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Abstract—We explore a bandwidth efficient transmission
scheme that amalgamates multiple-input-multiple-output spatial
multiplexing (SMX) with receive antenna based spatial modula-
tion (RSM). The RSM here is applied to the combined spatial
and power-level domain, not by activating and de-activating the
receive antennas, but rather by choosing between two power
levels {P1, P2} for the received symbols in these antennas, such
that all receive antennas are active and SMX can still be
accommodated. This allows for the coexistence of RSM with
SMX and the results show an increased bandwidth efficiency
for the proposed scheme compared to both SMX and RSM.
We further carry out a mathematical analysis to optimize the
ratio between P1 and P2 for attaining the minimum error rates.
Our analytical and simulation results demonstrate significant
bandwidth efficiency gains for the proposed scheme compared
to conventional SMX and RSM.

Index Terms—Spatial modulation, spatial multiplexing,
multiple-input-multiple-output systems, transmit precoding

I. INTRODUCTION

Spatial Modulation (SM) has been conceived for implicitly
encoding information in the index of the specific antenna
activated for the transmission of the modulated symbols,
offering a low-complexity design alternative [1]. Its central
benefits include the absence of inter-antenna interference (IAI)
and the fact that it only requires a subset (down to one) of Ra-
dio Frequency (RF) chains compared to spatial multiplexing.
Accordingly, the inter-antenna synchronization is also relaxed.
Early work has focused on the design of receiver algorithms
for minimizing the bit error ratio (BER) of SM at a low
complexity [1]-[7]. In addition to receive processing, recent
work has also proposed constellation shaping for SM [8]-[18].

Closely related work has focused on applying the concept of
SM to the receive antennas (RAs) of the communication link,
forming the RA-based spatial modulation (RSM) concept [19].
By means of transmit precodng (TPC) [20]-[23], this technique
targets a specific subset of RAs which receive information
symbols, while the rest of the RAs receive only noise. This
may be achieved by using zero forcing (ZF)-TPC and trans-
mitting a combination of information symbols and zeros to the
RAs depending on the spatial symbols to convey. As opposed
to conventional SM where a subset of RF chains is deployed,
here all TAs and RAs are active and therefore there are no RF
chain reductions. Still, the computational complexity of the
receivers is drastically reduced where, simply the indices of
the targeted RAs have to be detected and the classic symbols
received at the activated RAs are then demodulated.

Inspired by the above RSM philosophy, here we propose
a dual-layered transmission scheme, which intrinsically amal-
gamates a full spatial multiplexing (SMX) with RSM. Firstly,
we note that since for RSM all TAs and RAs are active, there
are no RF chain reductions and this motivates the full SMX
approach. To accommodate the SMX, we apply a SM to the
combined spatial and receive-power domain, where instead
of sending a combination of information symbols and zero
power to the RAs, we apply two different power levels for
distinguishing between the ’active’ and ’inactive’ RAs. In
this manner, the spatial symbols are formed based on the
power levels detected. We demonstrate that this improves the
bandwidth efficiency with respect to SMX and RSM. We
further develop a pairwise error probability (PEP) analysis
for the proposed scheme and use this to analytically derive
the optimum power ratio between the two sets of antennas
that carry the spatial symbol for the proposed scheme, for
minimizing the probability of detection errors.

While this work focuses on a single-link scenario, the
proposed technique can be readily extended to a multiuser DL
scenario, where the dual-layered transmission and the related
RA-based spatial modulation take place on a per-user basis, as
facilitated by the ZF-TPC employed at the base station (BS).
Note that the proposed scheme does not consist of a power
allocation scheme in the sense of allocating power according
to the Quality of Service (QoS) requirements of the user. This
power allocation may be applied in addition to the proposed
scheme in the multi-user scenario, where different users with
different QoS requirements employ different sets of powers
{P1, P2} accordingly.

II. SYSTEM MODEL AND RSM

Consider a MIMO system, where the transmitter and re-
ceiver are equipped with Nt and Nr antennas, respectively.
For simplicity, unless stated otherwise, in this paper we assume
that the transmit power budget is limited as P = 1. For the
case of the closed-form TPCs of [20]-[23], it is required that
Nt ≥ Nr. The above channel is modeled by the equation

y = Ht+w, (1)

where y is the vector of received symbols in all receive
antennas and H is the MIMO channel vector with elements
hm,n representing the complex channel coefficient between
the n-th TA and the m-th RA. Furthermore, t is the vector
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of precoded transmit symbols that will be discussed in the
following and w ∼ CN (0, σ2I) is the additive white Gaussian
noise (AWGN) component at the receiver.

RSM targets a subset of the RAs by sending information
symbols to these RAs and zero power to the rest of the RAs.
While for RSM all RAs have to be on to detect the arrival
of information symbols, for coherence with the SM literature
we shall refer to the antennas as ’active’ and ’inactive’
depending on whether they do or do not receive information
symbols, respectively. The specific combination of RAs that
do receive symbols implicitly conveys the symbol transmitted
in the spatial domain. The above RA subset transmission
is achieved by forming a super-symbol vector in the form
skm = ekbm = [0, . . . , bm1

, . . . , 0, . . . , bm2
, . . . , 0]T with Na

non-zero elements, where ek is a diagonal matrix of size
Nr with elements taken from the set {1, 0} on its diagonal,
that represents the RAs that are activated. The notation [.]T

denotes the transpose operator. Here, bmi
,mi ∈ {1, . . . ,M}

is a symbol taken form an M -order modulation alphabet that
represents the transmitted waveform in the baseband domain
conveying log2(M) bits and k represents the index of the
Na activated RAs (the index of the non-zero elements in skm)
conveying log2

(
Nr

Na

)
bits in the spatial domain. Accordingly,

the total number of bits conveyed per super-symbol for RSM
is β = Na log2(M) + log2

(
Nr

Na

)
. The transmitter then sends

t = fTskm, (2)

where T = HH(HHH)−1 is the zero forcing TPC [20]
that preserves the form of skm at the receiver. The factor
f =

√
1

tr(TTH)
, where tr(.) denotes the trace operator,

normalizes the average transmit power to P = 1. The received
symbol vector can be written as

y = fHTskm +w = fskm +w, (3)

where clearly all IAI is removed. At the receiver, a joint
maximum likelihood (ML) detection of both the RA index
and the transmit symbol is obtained by the minimization

[ŝm, k̂] = argmin
i
||y − ẏi||

= arg min
mi,ki

||y − fHTskimi
||, (4)

where ||x|| denotes the norm of vector x and ẏi is the i-th
constellation point in the received SM constellation. A low-
complexity decoupled approach is also proposed in [19] where
first the active antenna indices are detected in the form of

k̂ = argmax
j∈J

Na∑
i=1

|yj,i|2, (5)

where J denotes the set of symbols in the spatial domain, and
then the classic modulated symbols are detected by

b̂mi = arg min
ni∈Q

|yk̂,i/f − bni |2, (6)

where Q denotes the modulation constellation and bni are the
symbols in the modulated symbol alphabet. For reasons of
computational complexity, we shall focus on the latter detector
in this work.

III. PROPOSED DUAL-LAYERED TRANSMISSION (DLT)

From the above system description, it can be seen that for
the particular case of RSM, while the detection complexity
is clearly reduced with respect to SMX, there are no savings
in RF complexity, since all Nr RAs have to be activated and
receiving for the detection in (5)-(6). Still, by forming a subset
of beams towards the receiver, the bandwidth efficiency, i.e.
the number of bits per channel use, is generally lower for RSM
than for SMX. Motivated by this, we propose a dual layered
approach combining SMX with RSM, where the bandwidth
efficiency of conventional SMX MIMO transmission is strictly
enhanced by encoding spatial bits in the RSM fashion in the
received power domain, by selecting two distinct, non-zero
power levels for the transmitted super-symbols instead of the
’on-off’ RSM transmission in the {1, 0} manner. This allows
for non-zero elements throughout the super-symbol vector skm,
hence supporting a full SMX transmission in the modulated
signal domain. The block diagram of the proposed scheme is
shown in Fig.1.

1) Transmitter: Here, we employ a full data vector in the
form of bm = [bm1

, bm2
. . . , bmNr

]T , with all elements being
non-zero, and the encoding of the spatial bits is achieved by
allocating different powers to the received symbols according
to the spatial symbol k, by applying the power diagonal
allocation matrix Pk

skm = Pkbm = [sm1 , sm2 . . . , smNr
]T , (7)

with elements pi, i ∈ [1, Nr] are taken from the set {P1, P2}
according to the spatial symbol k. Note that classic QoS based
power allocation can be applied in addition to this process
by employing an additional power allocation matrix on top
of Pk. The receiver can then remove this additional matrix
by simple inversion, in order to detect the spatial symbol. For
notational simplicity and to keep the focus of the discussion on
the proposed concept, we neglect QoS-based power allocation.

2) Receiver: At the receiver side the explicit knowledge
of the power levels {P1, P2} is not required, as long as the
detector can distinguish between the two power levels. The
received signal of (3) can be decomposed as

yp = f
√
P1bmp

+ wp, p ∈ A, (8)

yq = f
√
P2bmq

+ wq, q ∈ I, (9)

where A and I denote the sets of ’active’ and inactive’
antennas respectively. Hence, the receive processing is similar
to the conceived one for RSM, with the difference that the
classic modulated symbols of all RAs have to be detected, as
opposed to those of Na antennas only for RSM. Accordingly,
the receiver first detects the set of antennas with the highest re-
ceived powers and then detects the classic modulated symbols
at all RAs according to

k̂ = argmax
j∈J

Na∑
i=1

|yj,i|2, (10)

where J denotes the set of symbols in the spatial domain, and

b̂m = argmin
n∈Q
|y/f − bn|2, (11)
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Fig. 1. Block diagram of DLT transmission.

SMX β = Nr log2(M)

RSM β = Na log2(M) + log2
(
Nr
Na

)
DLT β = Nr log2(M) + log2

(
Nr
Na

)
TABLE I: Bandwidth Efficiency in bits per channel use for SMX,
RSM and DLT.

where Q denotes the classic modulation constellation and bn
are the symbols in the modulated symbol alphabet.

Clearly, the encoding process in (7) encodes Nr log2(M)
bits in the modulated symbol domain and an additional
log2

(
Nr

Na

)
bits in the spatial domain. This results in a total

of
β = Nr log2(M) + log2

(
Nr
Na

)
(12)

bits per transmitted super-symbol for DLT, which is strictly
greater than that for SMX and RSM. Here, the notation Na
denotes the number of antennas receiving symbols at the power
level P1. We should emphasize that, even though all RAs are
active for both RSM and the proposed DLT, for coherence
with the SM literature, we shall adhere to the terms ’active’
and ’inactive’ to indicate the antennas receiving {1, 0} and
{P1, P2} for RSM and DLT respectively. A comparison of the
bandwidth efficiencies of SMX, RSM and DLT is shown in
Table I, where it can be seen that the proposed DLT approach
has an improved BE compared to the conventional approaches.

A. Symbol Power Levels

As regards to the resulting bit error ratio (BER) perfor-
mance, the set of spatial powers {P1, P2} must be carefully
selected so that there is sufficient separation between the
two power levels P1, P2 for correct detection of the ’active’
antennas, and hence the spatial symbol k, in the presence of
noise. Still,the symbols received with P2 < P1, that dominate
the BER of the modulated symbol detection, must experience
a sufficiently high signal to noise ratio (SNR) that is adequate
for reliable demodulation. Let us therefore define the power
ratio

α =
P2

P1
(13)

as the ratio between the two power levels transmitted, which
is optimized in the following results. Since Na symbols are

transmitted with power P1 and the remaining Nr−Na symbols
have a power of P2, given a total power budget of P = 1, we
have

P1 =
1

(Nr −Na)α+Na
, P2 =

α

(Nr −Na)α+Na
. (14)

Clearly, since the power levels P1, P2 influence the reliabil-
ity of detection for the modulated symbols and since the ratio
α determines the detection reliability of the spatial symbols, α
can be optimized for best BER performance. In the following,
we derive a closed-form expression for the optimum α value
for an M -order PSK modulation, where it can be seen that
this optimum value is independent of both Nr and of Na.

IV. PEP ANALYSIS AND OPTIMUM POWER RATIO α

In this section we carry out a PEP analysis for the proposed
DLT scheme by deriving the PEP between the pair of symbols
skm and sln in the super-imposed spatial and classic modulation
constellations, following the analysis in [19]. Accordingly, we
define the PEP as P(skm → sln) and use the union-bound for
the average bit error probability Pe, which is expressed as

Pe ≤
1

b
E

∑
skm∈B

∑
sln∈B6=skm

d(skm, s
l
n)P(skm → sln)

 , (15)

where d(skm, s
l
n) is the Hamming distance between the bit

representations of symbols skm, s
l
n and B = J ∪ Q is the

super-symbol constellation defined as the union of the spatial
domain constellation and the classic modulation constellation.
We have used the operator ∪ to define the union of sets. For
the PEP we have the following theorem

Theorem 1: The PEP P(skm → sln) for DLT can be ex-
pressed as

P(skm → sln) = Q

(
f√
N0

(1−
Nr∑
i=1

√
pkipliR{b∗mi

bni
})

)
,

(16)
where Q(.) denotes the Gaussian q-function [24], R{.} de-
notes the real part of a number, (.)∗ denotes the complex
conjugate operation and N0 = 2σ2 is the noise power spectral
density.

Proof: Let us first define r = y/f and v = w/f for use
in the following expressions. The PEP of the super-symbol
constellation can be expressed as
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P(skm → sln) = P(||r− skm||2 > ||r− sln||2)

= P

(
Nr∑
i=1

pki |bmi |2 − 2R{r∗i
√
pkibmi} >

Nr∑
i=1

pli |bni
|2 − 2R{r∗i

√
plibni

}

)
.(17)

Since for PSK signals we have |bmi
| = 1, and

∑Nr

i=1 pli =∑Nr

i=1 pki = 1 and ri =
√
pkibmi + vi, by rearranging the

terms in the probability expression, eq. (17) can be further
simplified as

P(skm → sln) = P

(
Nr∑
i=1

R{v∗i (
√
plibni −

√
pkibmi)} >

1−
Nr∑
i=1

√
pkipliR{b∗mi

bni
}

)
. (18)

Let us define the random variable
χ=̂
∑Nr

i=1R{v∗i (
√
plibni

− √
pkibmi

)} for which we
have χ ∈ N (0, AN0/f

2) with

A =

∑Nr

i=1 pli |bni
|2 + pki |bni

|2

2
=

1

2

Nr∑
i=1

pli + pki . (19)

For the unity transmit power assumed in this paper it can
be seen from (19) that A = 1. Accordingly, for the PEP we
have

P(skm → sln) = P

(
χ > 1−

Nr∑
i=1

√
pkipliR{b∗mi

bni
}

)
,

(20)
which, for χ ∈ N (0, N0/f

2), leads to (16).

A. Optimum Power Ratio α

As mentioned above, the power ratio α determines the
reliability of detection for the spatial symbol, while the lower
power level P2 dominates the BER performance of the classic
modulated symbols’ detection. As the probability of error in
(15) is dominated by the maximum PEP, the optimum power
ratio should be selected as

αopt = argmin
α

max
skm,s

l
n

{
P(skm → sln)

}
. (21)

To simplify the analysis, we shall treat the errors in the
spatial and classic modulated symbols separately. Accordingly,
for the maximum PEP Pm(skmi

→ slmi
) in the spatial domain

only, we have the following Lemma
Theorem 2: The maximum PEP Pm(skmi

→ slmi
) for the

spatial symbols in DLT can be expressed as

Pm(skmi
→ slmi

) = Q

(
f√
N0

·
√
P2 −

√
P1

2

)
. (22)

Proof: The maximum PEP in the spatial domain involves
the adjacent symbols of different power levels in the super-
symbol constellation and can be expressed as

Pm(skmi
→ slmi

) = P(||ri − skmi
||2 > ||ri − slmi

||2)

= P
(
P1 − 2R{r∗i

√
P1bmi

} > P2 − 2R{r∗i
√
P2bmi

}
)
,

(23)

where, using ri =
√
pkibmi

+ vi we get

Pm(skmi
→ slmi

)

= P
(
P1 − 2P1|bmi

|2 − 2R{u∗i
√
P1bmi

}

> P2 − 2
√
P1P2|bmi

|2 − 2R{u∗i
√
P2bmi

}
)

= P
(
2(
√
P2 −

√
P1)R{u∗i bmi} > P1 + P2 − 2

√
P1P2

)
= P

(
−R{u∗i bmi

} >
√
P1 −

√
P2

2

)
. (24)

Similarly to the above proof, we have used the fact that
|bmi
|2 = 1, and it can be seen that ψ=̂ − R{u∗i bmi

} ∈
N (0, N0/f

2). Accordingly, for the minimum PEP in the
spatial constellation we have

Pm(skmi
→ slmi

) = P
(
ψ >

√
P2 −

√
P1

2

)
, (25)

which leads to (22).
The above indicates that the separation between {P1, P2}

should be maximized for minimizing the errors in the spatial
bits, which are dominated by the distance between the pairs
of adjacent symbols having different power levels ds =√
P1 −

√
P2. We therefore define the spatial function fS(α)

that accounts for the dependence of the spatial errors on α as

fS(α)=̂
√
P1 −

√
P2 =

1−
√
α√

(Nr −Na)α+Na
. (26)

As regards to the classic modulated symbol errors, it is
known that the PSK error probability is given as

P(skmi
→ skni

) = P(||ri − skmi
||2 > ||ri − slni

||2)

= Q

(
f

√
P2

N0
log2(M)sin

π

M

)
. (27)

Accordingly, we define the function fM (α) for the dependence
of the modulated symbol error on α as

fM (α) =̂

√
P2 log2(M)sin

π

M

=

√
log2(M)sin

π

M
· α

(Nr −Na)α+Na
.(28)

The optimization (21) is equivalent to the maximization of
the minimum of these functions

αopt = argmax
α
{min{fS(α), fM (α)}} . (29)

which is equivalent to selecting the factor α so that the two
terms in the minimization become equal, which gives

αopt =
1(

1 +
√
log2(M)sin π

M

)2 . (30)
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Fig. 2. Theoretical optimization of α for DLT for a (8×4) MIMO, Na = 2.
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Fig. 3. BER vs. α for a (8× 4) MIMO with SMX and DLT, SNR=10dB.

We examine this optimization in Fig. 2 which shows the
functions fs(α), fM (α) when increasing the values of α for
the example of a (8 × 4)-element DLT system with Na =
2, for M = 4, 8, 16, i.e. QPSK, and 8PSK modulation. The
intersections of the lines determine the optimum values of α. It
will be shown in the following that the theoretically obtained
optimal values of α closely match the optimal values obtained
by simulation.

V. NUMERICAL RESULTS

To evaluate the benefits of the proposed technique, this
section presents numerical results based on Monte Carlo
simulations of SMX, RSM and the proposed DLT. The channel
impulse response is assumed to be perfectly known at the
transmitter. Without loss of generality, unless stated otherwise,
we assume that the transmit power is restricted to P = 1.
MIMO systems with up to 8 TAs employing QPSK, and 8PSK
modulation are explored, albeit it is plausible that the benefits
of the proposed technique extend to larger scale systems and
higher order modulation.
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Fig. 4. BER vs. SNR for a (8× 4) MIMO with SMX and DLT.
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Fig. 5. Goodput vs. SNR for a (8× 4) MIMO with SMX and DLT.

In Fig. 3 we show the BER as a function of the power
ratio for DLT for the (8×4) MIMO system, where the values
of α in the area of 0.25 and 0.4 can be seen to provide
the best performance for QPSK and 8PSK respectively. This
matches well with the theoretically derived result of Section
IV.A and Fig. 2. In Fig. 4 we show the BER with increasing
SNR for the proposed DLT, where the black lines for Na = 8
represent SMX transmission. The curves show results for both
QPSK and 8PSK. Clearly, the DLT scheme has inferior BER
performance compared to SMX due to the additional spatial
streams, but at the benefit of improved BE. The improved
BE of DLT is demonstrated in Fig. 5 where the goodput
with increasing SNR is depicted for the same (8× 4) MIMO
scenario. Clearly, DLT provides higher goodput than SMX for
sufficiently high SNR values.

VI. CONCLUSIONS

A bandwidth efficient transmission scheme was proposed,
that combines traditional MIMO SMX with RSM. As opposed
to traditional RSM where a subset of antennas carry a spatial
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stream, here we allow all antennas to carry information, by
applying RSM on the symbol power level domain. By allowing
all antennas to form spatial streams, the proposed scheme has
been shown to improve the system’s BE and power efficiency
compared to both SMX and RSM. Our future work will
involve exploring more advanced precoding schemes for the
proposed transmission as well as exploring the adaptations of
the prosed scheme for robustness channel state information
errors.
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