significant unforeseen systematic errors in the TIMED/SEE
data, stated accurate to within 5%–20% (Woods et al. 2008;
Lean et al. 2011), are to be considered unlikely. The Solar
Dynamics Observatory (SDO) was not yet operational during
the investigated flybys, but it was for T83 and T86 (Woods
et al. 2012). Sagnières et al. (2015) reported that for the latter
flybys, the +N2 (and +CH4 ) production rates calculated along
the Cassini trajectories were found to differ by less than 10%
when using the solar flux from the SDO/EUV Variability
Experiment instrument compared with TIMED/SEE. The
extrapolation in distance of the solar EUV flux (measured)
near Earth to Titan neglects EUV extinction (expected
negligible) and does not correct for the phase difference
between the objects. However, among the four flybys, only T48
occurred while the Earth–Sun–Saturn angle exceeded 45° (the
angle was ∼130° for that flyby), and more importantly, for a
fixed optically thin location and during a full solar rotation
period (∼27 days) the peak-to-dip ratio of daily-averaged
photoionization frequencies is typically only in the vicinity
of 30%.

It should be noted that the geometric factor (for converting
counts s–1into fluxes) of CAPS/ELS was reduced by a
multiplicative factor of 0.32 (from on-ground to in-flight
values) following comparisons of electron number densities
derived (during 2005 July 14, 10:00–11:00 UT) from CAPS/
ELS observations and RPWS measurements of the upper
hybrid frequency (Lewis et al. 2010). As the updated geometric
correction factor was already implemented in the present study,
a further reduction of the geometric correction factor by a factor
of ∼3 would be required to force Pe,EI,O values as calculated for
12.6 eV < E < 60 eV into an on-average good agreement with
the associated Pe,EI,M values. Identifying further appropriate
times (and ideally closer in time to the flybys investigated here)
for comparisons between CAPS/ELS- and RPWS-derived
electron number densities would serve useful to further validate
the in-flight geometric correction factor currently used. We
note, however, that Lewis et al. (2010) did make additional
comparisons (with data from other instruments and simula-
tions) in order to verify the updated value and argued that the
ELS is well calibrated and that the data can be used with
confidence.

We note finally that by systematically enhancing the CAPS/
ELS-derived fluxes by a factor of 3 (4) at electron energies
<60 eV only is sufficient to reduce the average Rday/Rnight ratio
(see Section 1), currently at ∼3.4, to ∼2.1 (∼1.75). The
reduction is not more pronounced since, as seen in Figure 2(a),
the contribution of <60 eV electrons to the total electron-
impact ionization rate is only on the level of 20%–40% (mean
of 30.4% and a standard deviation of the mean of 6.5%) for the
set of nightside points investigated. A systematic flux
enhancement by a factor of 3.4 across the full energy range
of CAPS/ELS would set Rday/Rnight ∼ 1. In this speculative
scenario we get Rday ≈ Rnight ≈ 3.7, and in order to reach the
ideal R-values of 1 (provided validity of the assumption of
photochemical equilibrium), furthermore an enhancement of
npl

2αeff by a factor of 3.7 is required. Such an increase conflicts
with error estimates of the RPWS/LP-derived plasma number
densities (∼10%) and the utilized effective recombination
coefficients (see, e.g., Section 5.4 of Vigren et al. 2013).

4. SUMMARY AND CONCLUDING REMARKS

From reportedly well-constrained input parameters we have
derived differential number fluxes of suprathermal electrons in
Titanʼs main sunlit ionosphere. The model itself is of standard
type, is applied to a region where the local approximation is
expected valid (attested by the good agreement between the full
model and the simpler EED model; see also Lavvas
et al. 2011), and makes use of a well-constrained cross-section
set (regarding electron-impact processes at least for
E < 1 keV). The modeled fluxes have been compared with
CAPS/ELS observations (see Figure 1). In addition, the
modeled and observed fluxes have been used to generate
electron-impact electron production rates, Pe,EI,M and Pe,EI,O,
respectively (see Equation (2) and Tables 2, 3).
The key findings of the study are summarized as follows.

1. Over the energy range 12.6 eV < E < 60 eV, constituting
the bulk of the photoelectron energy distribution, the
modeled suprathermal electron intensities agree reason-
ably in shape with the CAPS/ELS observations. A peak
around 24 eV, due to photoelectrons emerging from the
photoionization of N2 into +N2 , appears in both the
modeled and the observed spectra, as found also in
previous studies (e.g., Galand et al. 2006; Lavvas
et al. 2011).

2. However, modeled electron fluxes are typically higher
than observed for E < 60 eV, with associated Pe,EI,M/
Pe,EI,O ratios typically around 3 ± 1 (see Table 3). The
discrepancy is difficult to explain in view of estimated
and quoted uncertainties in involved measurements.

3. At energies >60 eV, the modeled fluxes are lower than
observed (sometimes by nearly an order of magnitude).
This could be caused by the fact that the model only
accounts for photoelectrons and their secondaries,
tertiaries, etc., and so does not include contributions
from magnetospheric electrons.

We have discussed the results in relation to other Titan
ionospheric studies wherein ionization rates on the dayside are
calculated from the TIMED/SEE-based solar EUV energy
deposition model while ionization rates on the nightside are
calculated from ambient neutral number densities and CAPS/
ELS spectra of suprathermal electron intensities. We summar-
ize the present understanding and findings as follows.

1. At present the modeled plasma number densities on the
dayside are higher than the RPWS/LP-derived values by
a factor of ∼1.92 ± 0.08. On the nightside the level of
agreement is better, the modeled values being on average
a factor of ∼1.05 ± 0.16 higher than observed (Vigren
et al. 2013, 2015).

2. Modeled +N2 production rates on the dayside are higher
(by a factor of ∼1.5–2) than derived from an empirical
chemical model. On the nightside the situation is
reversed, with the modeled production rates being lower
than values from the empirical chemical model by a
multiplicative factor of ∼0.4–0.7 (Sagnières et al. 2015).

3. Systematic adjustments of TIMED/SEE and/or CAPS/
ELS spectra, forcing Pe,M/Pe,O ratios for E < 60 eV to
values closer to ∼1, would affect the above-mentioned
results. It would make the level of agreement with
observations (with the empirical model in the case of +N2
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production rates) more similar for the dayside and
nightside ionospheres.

We have also compared the CAPS/ELS dayside spectra
utilized in the present study against those used in the nightside
study by Vigren et al. (2015). For comparable ambient neutral
number densities, nN (here limited to a few locations with
5 < nN < 15 × 108 cm−3), the nightside locations are
associated with markedly higher fluxes of high-energy
electrons (see Figure 4) than the dayside locations. We
emphasized in Section 3.2 that the dayside flybys (T40–T42
and T48) occurred in different magnetic environments and
SLTs of 10–12 hr, while all of the nightside flybys (T55–T59)
occurred within Saturnʼs oscillating current sheet (see Simon
et al. 2013) and at SLTs of ∼22 hr. It is known from earlier
studies that varying upstream conditions and the magnetic
topology cause highly varying levels of electron fluxes in
Titanʼs ionosphere (e.g., Gronoff et al. 2009; Rymer et al.
2009; Arridge et al. 2011; Snowden et al. 2013; Richard
et al. 2015b). The present work, limited to a small set of flybys
and locations, shows that the magnetospheric input alone at
times can be so high that resulting electron-impact ionization
frequencies (see Figure 3, panels (b) and (c)) become
comparable to, or even higher than, electron-impact ionization
frequencies in locations with similar nN but subjected to solar
EUV input and associated photoelectron generation.

As concluding words, the main motivation of this study was
to investigate further whether overestimated plasma production
is a contributing reason as to why models predict nearly a
factor of 2 higher electron number densities than observed in
Titanʼs sunlit and main ionosphere. While the finding that the
modeled electron fluxes at typical photoelectron energies are
markedly higher than measured by the CAPS/ELS (anode 2) is
indicative of such an overestimation in plasma production, we
wish to keep several possibilities open and therefore refrain
from drawing (possibly too) strong conclusions.
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