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ABSTRACT:

Three-dimensional geospatial information is being increasingly used in a range of tasks beyond visualisation. 3D datasets, however,
are often being produced without exact specifications and at mixed levels of geometric complexity. This leads to variations within the
models’ geometric and semantic complexity as well as the degree of deviation from the corresponding real world objects. Existing
descriptors and measures of 3D data such as CityGML’s level of detail are perhaps only partially sufficient in communicating data
quality and fitness-for-purpose. This study investigates whether alternative, automated, geometry-based metrics describing the variation
of complexity within 3D datasets could provide additional relevant information as part of a process of fitness-for-purpose evaluation.
The metrics include: mean vertex/edge/face counts per building; vertex/face ratio; minimum 2D footprint area and; minimum feature
length. Each metric was tested on six 3D city models from international locations. The results show that geometry-based metrics can
provide additional information on 3D city models as part of fitness-for-purpose evaluations. The metrics, while they cannot be used in
isolation, may provide a complement to enhance existing data descriptors if backed up with local knowledge, where possible.

1. INTRODUCTION

Three-dimensional geospatial information (3D GI) is being in-
creasingly used in a large range of tasks beyond visualisation,
with an expectation of 3D capability both among specialist users
and the general public (Ellul and Wong, 2015). 3D GI offers
additional functionality not available in 2D, in particular when
analysing visibility, surface, sub-surface and shadowing (Zlatanova
et al., 2002). Other 3D specific applications include volumet-
ric calculations which allow for accurate assessment of build-
ing capacity as well as forest size (Rahlf et al., 2014; Vanegas
et al., 2012). 3D city models initially focused on visualisation
and geometry (Batty et al., 2000) rather than on its geometric-
topological structure (Gröger and Plümer, 2012). In recent years,
governments and councils around the world have been extend-
ing their 2D GIS implementations in cities to 3D (Albrecht and
Moser, 2010). The availability of open 3D city models has over-
come the cost barrier of data, allowing for many new applications
that can be supported by this technology. These datasets, how-
ever, are created in isolation, by different producers, and may be
created to a local specification for a specific purpose. This leads
to variations in the models’ geometric and semantic complexity,
as well as the degree of deviation from the corresponding real
world objects (Löwner and Gröger, 2016). Further inconsisten-
cies in these datasets may include: the choice of features mod-
elled; the level of geometric detail features are modelled at; the
level of semantics; the inclusion of textures; the choice of rep-
resentation; the file formats used and the delivery mechanisms
to potential users. Although applications such as environmen-
tal analysis (Ngo et al., 2014), navigation (Musliman et al., 2006)
and cadastre and land management (Jazayeri et al., 2014) increas-
ingly call for standardized 3D models with consistent topology,
many visually convincing datasets show weak or invalid geome-
try (Zhao et al., 2014). In practice, 3D city models focus on the
recreation of correct geometry and visual satisfaction, with little
to no consideration on attributes or semantics.

As 3D datasets vary intrinsically and extrinsically, there is a need
to be able to quantify and describe these datasets to users in or-
der to enable them to make informed choices where multiple 3D

datasets exist and for when selecting a dataset for a specific visu-
alisation or analytical task. Existing measures of 3D data such as
CityGML’s concept of level of detail (LoD) (Kolbe et al., 2005)
are perhaps only partially sufficient in fully communicating data
quality and fitness-for-purpose as the specification is not unam-
biguous (Biljecki et al., 2016). This allows for a high freedom
of interpretation resulting in potential inconsistencies and mis-
understanding. There is therefore a need to explore alternative
measures to describe complexity levels, which may allow users
to better assess the suitability of data for specific applications.

In this paper, two aspects of the problem are considered. Firstly,
alternative, automated and geometry-based metrics to analyse the
variation of complexity within 3D city datasets are investigated.
As a trusted source of 3D ground-truth data is often not available
for 3D city datasets, the descriptive metrics explored in this study
aim to operate without reference to validation data. Further, the
metrics are intended to be independent of any particular 3D for-
mat and should be applicable to any 3D boundary-representation
of building models. Secondly, the paper also investigates whether
automated metrics can better describe 3D data to users, provid-
ing additional information on the dataset and thus allowing for a
more effective assessment of fitness-for-purpose. The simplicity
of the metrics should ensure ease of understanding for the users.
The study also looks to understand if the above metrics are useful
in comparing different 3D city models.

2. BACKGROUND

2.1 3D city models and 3D representations

3D models can be represented in many ways from triangulated
meshes to simple extruded polygons to structured boundary 3D
models, but there is not a single data structure that works best
for all purposes and applications (Ohori et al., 2015; Stoter and
Zlatanova, 2003). Where one representation may excel in one as-
pect such as modelling curves, another may better represent and
manage 3D tunnels (Tuan, 2013). For 3D GI, boundary represen-
tation (BRep) is the most widespread representation, with many
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algorithms available for computing physical properties from that
representation (Haala et al., 1998). BRep defines spatial objects
by their bounding elements such as planar faces, with vertices
and edges defined by the intersection of the bounding planes.
Different methods can be used to create BRep models, from semi-
automated methods such as photogrammetry to manual modelling
based on computer-aided design (CAD) (Döllner and Buchholz,
2005). The methodologies vary in their aims where semi-automated
methods seek to produce large coverage datasets with least man-
ual effort, CAD-based modelling allows for much finer detail at
a smaller coverage. These different methodologies introduce dif-
ferent sources of errors and artefacts into the 3D data.

2.2 3D data quality

Data quality is defined by the degree to which a set of inher-
ent characteristics fulfils requirements (ISO, 2005). Specifically,
geographic information data quality is expressed by multiple el-
ements including completeness, logical consistency, positional
accuracy, thematic accuracy, temporal quality and usability el-
ement (ISO, 2013). As yet, no standard approaches to measuring
3D data quality have been developed, although 3D city models
are being produced worldwide at an increasing rate (Stoter et al.,
2016).

Existing methodologies in evaluating GI quality can be split into
two general approaches: extrinsic (comparison with external data);
and intrinsic (evaluation derived from the data itself). For extrin-
sic evaluations, Akca et al. (2010) assessed the geometric accu-
racy of the model generation process from LiDAR data, compar-
ing the generated models to a validation dataset. Haala and Kada
(2010) provides a state of the art review of 3D building recon-
struction methods identifying that the development of fully au-
tomatic algorithms is still required to overcome the considerable
manual operations. Cheng et al. (2015) proposed a framework
using a fuzzy realistic index to evaluate the visual and geometric
quality of 3D models. Haithcoat et al. (2001) examined geometric
fidelity by subdividing the model and verifications data into vox-
els to calculate omission (missing data) and commission (false
positives) within 3D datasets. Krämer et al. (2007) describes a
quality model for 3D city models by translating the six criteria
for 2D quality measurements: positional accuracy; completeness;
semantic accuracy; correctness; temporal conformance and; log-
ical consistency. These measures, while they may apply to 3D
in theory, cannot always be generated in practice. For 2D qual-
ity assessments, a verification dataset may be available from an
existing external source or collected using ground-based survey
methods. In comparison, an external 3D dataset may not exist
and to capture primary verification data in 3D is arguably more
difficult and time consuming. Methods comparing between ver-
ification and input 3D datasets to assess measures such as refer-
ence system accuracy, positional accuracy and completeness are
therefore not always possible in practice. On a more subjective
basis, Durupt and Taillandier (2006) provided a visual evaluation
of automatic building reconstruction methods, using an opera-
tional approach.

For intrinsic evaluations, Wagner et al. (2013a) explored 3D ge-
ometric quality and outline several metrics as part of the City-
Doctor tool including planarity, self-intersection, surface orien-
tation error and duplicated points. The tool and its validation
process provides an error report which is useful for healing in-
valid geometries but it does not provide a general statement on
the grade of compliance with data specifications or usability of
the model (Wagner et al., 2013a). Ledoux (2013) presented a
prototype methodology to validate individual solids according to
international standards for geographic information. The proto-
type is able to inform the user of the nature of the errors and of

their locations, but requires manual effort to modify and correct
the geometry. Alam et al. (2013) looked at validation and healing
of CityGML while similarly Zhao et al. (2014) developed a repair
framework for the geometric repair of CityGML models.

2.3 Level of detail, geometric and semantic complexity

Level of detail (LoD) is a term and concept adopted by a wide
range of disciplines, from building information modelling to com-
puter graphics, each with its nuances in its definition (Bolpagni,
2016). Within GIS, the concept is most commonly used in 3D
city modelling to represent different levels of geometric and se-
mantic complexity. A practical implementation is within the Open
Geospatial Consortium’s CityGML standard (Kolbe et al., 2005)
which uses five LoDs to indicate how much detail should be mod-
elled, ranging from simple 2.5D model of footprints to detailed
interiors (further details can be found in Löwner et al. (2013)).
It is important to note that the level of detail does not explicitly
convey data quality as defined by the ISO (2013). For example,
it is possible to have a LoD1 block model which is accurate and
a LoD3 model which is of poorer quality (Biljecki et al., 2015).
The current measures of level of detail, however, should not be
discounted entirely as they are still useful in the wider context of
data quality and within fitness-for-purpose evaluations. Descrip-
tors of geometric and semantic complexity can provide general
information from which quality-related knowledge may be de-
rived. Users can therefore assess the suitability of a dataset and
ascertain if it is able to satisfy the requirements of the user’s appli-
cation e.g. selecting LoD2 or higher if roof geometry is required.

Since its introduction, the concept of LoD has become increas-
ingly inadequate in communicating to users the geometric and
semantic qualities of 3D models in an unambiguous way (Bil-
jecki et al., 2014). Shortcomings specific to the CityGML stan-
dard include, but are not limited to, the coupling of indoor objects
with the highest LoD, lack of multiple indoor LoDs, lack of ex-
plicit representation of windows until LoD3 and the freedom of
interpretation at each LoD (Löwner and Gröger, 2016). Addition-
ally, many datasets may in fact consist of buildings at different
LoD, with modelling focus on important buildings (landmarks)
as opposed to suburban areas. It should be noted that efforts
are underway in refining and updating the CityGML standard for
version 3.0 to overcome these deficiencies (Benner et al., 2013;
Machl, 2013; Biljecki et al., 2016; Löwner et al., 2013; Löwner
and Gröger, 2016).

In summary, while some 3D data quality assessments may be au-
tomated, others may still contain manual elements which may
be laborious and time-consuming. Further problems include the
fact that detailed reference datasets might not be available yet at
a large scale for extrinsic data quality assessment (Elberink and
Vosselman, 2011). The remainder of this paper presents alter-
native, simpler, intrinsic and automated metrics for communicat-
ing the usefulness of a 3D dataset. The metadata or descriptors
could provide additional and supplementary quality-related infor-
mation which users could utilise within data selection processes
and fitness-for-purpose evaluations.

3. METHODOLOGY

3.1 Data

Six 3D city datasets were selected and presented in this study
(Figure 1). Due to the cost prohibitive nature of commercial 3D
datasets, the selection criterion was for the data to be freely avail-
able. The datasets include: 1) Berlin, Germany (Berlin Busi-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W1, 2016 
11th 3D Geoinfo Conference, 20–21 October 2016, Athens, Greece

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprs-annals-IV-2-W1-129-2016

 
130



ness Location Center, 2016); 2) Frankfurt1, Germany [city cen-
tre only2] (Stadtvermessungsamt Frankfurt am Main, 2016); 3)
Toronto, Canada (City of Toronto, 2016); 4) Washington D. C.,
USA (District of Columbia, 2016); 5) Adelaide, Australia (Ade-
laide City Council, 2016) and; 6) Rotterdam, The Netherlands
(Geemente Rotterdam, 2016). While it is recognised that this is
not an exhaustive list of 3D datasets available, the datasets were
generated using a variety of methodologies (see Table 1 for ref-
erences) providing a range of potential 3D modelling artefacts to
test the proposed metrics.

3.2 Metrics

Six metrics are investigated in this study: Mean number of ver-
tices/edges/faces per building (Metrics 1, 2 and 3); Mean number
of vertices per face (4); Frequency distribution of 2D footprint
area (5) and; Frequency distribution of feature length (6). The
metrics selected are intentionally simple to ensure ease of under-
standing by the user. The first three are simple geometry metrics
normalised by the total number of buildings to create three com-
plexity measures. They provide an indication of the detail and
complexity of the buildings within the dataset but are strongly de-
pendent on the architecture of the modelled area3. Mean number
of vertices per face metric provide an indication of the efficiency
of the vertices in modelling. For example if a representation can
define a building with fewer nodes without losing detail, then it
is more efficient. While it is relatively easy to understand and
could potentially identify representations with a large amount of
redundant vertices and collinear points, the metric is dependent
on the specific modelling process chosen. Lastly, two minimum
size metrics are included. Under a revised LoD specification for
3D building by Biljecki et al. (2016), the inclusion of minimum
size was suggested to help users identify the selection criteria for
objects to be acquired during modelling. Minimum size could be
defined by either the minimum footprint area or minimum feature
length. Both variations are implemented and tested in this study.
A mean value of each metric was also produced for each dataset
to provide a city-scale measure. Frequency distributions of the
minimum size metrics were also calculated.

3.3 Method

Each dataset was converted from its delivery format and stored
in an Oracle Spatial Database 11g using FME 2014 SP1. The
storage in a spatial database with a spatial index allowed for effi-
cient interrogation of the geometry at the city scale. It also pro-
vided consistency between datasets when querying the geometry.
Following conversion, a custom Java parser generated the met-
rics, storing the results back to the database. For the minimum
2D footprint, only the polygon representing the ground surface
was evaluated. Where datasets were structured as CityGML, the
elements were differentiated as Roof Surface, Wall Surface or
Ground Surface allowing for simple extraction. For the remain-
ing datasets, a parser extracted 2D footprints from the 3D models.
Finally, for minimum feature length, a parser decomposed every
feature into an edge component to calculate its length and was
stored with the building identifier in an output table. The min-
imum value was then extracted for each building to provide the
shortest 3D length of each building.

1This dataset was obtained free of charge from the Frankfurt Univer-
sity of Applied Sciences for purposes of research.

2The City Surveying Office of Frankfurt has a maximum data size
limit of 10km2 for the 3D city model. Therefore, only the city centre was
evaluated in this study

3For example, there are areas with complex buildings that require
more faces to be modelled, while other areas may contain simple build-
ings in which a simple representation is sufficient and additional geometry
does not pertain to additional detail.

3.4 Validation of method and potential sources of error

Zhao et al. (2014) identifies four main sources of error within 3D
city models: 1) choice of modelling tools; 2) model optimiza-
tion; 3) conversion; 4) and semantics editing. As the datasets
were converted and stored into an Oracle spatial database, it was
important to ensure that additional geometry errors were not in-
troduced into the data during the database conversion process.
There may be, however, errors inherent in the data derived from
any conversion processes carried out by the data producer e.g.
conversion from CAD models. The validation of the data con-
version process ensures that any subsequent errors discovered
within the data is not related to the database conversion. A vertex
count, edge count, face count and coordinates comparison was
conducted on samples of each of the six datasets, before (in the
native format as delivered) and after the conversion process, to
ensure there was no loss of information, distortions or artefacts.
The process of storing into the Oracle spatial database filters out
any invalid geometries, excluding them from analysis.

4. RESULTS

The focus of all six datasets was predominantly on geometric de-
tail. Where attributes were present, they may have been incom-
plete or inconsistent. The geometric detail focused on detail of
roof surfaces rather than façade detail – none of the six datasets
sampled contained representations of windows or doors. This
may have been due to the use of airborne data acquisition meth-
ods as all six datasets employed aerial photography, LiDAR or a
combination of both to create the 3D city models. Some inconsis-
tencies were found when processing the geometry. For example,
where buildings were composed of multiple polyhedrons using a
parent-child identifier relationship (e.g. GML PARENT ID and
GML ID), there were instances where the parent identifier was
mislabelled or omitted. This lead to omission or commission er-
rors when analysing a building as a single entity. The results of
the metrics analysis are presented below (Tables 1 & 2).

5. DISCUSSION

In this study intrinsic, automated, geometry-based metrics were
analysed. This is because: 1) there is a lack of external, ground-
truth 3D data; 2) assessing data at a city wide coverage is labo-
rious and time-consuming and; 3) existing 3D datasets focus on
geometry, with incomplete or no attributes.

The metrics described in section 3 were developed in absence of
any ground-truth data for 3D and relied solely on the interroga-
tion of the geometry. The aim was to investigate whether these
automated, geometry-based metrics could provide users with ad-
ditional relevant information as part of the fitness-for-purpose
evaluation. These metrics are city-wide in coverage, rather than
focusing on individual geometry and are descriptive.

It is important to note that the metrics are not direct measures of
data quality but rather geometry-based characteristics useful for
fitness-for-purpose evaluations (similar to level of detail). Sec-
ondly, these metrics cannot be viewed in isolation and should be
inspected relative to each other. Their utility is enhanced when
evaluated in conjunction with local knowledge of the architecture
and an understanding of the wider context of the city model. For
example, ascertaining the total number of vertices of a 3D city
model does not provide much information, but the size of geo-
graphic area covered and the total number of buildings provides
context required for interpretation. Thirdly, the metrics are nor-
malised by the total number of buildings to a notionally common
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City name Adelaide Frankfurt (city
centre) Washington, D.C. Rotterdam Toronto Berlin

Year created 2015 2009 2015 2011 2015 2009

Formats available Autodesk 3DS CityGML

Spreadsheet, Google
Earth KMZ/KML,
ESRI 3D Shapefile,

API

CityGML

Shapefile, ESRI File
Geodatabase,

MicroStation files,
AutoCAD

ESRI PolygonZ,
Google Earth

KML/KMZ, CityGML,
Autodesk DXF,
Autodesk 3DS

Total disk size
(format)

158MB without
textures; 2.3GB with

textures (3DS)
123 MB (CityGML)

559 MB (ESRI
Shapefile)

2.58 GB without
textures; 5.79 GB with

textures (CityGML)

289 MB (ESRI File
Geodatabase)

15.2 GB (CityGML)

Geographic area
covered 15.18 km2 3.3 km2 177 km2 330 km2 709 km2 890 km2

Method of
reconstruction

Imported from
Autodesk 3ds max
models. Additional

buildings are included
from development

application
submissions (Adelaide

City Council, 2009)

Reconstruction with
parametric shapes from
LiDAR based on cell
decomposition (Haala

and Kada, 2010)

CyberCity 3D using
Visual Star,

CC-Modeller and
CCEdit (CAD system
for 3D city models)
(Gruen and Wang,

1999)

Automatically using
the BAC (Basic
Addresses and

Buildings) and the
height Rotterdam file
that was created with
the FliMAP system

(Maas and Vosselman,
1999)

Computer-aided design
and drafting software
using building permits
and air photography

(Toronto City Planning
Division, personal

communication, 9th
September 2015)

Reconstruction with
parametric shapes from
LiDAR based on cell
decomposition (Kada,

2009; Kada and
McKinley, 2009)

Number of buildings 4,569 10,588 51,886 181,686 397,602 537,208

Total no. of vertices 932,142 245,455 4,408,678 4,894,975 10,917,879 10,553,991

Total no. of edges 2,445,284 365,862 7,259,299 7,761,599 21,787,065 15,811,582

Total no. of faces 1,505,950 143,284 2,762,051 2,548,795 3,546,117 6,411,443

Mean no. of vertices
per building 204.014 23.182 84.969 26.942 27.459 19.646

Mean no. of edges per
building 535.19 34.554 139.909 42.72 54.796 29.433

Mean no. of faces per
building 329.602 13.533 53.233 14.029 8.919 11.935

Mean no. of vertices
per face 0.619 1.713 1.596 1.921 3.079 1.646

Table 1. Summary of the 3D datasets and metrics

City name Adelaide Frankfurt (city
centre) Washington, D.C. Rotterdam Toronto Berlin

Frequency distribution of 2D footprint area

0 to 1 m2 0.59% 0.03% 0.21% 0.02% 0.00% 0.00%

1 to 10 m2 1.44% 7.84% 5.31% 24.24% 0.02% 3.09%

10 to 100 m2 0.74% 48.74% 23.79% 60.20% 0.16% 58.70%

100 to 1,000 m2 60.82% 42.26% 58.98% 13.96% 83.16% 35.96%

1,000 to 10,000 m2 35.65% 1.11% 11.28% 1.51% 16.05% 2.19%

10,000+ m2 0.74% 0.02% 0.42% 0.07% 0.60% 0.05%

Frequency distribution of minimum feature length by percentage of buildings

0 to 1m 89.10% 39.70% 73.10% 71.90% 85.90% 28.30%

1 to 5m 10.70% 49.90% 26.10% 25.60% 13.90% 59.50%

5 to 10m 0.20% 9.70% 0.70% 2.50% 0.20% 11.20%

10+ m 0.00% 0.80% 0.00% 0.00% 0.00% 1.00%

Frequency distribution of minimum feature length under 1m by percentage of buildings

0 to 0.2m 51.90% 14.20% 23.50% 62.40% 25.10% 11.90%

0.2 to 0.4m 25.30% 8.40% 25.20% 4.20% 31.30% 5.60%

0.4 to 0.6m 6.90% 7.60% 12.60% 2.20% 17.10% 4.70%

0.6 to 0.8m 2.60% 5.10% 7.10% 1.50% 8.10% 3.40%

0.8 to 1m 2.50% 4.40% 4.70% 1.60% 4.30% 2.70%

Absolute count and proportion of buildings with at least one edge <0.5m

# with at least one
edge <0.5m 3,745 2,862 29,055 123,209 71,008 107,651

% with at least one
short edge 82% 27% 56% 68% 18% 20%

Frequency distribution of edge <0.5m count by percentage of buildings

1 0.60% 0.00% 8.30% 1.20% 0.00% 0.30%

2 to 10 11.10% 19.20% 29.50% 46.90% 11.20% 13.10%

11 to 100 45.20% 5.10% 17.00% 18.90% 6.60% 6.00%

101 to 1000 22.90% 2.70% 1.20% 0.80% 0.00% 0.50%

1000+ 2.20% 0.10% 0.00% 0.00% 0.00% 0.00%

Table 2. Frequency distribution of the minimum size metrics
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Figure 1. Excerpts of the six datasets (clockwise from top-left: Adelaide, Berlin, Frankfurt, Rotterdam, Toronto and Washington D.C.)

scale. The metrics could also be normalised by other geomet-
ric attributes such as volume or size of footprint area but these
are not investigated in this study. Lastly, the metrics are depen-
dent on local architecture thus comparison between multiple 3D
datasets from different locales is not possible.

5.1 Simple geometry metrics

The simple geometry metrics (mean number of vertices/edges/faces
per building) provide an indication of detail and complexity of
the buildings with a dataset. All three measures indicate a similar
pattern in the results. Specifically, the mean number of vertices
per building measure reveals Adelaide (204.014) and Washing-
ton D.C. (84.969) have significantly higher values than any of
the other datasets. Referring back to the method of generation in
Table 1, the high values are most likely attributed to the choice
of CAD-based modelling tools. One exception from this is the
Toronto dataset which, while created using CAD-based software,
has a relatively low mean number of vertices per building. This is
due to the dataset being composed of predominantly LoD1 block
buildings. As suggested by Zhao et al. (2014), to produce visu-
ally satisfying 3D models with the least effort, interactive mod-
elling tools can be used to shape the appearance of models. The
freedom these tools provide, however, may lead to error-prone
meshes (Botsch et al., 2010) which can contain excessive and re-
dundant detail. A 3D city model with a high number of vertices
per building could affect the subsequent 3D spatial analyses. A
trade-off must be made between the adequacy of 3D detail, the
visual impact of the resulting 3D dataset, the suitability of the
response times and the overall usability of the 3D model (Ellul
and Altenbuchner, 2014). For example, within the application of
3D noise mapping, Deng et al. (2016) argues that having more
detailed and complex geometry is, in fact, not beneficial.

The mean number of vertices per face metric was intended to
provide a measure of efficiency and detail in a model where the
lower the ratio, the less efficient the model. For example, it is

possible for a building model to have a large amount of vertices,
and therefore seemingly more detail, but for these vertices to
provide no additional information. The extra vertices could be
collinear points which are therefore redundant within the repre-
sentation. With this measure, Adelaide presents the lowest score
(0.619) which could, on first inspection, be a result of the super-
fluous complexity introduced by CAD modelling tools, indicating
a lack of efficiency. However, Washington D.C.’s score (1.596)
is in line with other, non-CAD software generated datasets pos-
sessing a value between 1.59 and 1.91. This metric is dependent
on both the local architecture and the specific modelling process
chosen. The metric may be more effective and provide more util-
ity if measured as a frequency distribution rather than as a nor-
malised, single value, city-wide metric.

5.2 Minimum size metrics

Two interpretations of minimum size were investigated in this
study: minimum footprint area and minimum feature length. Both
metrics, however, had issues when calculating a single city-wide
value. Errors within the modelling process from small parcels
and short edges meant that values generated were not represen-
tative e.g. very small <0.001m or null values. The frequency
distribution for both measures was therefore investigated.

Minimum footprint area was proposed to provide an indication
of the smallest 2D area a dataset was modelled at. Table 2 shows
the frequency distribution of 2D footprint area of all six datasets.
The metric works well for clean datasets. For example, 99.82%
of buildings in the Toronto dataset were above 100m2 in foot-
print area. A user could therefore identify and define the min-
imum size modelled to be 100m2. Upon manual inspection of
the remaining 208 buildings that were less than 100m2, only two
buildings (both under 0.005m2 in area) represented digitisation
or modelling errors. Of the six datasets, Rotterdam registered the
largest proportion of 1 to 10m2 buildings (24.24%). These were
composed of small buildings or shed-like subsidiary structures,
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which were attributed with its own unique parent building iden-
tifier (Figure 2). These may also be shared features between two
separate buildings e.g. a shared entrance. Further inspection into
the 44,078 features in the Rotterdam dataset of buildings with
footprints less than 10m2 in area showed that 929 (2.1%) shared a
common boundary with two or more buildings with an area 10m2

or larger. The ambiguity in assigning building parent identifiers
for shared features in this instance has rendered the metric less
effective. Additional work is required to identify and quantify
whether these features are standalone, small, subsidiary struc-
tures or misattributed components of a larger building. There is
also a need in future standards to explicitly define the consistent
handling of shared building parts and the subsequent assignment
of the parent building identifiers. This is a practical demonstra-
tion of the requirement for semantic checks on the relationship
between building and building parts as described by Wagner et al.
(2013b). In summary, the metric is useful in revealing the min-
imum dimensions of a modelled feature if the data is relatively
clean and consistent, but by assessing the frequency distribution,
it is useful for identifying inconsistencies and errors derived from
the modelling process.

Figure 2. Shared features such as overhangs found in Rotterdam
with its own unique parent identifier

Figure 3. An example of short edges in Adelaide dataset

Table 2 shows the frequency distribution of minimum feature
length across the six datasets. In this study, the metric is defined
as the shortest edge length of any 3D edge of each building. With
the exception of Berlin and Frankfurt, over 70% of the build-
ings in the other datasets contained at least one edge of between
0 and 1m in length. Further inspection at the frequency distri-
bution between 0 and 1m of the minimum feature length shows
that Adelaide (51.9%) and Rotterdam (62.4%) have a very large
number of very short edges of up to 20cm long. The sources
of these short edges include: the method of building reconstruc-
tion (e.g. manual, automatic or semi-automatic); the choice of
modelling tools e.g. CAD modelling; derived detail from 2D
footprint; straight line representation of curved surfaces or; er-
roneous short edges (e.g. from collinear points). Regardless of
the source, the presence of these short edges vastly increase the
computation load required to store, visualise and analyse these

Figure 4. Curved surfaces represented by multiple short straight
segments in Rotterdam

datasets. An absolute count of short edges (defined as any edge
with a length less than 0.5m) was conducted for every building
(Table 2). It can be see that both Adelaide (82%) and Rotter-
dam (68%) have a large proportion of buildings with at least one
short edge. Toronto (18%) and Berlin (20%) contain the fewest
buildings with at least one short edge. Deconstructing it further,
it shows that 70.3% of buildings in Adelaide possess 11 or more
short edges and almost half (46.91%) of buildings in Rotterdam
have between two to ten short edges. It must be noted, how-
ever, the sources of these short edges are different. For Ade-
laide, the short edges are derived from the choice of modelling
tools as the dataset was created from Autodesk 3ds max mod-
els (Figure 3). For Rotterdam, the high frequency of short edges
was due to a large number buildings with curves represented as
multiple short, straight segments (Figure 4). This is an inherent
inadequacy of BRep models. For example, although CityGML
contains an abstract class for curves, features composed of multi-
ple curves are not recommended within the modelling guidelines
(SIG3D, 2014). Similarly, Oracle Spatial is able to store MUL-
TICURVE, but this was not used in order to not distort or alter
the original geometry prior to analysis. It is therefore important
to consider the local architectural style when choosing the 3D
representation used to model the area.

The poor attribution of building parts to buildings and artefacts
of the creation process that exist within the datasets biased the
metric, making it difficult to use and interpret. It does, however,
allow users to identify models which may be overly complex due
to a proliferation of short edges within its representation. These
redundant short edges renders the datasets larger than necessary,
without providing additional detail and therefore less efficient to
use. Further work is required to clarify and define minimum fea-
ture length as an indication of the lowest level of modelling as it
is not possible to calculate a metric retrospectively. Alternative
definitions of feature lengths could be considered, such as the di-
agonal of the minimum bounding rectangle and require further
investigation.

5.3 Applying the metrics in practice

The metrics can provide potential users with an indication of the
complexity and usefulness of the dataset to an extent, but they
cannot be viewed in isolation. A certain level of expert and local
knowledge, if available, is therefore required on the part of the
user to interpret the metrics. The approach in modelling of the
buildings also highly impacts the interpretation of these metrics.
Where one data producer may model aggregated buildings as one
building, another may model as multiple, individual buildings.
The metrics may be useful for comparing between multiple 3D
datasets of the same area, but cannot be easily compared to other
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areas due to architectural variation. Beyond the users, these met-
rics could allow data producers to compare geometric qualities
between different iterations of the same 3D dataset produced.

5.4 Recommendations and future work

Several recommendations arise from this study. Firstly, the in-
corporation of simple geometry measures within metadata could
provide better contextual information for potential users when
carrying out fitness-for-purpose evaluations. Secondly, explo-
rations into existing 3D city models shows in practice that there
is a need for clearer and less ambiguous 3D specifications and
detailed clarification in exception cases such as shared building
parts. Thirdly, there is a need to consider the impact of the choice
of modelling tools on visual satisfaction and the performance of
a model. There is a need to quantify and communicate if a 3D
model is better suited for visualisation or analysis purposes.

Further work is required in identifying and quantifying the differ-
ent sources of 3D error utilising a larger sample set. The metrics
investigated in this study focused on BRep models. Additional
work on the potential application of the metrics to different forms
of data such as voxels and point clouds is required. Other geome-
try measures could also be investigated, such as minimum height,
minimum bounding volume, the ratio between roof and ground
vertices, and assessing surface normal vectors. Investigating the
spatial variation of geometric complexity and of the other met-
rics may also be of use. Exploring existing algorithms and 3D
data quality measures from other fields such as geometry pro-
cessing could avoid duplication of effort. Testing the usability of
the metrics with real users could also be of benefit.

6. CONCLUSION

This study provides an alternative and automated approach in de-
scribing the variation of complexity within 3D city models in the
absence of ground-truth data. It demonstrates that a wealth of in-
formation can be derived and extracted solely from the geometry,
providing additional information on the 3D city models relevant
to the users as part of a process of fitness-for-purpose evalua-
tion. These metrics, although they cannot be used in isolation,
may provide a complement to enhance existing data descriptors
if backed up with local knowledge, where possible. Further work
is required on quantifying sources of 3D error and continued im-
provement in data quality assessment methods.
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Gröger, G. and Plümer, L., 2012. CityGML - interoperable se-
mantic 3D city models. ISPRS Journal of Photogrammetry
and Remote Sensing 71, pp. 12–33.

Gruen, A. and Wang, X., 1999. CyberCity Modeler, a tool for
interactive 3-D city model generation. In: Photogrammetric
Week, Vol. 99, pp. 317–327.

Haala, N. and Kada, M., 2010. An update on automatic 3D build-
ing reconstruction. ISPRS Journal of Photogrammetry and Re-
mote Sensing 65(6), pp. 570–580.

Haala, N., Brenner, C. and Anders, K.-H., 1998. 3D urban GIS
from laser altimeter and 2D map data. International Archives
of Photogrammetry and Remote Sensing 32, pp. 339–346.

Haithcoat, T. L., Song, W. and Hipple, J. D., 2001. Build-
ing footprint extraction and 3-D reconstruction from LIDAR
data. In: Remote Sensing and Data Fusion over Urban Areas,
IEEE/ISPRS Joint Workshop 2001, IEEE, pp. 74–78.

ISO, 2005. ISO 9000 Quality management systems – fundamen-
tals and vocabulary. Standard, International Organization for
Standardization.

ISO, 2013. ISO 19157 Standard: Geographic information – data
quality. Standard, International Organization for Standardiza-
tion.

Jazayeri, I., Rajabifard, A. and Kalantari, M., 2014. A geometric
and semantic evaluation of 3D data sourcing methods for land
and property information. Land Use Policy 36(0), pp. 219–230.

Kada, M., 2009. The 3D Berlin project. In: Photogrammetric
week, Vol. 2009, pp. 331–340.

Kada, M. and McKinley, L., 2009. 3D building reconstruction
from LiDAR based on a cell decomposition approach. Int.
Arch. Photogramm. Remote Sens. Spat. Inf. Sci 38, pp. W4.
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