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Abstract

Since their conception two centuries ago, semiconductors have rapidly be-

come one of the most active fields of research. As their exceptional po-

tential became recognised, increasing amounts of resources were invested in

the research and production of these materials. Consequently, semiconduc-

tor industry has gradually grown to become an essential lifeline of world

economics. In the early 1980, the demand for electronic device miniaturi-

sation, high integration and high computing speed led to the emergence of

mesoscopic physics. Meanwhile, advances in materials science and micropro-

cessing technology enabled experimental study in this area. By constantly

reducing the scale of semiconductor devices, manufacturers could integrate

smaller electronic devices onto one chip.These so-called integrated circuits

perform storage, computing and other functions. In current production lines

of the semiconductor industry, nanoscale electronic components have become

the conventional technology.

This thesis investigates transport properties of two-dimensional electrons

using the phenomenon of magnetoresistance in perpendicular magnetic fields

at low temperature. Dimensionality transitions are enabled by quantum

point contact.

Chapter 1 and 2 introduce the background information and low dimen-

sional transport related theories, respectively. Chapter 3 describes the sample

fabrication technique, instruments used in our experiments and the experi-

mental set-up.



Low-temperature measurements of the split-gate GaAs/AlGaAs hetero-

structure are fully described in Chapter 4. The phase-coherence information

is extracted by investigating the weak localisation effect at various tempera-

ture. The temperature dependence of phase coherence experimentally reflects

the underlying transport properties.

Chapter 5 investigates and discusses the universal conductance fluctua-

tion.The InGaAs/InAlAs heterostructure using which we interpret the low-

temperature transport phenomena, is experimentally investigated in Chapter

6.
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Chapter 1

Introduction

1.1 Semiconductor heterostructures

Two-dimensional systems have always been pivotal for investigating quantum

effects at low temperature. At present, a two-dimensional system can be

achieved by three main methods [1]:

a.Single electron shell on the surface of liquid helium. Liquid helium sur-

face attracts the electrons by image potential, and prevent electrons entering

liquid helium with a 1-eV barrier.

b.Electron gas travels two-dimensionally along the Si− SiO2 interface in

the inversion layer of an insulated gate field-effect transistors (FET);

c.Electron gas travels two-dimensionally through the conduction band

valleys of superlattices (heterojunctions).

In recent decades,thin-film FETs have been replaced with heterojunction

nanostructures, which have become the new standard for investigating the

physical properties of semiconductor materials since the large development

of devices fabrication. The two-dimensional electron gas (2DEG) formed in
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Figure 1.1: Band bending diagram of a modulation doped
GaAs/AlxGa(1−x)As heterostructure [2].

heterojunctions formed in heterojunctions increases the mobility and mean

free path in the semiconductor devices, and lengthens the Fermi wavelength.

Among the many species of two-dimensional electron gas systems, GaAs/

AlxGa(1−x)As heterojunction is most commonly used. AlxGa(1−x)As has a

wider band gap than GaAs; for example when x = 0.3, the conduction

band is 0.3 − eV lower in GaAs than in AlxGa(1−x)As. The top surface of

AlxGa(1−x)As is covered by an epitaxial layer of a Si-doped AlxGa(1−x)As.

The conduction band will bend at the interface of two materials, forming a

triangular potential well at the GaAs/AlxGa(1−x)As junction. The bottom

of this triangular potential well is below the Fermi level. At very low tem-

peratures, as the electrons flow from the Si-doped AlxGa(1−x)As to GaAs,

many of them become bound inside the triangle potential well, forming a

two-dimensional electron gas. In GaAs/AlxGa(1−x)As modulation-doped

heterojunction interface, this two-dimensional gas forms a near-ideal two-
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dimensional electron system, with the highest electron mobility achieved to

date (∼ 107cm2V −1s−1). As the GaAs and AlxGa(1−x)As lattice constants

are similar, modern molecular beam epitaxy (MBE) techniques can obtain an

almost atomically flat interface, greatly reducing the defects and roughness

at the interface and hence enhancing the transport properties. Moreover, a

buffer layer of intrinsic AlxGa(1−x)As is placed between the GaAs substrate

and the Si-doped AlxGa(1−x)As, which greatly reduces the donor impurity

scattering of the electrons, thus greatly enhancing the electron mobility in

the two-dimensional electron gas [3].

1.2 Basic properties

The Drude model proposes that the current density j is proportional to the

electric field E. The proportionality constant is the conductivity σ [4] [5]:

j = σE;σ =
nee

2τ

m∗
= neeµ (1.1)

where µ is the electron mobility, ne is the carrier density and τ is the scat-

tering time, defined as the average time between scatterings.

The Drude model describes the diffusive movement of electrons when

the characteristic length L is much larger than the mean free path (average

distance between scatterings) l of electrons. This is usually the case in bulk

systems (all 3D systems and some 2D systems). If L is much smaller than l,

the electron transport becomes ballistic. In the ballistic transport regime, the

electrons move without any scattering, so momentum and phase relaxations
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are absent. In this case, we must apply Fermi-Dirac statistic.

The conductivity and density of states at the Fermi level are related

through the Einstein relation

σ = De2ρ(EF ) (1.2)

where D denotes the diffusion constant and ρ(EF ) is the density of states at

Fermi level. In two dimensions, D can be deduced by combining of Drude

model with Einstein relation:

D =
1

2
v2F τ =

1

2
vF l (1.3)

In the event of quantum interferences, the diffusion correlations will dis-

appear at the order of the phase coherence time τφ, rather than the scattering

time τ (as occurs in the classical case). At very low temperatures, the diffu-

sion correlations are associated with inelastic scattering, and the coherence

time τφ far exceeds the scattering time τ .

The conductivity and conductance are related through Ohm’s law,

G =
W

L
σ (1.4)

where W and L are the width and length of the 2DEG, respectively. When

both W and L are much longer than the mean free path l, the electron
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Figure 1.2: Electron trajectories in various regimes: a)diffusion regimes (l <
W,L); b)quasi-ballistic regimes (W < l < L); c)ballistic regimes (W,L < l)
[6].

transport is diffusive. When the dimensions of 2DEG are shorter than l,

the system enters ballistic regime, in which the conductance is unrelated to

conductivity, but is instead described by the Landauer formula,

G =
(2e2)

h

n∑
i=1

Ti (1.5)

where n is the number of occupied subbands, and T is the transmission

probability. The electron trajectories in each regime are illustrated in Figure
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1.2.

Accounting for quantum interference, the characteristic length is not the

elastic mean free path l; rather, it is phase coherence

Lφ =
√
Dτφ (1.6)

At very low temperaturess, the phase coherence length becomes very large,

it is possible that only need to concern conductance but still in diffusion

transport regime. This idea is further discussed in the next chapter.

1.3 Magnetic field effect

An external magnetic field induces fundamentally intriguing behaviour in

semiconductor heterojunction systems. These behaviours have roused great

interest in mesoscopic physics. When a magnetic field is applied perpendic-

ularly to the current direction in a 3D bulk conductor, a voltage difference

appears in the direction vertical to the current. The linear relationship be-

tween this differential voltage and the magnetic field describes the famous

Hall Effect. A similar effect appears in 2DEG systems, where the electrons

are confined to a 2D plane. A magnetic field applied perpendicularly to the

2DEG plane induces a Hall voltage such as that in 3D systems. However,

whereas this longitudinal voltage (or longitudinal resistance) varies linearly

under low magnetic filed, it exhibits quantised plateaus under high magnetic

field. This abnormal variation of longitudinal resistance, named by quantum

Hall Effect (QHE) or quantised Hall Effect, was first observed by van Klitz-
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Figure 1.3: Quantum Hall Effect (plateaus) and Shubnikov-de Haas oscilla-
tions [7].

ing and Pepper [7]. For this work, published in 1980, van Klitzing received

the Nobel Prize in Physics in 1985.

The QHE has become a widely accepted technique for measuring fine

semiconductor structures in solid state physics. In a small perpendicular

field, ρxx (Resistivity in transverse) remains constant while ρxy (Resistivity

in longitudinal) linearly increases from zero as predicted by the Boltzmann

equation. As the field increases, the ρxx begins to oscillate with a period of

1/B (where B is the magnitude of magnetic field) and the ρxy plateaus at

fractions of h/e2. These oscillations are called Shubnikov-de Haas oscillations

and the quantised plateaus demonstrate the quantum Hall effect.

As the field is perpendicular to the 2DEG, the electrons move in a circular

path at a frequency of
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Figure 1.4: Broadening state model due to potential energy variations in
2DEG. The localised states is marked as white part, and the shaded part
refers to the extended states. Because the imperfections exist in the sample,
the Landau levels are randomly distributed with a small difference in energy
across the sample. The amplitude of this energy difference forms the tails
of Landau levels(localised states). Only the electrons in the extended states
participate conduction. [8].

ωc =
eB

m∗
(1.7)

where e is the elementary charge, and m∗ is the effective mass of the electron.

This is called the cyclotron frequency. The cyclotron radius corresponds to

a classical orbit with energy given by

En = ~ωc
(
n+

1

2

)
, n = 0, 1, 2, 3 . . . (1.8)

These energy levels are the Landau levels in two-dimensional systems. Con-

sidering the additional effect of spin splitting, this equation becomes
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En = ~ωc
(
n+

1

2

)
± gµBB

2
, n = 0, 1, 2, 3 . . . (1.9)

where g is the g-factor and µB is the Bohr magnetron. The filling factor,

which specifies the number of occupied Landau levels [8]. It can be defined by

the carrier density in a two dimensional system n2D under any perpendicular

magnetic field B:

v = n2D
h

eB
(1.10)

where v is the filling factor.

The effective potential in a 2D system is influenced by impurities, crys-

tal lattice defects and interfaces. These effects feed into the Landau levels,

broadening the energy levels (see Figure 1.4). Energy level states may be

localised (at the tails of the Landau levels) or extended (at the centres of

Landau levels). As the magnetic field decreases, the resistance plateaus are

gradually filled by localised states. Once the extended states have been filled,

the next Hall resistance plateau begins filling. As the magnetic field increases,

the spacing between two Landau levels becomes larger. In other words, at

higher field, ’more time’ is required to fill each Laudau level than at lower

field with a linear varying magnetic field. The Schrödinger equation of a

systems under an applied magnetic field is given by
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1

2m∗

(
px −

eB

2
y

)2

Ψ +
1

2m∗

(
py −

eB

2
x

)2

Ψ = EΨ (1.11)

Expanding the brackets we find that

p

2m∗
+

eB

2m∗
ZΨ +

1

2m∗

(
eB

2

)2

(x2 + y2)Ψ = EΨ (1.12)

where Z is the z-component of the angular momentum. The first magnetic

field dependent term is linear, but the second term is a parabolic potential.

The confinement of this potential increases as the magnetic field increases.

Under strong magnetic field, the eigenstates are localised to an area of h/eB

around an arbitrarily chosen origin.

As the magnetic field is increased, the density of each Landau level in-

creases. At some critical field, the highest occupied Landau level becomes

depopulated, and the Fermi level discontinuously drops to the next lower

level. Thus, the number of occupied Landau levels decreases as the magnetic

field increases. This discontinuity in the Fermi energy with either density or

magnetic field results in a oscillatory behaviour. [9–16].

The expression N(E)dE gives the number of states in the energy range

[E,E + dE]. Assuming that the Fermi level is sufficiently far from the con-

duction band, we can assume that all of the available energy levels in the

conduction band are obtained at the band edge. In n-type semiconductors,

the carrier density is given by
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ne = Ncf(EC) =
NC

1 + exp
(
EC−EF
kBT

) (1.13)

where NC is the density of states function, EC is the energy level above the

conduction band and EF is the Fermi energy. In the intrinsic semiconductors,

the activation energy is defined as |EC − EF |/2. If |EC − EF | > 4kBT ,

where kB is the Boltzmann constant, the Fermi-Dirac distribution can be

approximated by the Boltzmann distribution:

f(EC) =
1

1 + exp
(
EC−EF
kBT

) ≈ exp

(
EF − EC
kBT

)
(1.14)

and the carrier density becomes

ne = Ncexp

(
EF − EC
kBT

)
(1.15)

If the mobility µ is known, the conductivity is calculated as σ = neeµ, and

we have

σ = eµNcexp

(
EF − EC
kBT

)
(1.16)

Taking the natural logarithm of both sides, we get

14



Figure 1.5: Band diagram for activation energy in n-type semiconductor.
The activation energy is defined as Ec−Ed, where Ed is the donor level [17].

ln(σ) = ln(eµNc) +

(
EF − EC
kBT

)
(1.17)

where |EF −EC | > 4kBT . This equation states that the natural logarithm of

conductivity is a linear function of 1/T . Figure 1.5 illuminates band diagram

of the activation energy in n-type semiconductors.

If the carrier density and environmental temperature are sufficiently low,

the two-dimensional electron gases in fine devices will further condense into

liquid states. In these states, the quantised plateaus do appear at non-integer

filling factor. In order to distinguish the quantum Hall effect with integer

filling factor from plateaus with non-integer filling factors, we named them

integer quantum Hall effect and fractional quantum Hall effect, respectively.

This distinction will not be further discussed here.
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The amplitude envelope of the Shubnikov-de Haas oscillations is given

by [18]

∆G

G
=

2(ωcτ)2

1 + (ωcτ)2

2π2kBT
~ωc

sinh 2π2kBT
~ωc

exp

(
−π
ωcτ

)
(1.18)

The condition of this equation is that the kBT > ~ωc. The effective mass can

be derived from the temperature dependence of the oscillation amplitude.
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Chapter 2

The Physics of Disordered

Low-dimensional Systems

2.1 Anderson localisation

At low temperatures, the small heat energy 1
2
kBT cannot free the electrons

from the Coulomb force of their binding atoms, so very few of the carriers

conduct. The number of bound states of an electron in a finite quantum well

decreases with decreasing width of the quantum well. At some critical width,

the number of bound states is zero. Moreover, all conducting materials have a

small lattice constant, which increase as the carrier concentration decreases.

Eventually, most of the electrons become bound and the conductivity consid-

erable decreases. The metal-insulator transition (MIT), at which conduction

ceases, was proposed by Mott in 1949 [19]. This transition occurs at some

critical electron density, which may be changed by temperature, pressure,

external fields and doping levels in semiconductors.

However, Mott’s treatment ignores the disorder in the system. A more
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Figure 2.1: Schematic representation of the energy levels for a Mott–Hubbard
insulator where on-site Coulomb interaction U splits the d-band into lower
Hubbard band and upper Hubbard band. (b) Evolution of the density of
states (DOS) of electrons as a function of U/W (W = bandwidth) as the
system evolves from a metal to an insulator [20].

realistic treatment was first proposed by Anderson in 1958 [21].

He proposed that very strong disorders alter the wavefunction states of

an electronic system from extended to localised. The envelope of the wave-

function will then exponentially decay from some point in space r0:

|Ψ(r)| = exp

(
−|r − r0|

ξ

)
(2.1)

where ξ is the localisation length. Anderson’s model can be expressed by a

dimensionless parameter A/B, where A is the energy difference between two

randomly located sites, and B is the energy bandwidth of the crystal or the

overlap between two sites. Anderson found that if this parameter exceeds

18



some critical value, all states are localised. In a numerical study, Edwards

and Thouless [22] determined A/B = 1/2.

Mott [23] pointed out that although the degree of disorder cannot localise

all states in the band, and the tail states can also be assigned as localised

states. The localised and extended states are separated by Ec. At T = 0, the

conductivity is zero when EF < Ec, and nonzero when EF > Ec, indicating

that the MIT can be altered by moving the Fermi level. Anderson localisation

has been observed in low concentration Si-inversion layers [24, 25] and in

GaAs metal-semiconductor FETs (MESFETs) [26].

In 1968, Mott propsed the minimum metallic conductivity concept [27],

which predicts a discontinuous transition at Ec from zero conductivity. He

noticed that in a metallic system, the mean free path always exceeds the de

Broglie wavelength, implying that the usual transport theory fails in very

low mobility systems. In a weakly disordered system, the Boltzmann con-

ductivity can be estimated from Drude theory as:

σB =
ne2τ

m∗
(2.2)

where τ is the elastic scattering time, given by

τ =
vF
l

(2.3)

vF is the Fermi velocity, and l is mean free path, respectively. This model

is valid only when l is much greater than the wavelength, i.e. kF l >> 1.
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When kF l = 1, the metallic conductivity ceases. At this critical value the

conductivity becomes,

σmin = C3d
e2

~lmin
(2.4)

lmin is the shortest possible mean free path, and C3d is a constant in a 3D

system. Mott proposed the following form of the minimal conductivity in

two dimensions:

σmin = C2d
e2

~
(2.5)

Note that this the conductivity is independent of the length parameter.

However, this proposition predicts a continuous transition from zero con-

ductivity, which hase been excluded by scaling theory.

2.2 Scaling theory

Mott and Twose [28] showed that all states in a 1D potential are localised.

Thouless [29] proposed that in a 1D wire, the Anderson parameter for local-

isation, A/B, simply equals the wire resistance R = h/2e2 At zero temper-

ature, the wire resistance in a 1D potential is an exponential (rather than

linear) function of length. The localisation length ξ1D is then given by

20



ξ1D =
2Sk2F l

3π2
(2.6)

where S is the cross section area. Thouless also suggested that in two dimen-

sions, no metallic states exist and that conductivity is a decreasing function

with size.Extending Thouless’s work, Abrahams et al. [30] provided the first

comprehensive understanding of the MIT. They generalised the dimension-

less conductance G, which defines the disorder parameter, and related it to

the length scale of the system.

The scaling theory of Abrahams et al. replaces the single atomic site

in the Anderson model with a d-dimensional hypercube of volume of Ld.

Abrahams et al. proposed that the conductance of a hypercube of size 2L

is completely determined by the conductance of a hypercube of size L, An

electron diffuses through distance L during time τ = D/L2, in the Anderson

model, the dimensionless parameter A/B is therefore given by

A

B
= N(EF )Ld

~D
L2

(2.7)

= σL(d−2)2~
e2

= G (2.8)

If two or more edge doubling processes occur, then the scaling equation is

given by

β(G) =
dln(G(L))

dln(L)
(2.9)
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In weakly disordered systems, which obey the Boltzmann equation, the con-

ductance is given by:

G(L) = σL(d−2) (2.10)

and

lim
G→∞

β(G) = d− 2 (2.11)

In strongly disordered systems (ξ < L), most of the states are localised, and

transport occurs only by hopping from an occupied to an unoccupied state.

Thus we have

G(L) = G0exp
−L
ξ

(2.12)

and

lim
G→0

β(G) = ln

(
G

G0

)
(2.13)

where G0 is a dimensionless ratio of order unity. β(G) is continuous and

monotonic in all three dimensions:

d=1
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β(G) is negative at all conductances. As L→∞, the conductance expo-

nentially decreases to zero.

d=2

Scaling theory predicts that β(G) is negative, indicating all states are

localised, and no state is purely metallic at any length scale. As G → ∞,

the β(G) closely approximates zero. In this region, the conductance is less

affected by the length scale, and metallic states may appear.

d=3

As G varies, β(G) can be either positive or negative, indicating that an

MIT appears at suitable G. The critical conductance Gc located at β(G) =

0 is an unstable point that separates the extended states (G > Gc) from

localised states (G < Gc). β(Gc) is invariant at different length scales.

The 2D form of the conductivity correction has been observed in numer-

ous types of systems such thin Au-Pd films [31], Si-metal-oxide-semiconduct-

ors(MOSFETs) [32], Mg films [33] and GaAs MESFETs [34].

2.3 Weak localisation

In weakly disordered systems (kF l� 1), the Boltzmann transport correction

can be extended by perturbation theory. Abrahams et al. [30] investigated the

behaviour of β(G) atG→∞ by this approach, and found a length-dependent

correction to the conductivity. This conductivity correction (denoted by α)

accounts for the breakdown of electronic wave interference by the loss of

phase memories. Thus, the scaling relation becomes

23



Figure 2.2: Plots of β(G) vs ln(G) for d > 2, d = 2, d < 2. g(L) is
the normalised ”local conductance”. Solid-circle line is the approximation
β = sln( g

gc
) to the g > 2 case; this unphysical behaviour is necessary for the

conductance jump in the d = 2 case (dashed line) [30].

β(G) = (d− 2)− αG(−1) (2.14)

In the 2D case, the conductance between length scales is given by

G(L) = GB − αln
(
L

l

)
(2.15)

From perturbation theory, we obtain α = 1/π2. The 2D conductivity then

becomes
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σ(L) = σB −
e2

π2~
ln

(
L

l

)
(2.16)

where σB is the Boltzmann conductivity.

When the conductivity correction is comparable to the Boltzmann con-

ductivity, the localisation length can be estimated from the length L:

ξ2d = lexp

(
σB
π2~
e2

)
(2.17)

= lexp

(
πkF l

2

)
(2.18)

The conductivities in 3, 2 and 1 dimensions (corrected by perturbation the-

ory) are respectively given by:

σ(L)3d = σB −
e2

2π2~
ln

(
1

l
− 1

L

)
(2.19)

σ(L)2d = σB −
e2

π2~
ln

(
L

l

)
(2.20)

σ(L)1d = σB −
e2

π~
(L− l) (2.21)
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These corrections predicted by scaling and perturbation theories, are known

as weak localisation. Because they result from interference between electronic

waves, they are also known as quantum interference.

Consider a metallic material satisfying kF l� 1. The electrons can travel

from point A to point B by many different routes. As the distance between

A and B is much longer than the mean free path l, the electron motion is

diffusive. The probability T of the electrons travelling from A to B through

all routes is given by

TAB = |
∑
i

Ai|2 =
∑
i

|Ai|2 +
∑
i 6=j

AiA
∗
j (2.22)

This equation describes both classical and quantum behaviours. In most

routes, the last term of Eq.(2.22) is zero. However, if the route self intersects,

the electron is allocated to two amplitudes A1 and A2, and travel around the

loop in either directions (clockwise or anti-clockwise). Both phases of these

coherent waves have equal amplitude (A1 = A2); thus, the probability of

travelling from A to C is

TAC = |A1|2 + |A2|2 + 2Re(A1A
∗
2) (2.23)

= 4|A1|2 (2.24)

This result reduces the probability of an electron travelling from A to B,

which is equivalent to increasing the resistance. In other word, interference

reduces the diffusion constant of the electrons. In any mechanism, that loses
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Figure 2.3: (a) Two classical paths connecting arbitrary points A and B
in a two-dimensional disordered conductor. (b) A pair of closed paths con-
tributing to the weak localisation correction. (c) In a single scattering event,
a long-range potential cannot backscatter the chiral quasiparticles (upper
left) because it cannot reverse the pseudospin direction (black arrows), but
scattering in the forward or sideways direction (lower right) is allowed [35].
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phase memory, this correction is voided. Thus, phase coherence is necessary

for this correction effect.

Consider an electron that loses its phase memory after a certain lifetime

τφ, if τφ � τ , the electron will transport diffusively through a distance Lφ

before losing its phase coherence, where

Lφ =
√
Dτφ (2.25)

If this length is shorter than the sample size, τφ is always the inelastic scatter-

ing time in a highly inelastic mechanism, such as electron-electron scattering.

However, in an event such as electron-phonon scattering, τφ no longer equals

the inelastic scattering time [36]. In a 2D system the system size exceeds

than Lφ in both directions, the quantum interference is two dimensional. If

Lφ > W (where W is the width of the conducting channel), the quantum

interference exhibits 1D behaviour.

2.4 Magnetoresistance of quantum interfer-

ence

When a sample is placed in a magnetic field, the phase difference between

two coherent waves travelling in opposite directions around a loop is given

by
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∆φ = 2eBS (2.26)

where S is the area of the loop projected onto the plane perpendicular to the

magnetic field B. The reduced phase coherence of the two waves reduces the

probability of the electron returning to its origin, and hence increases the

global conductivity.

Altshuler et al. [37] and Hikami et al. [38] calculated the 2D quantum

interference correction in a magnetic field as

δσ(B, T ) =
e2

2π2~

[
Ψ

(
1

2
+
τB
2τφ

)
−Ψ

(
1

2
+
τB
2τ

)]
(2.27)

where Ψ(x) is the digamma function, and τB = ~
2DeB

is the timescale of

diffusive motion. This equation is valid only in a very weak magnetic field,

where 2τ
τB
� l. The magnetoconductivity is given by

∆σ(B) = δσ(B, T )− δσ(0, T ) (2.28)

=
e2

2π2~

[
Ψ

(
1

2
+
τB
2τφ

)
−Ψ

(
1

2
+
τB
2τ

)
+ ln

(τφ
τ

)]
(2.29)

Altshuler et al. [39] also considered the case of Lφ > W (In one dimen-

sion), and obtain the following correction to the conductance:
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Figure 2.4: Schematic of an Abaronov-Bohm ring showing the interference
trajectories that cause h

e
oscillations (left )and h

2e
oscillations (right).

δG(B) = − e2

π~L

(
1

Dτφ
+

1

DτB

)− 1
2

(2.30)

Here L is the sample length in one dimension, and τB = (3~2)/D(eBW )2.

The magnetoconductance can be written as

∆G(B) = δG(B)− δG(0) (2.31)

=
e2

π~L

[
Lφ −

(
1

Dτφ
+

1

DτB

)− 1
2

]
(2.32)

This expression requires that the magnetic length exceeds W . If the magnetic

length is shorter than W , the 2D magnetoconductance will be recovered. In

all discussions of this topic, the mean free path is assumed to be much shorter

than W , so that boundary scattering can be neglected. However, boundary

scattering must be considered in high mobility samples.

In 1959, Aharonov and Bohm conducted an experiment that unequivo-

cally justified the interference effect of weak localisation. They considered
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that a partial wave of the electrons encloses a magnetic potential, and under-

goes a phase shift. The interferences as a function of the phase shift is the

well-known Aharonov-Bohm (AB) effect [40]. The AB effect can be testified

by the ring pattern on the 2DEG shown in Figure 2.4. The circumference of

the ring must be smaller than the phase coherence length. As the magnetic

field varies, the resistance behaviour the ring oscillates with a period of h/e.

If the phase breaking length is large, the two partial waves will interfere from

the beginning (right panel of Figure 2.4). The period of this oscillation is

h/2e, half of the AB effect. This effect is called the Altshuler-Aronov-Spivak

(AAS) effect [41].

2.5 Bergmann’s approach

Bergmann [33,42] physically interpreted weak localisation in reciprocal space

rather than in real space. In his approach, a plane wave scattered by impu-

rities builds up an echo in the backward direction.

Bergmann considered an electron with momentum k in k-space at t = 0.

The probability of this electron scattering to the −k state is represented

by a scattering sequence of momentum transfers k1,k2,k3,...,kn. With equal

probability, the electron can be scattered from k state to the −k state by

reverse sequence kn,kn−1,kn−2,...,k1. These complementary scattering series

have identical changes of momentum and phase. As in the real space de-

scription, the total intensity of the final state is 4|A|2. For states that are

sufficiently far from −k, an incoherent superposition with an intensity of

2|A|2 occurs at every two sequences. The coherent backscattering eventually

terminates after a time τφ by some inelastic mechanism, as expected. The
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original momentum decays within the elastic time τ , and is echoed in the

opposite direction at some later time, diminishing and finally vanishing at

τφ. The magnitude of the conductivity correction is calculated by finding the

coherent fraction of the total area available for scattering in the k-space, and

integrating this fraction with a time interval τ ≤ t ≤ τφ. Coherent backscat-

tering is not restricted to the exact state −k, but is also contributed by a

small area with a radius of q around −k (Because the approach is considering

in k-space, the q here is also a momentum). To determine the size of this

region, we note that the electron diffuses a distance L =
√
Dt in time t.

Therefore, the uncertainty in the momentum of this small area is ~q = ~/L,

and interfere within the range −k ± q.

In 2D, this effect manifests as a backscattering circle of area πq2 = π/L2.

In narrow 2D systems, the wavenumber uncertainties in the directions parallel

and perpendicular to the channel are given by ∆kx = 1/
√
Dt and ∆ky =

1/W , respectively. The backscattering region becomes an ellipse with area

of π/W
√
Dt. To determine the total area available for scattering in k-space,

we note that elastic scattering broadens the Fermi surface 1/l. Therefore,

the total scattering area of the 2D density of statesis 2πkF/l.

The coherent fraction is then

Icoh =
l

2kFW
√
Dt

(2.33)

Integrating Eq.(2.33) between τφ and τ , we get
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Figure 2.5: Contribution of an electron in state k to the momentum as a func-
tion of time. The original state and its momentum decay exponentially within
time τ (assuming s scattering). An echo with momentum −k is formed,
which decays as 1/t. And this echo reduces the electron’s contribution to the
current, the resistance must increase proportionally to log(t/τ) [42].
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δσ =
ne2

m

l

2πkFW
√
D

∫ τφ

τ

l√
t
dt (2.34)

≈ e2

π~
Lφ (2.35)

In the present of a magnetic field B, the coherent backscattering contribu-

tion is obtained by integrating between τ and τB = ~/4DeB, assuming that

τB < τφ. Constructive interference is suppressed over a time proportional to

1/B, and reduces the field to B′. By these phenomena, we can observe the

backscattering between τB and τB′ .

2.6 Spin-orbit interaction

In perfect lattices, the spin-orbit interaction can be ignored. However, in

real systems, any defects will induce spin-orbit interactions of the electrons.

When the spin coherence time τSO is much longer than the phase coherence

time τφ, the correction due to the spin-orbit interaction is very small. If

the spin-orbit interaction is sufficiently strong, then τSO < τφ, and positive

magnetoresistance arises in a weak magnetic field.

The effects of spin-orbit interactions on magnetoresistance in 2D systems

were investigated by Hikami et al. in 1980 [38]. They showed that

δσ(B) = − e2

2π2~

[
Ψ

(
1

2
+
B1

B

)
− 3

2
Ψ

(
1

2
+
B2

B

)
+

1

2
Ψ

(
1

2
+
B3

B

)]
(2.36)

where
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B1 = Bτ +BτSO +Bτs (2.37)

B2 =
4

3
BτSO +

2

3
Bτs +Bτφ (2.38)

B3 = 2Bτs +Bτφ (2.39)

The fields Bτ ,Bτφ ,BτSO , Bτs are the effective magnetic fields of elastic scat-

tering, inelastic scattering, spin-orbit scattering and spin scattering, respec-

tively, with B = ~/4Det(t = τ, τφ, τSO or τs).

Magnetic scattering arises from interactions between the electrons and

magnetic impurities. By perturbing the Hamiltonian, Bergmann derived

the magnetic scattering time as a function of the electron spin, S, and the

magnetic impurity spin,I,

τs =
~

2πN(EF )niI2S2
(2.40)

where N(EF ) is the density of states at the Fermi level, and ni is the mag-

netic impurity concentration. In the absence of magnetic impurities, Bτs is

generally set to 0.

2.7 Electron interactions

Localisation theories neglect the electron-electron interactions in the system.

A system with strongly interacting electrons can be modelled by Fermi-liquid

theory. Altshuler and Aronov [43,44] investigated the interactions in a disor-
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dered Fermi liquid. As quasiparticle motion is diffusive, the electrons spend

extended time in a region, which enhances their Coulomb interactions. Con-

sequently, the energy levels shift and broaden, forming a small dip of density-

of-states near the Fermi level. This dip is observed only at temperatures low

enough for the occurrence of electron-electron interactions.

Altshuler and Aronov [45] also corrected the conductivity for the following

phenomena:

1.Interactions in diffusion channels

2.Interactions in Cooper channels

2.7.1 Interactions in diffusion channels

Diffusion channel interactions are the dominant form of electron-electron in-

teractions in doped semiconductors. To correct for this effect, we introduce

the interaction parameter F, defined as the average of the static screened

Coulomb potential over the Fermi surface measures the importance of screen-

ing. Altshuler and Aronov derived the conductivity correction in one, two

and three dimensions as follows:

δσd(T ) = x
e2

4π2~

(
4

d
+

3

2
λj=1
σ

)(
kBT

~D

) d
2
−1

(2.41)
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x =


0.915, d = 3

ln
(
kBTτ

~

)
, d = 2

−4.91, d = 1

(2.42)

where

λj=1
σ =


32

d(d−2)
1+F

4
d−(1+F

2 )
d
2

F
, d = 1, 3

4

[
1− 2(1+F

2 ) ln(1+F
2 )

F

]
, d = 2

(2.43)

The strong and weak screening limits are defined by F = 0 and F = 1,

respectively. The static limit of the screened Coulomb potential manifests

from the of Hartree process, which involves momentum transfer up to 2kF .

As discussed by Fukuyama [46], the interaction dynamics play a minor role

in large momentum transfer, so they can be ignored.

2.7.2 Interactions in Cooper channels

Electronic attractions in Cooper channels, lead to superconducting states.

Even when T > Tc, interactions in the metallic state perturb the supercon-

ductivity. Altshuler and Aronov [45] showed that Cooper channel interac-

tions reduce the conductivity by ln(EF/kBT ). They calculated the correction

factors in one, two and three dimensions as follows,
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δσd(T ) = x
e2

2π2~

(
kBT

~D

) d
2
−1

(2.44)

x =



0.915

ln
(
EF
kBT

) , d = 3

ln
(
kBTτ
Ef~

)
, d = 2

−4.91
ln
(
EF
kBT

) , d = 1

(2.45)

A second correction for Cooper channel interactions is the Maki-Thomson

term [45]. This correction is always opposite in sign to the weak localisation

correction, but is much smaller. Indeed, the Maki-Thomson is much smaller

than the above Derived by Altshuler and Aronov.

2.8 Magnetoresistance of interaction effects

A magnetic field B produces the Zeeman spin splitting subbands. The

bandgap between lowest unoccupied spin-up and highest occupied spin-down

subbands is gµBB , where g is the Landé g-factor and µB denotes the Bohr

magneton. Magnetic field interactions suppress the contribution of the mag-

netic field to the conductance correction.

The conductivity differential in a magnetic field is written as

δσd(B) = δσd(T )− δσd(B, T ) (2.46)
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The field dependent terms δσd(B, T ) in three and two dimensions were de-

termined by by Lee and Ramakrishnan [47] as

δσd(B, T ) =

 −
e2Fg3d(B)

4π2~

√
kBT
~D , d = 3

− e2Fg2d(B)
4π2~ , d = 2

(2.47)

where F = −δσ′′i (B, T ). The respective numerically limiting behaviours are

g3d(B) =


√

gµBB
kBT
− 1.3, when gµBB

kBT
� 1

0.053×
(
gµBB
kBT

)2
, when gµBB

kBT
� 1

(2.48)

and

g2d(B) =

 ln
(
gµBB
1.3kBT

)
, when gµBB

kBT
� 1

0.084×
(
gµBB
kBT

)2
, when gµBB

kBT
� 1

(2.49)

The magnetoresistance is non-negligible only when gµBB > kBT . Under this

condition, the field is much larger than the magnetoresistance of the weak

localisation, B = ~/4Deτφ.

Altshuler et al. [45, 48] defined the characteristic magnetic field as

B >
kBT

2eD
(2.50)

denoting that a positive magnetoresistance arises in diffusive channels.
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2.9 Inelastic scattering

At very low temperatures, electrons remain in one state for a finite time,

τin, called the inelastic scattering time. Thereafter, the electrons scatter to

other states. The phase coherence time obtained by measuring the negative

magnetoresistance, is associated with the inelastic life-time of the quantum

interference, and it is the shortest inelatic relaxation time in the system. The

inelastic scattering mechanisms can be understood from the behaviour of τφ.

2.9.1 Electron-electron scattering

Electron-electron scattering dominate in semiconductor systems at low tem-

peratures. In the clean limit, kF l� 1, the scattering time is proportional to

T 2. Baber predicted this effect in 1937 [49].He also proposed that an electron

with energy close to the Fermi energy can transfer its momentum to another

nearby electron within kBT ; otherwise, a fraction of the electron-electron

collisions exist in an occupied state. The scattering time is given by

τin = A
~EF

(kBT )2
(2.51)

This idea was elaborated by Abrahams [50], who obtained

τin =
1

nπa20vF

~EF
(kBT )2

(2.52)

40



in 3D electron gases. Here, n is the carrier concentration in units of 1017m−3,

and a0 is the Bohr radius.

Schimid [51] argued that in the above calculations, the mean free path of

the electrons is assumed to be infinite. He considered the effect of impurity

scattering in 3DEG, and extended the Landau-Baber scattering for large mo-

mentum transfers to small momentum transfers. He calculated the electron

scattering time for the electrons whose energy E above the Fermi level EF ,

at T = 0 as

1

τin
=

πE2

8~EF
+

3E
3
2

2~(kF l)
3
2

√
EF

(2.53)

Eq.(2.53) can be rewritten in terms of the temperature:

1

τin
= A

(kBT )2

~EF
+B

(kBT )
3
2

~(kF l)
3
2

√
EF

(2.54)

A similar result was obtained by Altshuler and Aronov [44].

The correction for disorder in 2DEG is derived similarly. Specifically,

Abrahams et al. [52] and Fukuyama and Abrahams [53] obtained

1

τin
= A

kBT

kF l
ln

(
T0
T

)
(2.55)

where T0 = ~
kBτ

, τ is the elastic scattering rate from the static disorder.

Abrahams et al. [54] also obtained
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1

τin
=

kBT

2π~DN(EF )
ln (π~DN(EF )) (2.56)

which was confirmed in 2D disordered systems by Fukuyama [55].

Isawa [56] suggested that in 2D systems, the T
3
2 term in 3D systems

becomes linear in T . He predicted this crossover occur at the temperature

given by

Tc = 0.166
~
kBτ

(2.57)

2.9.2 Electron-phonon scattering

Electron-phonon scattering makes a small contribution to inelastic scattering

at low temperatures. Price [57] determined the scattering time by acoustic

phonons in 2DEG as

1

τep
=

[
m∗eE2kB
~3nv2d

+ 1.46× m∗(eD14)
2kB

2π~3nv2kF

]T
(2.58)

where n is the density, v is the longitudinal velocity, D14 is the piezoelectric

coefficient and d is the effective thickness of the 2DEG.

Bergmann [33] refined electron-phonon scattering in 2DEG by considering

a finite mean free path. The inelastic lifetime (inelastic scattering time) was

obtained as
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1

τin
= 2.47× n(kBT )2

2Mm∗v3l
(2.59)

where M is the mass of the ion.

Localised electrons conduct in a non-metallic manner. Classically, this

phenomenon is modelled by Mott’s ’T 1/4 law’, which expresses the conduc-

tivity in terms of localised quantum states.

σ(T ) = σ0 · exp

[
−
(
T0
T

) 1
4

]
(2.60)

where T0 = 18
kBN(EF )ε3

.

The conductivity can be envisaged by a phonon-assisted hopping mech-

anism. Hopping occurs when localised states are energetically close to each

other, but have small localisation lengths relative to the spatial distance

between their localisation centres.

At low temperatures, the hopping probability p between the states is

proportional to the overlap integral of the two wavefunctions, which is an

exponentially decreasing function of their spatial separation R, and a Boltz-

mann factor defining their mean energetic separation ∆

p ∝ exp(−αR− β∆) (2.61)
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Here, α is proportional to the inverse of the exponential decay length of

the states, and β is the inverse temperature. If the hopping range R is

small, a large hopping probability requires a small energy separation of the

states available for the hopping process. If the mean energy separation of the

states is large, the hopping probability is reduced by the Boltzmann factor.

Conversely, when R is large, there are many states available for hopping from

a given site, and the hopping probability is enhanced by increasing ∆. To

maximise p, we must know how ∆ depends on R.

Assuming that the localisation centres are distributed homogeneously in

space, we estimate ∆ (the energy separation in a d-dimensional system) as

∆ ∝ 1

Rdn(EF )
(2.62)

To obtain the distance Rmax that maximises p, we then minimise the expo-

nent

Rmax =

(
dβ

dn(EF )

) 1
d+1

(2.63)

By inserting this result into Eq.(2.60), we obtain the d-dimensional version

of Mott’s law

σ(T ) = σ0 · exp

[
−
(
T0
T

) 1
d+1

]
(2.64)
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2.10 Phase coherence

The phase coherence time τφ is the time during which the wavefunctions re-

tain coherence. It is the shortest physical inelastic scattering time in systems.

As noted by Fukuyama and Abrahams [53], the phase coherence time τφ

in weak localisation is not the electron-electron collision time τin, discussed

in the previous section. In 3D systems with large energy transfer between

the electron collisions, the phase coherence time is very close to τin, but

in lower dimensions, these times largely differ because electron scattering

with small energy transfer makes an important contribution. As the energy

transfer decreases, elastic or quasi-elastic collisions become increasingly less

effective at destroying the phase coherence, and more scattering events are

required. Altshuler et al. [54] reported that the low-energy scattering is

equivalent to the interaction of an electron with a fluctuating electromagnetic

field generated by other electrons, the so-called Nyquist noise. They derived

a phase coherence time of the form

1

τN
∼

[
kBT

~2D d
2N(EF )

] 2
4−d
 ln(π~DN(EF )), d = 2

1, d = 1
(2.65)

From this equation, we obtained

τN
τin
∼
(
kBTτN

~

) d−2
2

(2.66)

Provided that kBTτN
~ � 1, τN is shorter than τin for d ≤ 2, and the phase
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coherence time τφ ≡ τN . In two dimensions, Altshuler and Aronov [45]

obtained

1

τN
=

kBT

π~2DN(EF )
ln(π~DN(EF )) (2.67)

=
kBT

~kF l
ln(kF l) (2.68)

In one dimension, they showed that

1

τN
=

(√
De2kBT

~2GL

) 2
3

(2.69)

where G and L are the conductance and length, respectively. The phase

coherence length is then given by

LN =
√
DτN =

(
~2DGL
e2kBT

) 1
3

(2.70)

Altshuler and Aronov further derived the change in conductance per unit

length

δG =
e2

π~
LN

1

ln

[
Ai

(
LN
L′φ

)2] (2.71)

46



where Ai(x) is the Airy function, which is associated with phase coherence

mechanisms rather than Nyquist noise. If τN � τ ′φ, we have

δG ≈ 0.62× e2

~
LN (2.72)

If τN � τ ′φ,

δG = − e
2

π~
L′φ

[
1−

(
τ ′φ
τφ

) 3
2

]
(2.73)

Because τN is not independent of τ ′φ, the total scattering time is not the

simply sum of the inverse of two terms. This result indicates that the phase

coherence events are broken after (not during) the quasielastic collisions.

To summarise the above, 3D systems are dominated by large energy trans-

fer processes, and τφ ≡ τin. In 2D and 1D systems, where kBTτφ � ~, we

have τφ ≡ τN with τ−1N ∼ T
2

4−d . Because the electron-electron interactions

enter the weak localisation regime in lower dimensions, the quantum inter-

ferences and electron-electron interactions are dimension-dependent. If the

phase coherence length exceeds the width of the sample (i.e.(Lφ > W )), the

quantum interference corrections are those of a 1D system; conversely, if

the thermal length LT =
√
~D/kBT < W , the magnitude and temperature

dependence of Lφ are governed by 2D equations.
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2.11 Narrow Devices

Some of the earliest work on narrow systems was carried out in narrow metal

films and fine wires. However, although these structures are easily fabricated,

interpreting their results is complicated by spin-orbit scattering, magnetic

impurity (or spin-flip) scattering, and superconducting fluctuations, which

readily occur in metals.

Giordano et al [58] fabricated narrow wires of Au60Pd40 with cross sec-

tional areas ranging from 30nm2 to 200nm2. They employed a step-edge

shadowing method in which the metal is evaporated over a reactive ion-etched

step on a substrate material. All metal not shadowed by the step is then re-

moved by angled ion-beam milling. The cross-sectional areas area of the wire

is controlled by varying the substrate step size. At a similar time, Chaudhari

and Habermeier [59] investigated narrow films of amorphous W −Re defined

by electron-beam lithography, achieving areas as small as 25nm × 10nm.

White et al [60] fabricated wires of Cu, Ni and AuPd, with cross sections

down to 22nm× 20nm by the step-edge shadowing technique. They found a

relationship ∆R/R ∼ T−1/2, consistent with the one-dimensional form of the

electron-electron interaction correction (Eq. 2.41), and with reults of Gior-

dano et al [58] and Chaudhari and Habermeier [59]. However, if these results

are true, the localisation correction is rather small. Santhanam et al [61]

attributed this small correction to strong spin-orbit or magnetic scattering.

Later, Giordano et al studied the temperature dependencies of thin Pt

wires fabricated by step-edge technique [62]. More recent, they extended their

work on AuPd wires separating the quantum interference and interaction ef-

fect by magnetoresistance [63]. They observed a positive magnetoresistance
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indicating a strong spin-orbit interaction. To extract the electronic phase

coherence time due to electron scattering, they fitted the magnetoresistance

traces to a generalised equation describing for the spin-orbit and magnetic

impurity scattering,and approximated the two scattering times. The phase

coherence time was well fitted to a power law of the form T−2/3, exactly as

predicted for electron-electron scattering with small energy transfers in the

1D limit (the Nyquist rate Eq. 2.69 in Section 2.10). The magnitude also

satisfactorily agreed with the theory. Lin and Giordano [64] claimed to have

reported the first observation of the Nyquist mechanism. The zero field tem-

perature dependence ∼ T−1/2 of Nyquist rate was ascribed to interactions.

Wind et al [65] questioned these conclusions, pointing out that the wires

were wider than the length scales of both magnetic and spin-orbit scatter-

ing, so the 1D localisation theory could not apply (this idea was further

discussed by Lin and Giordano [64]). Wind et al. also mentioned that the

wire was wider than the thermal length LT throughout the entire tempera-

ture range, so electron-electron scattering was also outside of the 1D limit.

They argued that the above studies do not unambiguously demonstrate the

1D Nyquist rate, and that the interaction correction should be considered as

two-dimensional. Their own studies were performed on Al and Ag wires of

thickness 20nm and width 35 to 110nm defined by electron beam lithography.

Satisfied that their wires were sufficiently one-dimensional, they fitted their

magnetoresistance data to the 1D form, accounting for spin-orbit scattering,

Maki-Thompson superconducting fluctuations in Al, and magnetic scatter-

ing in Ag. The phase-breaking rate was well described by a combination of

electron-phonon scattering and the Nyquist mechanism. Their results also
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matched the width dependence predicted by Eq. 2.69.

Heraud et al. [66] examined AuPd wires of rectangular cross - section

with widths between 25 and 40nm, again defined by electron beam lithog-

raphy. Considering the strong spin-orbit scattering, they fitted their magne-

toresistance data to an equation involving a 3D spin-orbit term, and a 1D

length determined by inelastic and magnetic scattering. They noted that the

electron-electron scattering time τφ cannot be unambiguously decided with-

out assuming a value for the exponent in the temperature dependence if the

scattering time. Their data τφ were equally well fitted to a phase breaking

process governed by the Nyquist mechanism (τφ ∼ T−2/3), and to the large-

energy transfer process, τφ ∼ τee ∼ T−1/2. Analysing Wind et al.’s [65] data,

they arrived at the same conclusions. Thus, although wires are sufficiently

thin to reach the one-dimensional regime, whether the Nyquist mechanism

applies is debatable.

Santhanam et al [67] reviewed their work on narrow Al films defined

by X-ray contact printing. They concluded that although the wires satisfy

a one-dimensional quantum interference correction, their phase coherence

times are identical to those of their co-evaporated 2D films, because their

width exceeds the thermal length LT . Thus, with regard to electron-electron

scattering regime, wires are two-dimensional. Gordon [68] reported the same

behaviour, consolidating the mixed dimensionality effect.

2.12 Heterostructures

Quantum conductivity corrections are better tested in the 2DEG ofGaAs/Al-

GaAs heterostructures than in wires. These gases have negligible spin-orbit
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coupling, are apparently free of magnetic impurities and are not complicated

by superconducing fluctuations. Therefore, the data can be fitted without

requiring additional adjustable parameters, and the experiment can access a

wide temperature range. At sufficiently low temperatures, electron-phonon

scattering is suppressed and all dephasing occurs by electron-electron scat-

tering, allowing direct comparison with theory.

The GaAs/AlGaAs heterostructure system is advantaged by high mobil-

ity and a simple band structure. Choi et al. [69, 70] etched heterostructures

into channels with widths between 1.1 and 156µm.They investigated the

quantum corrections for electron-electron interactions as functions of width

and length under classically strong magnetic fields (which completely sup-

press the weak localisation). When the width and the thermal length were of

the same order of magnitude, the interaction correction transited from 2D to

1D. A similar condition for the heterostructure length induced a transition

from 2D to 0D (a temperature independent regime). When the width is be-

low the elastic mean free path l, boundary scattering becomes important and

leads to significant deviations in the electron-electron interaction behaviour.

Thornton et al [71] investigated the narrow channels formed by the split-

gate of a GaAs/AlGaAs heterojunction FET . In this system, the electron

gas is confined by applying of a negative gate bias with a 0.06µm gap, defined

by electron beam lithography. The low field magnetoresistance fitted the 1D

model, and the estimated channel width at a gate bias of −1.2V was 45nm.

The magnitude and temperature dependence of the phase coherence length

Lφ were consistent with the Nyquist mechanism, scaling as Lφ ∼ T−1/3. The

interaction correction also agreed with the 1D model. Increasing the reverse
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bias on the gate strengthened the temperature dependence, suggesting a tran-

sition to strong localisation. Higher-field magnetoconductance depopulates

the 1D subbands [72]. Zheng et al. [73] also studied the split-gate device,

but did not achieve the 1D limit of electron-electron scattering.
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Chapter 3

Experimental Techniques

This chapter introduces the experimental techniques involved in fabricating

the nanostructure samples and measuring their transport properties. Section

3.1 briefly describes the fabrication process. All experimental results were

obtained at low temperatures (below 4.2K; the temperature of liquid he-

lium). Section 3.2 introduces the concepts and techniques of generating this

low temperature environment, and Section 3.3 describes the techniques for

measuring the electrical transport properties of the nanostructure samples.

3.1 Fabrication techniques

Fabricating the nanostructures is a major challenge in mesoscopic transport

experiments. The quality of the fabrication, which directly affects the exper-

imental results, depends on the material purity, lithographic resolutions and

many other factors. The major processes of fabrication are wafer growth and

patterning.
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Figure 3.1: Schematic of a molecular beam epitaxy growth chamber

3.1.1 Wafer growth

There are two techniques for growing III-V semiconductor devices: chemical

vapour deposition (CVD) and molecular beam epitaxy (MBE). In the CVD

process, the substrate is mounted in a vacuum chamber, and the atoms of the

semiconductors to be grown are introduced via suitable molecular gas flows.

The molecules crack at the surface and deposit the semiconductor atoms on

the substrate. CVD is a low-cost technique, but is disadvantaged by the

high toxicity of the gases involved in the deposition. In addition, the grown

material is not clean, and its interface in is rougher than an MBE-formed

interface.

The MBE growth technique deposits a specific number of atomic layers

on the substrate. The formed interfaces are abrupt, both in material com-

position and their intentional impurity-doping profiles. The epitaxial growth
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occurs in an ultra-high vacuum chamber with its base pressure maintained at

10−8 to 10−10 torr. The high vacuum chamber is illustrated in Figure 3.1. A

starting GaAs wafer is mounted on the substrate heater, which heats the sub-

strates to approximately 600 ◦C. The target substrate is faced with multiple

(typically eight) effusion cells (or furnaces) containing different solid source

materials. Each effusion cell heats the source material to its melting temper-

ature, and ejects it through a shutter that opens once the melting temper-

ature is reached. Because the chamber is maintained at ultra-high vacuum,

the evaporated source molecules form separate molecular beams that do not

collide, but impinge directly on the semiconductor substrate. The high sub-

strate temperature promotes the diffusion of the impinging molecules around

the substrate surface, allowing them to locate proper crystalline sites. The

evaporation rate of the source material is determined by the furnace temper-

ature, which is maintained at the desirable values through a thermocouple

tapped either at the bottom or around the centre of the crucible. As the

switching time of the shutters is much shorter than the growth time of an

atomic layer, the number of grown atomic layers is precisely controllable.

As shown in Figure 3.1, the flux of each source material approaches a spe-

cific part of the substrate at a different angle. To reduce this directional

non-uniformity, the substrate is rotated during the growth.

3.1.2 Wafer patterning

The devices used in the experiments were fabricated as split-gate devices in

which narrow one-dimensional channels are established in 2DEG.

The pattern of the experimental devices on the wafer is defined by the
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photolithography technique. This technique can easily defines the Hall-bar,

ohmic contacts and optical gates in very high resolution. Following these pro-

cedures, the metallic gates are defined by electron-beam lithography (EBL).

EBL technology is commonly used for fabricating ultra-fine and small

structures because of the incomparable high resolution of electron beam.

In EBL, the sample surface is coated by an electron-sensitive material and

scanned by a focused electron beam. The most popular high-resolution posi-

tive resist is polymethyl methacrylate (PMMA), a long chain polymer whose

solubility in certain solvents depends on the relative molecular mass of the

individual chains. A beam of high-energy electrons cleaves the chains at ran-

dom sites, reducing the relative molecular mass in the regions exposed to the

beam. The resolution of PMMA (approximately 10nm) cannot be improved

by increasing the accelerating voltage or reducing the beam diameters below

10nm. The defined pattern must the be developed and transferred from from

the resist layer to the material of interest.

Figure 3.2 illustrates the standard photolithography procedure. To coat

the sample with the thin photoresist layer, the resist is dropped onto the

samples. The sample are then rotated at high speed and baked on a hot plate.

Next, the sample is mounted onto a mask aligner illuminated by a strong UV

light. Once the photoresist has been hardened and rendered removable by the

UV irradiation, it resists etching in chemical etchant solution. The sample is

then developed by immersion in suitable etchant solution for an appropriate

time.

In the metallisation step, a metal film is deposited on the semiconductor

surface. Ohmic contacts are formed by evaporating and alloying a suitable
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Figure 3.2: Fabrication process using a negative photo-resist of the desired
pattern. After deposition of the ohmic material the sample is annealed at
an appropriate temperature, allowing diffusion of the ohmic metals into the
wafer. (a) Definition of regions containing the 2DEG; (b) fabrication of the
ohmic contacts.

metal film on the semiconductor. Normally, evaporation is followed by an

annealing process, which can effectively decrease the resistivity of Ohmic

contacts.

The last step of fabrication is the fine-gate fabrication. Customised pat-

terns are formed on the sample by a focused electron beam. These patterns

are then selective removed by the developing solution. EBL offers much bet-

ter resolution than photolithography, but requires a longer processing time.

The EBL preparation procedures are similar to the fabrication of mesa and

ohmic contacts. Before entering the EBL process, the mesa and ohmic con-

tacts should be fabricated on the sample, and the optical gates should be
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defined. Before exposure to an electron beam, the device must be coated

with polymeric resist (PMMA). For good resist adhesion, the sample surface

must also be cleaned with isopropanol (IPA) and completely dried with ni-

trogen before spinning. To avoid mismatch and to preserve the quality of

the EBL-fabricated device, the electron beam must be properly focused and

aligned with the sample. The lithography process is followed by development

in a 3:1 mixture of IPA: methyl isobutyl ketone (MIBK) solvent. The de-

veloped sample is then washed with IPA and blow dried. Finally, the gate

is evaporated with an e-beam evaporator and fabricated by lift-off (remove

the undefined part of metal deposited on the sample surface). This process

is identical to ohmic contact and optical gates fabrication.

3.2 Low-temperature techniques

Helium is the only element that remains liquid when cooled to the lowest

possible temperature (4.2K) under atmospheric pressure. Therefore, helium

is the best refrigeration medium for temperature below the condensation

temperature of nitrogen (77K). The vast majority of mesoscopic transport

experiments are performed in this temperature range.

3.2.1 4He cryostat

Helium cryostats are classified by the two type of their helium isotopes;

bosons (4He) or the fermion (3He). Temperature below 4.2K can be achieved

by pumping liquid 4He vapour to a very low pressure using a rotary pump.

The vapour pressures reduces the exact temperature of the liquid 4He to
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T = 1.2−1.6K. At such low temperatures, quantum phenomena such as the

quantum Hall effect and 1D conductance quantisation can be observed.

3.2.2 3He cryostat

Temperatures below 1K can be achieved by 3He, which has higher vapour

pressure than 4He. Maintenance at 0.3K requires a much more complicated

system than the 4He cryostat used to maintain 1.2− 1.6K.

In a 3He cryostat, the 3He gas is isolated from the 4He pre-cooling stage by

an inner vacuum chamber. After most of the gas has condensed into the 3He

pot, the temperature of the liquid 3He (in which the sample is immersed) is

approximately 1.5K. Once the 3He pot has stably reached this temperature

and the condensation is complete, it is further cooled (along with the exper-

imental setup) to below 300mK by an adsorption pump. The measurements

were performed at the London Centre for Nanotechnology, using a Teslatron

PT 3He cryostat with an 8-T superconducting magnet (Oxford Instruments,

UK).

3.2.3 4He/3He dilution cryostat

This cryostat exploits the special properties of 4He/3He mixtures, to achieve

temperature of 10mK and even lower. Below some a critical temperature,

the 4He/3He mixture separates into two phases: a concentrated 3He-rich

phase and a dilute 4He-rich phase. The 3He concentration in each phase is

temperature dependent. The different 3He enthalpy in the two phases causes

the diffusion of 3He from the concentrated to the dilute phase, providing

a high cooling power. This process works even at the lowest temperatures
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Figure 3.3: Phase diagram of mixed helium 4He/3He isotopes. Pure liquid
4He enters the superfluid phase at 2.17K (left portion of the figure). The
presence of 3H shifts the superfluid transition to lower temperatures. If the 3H
content is sufficient, the phase separates at low temperatures. At near-zero
temperatures, the 4He-rich phase contains at most 6% 3H (lower left corner).
The other phase comprises essentially pure 3He (lower right corner).

because the equilibrium concentration of 3He in the dilute phase is finite

down to 0K.

3.3 Measurement techniques

Low-temperature measurements require a very limited signal power to avoid

electrons heat-up, typically V = 10µV , or I = 10nA. Therefore, the instru-

ments must employ a very sensitive detection technique, such as the lock-in

technique.
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Figure 3.4: Circuit diagram of the two-terminal measurement system, all of
the instruments are in one common ground.

3.3.1 Two-terminal measurement

Quantized conductance was measured by the two-terminal system as shown

in Figure 3.4. The potential divider at the input side sets the AC input

voltage (typically 77Hz in our situation, this is to avoid the harmonic waves

from 50Hz fundamental frequency) to V = 10µV . The nA-level current

flowing through the sample needs to be amplified by a current pre-amplifier

before acquisition. The output of the pre-amp is then measured by a lock-in

amplifier, which ’locks’ the signal at the given reference frequency (77 Hz).

This signal is transmitted to the LabVIEW CryoMeas program over a general

purpose interface bus.

The signal measured by the two-terminal system is proportional to the

conductance of the circuit, which is dominated by the sample but is also

contributed to by the wires, ohmic contacts, or other components. This
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Figure 3.5: Circuit diagram of the four-terminal measurement system, all of
the instruments are in one common ground.

additional series resistance must be removed by data post-processing to reveal

the actual conductance of the samples.

3.3.2 Four terminal measurement

The four-terminal measurement circuit (see Figure 3.5) directly measures

the resistance across the sample removing the need for subtracting the series

resistance. This system is commonly used for measuring quantum Hall ef-

fects and Shubnikov-de Haas oscillations, which manifest as transverse and

longitudinal resistance, respectively.

To deliver a sufficiently small constant current (I≤10 nA) for measuring

the voltage variance in both transverse and longitudinal directions, a very

large resistance (100 MΩ) is required. The voltage pre-amps in Figure 3.5

amplify the signal prior to lock-in amplifier.
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Chapter 4

Magneto-transport in

GaAs/AlGaAs Heterojunctions

Transport in quasi one-dimensional disordered systems has become a very

active research field. Experimental work is being encouraged by emerging

technologies that can fabricate the fine structures required. This chapter

first discusses the various regimes in which a sample exhibits one-dimensional

behaviour, then briefly reviews the results of other researchers. It also reports

my investigations on the quantum conductivity corrections in the weakly

localised regime. These results, obtained in a narrow channel heterostructure,

constitute a major part of this dissertation. Both the quantum interference

and electron interaction corrections are presented in their one-dimensional

limits, and compared with theoretical predictions. Anomalous behaviour,

which appeared in the magnetoresistance, is also discussed.

The quantum limit of a single one-dimensional (particle in a box) sub-

band has never been achieved in experimental studies, but one-dimensional

behaviour can be explored by other criteria. In Chapter 2, we discussed
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the relative lengths Lφ, LT and W and their effects on the dimensionality

of the quantum conductivity corrections in the weakly localised regime. At

finite temperature, the phase coherence length is the effective sample length;

when this length Lφ exceeds the device width W , the quantum interference

correction becomes one-dimensional, but if Lφ also exceeds the localisation

length ξ, the 1D transport becomes strongly localised. Dean [74] generalised

the fine wire argument of Thouless [29] to the present case by considering

the resistance of a thin sheet, instead of a wire resistance. Assuming a 2D

density of states, the resistance of a thin sheet of length L and width W is

given by

R =
L

W

1

σB
=

L

W

2π~
ne2kF l

(4.1)

Thouless found that localisation effects become important when the wire

resistance approaches ~/e2. They reported the localisation length as simply

the length of wire with this critical resistance. Equating Eq. 4.1 to ~/e2, ξ

for a narrow sheet is obtained as:

ξ ∼ WnkF l

2π
(4.2)

In the strongly localised transport regime, an electron can diffuse through

the localisation length before being inelastically scattered to a new state and

propagating further through the device. As the confinement time within

the localisation length is characterised by τφ, the effective diffusion constant
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can be much smaller than the Boltzmann value. Thouless [75] proposed an

expression for the diffusion constant that is valid in both weakly and strongly

localised 1D regimes:

D = D0

[
1−

(
4D0τφ
ξ2

) 1
2

tanh

(
ξ2

4D0τφ

) 1
2

]
(4.3)

where D0 is the Boltzmann value of D. When τφ is short (Lφ � ξ), Eq. 4.3

gives the weak localisation correction proportional to Lφ, as found in Chapter

2. Conversely, when Lφ � ξ, Eq. 4.3 reduces to

D ≈ ξ2

12τφ
(4.4)

As τφ depends on the temperature, the conductivity will vary as a power

function of T . This behaviour, known as Thouless hopping, describes the

hopping of an electron through distance ξ in a mean time interval τφ.

At very low temperatures the energy separation between the overlap-

ping localised states exceeds kBT , and exponentially activated hopping is

expected. If there are no nearest-neighbour states within kBT of EF , variable-

range (Mott) hopping occurs. In one-dimensional transport, the device width

must be smaller than the most probable hopping distance. The conductivity

is then given by Eq. 2.64.

The number of states in a 2D sample of area A = ξW with energy within

kBT of EF is given by
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N =
nm∗kBTA

π~2
(4.5)

Setting N = 1, we obtain the temperature below which variable-range hop-

ping occurs:

kBT =
π~2

nm∗ξW
(4.6)

This temperature is experimentally accessible for very small W and ξ (or

kF l).

At much lower temperatures, conduction through short sample lengths is

dominated by resonant tunnelling through localised sites. The conductance

as a function of Fermi energy should largely depend on the sample structure,

because at special Fermi energies, resonant states are generated near the

centre of sample. Consequently, the electrons can tunnel through the sample,

with a large transmission coefficient. The various regimes of one dimensional

transport are summarised in Figure 4.1.
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Figure 4.1: Schematic of the various localisation regimes in a narrow two-
dimensional system. As the temperature decreases, the regime changes when
Lφ becomes sufficiently larger than W , and again when Lφ becomes suffi-
ciently larger than ξ (the localisation length).

4.1 Quantum transport and dimensionality t-

ransitions in GaAs/AlGaAs heterostruc-

tures

4.1.1 Devices used in this work and experimental setup

The devices were fabricated on a GaAs/AlGaAs heterojunction wafer en-

coded W923. The wafer was grown by MBE in the Cavendish Laboratory,

University of Cambridge by Dr.Ian Farrer. The devices were also fabricated

in the Cavendish Laboratory by Dr.Graham Creeth. The dimensions of the

Hall-bar were 1200µm × 80µm. The length of the split-gates was varied as

2µm, 4µm and 8µm; the width was constant at 1µm. The aim was to ob-

serve the length effect of the behavour. The lengths are multiples of the phase
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Figure 4.2: Shubnikov-de Haas oscillations of the GaAs/AlGaAs heterojunc-
tion. Upper panel shows the original data. Lower panel shows the oscillations
after removing the longitudinal background signal.

coherence length (predicted as much greater than 1µm at the base temper-

ature of the dilution system). To characterise the signal, we fabricated four

pairs of ohmic contacts; unfortunately, only one pair (in x-x direction) was

functional. Although this problem did not affect the magnetoresistance data

acquisition, it prevented us from measuring the quantum Hall effect in the

direction perpendicular to the current. A constant 77Hz AC current of 10nA

was applied between ohmic contacts.

The Shubinikov-de Haas oscillations are plotted in Figure 4.2. Clearly,
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the oscillations are not ideal; in fact, rather than oscillatory behaviour, the

heterojunction exhibits a kind of plateau behaviour with no zero minima.

We infer that the oscillations are deteriorated by the longitudinal proportion

of the background signal in the highly disordered system. Because the ohmic

contacts meaure over a rectangular area, the expected result is a combination

of SdH oscillations and QHE plateaus. The result of removing the QHE

background signal is presented in the bottom panel of in Figure 4.2. The

good oscillation results confirm our speculation. From this plot, the 2D

carrier concentration was determined as 1.26± 0.1× 1011cm−2. The effective

mass of 0.12 was calculated from the temperature-dependent SdH oscillations

using Eq. 1.18. The result (0.12) is much larger than the theoretical effective

mass of GaAs (0.067), which may indicate the existence of strong electron-

electron interactions.

We also attempted to reproduce the magneto-depopulation of one dimen-

sional subbands reported by Berggren et al. [72]. To this end, we varied the

split-gate voltage and observed the changes in the SdH oscillations. However,

we detected no evidences of magneto-depopulation of the Landau levels, so

we do not elaborate on the this result.

4.1.2 Two-dimensional quantum transport

The temperature dependence of the phase coherence length was measured

in a dilution cryostat with 11mK base temperature. The superconducting

magnetic field was swept from −0.1T to 0.1T . As the applied voltage was

varied between the individual pairs of split-gates, changes in the electric con-

finement at both arms of the split-gate were expected, and in the channel
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Figure 4.3: Example of experimental data fitting with a digamma function

width. To extract the value of Lφ, the experimental magnetoconductance

data were fitted to the theoretical model using Matlab (2015b), treating τ

and τφ as variables. All of the experimental data must be pre-processed be-

fore analysis. First, the background signal must be removed from the trans-

verse resistances measured at four terminals. According to the Schrödinger

equation, this background signal is parabolic. During a single run at base

temperature, the system thermometer recorded significant temperature rises

(∼ 35mK) during the magnetic field sweeping. We surmised that the base

temperature of the system was lower than the electron temperature; conse-

quently, the electrons heated by the magnetic field sweeping contributed to

the transport. Thus, the base temperature of experiment was corrected to

35mK.

In the 2D case, the data were fitted to the digamma function as shown in

Eq. 2.32. In this equation, only two parameters (scattering time and phase
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coherence time) are unknown. Hence, these two parameters are considered

as variables with values within a reasonable range. Data are normally fitted

by least-mean squares, but this approach was discarded mid-analysis because

the complexity of the programming exceeded our programming knowledge.

Our replacement approach (fixing one variable per run and leaving one free

parameter) greatly simplified the analysis, but reduced its accuracy. First

we fixed the phase coherence length to different values (500nm, 1µm and

1.5µm), and ran a self-coded program at each of these values, treating τ

as the only variable. The fitted scattering time was quite insensitive to the

phase coherence length; all coherence lengths yielded 1.1± 0.1× 10−12s. The

parameter-independent scattering time suggests the feasibility of our fitting

method. We also note the existence of another unknown parameter: the

effective width-to-length ratio. After transforming the ratio to a relation

between mobility and scattering time, we determined this ratio in terms of

the scattering time alone. The curve fitting yielded a ratio of ∼ 0.9, much

smaller than the proportional dimensions of the Hall bar, indicating a high

level of impurities. This simplified method is prone to error not only because

the fitting was judged by eye, but also because the adjacent variables were

widely spaced. Next, to find the best fitted phase coherent length, we fixed

the scattering time inside the digamma function. Figure 4.3 shows the best

fitting result at base temperature (35mK) with zero gate voltage. Using

Eq.2.25, the phase coherence length was calculated as 540 ± 10nm, much

smaller than the coherence length determined at the design stage of the

experiments (∼ 1µm). As phonon scattering is subdued at the selected base

temperature, the system is dominated by electron-electron scattering. The
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Figure 4.4: Log-log plot of phase coherence length versus temperature. At
high temperatures, the data are well fitted to the solid line T−1/2 at high
temperature. The deviation at low temperatures may result from magnetic
impurities.

reason for the unexpected low phase coherence length is discussed later in

the text. The magnetic field for the fitting equation was varied from −0.05T

to 0.05T . Within this range, the condition DτB > W 2 was satisfied.

The experimental data in 2D (at 0 split-gate voltage) were plotted as

function of temperature, and the phase coherence time was extracted from

the fitting results. The phase coherence length was then calculated by

Eq.2.25. The temperature dependence of the phase coherence length is pre-

sented in Figure 4.4. Both axes of this figure are logarithmically transformed.

Clearly, the phase coherence lengths are smaller than the channel, and ex-

hibit two-dimensional behaviour (i.e. scaling as Lφ ∼ T−1/2 at high T). The

limiting results indicate impurities in the device, and Lφ is determined as

0.36(±0.01) × 10−6(T/K)−1/2m. The 2D version of the Nyquist mechanism

was presented in Chapter 2. From Eq.2.68, LN is given by
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LN =

√
D~kF l

kBT ln(kF l)
(4.7)

where kF l > 1.

Inserting the parameters into Eq.4.7, LN was determined as 0.373 ×

10−6(T/K)−1/2m. The 2D Nyquist mechanism requires that kBTτφ � ~.

The experimental data are consistent with the Nyquist prediction, despite

the limited data range.

4.1.3 Width estimates

When analysing and comparing data from various quantum point contacts

(QPCs), one of the important quantities is the degree of confinement at the

QPC in the direction perpendicular to the current flow. The effective width

of the electron gas in the QPC cannot be measured directly.

Furthermore, the shape of the confining potential is not known, but is

most easily modelled by the square well and the harmonic oscillator. In

both models, we can estimate the effective width of the QPC, and thereby

characterise the confinement. We estimate the effective width by the Sharvin

formula, which is based on the confining potential and on theoretical assump-

tions about transport. In this estimation, we ignore the finite length of the

QPC, and treat the potential associated with the gates as one-dimensional.

In the Landauer formalism with zero magnetic field, the current in the

sample is equally distributed among the 1D subbands which are the transver-

sal (propagating) modes of the confining potential in the constriction. Conse-

quently, the conductance is proportional to the number of propagating modes
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at the Fermi level,

G =
2e2

h
NQPC (4.8)

Assuming a hard-wall confining potential, the width of each 1D subband

is half the Fermi wavelength λF/2. Therefore, the number of conducting 1D

subbands in a QPC of width W is given by

NQPC = Z
(

W

λF/2

)
(4.9)

Here, Z(x) means the integer value of W
λF /2

. In the ballistic electron

transport regime at zero magnetic field, the resistance becomes

R(B = 0) =
h

2e2
λF
2W

(4.10)

Eq.4.10 is the 2D analogue of the resistance through a 3D QPC. The

Fermi wavelength is estimated from the 2D electron density in the QPC, as

explained below. By measuring the resistance at zero magnetic field we can

then estimate the width of the QPC.

This method estimates the width from the zero-field resistance of the

sample. Alternatively, we can measure the magnetic field dependence of the

resistance. The 1D transport subbands discussed above can be depleted by
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Figure 4.5: Estimated width versus split-gate voltage

reducing the width of the QPC, modifying the Fermi energy, or applying

a magnetic field perpendicular to the plane of the sample. In the presence

of a magnetic field, the corresponding subbands are called magneto-electric

subbands. They are depopulated by increasing the magnetic field.

Figure 4.5 plots the channel widths estimated by the Sharvin formula at

different split-gate voltages. These channel widths were used in the curve

fittings described later in this chapter.

4.1.4 One-dimensional quantum transport

The 1D magnetoconductance can be computed by Eq. 2.32 in Chapter 2. The

scattering time indirectly enters this equation through the diffusion coefficient

D. Here we note that the form of the diffusion coefficient differs between one
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and two dimensions. Specifically, the diffusion coefficient depends on the

dimensionality as:

D =
1

d
v2F τ (4.11)

where d is the dimensionality, vF is the Fermi velocity and τ is the scat-

tering time.

Once the channel widths have been estimated, we can compute the phase

coherence time. In the following content, the results will be presented in

separate sections, providing a comprehensive description of the whole device.

Note, that the prerequisite in our analysis is the constant split-gate voltage,

not the width. As the width variability is small, we can assume that a device

with a constant split-gate voltage also has the same width.

(1) 2D to 1D transition

This transition occurs when the split-gate voltage increases from zero

to the definition voltage. In this device, the definition voltage is slightly

smaller than −0.24V . The behaviour of the magnetoresistance corrections

also converts from 2D to 1D in this voltage range. The data are fitted to

both 2D and 1D formulas, and the most compatible fitting is assumed as the

correct dimensionality of the system.

Figure 4.6 plots the magnetoconductances as a function of split-gate volt-

age in the 2D-to-1D transition. The 2D fitting results from 0V to −0.18V

are plotted in Figure 4.7. The behaviour were better fitted to the 2D than

the 1D formula. The fitting part of the curves become narrows as the volt-
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Figure 4.6: Magneto-conductance behaviour at split-gate voltages from 0V
to −0.24V . The upper limit of this range is the definition voltage of the
split-gate device. Inside this range, the magneto-conductance transits from
2D to 1D.

age increases, reflecting the dominant magnetic effect as the phase coherence

length surpasses the magnetic length. The 2D phase coherence length de-

creases with increasing split-gate voltage, reducing the magnetic field that

maximises the magnetic length.

Transport theory predicts that the 2D-to-1D transition occurs when the

phase coherence length exceeds the channel length. In the previous sub-

sections, we estimated the channel width of the QPC. The transition was

expected by the applied split-gate voltage, but no 1D behaviour appeared in

the experimental data at the beginning of the voltage application. We infer

that the 1D construction was not finally formed, the electrons beneath the

QPC was not depleted completely until exceeds the definition point (voltage).
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Figure 4.7: Magneto-conductance fitting by a 2D digamma equation at split-
gate voltages ranging from 0V (lowest plot) to −0.18V (highest plot). The
curves are offset for visibility. The phase coherence lengths corresponding to
each split-gate voltages are 540±10nm, 480±10nm, 460±10nm, 480±10nm
and 510± 10nm.

In figure 4.8, the data are fitted to the 1D equation at split-gate voltages

from −0.18V to −0.24V . The fitting curves yield longer phase coherence

length than 2D fitting. This result is expected, because there are fewer

disorder events in 1D channels than 2D channels.

The fitting results reveal some shoulder behaviour. This occurs at the

magnetic field when the magnetic length becomes shorter than the phase

coherence length. Thornton et al [76] reported a similar behaviour in GaAs

quantum wires, which they attributed to the analogous phenomenon of scat-

tering. In their case, the mean free path was much longer than the wire

width; thus, their observed shoulders reflected the size effect of the electrons
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Figure 4.8: Magneto-conductance fitted to the 1D equation at split-gate
voltages ranging from −0.18V (lowest plot) to −0.24V (highest plot). The
curves are offset for visibility. The phase coherence lengths corresponding to
each split-gate voltage are 760±10nm, 740±10nm, 690±10nm, 660±10nm,
670± 10nm, 650± 10nm, 650± 10nm and 660± 10nm.

scattering from the wire boundary. In our device, the shoulder behaviour

appears in the 2D-to-1D transition region, where the mean free path is much

smaller than the channel width. Therefore, the shoulder cannot result from

boundary scattering. Figure 4.9 shows the colour-scale results of magneto

resistance when a small DC current bias was applied to the device in the

AC current direction (transverse direction). The x- and y-axes represent

the magnetic field and split-gate voltage, respectively. Blue region indicate

the zero differential regions. In Figure 4.9, the shoulder behaviours slightly

weaken as the DC bias increases. The DC bias could not only broaden the

channel width, but could also strongly decease the phase coherence length.
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Figure 4.9: Colour-scale plots of magnetoresistance in our device at DC bias
voltages ranging from −4mV (top-left) to 3.1mV (bottom-right).

In other word, it can shift the system towards 2D. However, we observed

no position change at the magnetic fields of these shoulders, confirming the

absence of boundary scattering.

Bockhorn et al. [77–81] observed a similar shoulder behaviour in magneto-

resistance measurements. They proposed several possible origins, and exper-

imentally investigated the plausibility of each origin. They attribute the

formation of the shoulder behaviour to interactions between smooth disorder

and macroscopic defects in the material itself. The feasibility of their model

to our devices still needs further investigation.
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During fitting work, we detected variability in our channel length. Ini-

tially, we fixed the channel length at 2µm, but most of the fittings were

imperfect at this length. Thus, we allowed the length to vary, and obtained

the best fitting result at 1.4µm. Masden and Giordano [82] measured and

discussed the length dependence of the localisation effect in detail. Choi et

al. [83] systematically calculated the effective length scale. Further discussion

will be presented later in this chapter.

(2) Quasi 1D regime

The channel enters the quasi-1D transport regime when the split-gate

voltage exceeds −0.25V . At this regime, the channel width is shorter than

the phase coherence length.

a. A split-gate voltage of −0.3V , the estimated width is ∼ 0.18µm

Figure 4.10a shows the temperature dependence of the phase coherence

length at this split-gate voltage. At higher temperatures, the data are well fit-

ted to T−1/2, indicating 2D behaviour. In 1D transport, the phase coherence

should increase at the 1D Nyquist rate T−1/3. We consider that electron-

electron scattering becomes 1D limited when LT > W . If LT < W , the 2D

temperature dependence of the phase coherence length is recovered. At this

split-gate voltage, the thermal de-phasing length LT cannot exceed the width

until the temperature approaches 1K. Above this temperature, we expect

the 2D limit of electron-electron scattering to vary as T−1/2. From the good

T−1/2 fitting above T = 1K, Lφ was determined as 0.55× 10−6(T/K)−1/2m.

At temperatures below 1K, the curve is much better fitted to T−1/3. Because

LT is lengthening relative to W , this result confirms our prediction.
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Figure 4.10: Log-log plots of phase coherence length versus temperatures at
different channel widths. In panel (a) and (b), VSG(and estimated width)
are −0.3V (0.18µm) and −0.7V (0.15µm), respectively. Both curves are
well-fitter to T−1/2, indicating 2D behaviour. In panel (c) and (d), VSG(and
estimated width) are −1.1V (0.08µm) and −1.16V (0.05µm), respectively.
Both curves are well-fitter to T−1/3, indicating 1D behaviour.
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b. When split-gate voltage increases to −0.7V , the estimated

width is ∼ 0.15µm

The phase coherence length at this split-gate voltage is plotted as a func-

tion of temperature in Figure 4.10b. The behaviour mimics that at −0.3V .

The width remains more-or-less constant, and 2D and 1D behaviour appear

across the temperature range.

c. At split-gate voltage of −1.1V , the estimated width is ∼

0.08µm

At this split-gate voltage, the behaviour of the system changes. First, the

estimated width continuously decreases. The temperature calculated from

the condition LT > W increases to approximately 5K, implying that the

device behaves in the 1D limit throughout the experimental temperature

range. Indeed, the phase coherence length at higher temperatures is well-

fitted to the T−1/3 (Figure 4.10c). The deviation below 650mK indicates

that the Nyquist mechanism fails in parts of the whole temperature range.

In this case, we must consider the pure metal limit (as discussed later).

The effective length evaluated from the best fitting at this split-gate voltage

increases to ∼ 2µm.

d. Finally, when the split-gate voltage increases to −1.16V , the

estimated width is ∼ 0.05µm

The higher temperature data exhibit T−1/3 behaviour. The effective

length becomes ∼ 3µm, which exceeds the split-gate length. The effective

electric confinement length, which is used in the magnetoresistance fitting,

increases with the increased electric field, and (in this case) appears to exceed

the lithography confinement a lot. However, we found no literature to verify
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this finding. The Nyquist rate in 1D is given by

LN =

(
GDL~2

e2kBT

) 1
3

(4.12)

From this expression, the phase coherence length is calculated as 0.53×

10−6(T/K)−1/3m. This result is of the correct order of magnitude, implying

very good agreement with fitting results.

(3) Pure 1D regime

As the split-gate voltage increases, the channel resistance rises to h/2e2.

At this time, only one energy level is occupied. The channel becomes shorter

than the mean free path, and the transport enters the quasi-ballistic regime

or pure metal regime, where boundary scattering plays an essential role.

In our device, the split-gate voltage is maintained at −1.24V , and the

resistance exceeds 14KΩ. The channel is nearly pinched off, and the esti-

mated width remains at ∼ 25nm. Figure 4.11 shows the fitting result at this

split-gate voltage. The phase coherence length exhibits well-behaved T−1/3

dependence at higher temperature (> 650mK), but deviates from this law

at lower temperature. This behaviour is discussed in detail in the follow-

ing section. The shoulder behaviour does not appear at this high split-gate

voltage, confirming the absence of boundary scattering.

The phase coherence length always deviates from 1D or 2D behaviour

at low temperature, and appears to saturate below some temperature. Such

low-temperature saturation has been reported in many materials [84–88], so is

unlikely to arise from thermal contact. Bäuerle et al. [89] and Saminadayar

84



Figure 4.11: Log-log plot of coherence length versus temperatures at VSG =
−1.24V . The higher temperature data are well fitted to the T−1/3 law.

et al. [90] suggested that saturation manifests from spin-flip scattering by

magnetic impurities. They provided a theoretical explanation based on the

Kondo effect, which is beyond the scope of our present study.

The phase coherence lengths extracted from the fitting formulae are al-

ways shorter in the 2D case than in the 1D case. Similarly, the Nyquist

rate calculations predict that the phase coherence lengths are longer in 1D

than in 2D down to ∼ 120mK. Because the temperature dependence differs

between two regimes, a low-temperature crossover must exist (in our device,

the crossover temperature is ∼ 120mK). However, as the temperature de-

pendence disappears at low temperature, we cannot properly compare the

phase coherence length between 1D and 2D regimes. We can only confirm

that the phase coherence length adheres to the Nyquist rate at temperatures
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above 650mK.

4.2 One-dimensional quantum interference

Above, we mentioned that the temperature dependence of the phase coher-

ence length deviates from the established rules at lower temperatures. The

failure of Nyquist mechanism may reflect the crossover of the system to the

metal limit.

At very low temperatures, the quasi-particle lifetime consists of two terms,

the pure metal limit τ 0ee with large momentum transfer collisions, and the dis-

ordered systems limit τ 1ee with small momentum transfer. The Landau-Baber

scattering (Fermi liquid theory) of the electron-electron collision time τ 0ee has

been well established. The theory describes the scattering governed by large

momentum or energy transfers, and is independent of electron interactions.

Conversely, the Nyquist mechanism describes the random scattering of elec-

trons with very small energy change. Matthiessen’s rule, which combines the

Landau-Baber and Nyquist terms at very low temperature, gives the total

phase coherence scattering time as

τ−1 = AT 2 +BT 2/3 (4.13)

where A and B are the Landau-Baber and Nyquist parameters, respec-

tively. The condition of the Nyquist mechanism, kBTτφ � ~, admits more

than one possible phase breaking mechanism. Pooke [91] suggested a weaker

temperature dependence Lφ (T−1/4) with large energy transfer rather than
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T−1/3 dependence.

Thus, we identify three possible mechanisms for the temperature depen-

dence of phase coherence length Lφ in one dimension:

(a) At higher temperatures, electron-electron scattering becomes 2D, and

the temperature dependence is T−1/2;

(b) At lower temperatures where kBTτφ > ~, electron-electron scattering

becomes 1D, and Lφ consists of both LN (T−1/3) and the Landau-Baber term

(T−1);

(c) At lower temperatures where kBTτφ < ~, electron-electron scattering

is 1D, and Lφ consists of both the T−1/4 term and the Landau-Baber term

(T−1).

Figure 4.12 shows the fitting result to AT 2+BT 2/3 at −1.24V . From this

fitting, the parameters A and B were determined as 0.9(±0.1)×1012m−2 and

0.32(±0.1)× 1012m−2, respectively. We noted the diffusion constant we got

here is larger than the previous estimation. Thus, the Landau-Baber and 1D

Nyquist terms become

Landau−Baber : A−1/2 = 0.95(±0.01)× 10−6m (4.14)

Nyquist : B−1/2 = 0.56(±0.01)× 10−6m (4.15)

The factor B−1/2, which defines the temperature pre-factor for LN , agrees

well with previously calculated values. The assumption of the Nyquist rate in

the fitting procedure may seem rather artificial, and 1/Lφ2 might be better

described combining the T−1/2 and T−1 terms. In our case, we can rule out
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Figure 4.12: L−2φ versus temperatures at VSG = −1.24V . a.The best-fitting

AT 2+B2/3 curve yields A = (0.9±0.1)×1012m−2, B = (0.32±0.1)×1012m−2

and Diffusion constant D = 0.249; b.The best-fitting with AT 2 +B1/2 curve
yields A = (0.91± 0.1)× 1012m−2 and B = (0.35± 0.1)× 1012m−2.
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the Nyquist mechanism, because kBTτφ < ~ at lower temperatures. We also

tried a data fitting to AT 2 +BT 1/2, which yielded

L−2φ = 0.91(±0.1)× 1012m−2(T/K)2 + 0.35(±0.1)× 1012m−2(T/K)
1
2 (4.16)

The correctness of this T−1/4 dependence, and the applicability of the Nyquist

rate when kBTτφ < ~ cannot be proven. However, the two parameters in each

regime are not significantly different, implying that the 1D temperature de-

pendence of the phase coherence length Lφ in our device is probably governed

by the 1D Nyquist mechanism with a contribution from the Landau-Baber

term in the pure metal limit, although the transport occurs in the region of

kBTτφ < ~.

4.3 Weak anti-localisation

The spin-orbit effect on magnetoconductance was presented in Section 2.6.

All of the spin-orbit interactions manifested as weak anti-localisation (WAL).

In our measurements, WAL features also appeared at higher temperature

(2K).

Figure 4.13 plots the magnetoresistance at 2K and split-gate voltages of

0V (lower panel) and −0.7V (upper panel). The upper plot exhibits a small

WAL dip at zero magnetic field, but it still cannot confirm the existence

of spin-orbit interaction. This WAL feature is absent in the 2D transport

regime at zero split-gate voltage. This can happens where the spin-orbit

coherence time is longer than the 2D phase coherence time, but shorter than
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Figure 4.13: Magnetoresistance at 2K and split-gate voltage of 0V (lower)
and −0.7V (upper). Weak anti-localisation (WAL) behaviour appears in the
1D region (−0.7V ).

the 1D phase coherence time.

In Section 2.6, we presented the conductance correction of spin-orbit in-

teractions in 2D systems. In the 1D case, this correction becomes:

δG(B) = − e2

π~L

[
3

(
1

Dτφ
+

4

3DτSO
+

1

DτB

)− 1
2

−
(

1

Dτφ
+

1

DτB

)− 1
2

]
(4.17)

Thus, the magnetoconductance can be written as

∆G(B) =
e2

π~L

[
Lφ − 3

(
1

Dτφ
+

4

3DτSO
+

1

DτB

)− 1
2

+

(
1

Dτφ
+

1

DτB

)− 1
2

]
(4.18)
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Figure 4.14: Fitting result of 1D magnetoresistance with the WAL effect at
2K and VSG = −0.7V . The fitting curve yields τSO = 17± 1ps.

Figure 4.14 shows the fitting result of the magnetoresistance at −0.7V

split-gate voltage. The curve is very well fitted, at a spin-orbit coherence

time of 1.7± 0.1× 10−11s. Surprisingly, the phase coherence length obtained

by this estimation was 650 ± 10nm, almost twice that of the previous ob-

tained value, but consistent with the 1D Nyquist rate at this temperature

680 ± 10nm. Moreover, the thermal dephasing length is much shorter than

this phase coherence length, indicating 1D transport at this temperature.

As mentioned earlier, the system at −0.7V split-gate voltage exhibits T−1/2

rather than 1D behaviour. We conclude that a spin-orbit coherence term

influences the simulations. Hikami [38] also mentioned the possibility of non-

zero spin-orbit interactions, and recommended a pre factor ℵ less than one

in front of the fitting equation (2.29). In all of our fittings, this parameter

was treated as unity (i.e. spin-orbit interactions were neglected). The tem-
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perature dependence of the spin-orbit coherence time has been frequently

reported [92–94]. As the spin-orbit coherence increases faster than the phase

coherence time, the WAL becomes vanishingly small at lower temperature.

Therefore, we cannot explore in detail the spin-orbit coherence temperature

dependence in our results.

We also understand that phase coherence time decreases with increasing

split-gate voltage. Assuming constant spin-orbit coherence time, the WAL

behaviour will disappear at sufficiently high split-gate voltages, when the

phase coherence time falls below the spin-orbit coherence time. However,

we observed a strengthening of the WAL feature with increasing split-gate

voltage. This result requires that the spin-orbit coherence time is not con-

stant, but a varying function of the carrier concentration. The fitting result

acquired at higher split-gate voltage (−1.1V ) yielded a spin-coherence time

of 1.4± 0.1× 10−11s, consistent with our supposition.

From these discussions, we infer that the spin-orbit term is temperature

dependent, and also electric-field tunable. Given also that the wafer grows

along the [001] direction, it can be determined the spin-orbit term is con-

firmed as a Rashba term rather than a linear Dresselhaus term.

The discussion in Section 4.3, suggests that WAL might alternatively arise

from spin-flip scattering. The system probably contains magnetic impurities,

and spin-flip scattering exhibits temperature dependence similar to that of

spin-orbit interactions. Therefore, our results cannot distinguish between

spin-orbit interactions and spin-flip scattering individually.
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4.4 Interaction effect in low-dimensional GaAs

heterojunctions.

To study the electron interaction contribution to the temperature dependence

of the device resistance, we quenched the quantum interference with small

magnetic fields. Magnetic fields enhance the interactions only when gµBB >

kBT . At the base temperature of 35mK, the maximum magnetic field of

quenching the interference was calculated as 0.12T .

4.4.1 Interactions in two dimensions

The magnetoresistance data applied in the interaction correction has removed

the weak localisation correction from the original data. The theoretically

calculated localisation correction used to be subtracted to get the interaction

effect correction only data. The form of the 2D interaction correction was

discussed in Section 2.71. The correction can also be expressed as the change

in conductance per unit length:

∆σ(T ) =
e2

4π2~

(
2 +

3

2
λj=1
σ

)
ln

(
kBTτ

~

)
(4.19)

where

λj=1
σ = 4

[
1−

2
(
1 + F

2

)
ln
(
1 + F

2

)
F

]
(4.20)
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Figure 4.15: Conductivity versus temperature, with weak localisation
quenched. The curve is well fitted to ∼ ln(T ).

In figure 4.15, the data are fitted to Eq. 4.19. The best fitted curve yields

F = 1.24. Theoretically, this value should lie between 0 and 1. However,

Altshuler and Aronov [45] included only the Coulomb repulsion of electrons

in their F calculations, which may dramatically vary from the short-range

interactions.

4.4.2 Interactions in one dimension

The form of the 1D interaction correction was discussed in Section 2.71. The

corrections can be written as:

∆σ(T ) = −4.91× e2

4π2~

(
4 +

3

2
λj=1
σ

)(
kBT

~D

)− 1
2

(4.21)
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Figure 4.16: Conductance versus temperature at −0.7V split-gate voltage,
with weak localisation quenched. The curve is well fitted to ∼ T−1/2.

where

λj=1
σ = −32

F

(
1 +

F

4
−
(

1 +
F

2

) 1
2

)
(4.22)

The WL correction has been already removed from the original conduc-

tance. The 1D interaction correction for the device was investigated at split-

gate voltages of −0.7V and −1.2V . The correction results are plotted as

functions of temperature in Figure 4.16 and 4.17, respectively. At both volt-

ages, the conductance correction exhibited ∼ T−1/2 behaviour. The best-fit

lines at −0.7V and −1.2V yielded Coulomb screening potentials F of 5.88

and 5.96, respectively. This higher potential at −1.2V reflects the weaker

screening at this split-gate voltage. This occurs because increasing split-gate

voltage, the carrier concentration decreases, thus weakening the interaction.
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Figure 4.17: The conductance against temperature at −1.2V split-gate volt-
age, with weak localisation quenched. The curve is also well fitted with
∼ T−1/2.

The values of F rising above 1 as kF l drops is valid. Similarly Lin et al. [95]

calculated a large value for F in the 2DEG of a GaAs−AlGaAs heterostruc-

ture. Mensz and Wheeler [96] presented data for Si−MOSFETs in parallel

fields indicating a strong enhancement of F with decreasing carrier concen-

tration. They also suggest spin fluctuations induced by disorder leading to

itinerant ferro-magnetism could explain the results.

4.4.3 2D-to-1D transitions

Equations 4.19 and 4.21 imply that 2D to 1D transitions occur when the

conductivity variance changes from positive to negative at 1K. At temper-

ature above 1K, the variance of the conductivity is positive and negative in

2D and 1D, respectively.

Given this knowledge, we investigated the interaction correction of the
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conductivity for several sets of split-gate voltages, and found a 2D-to-1D

transition at a split-gate voltage of −1.8V . Because the plots are similar

to those presented previously, we do not display them here. We emphasise,

however, that the transition does not depend on the phase-dephasing length,

but is influenced only by the channel width and phase coherence length.
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Chapter 5

Universal Conductance

Fluctuations

Universal conductance fluctuations are well reproducible, aperiodic fluctua-

tions in the conductance of small systems. They have bewildered researches

for many years, and have long been regarded as annoying artefacts obscuring

the true behaviour of systems. However, these random fluctuations are now

considered to valuable for understanding quantum conductance and mea-

surement. Briefly, mesoscopic systems contain some scattering centres that

cannot be explained by the classical technique of averaging over all possible

configurations. Specific scattering configurations in the systems will manifest

as quantum mechanical interference.

This chapter outlines the theoretical results relating to conductance fluc-

tuations. According to these conductance fluctuations theories, a device

that is longer than the phase coherence length in the current direction ex-

hibits conductance fluctuations with universal amplitude at zero tempera-

ture. The fluctuations are analysed as functions of the magnetic field in a
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GaAs/AlGaAs split-gated heterostructure device. The aim is to determine

the dominant electronic phase breaking mechanism in the system.

5.1 Universal behaviour at T=0

The universal nature of conductance fluctuations was first reported by Alt-

shuler [97] and Stone [98]. Stone [98] numerical simulated the magnetore-

sistance of mesoscopically sized samples, and qualitatively reproduced the

aperiodic fluctuations in the fine structures. He concluded that this struc-

ture is universal in metal wires. He also found that the field-dependent

density of the structure was proportional to the area of the wire, indicating

interference among the electronic trajectories in the wire. As the simula-

tions and experiments are all performed in the highly conducting, diffusive

regime, the problem is solved by perturbation theory. Altshuler [97] used

the perturbation approach to calculate sample-to-sample variations, and Lee

and Stone [99] perturbed the chemical potential or magnetic field. The con-

ductance was found to fluctuate at the order of e2/h, independently of both

the degree of disorder and the sample size at zero temperature. Hence, the

conductance fluctuations were dubbed ’universal’. This university property

implies that fluctuations are not merely a finite-size effect, but reveal some-

thing fundamental about quantum transport.

The typical amplitude of the fluctuations as a function of energy or mag-

netic field can be characterised by the root mean square deviation of the

conductance:
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∆G = rms(G) = [var(G)]
1
2 (5.1)

At T = 0, Lee and Stone [99] found that

∆G = α
e2

h
(5.2)

where the factor α reflects a size dependence. In quasi-1D, 2D square samples

and 3D cubic samples, α = 0.729, 0.862, 1.088, respectively.

The origin of the aperiodicity may be understood as follows. Consider the

probability of propagating from one point to another in a disordered system.

There are many classical random-walk trajectories, each with its own ampli-

tude. Any two of these routes p and p′, have an arbitrary phase relationship,

and do not contribute the contribution to the interference. In a magnetic

field, these two routes form closed loops, acquiring an additional phase dif-

ference 2πφpp′/φ0 (where φpp′ is the flux enclosed by the loop,φ0 = h/e). The

interference term appears only when p = p′, but is negligible in a small mag-

netic field. However, if the sample is sufficiently small, then that one route

dominates the propagation probability; consequently, the interference terms

associated with this route become more important and are no longer neg-

ligible. In the metallic regime, many trajectories traverse the sample with

similar amplitudes, and stochastically interfere to yield a large fluctuation

effect. This suggests that fluctuations in the metallic regime are primarily

sourced from configuration changes in impurities, which arbitrarily alter the
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phases and cause chaotic interference. Indeed, the fluctuations are found to

be extremely sensitive to the changing chemical potential of impurities, as

when an impurity move through a small distance. This effect could reveal

the extremely slow diffusion of impurities, and may also originate the 1/f

noise [100].

The phase of a given impurity configuration, alters under an applied mag-

netic field. The field must induce a relative phase change of 2π. Beyond some

field correlation range, Bc, the phase correlations break. Assuming that a

typical pair of routes encloses the sample area, Bc is given by the field at

which the flux passes through the area with magnitude φ0 = h/e. Kaplan

and Harstein [101] confirmed this interpretation by demonstrating magne-

toconductance fluctuations in pinched channel MOSFETs. Because the in-

terfering routes finally have no fixed phase, the fluctuations in a magnetic

field will persist at higher fields, whereas the weak localisation contribution

is suppressed at relatively low fields.

A similar correlation length should exist for energy, Ec. If an energy

change simply changes the phase accumulated along a route, then the energy

change required for a random phase is related to the time required for the

particles to diffuse across the sample; that is, Ec ∼ hD/(L2
x), where D is the

diffusion constant.

The correlation ranges are characterised by the conductance correlation

function

F (∆E,∆B) = 〈δG(EF , B)δG(EF + ∆E,B + ∆B〉 (5.3)
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where δG = G(EF , B) − 〈G(EF , B)〉. Here, the angular brackets denote

the ensemble average. When ∆E = ∆B = 0, this function reduces to the

variance ∆G, and the correlation ranges Bc and Ec are the half widths of

F (∆E = 0,∆B) and F (∆E,∆B = 0), respectively. These quantities are

directly comparable with experimental data.

At T = 0, further analysis gives [102]:

Ec ≈
π2hD

L2
x

(5.4)

Bc ≈ 1.2× φ0

LxLy
(5.5)

where LxLy is the sample area exposed to the field.

Next, we explore whether the weak localisation behaviour will be masked

by amplitude fluctuations of order e2/h in G(B). In one and two dimensions

this is certainly possible, because in 1D, the maximum amplitude of the

average conductance at T = 0 (while quenching the weak localisation) is of

order e2/h in 1D, whereas in 2D, an extra logarithmic correction is required.

Thus, the strengths of the two effects should be comparable.

In four-terminal measurements, Büttiker [103] showed that the magnetic

field fluctuations are asymmetric around B = 0. They set the separation of

the voltage probes comparable to the phase coherence length, and considered

that the wavefunction also extended into the probes. The measured resis-

tance was symmetric around B = 0 after exchanging the roles of the current

and voltage leads. A two-terminal measurement also yielded a symmetric

result.
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5.2 Fluctuations at finite temperatures

The typical representation of quantum transport, based on the scaling the-

ory of localisation, applies up to phase coherence length Lφ; at larger length

scales, the transport dynamics follow the classical Boltzmann transport law.

At sufficiently high temperatures, Lφ becomes shorter than the sample di-

mensions, and the amplitude of the fluctuations depend on the temperature.

Within the spatial extent of Lφ, electrons propagate at an energy with a

defined phase, and interfere in a fixed, time-denpendent-manner, giving rise

to chaotic fluctuations and weak localisation effects.

Typically, some temperature dependence of var(G(Lφ)) is introduced by

energy averaging or thermal smearing of the energy levels of kBT . This

smearing will mix the uncorrelated energy levels in the sum of all routes.

The energy fluctuates on a scale of Ec = hD/L2. Therefore, the largest sys-

tem dimension in which the uncorrelated energies are not mixed by thermal

broadening is the thermal length, defined as LT = (hD/kBT )1/2.

The conditions for dimensional crossover are determined by the length

scales Lφ and LT . If Lφ < LT < L, the transport is typical quantum trans-

port or combined with classical transport, depending on the ratio of the chan-

nel width W (or Ly) to the phase coherence length Lφ. When LT < Lφ < L,

thermal self-averaging within the spatial extent of LT becomes important

as explanied in Lee et al [102]. If LT < L < Lφ, the temperature depen-

dence of the sample variance is caused only by energy averaging. If all of

the temperature-dependent lengths exceeds the sample dimensions, the be-

haviour matches that at T = 0.

For variance of G(T ) is given by
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∆G(T ) ∼ e2

h
LT
L

(
Lφ
L

) 1
2
, d = 1 and LT � Lφ < Lx (5.6)

∼ e2

h

(
LT
L

) 4−d
2 , d = 2, 3 and LT � Lφ < Lx (5.7)

∼ e2

h

(
Lφ
L

) 4−d
2
, d = 1, 2, 3 and Lφ � LT < Lx (5.8)

where Lx is the current direction. Other cases, such as Lφ > Lx are treated

in Altshuler and Khmelnitskii [104] and Lee et al [102].

The dimensionality of the fluctuations depends on LT , Lφ and on the

sample dimensions Ly(≡ W ) and Lz(thickness), as summarised below:

Transition When

3D → 2D Lz < LT , Lφ (5.9)

2D → 1D W < Lφ (5.10)

Note that Lφ is the relevant length in 1D even when Lφ > LT

In one dimension, the temperature dependence of the magnetic correla-

tion length is always determined by Lφ, and matches that at T = 0 until

Lφ < Lx. That is,

Bc(T ) ∼ 1.2× φ0
LφW

, Lφ < Lx (5.11)

∼ 1.2× φ0
LxW

, Lφ > Lx (5.12)

For narrow devices with W < Lφ < Lx, Lz, we have
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Bc(T ) ∼ 1.2× φ0

LminW
, W < Lφ < Lx, Lz (5.13)

where Lmin is the smaller of Lφ and LT .

In 2D and 3D samples, Bc is determined by a change in flux of order φ0

through the area defined by Lφ and LT (whichever is shorter):

Bc(T ) ∼ 1.2× φ0

L2
min

(5.14)

At the 1D-to-2D transition, the above equations are inconsistent for Lφ >

LT . Here, we must apply the aforementioned corrections to the asymptotic

dependences, and Bc(T ) will depend on both Lφ and LT .

The energy correlation ranges are obtained as:

Ec(T ) ∼ h
τφ
, d = 1 and LT < Lφ < Lx (5.15)

∼ kBT, d = 1 and Lφ < LT < Lx (5.16)

∼ kBT, d = 2, 3 and Lφ, LT < Lx (5.17)

The slow power law dependence of the fluctuation amplitude on tem-

perature, typically T−1/2 to T−1/4, suggests that the fluctuations are well

observable above T = 0.
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5.3 Fluctuations in GaAs/AlGaAs heterojunc-

tions

In this section, we analyse the conductance fluctuations in ourGaAs/AlGaAs

heterostructure. The 2D and 1D cases are investigated separately.

5.3.1 Fluctuations in 2D

The data were acquired from the device investigated in the previous two

chapters; namely a 2µm × 1µm split-gate on a 1200µm × 80µm Hall bar.

The conductance fluctuations were extracted from the magnetoconductance

data in the WL behavioural analysis. The over-filtered data (regarded as

the data with no fluctuations) was subtracted from raw data. The relation-

ship between the temperature dependence of the fluctuation variance and

Lφ(T ) (in both 1D and 2D) provides a useful tool to investigating the phase

coherence mechanism.

Figure 5.1 shows the conductance fluctuations at different temperature.

The traces clear vary among the temperatures. In general, the amplitude

of the trace decreases with increasing temperature, consistent with Eq. 5.7

and 5.8. In the previous two chapters, we found that the thermal dephasing

length exceeds the phase coherence length at temperature below 500mK.

This does not affect the temperature dependence because both the phase

coherence length and thermal dephasing length exhibit ∼ T−1/2 behaviour.

In such a long device (1200µm between the two probes, where the effective

length may be much shorter than 1200µm, but still exceeds tens of µm range)

universal fluctuations might not be expected. However, the classical self-
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Figure 5.1: 2D conductance fluctuation amplitudes obtained at different tem-
peratures. Each trace is offset by 1.5µS.

Figure 5.2: Log-log plot of 2D conductance variance versus temperatures.
The T−1/2 line is plotted for comparison.
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averaging increases very slowly with increasing sample size; namely ∆G ∼

e2/h(Lφ/L)(4−d)/2. In a typical device, this fluctuation constitutes a few

percent of the total data, and should be observable. Experimentally, the

approximate magnitude of the fluctuation agreed with this estimate.

From the previous section, we understand that the conductance variance

should equal the root mean square (RMS) value of the amplitude. The tem-

perature dependence of this conductance variance is plotted in Figure 5.2.The

data are well fitted to ∼ T−1/2 at higher temperatures, and deviate from this

law at lower temperatures. This curve is very similar to Figure 4.4, strongly

suggesting that the digamma function simulations are correct. Unfortunately,

the phase coherence length cannot be calculated exactly, because the effec-

tive length is unpredictable. Assuming that the phase coherence length was

correct estimated in the previous chapters, the present calculation implies

that the coherence length cannot exceed 20µm.

5.3.2 Fluctuations in 1D

One-dimensional fluctuations were investigated at split-gate voltages of−0.7V

and −1.1V on our sample device. Figure 5.3 displays the RMS variances of

the conductance at different temperatures and a split-gate voltage of −0.7V .

In Chapter 4, we found that at this split-gate voltage, the phase coherence

length exhibits ∼ T−1/2 behaviour at higher temperatures , because it ex-

ceeds the thermal dephasing length. Moreover, the channel width exceeds

the thermal dephasing length, so the 2D regime is recovered. The T−1/2

behaviour reappears in Figure 5.3, satisfying the WL fitting result. Beyond

800mK, the conductance variances are well fitted to the T−1/2 line.
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Figure 5.3: Log-log plot of 1D conductance variance versus temperatures at
−0.7V split-gate voltage. The T−1/2 line is also plotted for comparison.

From Eqs. 5.6 and 5.8, conductance variances are given by

∆G ∼ T−
1
2 LT > Lφ (5.18)

∼ T−
2
3 LT < Lφ (5.19)

Therefore, the temperature dependence of variance for 1D exhibits T−1/2

at lower temperatures and T−2/3 behaviour at higher temperatures. Fig-

ure 5.4 shows the variance-temperature relationship for the −1.1V split-gate

voltage. The data are properly fitted to the two regimes, but the phase co-

herence length was wrongly calculated, differing from WL-extracted result

by orders of magnitude. We surmise that the pre-processing of the amplitude
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Figure 5.4: Log-log plot of 1D conductance variance versus temperatures
at −1.1V split-gate voltage. The T−2/3 and T−1/2 lines are also plotted
for comparison. The correction from 2D (T−1/2) to 1D (T−2/3) transition
happens when Lφ > W , but will breakdown and recovered to 2D regime
when thermal dephasing length LT > W .

fluctuations was insufficient. Nonetheless, the magnitude discrepancy does

not affect the temperature dependence of the conductance variance.

In conclusion, the fluctuations observed in the GaAs/AlGaAs split-gate

device are consistent with accepted theories of quantum conductance in het-

erojunctions, although the devices are not ideal for investigating such effects.

The universal conductance fluctuations were consistent with the weak local-

isation results. The temperature dependence of conductance fluctuations

could provide another tool additional to WL analysis, for exploring dimen-

sional transitions in semiconductor devices.
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Chapter 6

Magneto-transport in

InGaAs/InAlAs

Heterojunctions

Indium-based material offer exciting prospects in quantum transport re-

search, on account of their relatively low effective mass, high g-factor and

large Rashba effect. Therefore, these materials have become extremely pop-

ular. The magnetoresistance behaviour of Indium-based material also have

been investigated by many different research groups [105–110]. Knap et al.

presented the magnetoconductivity measurements in InGaAs/InAlAs quan-

tum well, and had a good agreement between theories and experiments [106].

Koga et al. investigated the Rashba coefficient α in InGaAs/InAlAs quan-

tum well, and compared this α between theory calculations and experimental

values [107]. Hansen et al. [108]and gao et al. [109] both reported on the

magnetoconductance measurements in InAs nanowires. Hansen et al. [108]
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Figure 6.1: Shubnikov-de Haas oscillations at 0V top-gate voltage. The
oscillation yield a carrier concentration of 1.52± 0.1× 1011cm−2.

also investigated a crossover from weak localisation to weak antilocalisation

by controlling gate voltage. In this chapter, we investigate the magneto-

transport properties of the InGaAs/InAlAs heterojunction.

6.1 Transport in top-gate devices

The experimental devices were fabricated on an In0.75Ga0.25As/In0.75Al0.25As

heterojunction wafer encoded W402 which was grown by Dr.Ian Farrer in the

Cavendish Laboratory, University of Cambridge. The device was fabricated

with a global top-gate and Hall bar dimensions of 1200µm× 80µm. All the

experiments were performed in a 4He system with a base temperature of

1.5K.

Figure 6.1 shows the Shubnikov-de Haas oscillation at zero top-gate volt-
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Figure 6.2: Shubnikov-de Haas oscillations at top-gate voltages ranging from
−0.4V to 0.15V . The red trace highlights the zero top-gate voltage.

age. From these oscillations, the carrier concentration was estimated as

1.52± 0.1× 1011cm−2 and the mobility was 5± 0.2× 104cm2/(V · s). Figure

6.2 shows the Shubnikov-de Haas oscillation at various top-gate voltages (in-

cluding 0V ). An obvious crossing appears at magnetic fields between 4T and

7T . This crossing should originate from spin-orbit interactions, which are

expected in InGaAs/InAlAs heterojunctions. Figure 6.3 presents Fourier

transform spectra of the SdH data. The top-gate normally is designed as

micrometres shorter than the whole channel at both ends along the chan-

nel, thus there will always include a 2D region no matter what gate voltages

applied. This constant carrier concentration is also reflected in Fourier trans-

form spectra. The spectra also reveal two different conducting channels in the

device, designated α and β. Both channels exhibit two peaks at a top-gate

voltage of −0.4V , confirming spin-orbit interactions.
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Figure 6.3: Fourier transform spectra of SdH data at different top-gate volt-
ages.
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Figure 6.4: Fitting result of 2D magnetoresistance with a WAL effect. The
τSO is obtained by the fitting is 5ps.

The magnetoresistance was also measured at various top-gate voltages.

The resulting curves were fitted to digamma function including a spin param-

eter. Figure 6.4 displays the general fitting result at zero top-gate voltage.

The WAL feature is visible but not strong. The estimated phase coherence

length was 550 ± 10nm, and spin-orbit coherence time is 4 ± 0.1 × 10−12s.

This value is smaller than the one we get from GaAs/AlGaAs heterostruc-

ture (17ps). At negative top-gate voltages (lower density), the WAL feature

becomes weakened and eventually smeared out. This is predictable because

the top-gate breaks the structure inversion asymmetry of the device.

Next, we investigated the temperature dependence of the phase coher-

ence length. An unexpected result appeared even before the temperature-

dependence measurements began. The device presented a huge resistance

(as though non-conducting), and was revived only under one minute of full
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Figure 6.5: Shubnikov-de Haas oscillations in the device revived by illumi-
nation at top-gate voltages ranging from −0.1V to 0.7V . The red trace
highlights the zero top-gate voltage.

illumination. However, the illumination completely changed the device char-

acteristics. The SdH measurements of the device after flashing are shown in

Figure 6.5. From these oscillations, the carrier concentration was calculated

as 2.99± 0.1× 1011cm−2. The Fourier transform spectra of the post-flashing

SdH data are presented in Figure 6.6.

Figure 6.7 plots the result of temperature dependence of the phase co-

herence length at zero top-gate voltage. Here, we employed the digamma

function without a spin parameter is occupied because no obvious WAL fea-

ture appeared. The temperature dependence (T 1/2) is is consistent with the

2D regime.

We also studied the interaction effect of this device. Figure 6.8 shows the

result of fitting to log(T ), from which the screened Coulomb potential F was
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Figure 6.6: Fourier transform spectra of SdH data at different top-gate volt-
ages.
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Figure 6.7: Temperature dependence of phase coherence length. The T−1/2

regime is plotted for comparison.

determined as 0.362. This value indicating the interaction is weak compare

to the previous GaAs/AlGaAs heterostructure.

6.2 Transport in split-gate devices

The transport properties were measured in a In0.75Ga0.25As/In0.75Al0.25As

heterojunction wafer encoded W436. This wafer was also grown by MBE in

the Cavendish Laboratory, University of Cambridge. The dimensions of the

split-gate were 1µm × 5µm (L ×W ). All experiments were performed in a

dilution system at a base temperature of 35mK .

Figure 6.9 shows the Shubnikov-de Haas oscillations at various split-gate

voltages. The pinch-off voltage of this device was ∼ −2V . At higher split-

gate voltages, the oscillations fluctuated more randomly, so we limited the

118



Figure 6.8: Conductance versus temperature, with weak localisation
quenched. The curve is well fitted to ∼ ln(T ).

Figure 6.9: Shubnikov-de Haas oscillations at various split-gate voltages
(From bottom to top: 0V , −0.2V , −0.4V , −0.6V , −0.8V and −1V ).
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Figure 6.10: Fourier transform spectra of SdH data at different split-gate
voltages.

SdH measurement to low split-gate voltages. Figure 6.10 presents the Fourier

transform spectra of the SdH data. Only one channel appears at zero split-

gate voltage, but two channels exist at non-zero split-gate voltages. The

system reverts to one-channel at the split-gate voltage of near pinch-off of

the channel.

In these data, the positions (magnetic fields) of the oscillation minima

clearly vary, indicating magneto-depopulation of the Landau levels. Figure

6.11 plots the oscillation peak as a function of 1/B. As the split-gate volt-
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Figure 6.11: Oscillation peak versus 1/B at different split-gate voltages.
The y-axis which represents the peak index start from the 4T to lower field.
Only 4 sets of data which corresponds to different peaks are analysed, this
is because they are the only 4 peaks are visible in SdH.

age increases, the plots deviate from linearity, indicating broadening of the

Landau levels and also decrease of the carrier concentration.

The carrier concentration and mobility were calculated as 1.91 ± 0.1 ×

10−11cm2 and 4 ± 0.2 × 105cm2/(V · s), respectively. We also attempted

a digamma function fitting (see Figure 6.12). Note that the 2D digamma

function with the spin-coherence term (Eq. 2.36) is not applicable here for

two reasons. First, the WAL feature is not visible; second, Eq. 2.36 yielded a

worse fitting result than to the original digamma function. From the fitting,

the phase coherence length was determined as 590± 10nm.

We also measured this device at higher temperatures, but the data con-
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Figure 6.12: Fitting result of zero split-gate voltage at the base temperature
(35mK).

tinued to exhibit no WAL, and their quality was not improved. Because of

the poor data quality, no further WAL experiments were performed on the

current device. The InGaAs devices are useful for investigating spin-orbit

interactions, but there are no obvious WAL features to explore. There may

have two reasons of that: 1.the low value phase coherence length, that in-

dicating huge amount of scattering time inside the systems; 2.the structure

inversion asymmetry does not form well.
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Chapter 7

Conclusions and suggestions

The work fully investigated quantum interference and dimensionality transi-

tions in disordered group III-V systems. The magnitude and dimensionality

of the quantum interference correction is governed by the phase coherence

length Lφ. The transport will be taken into 1D from 2D if Lφ > W , where

W is width of the conducting channel. The disordered system can be divided

into three regimes: quasi-metallic, metal-to-insulator transition (MIT) and

insulating. The present study focused on the quasi-metallic regime. Through

measuring the magnetoresistance behaviour of group III-V heterostructure

devices at different split-gate voltage, and fitting the data with the theo-

retical equations, the phase coherent information of the devices can be ex-

tracted. The different temperature dependences of these phase coherent in-

formation represented the different dimensional regimes of the electron trans-

port. At low temperatures, the electron-electron scattering dominated, and

the Nyquist process is expected which predict the dimensionality transition

happens from Lφ ∼ T−1/2 dependence transform to Lφ ∼ T−1/3.

The background information was introduced in chapter 1, which gave a
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brief understanding of transport theory in low dimensional system at low

temperatures. Some reviews of electronic transport in disordered systems

was given in chapter 2. This emphasised the dimensionality dependences

of the different corrections, including the various criteria determining the

effective dimensionality in each case. Chapter 3 described the techniques

and procedures of sample fabrication, as well as a brief introduction of the

experimental instruments and set-ups.

In Chapter 4, the phase coherence information was extracted by inves-

tigating the weak localisation effect(Negative magnetoresistance) at various

temperature, the different temperature dependence regime of Lφ reflected the

dimensionality transition of transport. With the help of split-gate(QPC), it

was easy to achieve dimensionality transition in a 2DEG. Since a magnetic

field destroyed the electronic phase coherence required for quantum interfer-

ence, the magnitude of Lφ could be extracted from the measured low field

magnetoresistance in a dilution system. The Lφ was extracted by fitting

the 2D equation, and fitted with T−1/2 at temperature range T > 650mK.

As the split-gate voltage increased to −0.18V , the Lφ > W , and the data

fitted well with 1D equation, but the temperature dependence of Lφ was

still T−1/2. This was because at the temperature range T > 650mK, the

thermal dephasing length was still shorter than W at this split-gate voltage,

the 2D temperature dependence still governed. As the W became longer

than the thermal dephasing length, the 1D dependence showed up. The

1D dependence of Lφ ∼ T−1/3 happened at the split-gate voltage equalled

to −1.1V . These were all consistent with theoretical prediction. However,

a saturation of this dependence was found at temperature T < 650mK.
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This unexpected saturation was suggested that manifesting from spin-flip

scattering by magnetic impurities. Furthermore, a abnormal shoulder be-

haviour of magnetoresistance was observed as the split-gate squeezing. The

origin of these behaviour could be the interactions between smooth disor-

der or macroscopic defects in the material. The contribution to the phase

destruction from the Landau-Baber process was also investigated. A same

prefactor of the Landau-Baber term in both 2D and 1D was found, which

was expected because the dimensionality of this term was not set by thermal

dephaseing length, but by the density of states. The anti-localisation effect

was observed in 1D regime at 2K. A good fitting with theoretical equa-

tion was attempted. Since there might exist the spin-flip scattering inside

the system, it was not possible to distinguish the spin-orbit interaction from

spin-flip scattering term. The electron-electron interaction correction in both

2D and 1D were measured, and found the ∼ Ln(T ) and ∼ T−1/2 dependence,

respectively. The screened Coulomb potentials F were determined as 1.24 in

2D and 5.88 in 1D. Both of them were significantly large than the maximum

theoretical value 1, but many other authors had suggested that the value of

F could become very large as kF l drops.

The behaviour of the universal conductance fluctuations as a function of

temperature were also found and discussed in chapter 5. Using theories which

characterised the fluctuations in terms of Lφ and LT , the data was analysed

to determine the dominant phase breaking mechanism. The Nyquist result

was found in both 2D and 1D, giving an important confirmation of the earlier

conclusions, though the magnitude of the correction was different to theoret-

ically expected. The saturation of both dependences at lower temperature
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part was also observed.

The InGaAs/InAlAs interpreted the low-temperature transport phe-

nomena with spin-orbit interaction was experimentally investigated in Chap-

ter 6. The analysis of SdH and QHE were attempted in 3He system. The

positive magnetoresistance was observed and investigated in a top-gate de-

vice, and a spin-scattering time of 4±0.1×10−12s was determined. This value

was much smaller than 17ps which determined from GaAs/AlGaAs system

previously, indicating a stronger spin-orbit interaction happened. The in-

teraction effect was also investigated, and a screened Coulomb potential of

0.362 was extracted from the data. The magneto depopulation in a split-gate

InGaAs/InAlAs device was also investigated in this chapter.

However, several problems remain. In Chapter 4, the temperature de-

pendence of the phase coherence length deviated at lower temperatures (T <

650mK), possibly because of spin-flip scattering by magnetic impurities in

the fabricated device. Second, when the spin parameter participates in the

fitting process, it affects the estimated phase coherence length. Third, we

could not distinguish the WAL induced by spin-flip scattering from that of

spin-orbit interactions. Fourth, we should also study devices with lengths

shorter than the phase coherence length. Fifth, the origin of shoulder be-

haviour in magnetoresistance investigating still need to be found. Finally,

in Chapter 6, we could not observe the WAL in 1D transport in the split-

gate InGaAs heterostructure. These problem will be prioritised in future

experiments.

To comprehensively understand the quantum transport and electron be-

haviour at low temperatures, we should also investigate the MIT and insu-
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lating regimes.
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Appendix A

The growth structure of the

experimental wafers

GaAs/AlGaAs (W923)
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In0.75Ga0.25As/In0.75Al0.25As (W402):
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In0.75Ga0.25As/In0.75Al0.25As (W436):
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Appendix B

List of Notations

j Current density

σ Conductivity

E Electric field

ne Carrier density

e Elementary charge

τ Scattering time

µ Electron mobility

m∗ Effective mass of electrons

L Length of 2DEG

l Mean free path

D Diffusion constant

EF Fermi energy

ρ(E) Density of stats

vF Fermi velocity

τφ Phase coherence time

G Conductance

W Width of 2DEG

h Planck’s constant

Lφ Phase coherence length

ρxx Resistivity in transverse

direction

ρxy Resistivity in longitudinal

direction

ωc Cyclotron angular frequency

B Magnetic field

En Landau levels

~ Reduced Planck’s constant

g Laudé g-factor

µB Bohr magnetron

v Filling factor

f(E) Fermi-dirac distribution

kB Boltzmann constant
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Ec Carrier energy above con-

duction band

T Temperature in Kelvin

R Resistance

ξ localisation length

σB Boltzmann conductivity

kF Fermi wavevector

S Area of cross section

d Dimensionality

G(L) Conductance of sample

in length L

G(B) Boltzmann conductance

σ(L) Conductivity of sample in

length L

∆φ Phase difference between

coherent waves

Φ(x) Digamma function

τB Magnetic diffusion time

δG(B) Magnetoconductance

∆G(B) Conductance difference

at magnetic field B

Icoh Coherent fraction

δσ Magnetoconductivity

τSO Spin-orbit scattering time

τS Spin flipping time

F Screened Coulomb potential

τin Inelastic scattering time

τee Electron-electron scattering

time

τep Electron-phonon scattering

time

τN Nyquist rate

LN Phase coherence length in

in Nyquist mechanism

Lφ′ Phase coherence length in

phase breaking mechanism

τφ′ Phase coherence time in

phase breaking mechanism

LT Thermal dephasing length

V Voltage

I Current

VSG Split-gate voltage

λF Fermi wavelength

rms(G) Root mean square of

conductance variations

L(x) Length of sample in trans-

verse direction of 2DEG

L(y) Length of sample in longi-

tudinal direction of 2DEG

L(z) Length of sample in per-

pendicular to the 2DEG
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