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ABSTRACT 

The trace element compositions of inclusions in sub-lithospheric diamonds from the Juina-5 kimberlite, Brazil, are 

presented. Literature data for mineral/melt partition coefficients were collated, refitted and employed to interpret 

inclusion compositions. As part of this process an updated empirical model for predicting the partitioning behaviour of 

trivalent cations for garnet-melt equilibrium calibrated using data from 73 garnet-melt pairs is presented. High levels of 

trace element enrichment in inclusions interpreted as former calcium silicate perovskite and majoritic garnet preclude 

their origin as fragments of an ambient deep mantle assemblage. Inclusions believed to represent former bridgmanite 

minerals also display a modest degree of enrichment relative to mantle phases. The trace element composition of ‘NAL’ 

and ‘CF phase’ minerals are also reported. Negative Eu, Ce, and Y/Ho anomalies alongside depletions of Sr, Hf and Zr in 

many inclusions are suggestive of formation from a low-degree carbonatitic melt of subducted oceanic crust. Observed 

enrichments in garnet and ‘calcium perovskite’ inclusions limit depths of melting to less than ~ 600 km, prior to calcium 

perovskite saturation in subducting assemblages. Less enriched inclusions in sub-lithospheric diamonds from other global 

localities may represent deeper diamond formation. Modelled source rock compositions that are capable of producing 

melts in equilibrium with Juina-5 ‘calcium perovskite’ and majorite inclusions are consistent with subducted MORB. Global 

majorite inclusion compositions suggest a common process is responsible for the formation of many superdeep diamonds, 

irrespective of geographic locality. Global transition zone inclusion compositions are reproduced by fractional 

crystallisation from a single parent melt, suggesting that they record the crystallisation sequence and melt evolution 

during this interaction of slab melts with ambient mantle. All observations are consistent with the previous hypothesis that 

many superdeep diamonds are created as slab-derived carbonatites interact with peridotitic mantle in the transition zone.  

Keywords: sub-lithospheric diamonds, trace elements, melts, subduction, transition zone, carbon cycle 

HIGHLIGHTS 

• The trace element composition of inclusions in sub-lithospheric diamonds from the Juina-5 

kimberlite are reported 

• An updated empirical model for the partitioning of trivalent cations between garnet and melt 

is presented 

• High levels of enrichment, Ce, Eu and Y/Ho anomalies and depletions of Zr, Hf and Sr observed 

in Juina-5 inclusions demonstrate they crystallised from slab-derived melts 

• Global transition zone inclusions appear to record the fractional crystallisation sequence of 

slab melts 
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1. INTRODUCTION 

Diamonds, and the mineral inclusions they trap during growth, are pristine samples from the mantle 

that reveal processes in the deep Earth. Whilst the majority of diamonds originated in the lithosphere 

(Stachel et al., 2005) some, known as sub-lithospheric or superdeep diamonds, have been exhumed 

from asthenospheric depths extending throughout the transition zone and into the lower mantle (see 

Harte, 2010 for a recent review). Such samples provide a unique insight into mantle geodynamics on 

a small length-scale that is highly complementary to spatial information gained using seismic 

techniques (e.g. Chang et al., 2015). 

Studies of superdeep diamonds have generally categorised samples by associating observed inclusion 

assemblages with paragenesis in either ultrabasic (metaperidotite) or basic (metabasite or eclogitic) 

protoliths. Mostly these associations, or ‘mineral facies’, have been defined by comparing the 

observed inclusion mineralogies with experimental phase diagrams for high pressure pyrolite or 

eclogite bulk compositions (e.g. Harte, 2010). Using this approach, diamonds containing inclusions of 

MgSiO3, and/or CaSiO3 coexisting with (Mg,Fe)O are categorised as ultrabasic lower mantle samples 

(e.g. Davies et al., 2004a; Harte et al., 1999; Hayman et al., 2005; Stachel et al., 2000b), whereas 

those containing (Mg,Fe)(Si,Al)O3, Ca(Si,Ti)O3, SiO2 and (Na,K)(Mg,Fe)2Al5SiO12 inclusions would be 

described as lower mantle metabasite (e.g. Thomson et al., 2014; Walter et al., 2011). For samples 

containing garnet inclusions, diamond paragenesis has commonly been categorised as 

metaperidotitic (either harzburgitic or lherzolitic) or metabasic, primarily on the basis of CaO and 

Cr2O3 contents (e.g. Bulanova et al., 2010; Stachel, 2001; Stachel et al., 2000a). Diamonds containing 

inclusions of olivine stoichiometry have always been associated with metaperidotite bulk 

compositions. However, inclusions that do not fit neatly into either association have been observed, 

which led to the expansion and creation of the ‘carbonatitic’ (Kaminsky, 2012) and/or ‘Ca-rich’ 

association (Brenker et al., 2005; Harte and Richardson, 2012; Zedgenizov et al., 2014).  

It has been widely recognised that major element compositions of many sub-lithospheric inclusions 

do not match those expected from experiments on mantle or subducted protoliths, and that some 

degree of melt metasomatism likely occurred during their formation in order to explain this 

mismatch (e.g. Bulanova et al., 2010; Harte, 2010; Harte et al., 1999; Harte and Hudson, 2013; Moore 

et al., 1991; Stachel et al., 2000a; Thomson et al., 2014; Walter et al., 2011; 2008). For instance, 

Stachel et al. (2000b) invoke at least one episode of metasomatism “associated with carbonatites” to 

explain the enrichment of LREE coupled with Ba and Nb depletions observed in Ca-rich majoritic 

garnet inclusions in Kankan diamonds. Walter et al. (2008) interpreted the extreme enrichment of 
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calcium silicate inclusions (interpreted as former perovskite) as an indication they crystallised from a 

“low-degree, primary carbonatite melt derived from deeply subducted crust”, rather than trapped 

fragments of the ambient subsolidus mantle. Harte (2010) also suggested a similar model of diamond 

growth from slab fluids or melts based on the coincidental relationship between diamond inclusion 

abundance and the depths of expected dehydration reactions. 

Unfortunately, the general idea that diamond-hosted inclusions are in some way representative 

fragments of the pristine ambient deep mantle persists (e.g. Kaminsky, 2012). Amongst other 

implications, it has followed from this approach that the presence of ferropericlase in diamonds has 

been interpreted as evidence for a lower mantle paragenesis (e.g. Davies et al., 2004b; Harte et al., 

1994; Hayman et al., 2005; Hutchison, 1997; Kaminsky, 2012; Kaminsky et al., 2009a; 2001; 2015; 

2009b; Wilding, 1990). Close comparison of inclusion and experimental ferropericlase compositions 

in specific cases have led to the interpretation that diamonds have been exhumed from depths 

spanning the entire lower mantle, including the D’’ layer above the core-mantle-boundary (e.g. 

Hayman et al., 2005; Wirth et al., 2014). However, both natural samples (Kopylova et al., 1997; 

Stachel et al., 2000b) and experiments (Brey et al., 2004; Thomson et al., 2016) demonstrate the 

stability of ferropericlase with a range of compositions in equilibrium with diamond throughout the 

upper mantle in regions of low silica activity.  

Kiseeva et al. (2016; 2013b) and Thomson et al. (2016) have recently demonstrated that many 

diamond-hosted majoritic garnet inclusions are neither ultrabasic or basic endmembers, despite their 

assignments based on CaO and Cr2O3 contents. Rather, they span a continuous compositional 

spectrum, and many samples have intermediate compositions. Whilst this could be evidence for a 

large reservoir of pyroxenite within the transition zone (Kiseeva et al., 2013b), it is more likely to be 

the consequence of interaction between metabasic and ambient mantle components (Thomson et 

al., 2016; Kiseeva et al., 2016). Indeed, experiments demonstrate that intermediate garnet 

chemistries, similar to inclusions, are generated during the reaction of MORB-derived carbonatite 

melts with ambient peridotite (Thomson et al., 2016). Slab-derived carbonatite melts are expected at 

transition zone conditions because the majority of subduction geotherms intersect a deep depression 

in the solidus of carbonated MORB between 400 and 600 km depth (Thomson et al., 2016). The 

chemical characteristics of ‘calcium silicate perovskite’ and ferropericlase inclusions were also 

reproduced by slab melt – mantle interactions. The role of subducted material in sub-lithospheric 

diamond formation is confirmed by their carbon and oxygen isotopic composition. Diamonds with 

light δ13
C and inclusions with heavy δ18

O values from Jagersfontein (Ickert et al., 2015), Juina-5, 
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Collier-4 and Machado River (Burnham et al., 2015b) provide unambiguous evidence of recycled 

crustal material. Additionally, the covariance of carbon and oxygen isotopic compositions between 

crustal and mantle reservoirs suggest diamond formation occurred during interaction of crustal- and 

mantle-derived sources (Burnham et al., 2015b). Thus, the melting of subducted oceanic crust and 

subsequent reaction of melts with the overlying mantle provides a unified petrological framework for 

explaining the generation of diamonds, their inclusion assemblages and isotopic signatures. The 

weight of evidence in support of such a model means that interpreting diamond inclusions as 

representative fragments of endmember mantle lithologies (e.g. primitive mantle peridotite or 

subducted MORB) is a fundamentally flawed approach and should be abandoned. In contrast, that 

data indicate that inclusions should be considered to represent different stages of a continuous 

chemical spectrum produced during interaction of recycled and mantle lithologies, often facilitated 

by the presence of a low-degree melt or fluid.  

This study examines the trace element chemistry of silicate inclusions in sub-lithospheric diamonds to 

evaluate whether their observed compositions are consistent with this reaction model of superdeep 

diamond formation. Trace element composition of mineral inclusions from Juina-5 diamonds 

previously studied by Walter et al. (2011) and Thomson et al. (2014) are presented. In these studies, 

the diamonds were polished from one direction on a jeweller’s wheel to expose one or more mineral 

inclusion on a flat surface, suitable for multiple types of analysis. Wavelength dispersive electron 

microprobe analysis was used to measure the major element chemistry of the inclusions, which was 

used to interpret their current and former mineralogy. The major element compositions of all 

inclusions studied here can be found in Walter et al. (2011) and Thomson et al. (2014). The carbon 

isotopic composition of the host diamonds was measured in several locations on each diamond by 

secondary ionisation mass spectrometery (SIMS), and are presented in Thomson et al. (2014). The 

inclusions in Juina-5 diamonds indicate exhumation from transition zone and/or lower mantle 

depths. Many composite inclusions, interpreted as former calcium silicate perovskite (Ca[Si,Ti]O3 

stoichiometry), bridgmanite, NAL phase, CF phase and stishovite alongside inclusions of partially re-

equilibrated majoritic garnet are studied. The host diamonds dominantly have light δ13
C values 

(Thomson et al., 2014), and inclusions have heavy δ18
O values (Burnham et al., 2015b), suggestive of 

crustal material. This sample suite is ideal for examining whether the trace element abundances 

observed in the inclusions are consistent with formation involving melts of recycled crust. 

Additionally, literature data has been compiled for the trace element compositions of majoritic 

garnet and former ‘calcium silicate perovskite’ inclusions in order to evaluate whether the melt 
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model of diamond formation can be generalised to global sub-lithospheric diamonds containing 

these inclusion types, or whether this process is specific to certain localities.  

2. METHODS 

2.1 SIMS ANALYSES 

The trace element composition of 23 mineral inclusions in 22 diamonds from the Juina-5 kimberlite in 

Brazil, were measured using SIMS. The samples were carefully cleaned following previous work, 

pressed flat into indium mounts and gold-coated for SIMS analyses using the Cameca IMS-4f 

microprobe at the Edinburgh Ion Microprobe Facility. For analyses a primary beam of 
16

O
-
 ions 

accelerated at ~ 11 keV (net 15 keV at the sample surface) was used with a sample current of ~ 2 nA 

to achieve an analysis spot of ~ 15 µm at the sample surface. Molecular ion transmission was reduced 

using a secondary ion accelerating voltage of 4500 V, offset by 75 eV. Analyses were performed in 

two consecutive routines containing the ‘light’ and ‘heavy’ elements respectively. Instrumental 

limitations prevented all desired elements being measured in one sweep. In each routine five sweeps 

of the desired masses were conducted, with the spectrometer position for each element manually 

adjusted during the first sweep of each sample. Several elements were analysed in both routines to 

ensure they were internally consistent. The data were reduced using custom in house software.  

Most of the Juina-5 samples are composite inclusions and consist of multiple component mineral 

phases. As far as practical, inclusions were analysed using a spot size to enclose the entire inclusion in 

order to achieve a ‘bulk analysis’, however some of the inclusions were too large to be analysed by a 

single spot. In these cases, multiple analyses were performed to assess the heterogeneity of the 

inclusions. Heterogeneity was also observed as a function of ‘depth’ in some inclusions, which is a 

consequence of changing proportions of coexisting composite phases beneath the inclusion surface. 

This was recorded by changing count rates between sequential mass sweeps.  

Calibration was performed using the silicate glass standard srm610 under identical operating 

conditions, as in similar previous studies (Bulanova et al., 2010; Walter et al., 2008). Precision is 

thought to be 10 % for all isotopes. Accuracy is < 10 % relative for REE, Ba, Sr, Nb, Zr and Y. Accuracy 

of Hf, Rb, Th and U is within 30 % relative (R. Hinton, personal communication). Background levels 

were estimated by counting on mass 130.5 (where there are no measured isotopes); all analyses 

falling below these levels were excluded. Unfortunately, our analytical session came near the end of 

a detectors life cycle, thus backgrounds were higher than normally achieved using SIMS. To improve 

detection limits for some inclusions, a second analytical session was performed after the detector 
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had been replaced. Data collected were normalised using the SiO2 content of each inclusion, as 

reported by Thomson et al. (2014).  

2.2 MINERAL/MELT PARTITION COEFFICIENTS 

To allow interpretation and modelling of inclusion compositions, mineral/melt partition coefficients 

(Di
min/melt

) are required. For some of the mineral phases of interest, e.g. bridgmanite (Corgne et al., 

2005; Hirose et al., 2004; Taura et al., 2001; Walter et al., 2004; Liebske et al., 2005) and calcium 

silicate perovskite (Corgne and Wood, 2005; 2002; Dalou et al., 2009; Hirose et al., 2004), there are a 

handful of experimental studies that report ��
��� ����⁄

, whereas there are no reported partition 

coefficients for NAL and/or CF phase. In contrast, many studies have investigated how trace elements 

partition between garnet and melt, allowing the effects of garnet chemistry, pressure and 

temperature on ��
��� ����⁄

 to be evaluated (e.g. van Westrenen and Draper, 2007). In order that the 

most appropriate suite of partition coefficients is used in this study we have collated and evaluated 

all experimental data from the published literature for ��
��� ����⁄

 in bridgmanite, calcium silicate 

perovskite and garnet (supplementary information). Data for trivalent (REE + Y + Sc) and quadrivalent 

(Th + U + Zr + Hf + Ti) cations from each literature experiment were fitted using a lattice strain model 

(Blundy and Wood, 1994). Fits were achieved using a Levenberg-Marquardt routine employed in 

MATLAB to determine D0, r0 and E (equation 1), assuming the ionic radii for each element (ri) in 8-fold 

coordination (Shannon, 1976). The lattice strain model relates the partition coefficient of element i 

(Di) with ionic radius ri to that of element o (D0), where the latter has the ionic radius of the 

crystallographic site size (r0). E is the Young’s Modulus of the site, NA is Avogadro’s number, R is the 

gas constant and T is the temperature in K. 

����, �, �� = ����, �, �� × ��	 
���������� 	
��
�����
�
	
��
���

�� � (eq. 1) 

In general, the lattice strain model produces good fits to the experimental data. In a few cases there 

is evidence of disequilibrium or large uncertainties in experimental partition coefficients, especially 

for the LREE in garnet and bridgmanite, which are the largest, the slowest diffusing and the least 

abundant cations (Shannon, 1976; van Orman et al., 2002). The results for bridgmanite and calcium 

perovskite reveal some scatter between different studies that is partially explained by variations in 

mineral chemistry, but much of which is assumed to be caused by experimental and analytical 

uncertainties. Rather than simply choosing the results of one study over the others with little 

justification, subsets of the experimental data for bridgmanite and calcium silicate perovskite were 

combined and refitted. This process should reduce the uncertainty in partition coefficients by 
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increasing the quantity of data used for fitting. For bridgmanite all the experimental data from Walter 

et al. (2004) and Corgne et al. (2005) for trivalent and quadrivalent cations were combined and fitted 

with lattice strain parabola at a temperature of 2300 °C (figure 1). Data from Liebske et al. (2005) 

weren’t included in this fit because their bulk compositions have elevated Al2O3 contents, which 

increase partition coefficients, compared with an ambient peridotitic mantle composition. The model 

partition coefficients for the LREE are lower than any of the individual analyses, which is believed to 

be the consequence of disequilibrium and low abundances of these elements in the experiments. 

Similarly, for calcium silicate perovskite, data from the 20 GPa experiments of Dalou et al. (2009) and 

unpublished data from LS Armstrong, S Keshav and MJ Walter were combined and fitted for 3+ and 

4+ cations at 1600 °C (figure 2). Data for CaSiO3 from both experiments of Corgne et al. (2002) were 

fitted individually, and the average of both partition coefficient sets used for modelling subsolidus 

peridotite. Partition coefficients for the remaining elements (Rb, Ba, Li, Nb, Ta and Sr) were assumed 

to be the average of measured values from the same literature experiments used in lattice strain 

models.  

Whilst the literature data for bridgmanite and calcium silicate perovskite are insufficient to 

investigate the effects of composition, pressure and temperature on partition coefficients, this is not 

the case for garnet. Data from 73 garnet-containing experiments were collated (Bennett et al., 2004; 

Bobrov et al., 2014; Corgne et al., 2012; Corgne and Wood, 2005; Dalou et al., 2009; Dasgupta et al., 

2009; Draper et al., 2006; Dwarzski et al., 2006; Grassi et al., 2012; Hauri et al., 1994; Klemme et al., 

2002; Pertermann et al., 2004; Salters et al., 2002; Suzuki et al., 2012; Tuff and Gibson, 2007; van 

Westrenen et al., 1999; 2000; Walter et al., 2004) and fitted the data for trivalent cations from each 

dataset using lattice strain models (experimental literature data available as a supplementary file). 

Whilst there are previous studies that have published models predicting the individual effects of 

composition, pressure and temperature on D0, r0 and E for trivalent cations (Draper and van 

Westrenen, 2007; Sun and Liang, 2013; van Westrenen et al., 1999; van Westrenen and Draper, 2007; 

van Westrenen et al., 2001) this dataset incorporates experimental data that were not available at 

the time of these models. As much of the additional data are particularly applicable to Na-bearing 

garnets from sub-lithospheric pressures we have modified the model of van Westrenen et al. (2007) 

to allow prediction of D0, r0 and E for trivalent cations for any garnet composition at known pressure 

and temperature conditions. As D0, r0 and E are highly correlated with one another, instead of fitting 

each literature dataset for all three variables simultaneously a predictive model was employed to 

estimate E (van Westrenen and Draper, 2007), adding a term for the Na content of garnet (XNa = 

0.5*[Na+K], where Na and K are calculated per formula unit with 12 oxygens) to equation 3 
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(equations 2 and 3). The coefficient of XNa was estimated based on the size of the Na2MgSi5O12 garnet 

X-site (Bindi et al., 2011). This predicted value of E is used to fit the experimental data for D0 and r0 

using equation 1, thus reducing some of the spurious scatter in fitted D0 values. 

��GPa� = 1826�1.38 + ���� + 12.4� − 0.072� + 237(Al + Cr)����  (eq. 2 - van Westrenen et al., 2007) 

�����, Å� = 0.9302��� + 0.993��
 + 0.916���� + 0.946����� + 1.05����� + � !� + 0.914��� − 0.0044�� − 3� +

0.000058�� − 1818�    (eq. 3 – modified from van Westrenen et al., 2007) 

Blundy et al. (1995) demonstrated that D0 is related to the enthalpy of fusion of the mineral of 

interest, in this case garnet, along its own melting curve. Following the same logic as presented in 

Blundy et al. (1995) equation 4 was simplified and fitted to the experimental dataset, providing a new 

empirical model for the prediction of D0 (equation 5). 

��°� − ���°� + ��� −
"
# �$%&$� � �# = ��ln�� (eq. 4) 

ln�� =
'"'����".'��"#.(���

� − 2.874 (eq. 5) 

Four extreme outlying data corresponding to low temperature experiments were excluded from this 

fit. Figure 3 plots the predicted values of D0 using equation 5 against those from the lattice strain 

fitting. Later in this manuscript, when modelling the composition of individual majoritic garnet 

inclusions, equations 2, 3 and 5 were used to produce inclusion-specific partition coefficients. 

Otherwise, fits to experiment M932 (Corgne et al., 2012) or U238 (Suzuki et al., 2012) with Do

3+
 

determined using equation 5 (T = 1600 °C) were used as garnet partition coefficients in peridotitic 

and metabasic lithologies respectively. This model for calculating r0, E and D0 (equations 2, 3 and 5) 

should be thought of as an updated version of the model presented by van Westrenen et al. (2007), 

which incorporates additional experimental data published over the last eight years. 

In addition to the above phases partition coefficients for ferropericlase, stishovite, olivine, magnesite 

and clinopyroxene were used throughout modelling. For ferropericlase a new lattice strain fit to data 

from Walter et al. (2004) was produced. Data for clinopyroxene in peridotitic assemblages and 

magnesite were taken from Dasgupta et al. (2009 experiment M318) and eclogitic clinopyroxene data 

were used from Suzuki et al. (2012 experiment U238). Values for olivine were taken from the 

compilation presented by Dasgupta et al. (2009). The partition coefficients for all elements in 

stishovite were assumed to be 0.001 as we are unaware of any reported values for trace element 

partitioning into this phase, which was assumed to be negligible. All partition coefficients used 

throughout this paper are summarised in table 1. 

3. RESULTS 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Thomson et al. revision 1 submitted 19/08/2015   

 9

3.1 JUINA-5 INCLUSIONS’ TRACE ELEMENT COMPOSITIONS 

The results of trace element analyses of Juina-5 inclusions are presented in table 2, with data for 

inclusions interpreted as former bridgmanite, calcium silicate perovskite, NAL and CF phases, and 

majoritic garnet. The data are plotted as bulk silicate earth normalised (McDonough, 2001) spider 

diagrams (figure 4) and rare earth element diagrams (figure 5). Diamond and inclusion sample names 

used in this paper match those used in Thomson et al. (2014). Where individual inclusions have been 

analysed multiple times, all individual analyses are reported in table 1 and plotted in figures 4 and 5. 

It is observed that repeated analyses of the same inclusion sometimes produce differing abundances. 

As an example, the CF phase inclusion Ju5-20 was analysed in the same location twice, producing 

notably different results. This heterogeneity is caused by the composite mineralogy of the Juina-5 

inclusions. We acknowledge that there are, therefore, uncertainties associated with the inclusions 

compositions. However, in most cases repeated analyses give similar results, and the reported 

analyses vastly enhance a very limited global dataset. The Juina-5 majorite and ‘calcium perovskite’ 

inclusions, which are particularly important in the modelling performed here, are either 

homogeneous or have heterogeneity on a very short length-scale that is averaged out in the reported 

analyses. 

Five composite inclusions of former ‘bridgmanite’ were analysed and generally observed to be 

enriched in high field strength elements (HFSE) Nb, Ta, Zr and Hf relative to the bulk silicate Earth 

(BSE). They appear to have a strong depletion in Sr, as this element regularly falls below detection 

limits. They are depleted in light-mid REE, with the concentration of most of these elements in the 

majority of analyses falling below detection limits. The concentration of heavy rare earth elements 

(HREE) is approximately the same as BSE. This suggests their REE contents have a positively sloping 

pattern from La to Lu, a feature that reflects experimentally determined mineral/melt partition 

coefficients of bridgmanite (Corgne et al., 2005; Hirose et al., 2004; Walter et al., 2004). This 

agreement between analysed trace element pattern shape and experimental partition coefficients 

supports the previous interpretations that these inclusions are former bridgmanite (Thomson et al., 

2014; Walter et al., 2011). Interesting features of the former ‘bridgmanite’ trace element patterns 

are the significant negative Ce anomaly (Ce* < 0.015) and low Y/Ho ratio observed in several 

inclusions. 

The four analysed former ‘calcium silicate perovskite’ inclusions, like those analysed in previous 

studies (Bulanova et al., 2010; Walter et al., 2008), are extremely enriched in all trace elements 

except for the large ion lithophile elements (LILE; Rb, Ba and Li). REE concentrations range from 
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between ~ 70 and 25,000 times BSE and have a negative slope from LREE to HREE. The HFSE are also 

highly enriched compared with BSE, but are relatively depleted compared with the REE abundances. 

Uranium and thorium concentrations reach up to ~55,000 times BSE (Ju5-115c), but are only 30 times 

BSE in other inclusions (Ju5-52b). The least enriched inclusion (Ju5-52b) is a titanium-free, 

walstromite structured, CaSiO3 mineral whereas the remaining are composite CaSiO3 – CaTiO3 

inclusions (Thomson et al., 2014). The enriched trace element characteristics of these inclusions are 

very similar to those described by Walter et al. (2008). It is observed that three of the inclusions 

possess a positive Ce anomaly (Ce* 1.2 - 1.8), whilst Ju5-82 also has a small negative Eu anomaly (Eu* 

~ 0.7). 

The trace element compositions of two majorite garnet inclusions are also similar to those observed 

in previous studies (e.g. Moore et al., 1991; Tappert et al., 2005). They are depleted in LREE (~ 0.1 

times BSE) with normalised abundances increasing towards the HREE, which are significantly 

enriched when compared to the BSE (~ 100 times higher than BSE). They also show strong 

enrichment in Zr and Hf. Both analysed inclusions have a distinct negative Eu anomaly (Eu* = 0.52 & 

0.57).  

The trace element compositions of eight former ‘NAL’ and/or ‘CF phase’ minerals have been 

measured. These data provide the first insights into the possible abundances of trace elements in 

these minerals since there is currently no experimental data available for trace element partitioning 

into these phases. Analyses reveal that the LILE are likely compatible in these high-pressure alkaline 

minerals, with Ba depleted relative to Rb and Li. Several of the inclusions contain high concentrations 

(above BSE) of Th, U, Nb and Ta. The concentrations of the remaining elements in most samples were 

below detection limits, and where measured are similar to or slightly below the concentrations of 

BSE, with a notable depletion in Y relative to Dy and Ho. There is a strong negative Ce anomaly 

present in the normalised REE patterns of several of these inclusions (largest is Ce* ~ 0.065) and also 

a tentative suggestion that the data reveals a positive trend moving from LREE to HREE. 

4. DISCUSSION 

The main aim of this work is to examine whether the trace element composition of silicate inclusions 

in superdeep diamonds are compatible with the hypothesis that they formed during the interaction 

of low-degree carbonated slab melts and ambient peridotite. To this end, simple models have been 

generated to calculate the expected composition of ambient mantle phases, the potential source 

rock compositions of individual inclusions and the sequence of mineral compositions created during 
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fractional crystallisation of an enriched melt. Throughout the following discussion, specific features of 

Juina-5 and global superdeep inclusions in combination with the results of these models are 

examined. 

4.1 IS INCLUSION ENRICHMENT AN INDICATOR OF A LOW-DEGREE MELT SOURCE? 

In order to compare the trace element composition of the inclusions with ambient mantle lithologies 

a simple model that calculates the expected compositions of subsolidus phase assemblages is used. 

This approach combines the mineral/melt partition coefficients for coexisting minerals with the 

assumptions that trace element mass balance is achieved and the total trace element budget of the 

assemblage is fixed. It was assumed that peridotite and MORB have bulk trace element compositions 

(Xi

total
) of the bulk silicate Earth (McDonough, 2001) and ALL-MORB (Gale et al., 2013) 

respectively. Under these assumptions the following mass balance can be written: 

��)*)�� = ���� + ���+ + ���,   (eq. 6) 

��� =
��)*)��

�� + � -�� 	
��⁄

-�� 	
��⁄ + � -�� 	
��⁄

-�� 	
��⁄ ��   (eq. 7) 

Where Xi

A
, Xi

B
, Xi

C
 are the concentrations of trace element i in phase A, B, C. and α, β, γ are the 

proportions of phase A, B and C in the phase assemblage. Equation 7 can be re-written for Xi

B
 or Xi

C
 in 

a similar manner. Employing this approach, the expected trace element compositions of phases in 

subsolidus pyrolite and MORB phase assemblages at transition zone and uppermost lower mantle 

conditions were calculated. The predicted compositions of subdolidus garnet, calcium perovskite and 

bridgmanite minerals were extracted. For garnet and calcium silicate perovskite, calculations were 

performed for a transition zone assemblage at 1600° C consisting of olivine + garnet + calcium 

perovskite (in mass proportions of 60:30:10) and garnet + calcium perovskite + stishovite (80:10:10) 

for peridotite and MORB compositions, respectively. The composition of bridgmanite and calcium 

perovskite in subsolidus peridotite at 2300 °C was calculated for an assemblage consisting of 

bridgmanite + calcium perovskite + ferropericlase (80:10:10). A MORB-hosted bridgmanite 

composition cannot be calculated because there are no known partition coefficients for NAL or CF 

phase, both of which are significant components of a lower mantle metabasic assemblage. The 

calculated subsolidus mineral compositions is compared with the Juina-5 inclusions in figure 6. 

The trace element enrichment observed in all Juina-5 ‘calcium silicate perovskite’ inclusions is 

significantly higher than that expected in subsolidus assemblages. Similar high enrichments are also 

observed in ‘calcium silicate perovskite’ inclusions from Collier-4 in the Juina region (Bulanova et al., 
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2010; Walter et al., 2008). Even if calcium perovskite were only 0.1 wt.% of a subsolidus assemblage 

(instead of 10 wt.%) this only increases expected trace element abundances by ~ one order of 

magnitude, which still does not explain the elevated abundances of many Juina-5 (this study) and 

Collier-4 (Bulanova et al., 2010) inclusions. Subsolidus minerals are also not expected to possess the 

significant negative relative anomalies in Sr, Hf and Zr that are observed in the diamond-hosted 

inclusions. Modelled subsolidus phases have flat normalised REE patterns, which also contrast with 

the fractionated (sloping) patterns observed in many inclusions. Overall, we conclude that former 

‘calcium silicate perovskite’ inclusions from Juina-5 and Collier-4 are not trapped fragments of 

ambient mantle material, consistent with the interpretation based on major elements (notably the 

high Ti and low Mg contents, e.g. Armstrong et al., 2012). Alternatively, high trace element 

enrichments are consistent with, and often characteristic of, crystallisation from a low-degree melt 

(Walter et al., 2008). Additionally, the strong depletions of Sr, as is demonstrated in section 4.3, could 

be the signature of dehydration of subducting rocks at shallow subarc conditions. Depletions in Zr 

and Hf suggest the presence of accessory zircon or baddeleyite in the source region of ‘calcium 

perovskite’ inclusions, also an indicator of crustal material. The composition of some global inclusions 

(Hutchison, 1997; Kaminsky et al., 2001; Stachel et al., 2000b) do overlap the abundances expected in 

subsolidus mantle assemblages. However, despite their low enrichments, many of these inclusions 

also possess depletions of Sr, Hf and Zr and have sloping REE patterns. It is suggested that they were 

also created from crustal/slab melts. Former ‘calcium perovskite’ inclusions observed from Machado 

River (Burnham et al., this issue) are significantly more depleted than those from all other localities, 

possessing trace element abundances below amounts expected in subsolidus mantle assemblages. 

Possible explanations for varying enrichment of former ‘calcium perovskite’ inclusions are discussed 

below. 

Majoritic garnet inclusions from Juina-5, and other worldwide diamonds, are all more enriched than 

calculated garnet in subsolidus assemblages. The Juina-5 inclusions themselves are some of the least 

enriched diamond-hosted majoritic garnets in the global dataset. In contrast with the calculated 

composition of subsolidus calcium perovskite the quantity of trace elements in garnet is virtually 

insensitive to its abundance in the mantle, provided majorite is in equilibrium with calcium 

perovskite. Thus, it is assumed that the elevated enrichment of worldwide garnet inclusions is the 

signature that they formed in equilibrium with melt. Many garnet inclusions also have a clear 

negative Sr anomaly, whereas subsolidus majorite should have a positive anomaly. This is 

unambiguous evidence that superdeep majoritic garnet inclusions formed in equilibrium with a low-

degree melt of subducted material that acts to concentrate incompatible elements.  
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Two crucial consequences of the interpretation that Juina region ‘calcium perovskite’ and global 

majoritic garnet inclusions formed from slab melts are that in order to produce a suitably enriched 

melt, i) the residual phase assemblage must not contain any phases that significantly sequester 

incompatible elements and ii) the degree of melting must be very small. These two constraints 

virtually exclude the possibility that calcium silicate perovskite is saturated in the melting phase 

assemblage, because this would retain almost all trace elements in the residue remaining after 

melting. Highly enriched low-degree melts, therefore, can probably only be produced prior to the 

saturation of calcium perovskite in subducting slab assemblages, i.e. at pressures less than 17-20 GPa 

(e.g. Kiseeva et al., 2013a; Zhang and Herzberg, 1994). This is consistent with the production of 

diamond forming melts of oceanic crust in the transition zone as the carbonated MORB solidus 

intersects slab geotherms between ~ 350 and 600 km depth (Thomson et al., 2016). This depth range 

is consistent with barometry estimates for the formation pressures of diamond-hosted garnet 

inclusions (Beyer, 2015; Collerson et al., 2010; Harte, 2010; Stachel, 2001). Although, it is unclear 

whether majorite barometers can be applied to natural inclusions, given they are believed to have 

co-crystallised from a melt with calcium perovskite (Thomson et al., 2016) and undergone some re-

equilibration during uplift (Harte and Cayzer, 2007; Thomson et al., 2014) that may not have been 

fully accounted for in reported compositions. Furthermore, the enriched ‘calcium perovskite’ 

inclusions also all have an extremely low MgO content, which precludes their formation in 

equilibrium with bridgmanite (Armstrong et al., 2012; Walter et al., 2008), a feature that is also 

consistent with the formation of these diamonds in the transition zone at depths less than 600 km. 

One potential explanation for the formation of the less enriched ‘calcium perovskite’ inclusions 

(Hutchison, 1997; Kaminsky et al., 2001; Stachel et al., 2000b; Burnham et al., this issue) could be that 

they crystallised from slab melts at higher pressures. Beyond ~ 600 km depth, where calcium 

perovskite is stable in subducting assemblages, slab melts would be significantly less enriched in trace 

elements, and thus so would any inclusions produced by crystallisation of these melts. Inclusions 

from Kankan and São Luis (Hutchison, 1997; Kaminsky et al., 2001; Stachel et al., 2000b) also have 

low MgO contents, suggesting they crystallised in the very deepest portions of the upper mantle, not 

in equilibrium with bridgmanite. The even more depleted ‘calcium perovskite’ inclusions in Machado 

River diamonds have a higher MgO content (a few weight percent), which is likely to be an indicator 

they crystallised in equilibrium with bridgmanite (Burnham et al., this issue). This suggests that 

‘calcium perovskite’ inclusions sample a range of formation depths. 

Juina-5 ‘bridgmanite’ inclusions are also somewhat enriched compared with modelled subsolidus 

bridgmanite, especially for LREE-MREE and HFSEs (figure 6c). Measured levels of HREE elements in 
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these inclusions are similar to the concentrations expected in ambient lower mantle bridgmanite. 

The interrupted nature of the data, due to analyses for several elements falling below detection 

limits makes it unclear whether the ‘bridgmanite’ inclusions are significantly enriched compared with 

the compositions expected in ambient mantle assemblages or not. Additionally, it should be noted 

that the subsolidus lower mantle bridgmanite composition was calculated using partition coefficients 

appropriate for 2300 °C, ~ 500-600 °C hotter than the expected adiabatic temperature at the top of 

the lower mantle (Katsura et al., 2010). Section 2.2 demonstrates the large influence that 

temperature has on trace element partitioning in the case of garnet. However, because the effects of 

temperature on partitioning vary between different minerals, it is not possible to estimate whether 

lower temperature assemblages should contain more or less enriched bridgmanite than in the 

current model. Therefore, due to these two sources of uncertainty, it cannot be concluded whether 

or not ‘bridgmanite’ inclusions are enriched compared with ambient mantle phases. A negative Sr 

anomaly is identified in some of the ‘bridgmanite’ inclusions, which serves as evidence they were 

likely crystallised from slab melts. 

Figure 6d compares the composition of natural intraplate carbonatite melts (Hoernle et al., 2002) 

with the calculated melts in equilibrium with Juina-5 ‘calcium silicate perovskite’ and garnet 

inclusions. Calculated and natural melts have similar REE slopes and trace element concentrations, 

demonstrating that melts of necessarily enriched compositions are plausible for diamond formation. 

The disagreement between Zr and Hf in the calculated and natural melts could be explained either by 

the effect of pressure on their partition coefficients, or the presence of baddeleyite/zircon in the 

residual assemblage that produced the natural carbonatite melts. It also confirms the suitability of 

carbonatite melts for explaining the compositions of diamond-hosted inclusions. It has been 

suggested that the isotopic signatures of intraplate carbonatite lavas require input from recycled 

ocean floor material (Doucelance et al., 2014). Given the similarities between the melt compositions 

necessary for inclusion crystallisation and these erupted carbonate liquids it is possible that both 

share a common origin from melting of recycled material in the transition zone. 

4.2 EU, CE AND Y/HO ANOMALIES 

Common to many of the Juina-5 inclusions are Ce, Eu and Y anomalies. Negative Eu anomalies, similar 

to those observed in the Juina-5 majoritic garnet inclusions (figure 5c, Eu* = 0.52 & 0.57 for Ju5-32 & 

Ju5-83 respectively), are generally accepted to result from the fractionation of feldspar (Philpotts and 

Schnetzler, 1968). However, because feldspar is only stable at crustal pressures, similar observations 

in superdeep diamonds have previously been interpreted as evidence for the involvement of 
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subducted crust in the formation of the diamond-hosted inclusions (Harte et al., 1999; Stachel et al., 

2000a; Tappert et al., 2005). This interpretation is certainly consistent with the recycled isotopic 

signatures in superdeep diamonds (Burnham et al., 2015b; Ickert et al., 2015). 

Negative Ce anomalies are also often associated with subducted material, as they are widely 

observed in pelagic sediments containing high levels of organic debris (Hole et al., 1984; Toyoda et 

al., 1990). It is conceivable, therefore, that the incorporation of the large negative Ce anomalies 

observed in Ju5-43 ‘bridgmanite’ and several NAL phase inclusions are created by the direct 

incorporation of recycled material. However, three of the four analysed ‘calcium silicate perovskite’ 

inclusions possess a positive Ce anomaly, as do some of the ‘calcium perovskite’ inclusions reported 

by Bulanova et al. (2010). It seems unlikely that anomalies of opposite sense could be incorporated 

into inclusions of a single diamond suite if they are truly formed simply by inheriting any signatures 

that pre-exist in their slab-derived source material. It is also unlikely that subducted sedimentary 

material could be responsible for the observed anomalies, because this requires the sedimentary 

package to survive subduction unaltered to depths greater than 400 km despite the expected 

occurrence of slab dehydration in the sub-arc environment and possible high slab surface 

temperatures. Further, it is unclear whether organic material could even generate a Ce anomaly of 

the same size observed in Ju5-43, approximately 2 orders of magnitude; pure nano-fossil ooze has 

been observed to have a negative Ce anomaly of slightly less than one order of magnitude (Hole et 

al., 1984). It is perhaps more plausible that the Ce anomalies are generated because the melts 

responsible for diamond and inclusion growth contain a mixture of Ce
3+

 and Ce
4+

. In this scenario it is 

possible that Ce
4+ 

fractionates into coexisting phases during the melting and inclusion formation 

processes. It has been observed that some natural baddeleyite minerals contain a significant positive 

Ce anomaly (Schärer et al., 2011), as Ce
4+

 is approximately 100 times more compatible in ZrO2 than 

Ce
3+

 (Klemme et al., 2003). Similar observations of Ce anomalies have been made in other Zr-rich 

minerals, e.g. zircon (Schärer et al., 2011) and wadeite (Jaques, 2016). Given that an exsolved phase 

of baddeleyite was observed in two of the ‘calcium perovskite’ inclusions (Thomson et al., 2014) and 

depletions of Zr and Hf in trace element patterns, saturation of a Zr-rich accessory phase in the 

diamond formation process is a reasonable possibility. If Ce anomalies in diamond-hosted inclusions 

do indeed result from the presence of both Ce valence states in deep melts, the magnitude of 

anomalies must contain information about the oxygen fugacity during diamond growth. Although the 

experimental data to allow extraction of this information doesn’t yet exist it is possible to comment 

that whilst Ce
4+

 is generally extremely low in natural melt compositions it is enhanced at high fO2, in 

alkaline melts, at low temperatures and possibly with increasing pressures (Burnham and Berry, 
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2014). Therefore it is possible that near solidus MORB melts, which are alkaline carbonatites 

generated at relatively low temperatures (Thomson et al., 2016), promote the occurrence of large Ce 

anomalies because they naturally contain high levels of Ce
4+

.  

It is possible that the observed Eu anomalies could be created in a similar manner, from mixed Eu
2+

 

and Eu
3+

 in melts, and have no relation to crustal feldspar. By assuming that Sr
2+ 

and Eu
2+

 are 

geochemical twins the largest feasible Eu anomaly that can be created in majoritic garnet resulting 

only from mixed Eu valence states in the melt, i.e. with no crustal plagioclase signature, can be 

estimated. Using partition coefficients for peridotitic and metabasic majorite in table 1, D
Eu2+

 is 

approximately 10-30 times smaller than D
Eu3+

, which implies Eu* of approximately 0.03 – 0.1 are 

possible from a melt with Eu
2+

/Eu
tot

 = 1. Thus, it is possible that europium anomalies could be 

generated during carbonated melting in the transition zone. However, current data on Eu oxidation 

state in melts suggests it is unlikely that both Eu
2+

 and Ce
4+

 would coexist (Burnham et al., 2015a), but 

the speciation of Eu and Ce in high pressure carbon-bearing melts requires investigation before this 

possibility can be ignored. 

Significant Y/Ho anomalies are also observed in Juina-5 ‘calcium silicate perovskite’, ‘bridgmanite’ 

and ‘NAL/CF phase’ inclusions. Unlike Ce and Eu, Y can only exist as Y
3+

. Therefore, these anomalies 

cannot be explained by fractionation due to the presence of multiple valence states of Y. Similar 

negative Y/Ho anomalies have been observed in seafloor ferromanganese nodules and seawater 

samples collected from above the East Pacific Rise (Ohta et al., 1999). These anomalies are associated 

with the complexation of yttrium in hydrous fluids/melts (Bau, 1999; 1996). Negative Y/Ho anomalies 

are also been observed in natural carbonatite lavas from intraplate volcanoes, such as the Cape 

Verde and Canary Islands (Hoernle et al., 2002, figure 6d), although these have not been explained. 

Whatever the exact explanation, these anomalies must be the result of low temperature 

fractionation to allow the subtleties of coordination environment to be significant. Therefore, we 

suggest that Y/Ho anomalies are another signature of the involvement of subducted material in the 

growth of superdeep diamonds.  

4.3 SOURCE ROCK OF MELTS 

The above discussion concludes that the Juina-5 inclusions contain many indicators that they 

crystallised under upper mantle conditions from a low-degree melt. From the trace element 

characteristics themselves, the presence of Sr, Zr and Hf anomalies suggest that this melt is linked to 

subducted crust foundered in the transition zone. To further examine whether ‘calcium perovskite’ 
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inclusions are indeed compatible with crystallisation in the transition zone (Thomson et al., 2016) we 

attempt to determine source rock compositions that could have generated the inclusions (figure 7). 

The source rock composition (green line) is calculated assuming that the melt in equilibrium (red line) 

with individual inclusions (blue line) is produced during a non-modal fractional melting process. A re-

arrangement of the equation for accumulated non-modal fractional melts is used to calculate the 

trace element composition of the source lithology: 

�� =
,.�/

0"�1"��/ -�2 3� �� 4
  (eq. 8) 

Assuming that the degree of melting (F) is 1 %, D0 is calculated for a phase assemblage consisting 64 

% garnet, 15 % clinopyroxene, 15 % stishovite and 5 % carbonate as observed for a subsolidus 

carbonated eclogite at 13 GPa (Thomson et al., 2016). P is calculated from the melting reaction 

observed at 13 GPa (Thomson et al., 2016): 

0.54 �� !"	#"��!� + 0.67 $%&!�' (� = 1 $��( + 0.15 &%!�( + 0.09 '( 'ℎ") (� (eq. 9) 

This calculation was performed in a Monte Carlo simulation with 10,000 cycles, where errors where 

varied randomly in each cycle assuming a Gaussian distribution within 1σ = 10 % of the measured 

value. The dashed lines in figure 7 are 95 % confidence intervals in the calculated melt composition 

and define the range of calculated source rock compositions. Calculated source rock compositions 

can be compared with the that of the average oceanic crust, ALL-MORB (Gale et al., 2013). However, 

because it is expected that the subducting slab will have experienced dehydration in the sub-arc 

environment prior to this melting process the source rock composition is compared with a 

“processed MORB”. The composition of “processed MORB” is calculated by assuming 7.5 % 

dehydration occurs at each of 2.5, 4 and 6 GPa using partition coefficients for MORB/hydrous fluid 

partitioning (Kessel et al., 2005; Klimm et al., 2008). The “processed MORB” composition only 

illustrates the potential effects that slab dehydration may have on slab chemistry, it is not believed to 

capture the full complexity of MORB dehydration processes.  

The model employed is simplistic, and serves only to illustrate whether or not the hypothesis that 

inclusions are generated from slab-derived carbonatites is generally consistent with their trace 

element chemistries. The model ignores the potential effects of accessory phases and makes the 

assumption that melting is isobaric, occurring at ~ 15 GPa, and can be described by the melting 

reactions observed in Thomson et al. (2016). It also assumes that partition coefficients for all phases 

in modelling are well known at the pressure and temperature conditions appropriate for this 

reaction. Unfortunately, as summarised in section 2.2 this is not the case, because there is 
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insufficient experimental data to account for the effects of P, T and composition on partition 

coefficients. Therefore, this model can only currently indicate whether the hypothesis of diamond 

formation by slab melt crystallisation is feasible, or is completely inconsistent with the trace element 

composition of natural inclusions. 

With these limitations in mind, the results of modelling for Ju5-115c and Ju5-82 demonstrate they 

could form from a source rock containing features expected in a subducted MORB lithology. Both 

models predict a source rock that contains a significant negative Sr anomaly, a feature created during 

slab dehydration in the shallow subarc environment. Calculated source rock compositions have 

relatively flat BSE normalised REE abundances, a common feature in both ALL-MORB and “processed 

MORB”. Modelled source rock compositions also generally have trace element abundances that 

overlap, or are in the range of, those of subducted crustal rocks. If the temperature of melting was 

lower than 1600 °C the calculated equilibrium melt and source rock compositions would be less 

enriched, due to the effect of temperature on partition coefficients. Thus lower temperatures, as 

would are consistent with the conditions for slab melting (Thomson et al., 2016) might reduce the 

enrichment of the Ju5-115c source rock to match the slab lithologies, however the magnitude of this 

effect cannot be estimated. Thus, it appears from this modelling that the compositions of Juina-5 

‘calcium perovskite’ inclusions, at least in general, are consistent with an origin from crystallising slab 

melts at transition zone depths.  

4.4. INCLUSIONS AS A RECORD OF FRACTIONAL CRYSTALLISATION SEQUENCE 

Walter et al. (2008) suggested that the trace element chemistry of all measured Collier-4 inclusions 

could be related to each other if they result from fractional crystallisation of a common parent melt 

that has undergone varying degrees of evolution, in other words, if they record a liquid line of 

descent as a low-degree slab melt crystallises. If all diamond-hosted inclusions are formed by a 

common petrological process it is possible that all superdeep inclusions from similar depth intervals, 

independent of their geographical location, may be related in a similar way. Figure 8a demonstrates 

that there is a strong correlation between the REE chemistry of majoritic garnet inclusions and their 

major element chemistry, that is not a function of crystallisation pressure. Sm/Lu is used in figure 8a 

as a proxy for the slope of the garnet REE patterns, and is plotted against Ca content (calculated per 

formula unit assuming 12 oxygens). This correlation could be interpreted as a record of a melt 

crystallisation process, however, it could also theoretically be produced by the variation of partition 

coefficients with inclusion composition. To ensure that this correlation is not only the result of the 

latter possibility, the composition of the melt in equilibrium with each individual inclusion was 
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calculated (figure 8b) using a majorite barometer (Beyer, 2015) to estimate the inclusion formation 

pressures. As the calculated melt compositions also vary significantly in composition the correlation 

between Ca and Sm/Lu must reflect the variation of melt compositions that inclusions crystallise 

from. The systematic evolution in the calculated melts towards flatter REE patterns (and lower REE 

abundances) with decreasing Ca content of the inclusions (figure 8a) suggests that they may indeed 

record the evolution of fractionating melts. It also implies that the primary diamond-forming melt in 

the transition zone would be calcium-rich, an observation that is consistent with the composition of 

subducted MORB-derived carbonatites (Hammouda, 2003; Thomson et al., 2016). 

We have further investigated the possibility that several diamond-hosted inclusions are associated 

with one another by running a simple fractional crystallisation model (figure 9). Starting from the 

trace element composition of the melt in equilibrium with the most highly enriched Juina-5 ‘calicum 

silicate perovskite’ inclusion, a forward model was run where small quantities of calcium perovskite 

and majoritic garnet in equilibrium with the melt composition were sequentially removed to simulate 

fractional crystallisation. During each cycle the compositions of the crystallising phases and evolving 

melt were recorded. The mass of material (in arbitrary units) removed and the relative proportions of 

garnet and calcium perovskite that crystallise during each model step were varied. Initially partition 

coefficients calculated for the composition of the garnet Ju5-32 at 17.65 GPa (pressure calculated 

using barometer presented by Beyer, 2015) and 1600 °C were used. Subsequently the effects of 

changing pressure and temperature on the composition of the fractionating majoritic garnet was 

investigated by using partition coefficients appropriate to each scenario (figure 9b). Since the 

partition coefficients for calcium silicate perovskite are significantly larger than those for majoritic 

garnet, changing the relative proportions of crystallising phases only has a small influence on model 

results. The results of two models with the composition of diamond-hosted inclusions are compared 

in figure 9, one where majoritic garnet and calcium perovskite crystallise in a 10:1 ratio (figure 9a) 

and a second where only calcium perovskite crystallisation is considered (figure 9b). 

It is observed that the REE patterns of all Juina-5 ‘calcium silicate perovskite’ and majoritic garnet 

inclusions are reproduced fairly well by our fractional crystallisation model. Furthermore, the 

majority of the trace element compositional spectrum observed in global majorite compositions is 

also reproduced by changes in the pressure/temperature conditions of garnet crystallisation. This 

confirms that all superdeep diamonds could indeed be generated by a common petrogenetic process; 

the crystallisation of low-degree slab melts. If diamonds do represent the products of slab melting, it 

could imply that diamonds from each locality sample slab melts from a common depth interval. This 
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can be understood by linking all the diamonds from Juina-5 to a single slab geotherm, which would 

be expected to intersect the slab’s carbonated solidus across a narrow pressure interval. Thus, even if 

diamonds were produced in multiple episodes they could be expected to generate similar inclusions.  

5. CONCLUSIONS 

The trace element compositions of ‘calcium perovskite’, majoritic garnet, ‘bridgmanite’ and ‘NAL/CF 

phase’ inclusions in superdeep diamonds from Juina-5 have been presented and examined. The 

inclusions are highly enriched in trace elements, to the extent that they are highly unlikely to 

represent trapped fragments of pristine ambient mantle. Instead, they are far more likely to have 

crystallised from a low-degree melt. Negative anomalies of Sr, Hf and Zr observed in inclusions point 

to an origin from crustal material that has undergone dehydration during subduction. In order to 

explain the high enrichment of Juina-5, Collier-4 ‘calcium perovskite’ and global majoritic garnet 

inclusions, diamond-forming melts must be produced from an assemblage that does not contain 

calcium perovskite in the residue. Thus some superdeep diamonds previously believed to have been 

exhumed from the lower mantle, were in fact formed at depths shallower than 600 km. Several 

inclusions possess Ce, Eu and Y/Ho anomalies; all features that have often been associated with 

crustal processes. However, at least in the case of the inclusion Ce anomalies, it is unlikely that they 

were created by the inheritance of signatures present in the subducted crust due to their association 

with sedimentary material and their large magnitude. Instead, they probably reveal the presence of 

mixed Ce species in melts present during diamond formation. Ultimately this information might be 

used to constrain the oxygen fugacity of diamond growth in the Juina-5 source region.  

Overall, the trace element compositions of Juina-5 and global inclusions are consistent with the 

hypothesis that they crystallised from low-degree slab melts. It also appears that diamond-hosted 

inclusions from a single locality might record the fractional crystallisation sequence melts throughout 

interaction of slab melts with the ambient mantle, and global majoritic garnet compositions record 

evidence for the variation in subducting slab geotherms. This provides further evidence that 

superdeep diamonds sample a continuous spectrum of inclusion compositions that are related to the 

interaction of crustal and mantle materials, and therefore diamonds should no longer be categorised 

by a scheme that only associates them with end-members of this continuum. Superdeep diamonds 

from other global localities have lower enrichment of trace elements, which could be an indicator of 

diamond growth beyond 600 km depth. Coupled with major element chemistries, this highlights that 

inclusion trace element enrichments should be used as a primary indicator for identifying diamonds 

that have been exhumed from the deepest portions of the upper mantle or beyond. 
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FIGURE CAPTIONS 

Figure 1: Mineral/melt parition coefficients for bridgmanite collated from the literature H04, Hirose 

et al. (2004); W04, Walter et al (2004); C05, Corgne et al. (2005); T01, Taura et al. (2001); L05, Liebske 

et al. (2005) and the lattice strain model used throughout this study as described in the text.  

Figure 2: Mineral/melt parition coefficients for calcium silicate perovskite collated from the literature 

AKW[unpublished], unpublished data from LS Armstrong, S Keshav and MJ Walter; D09, Dalou et al. 

(2009); C02, Corgne et al. (2002); H04, Hirose et al. (2004) and the lattice strain model used 

throughout this study as described in the text. 

Figure 3: Fitted D0 (equation 5) vs lattice strain model for 3+ cations in garnet as described. 

Figure 4: Bulk silicate earth normalised McDonough (2001) spider diagrams of Juina-5 (a) former 

‘bridgmanite’, (b) former ‘calcium silicate perovskite’, (c) majoritic garnet, (d) ‘NAL’ and ‘CF phase’ 

inclusions. 

Figure 5: Bulk silicate earth normalised McDonough (2001) REE diagrams of Juina-5 (a) former 

‘bridgmanite’, (b) former ‘calcium silicate perovskite’, (c) majoritic garnet, (d) ‘NAL’ and ‘CF phase’ 

inclusions. 

Figure 6: BSE normalised trace element composition of (a) ‘calcium silicate perovskite’, (b) majoritic 

garnet, (c) ‘bridgmanite’ inclusions compared with models for subsolidus peridotite in the transition 

zone (dashed blue), peridotite in the lower mantle (dashed dark green) and MORB in the transition 
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zone (dashed red) assemblage components as described in the text. D04, Davies et al. (2004); S00, 

Stachel et al. (2000); K01, Kaminsky et al. (2001); T05, Tappert et al. (2005); B10, Bulanova et al. 

(2010); H97, Hutchison (1997); M91, Moore et al. (1991); Burnham, Burnham et al., this issue.  (d) 

BSE normalised trace element patterns of natural carbonatite lavas from the Cape Verde and Canary 

Islands (Hoernle et al., 2002), compared with the melts calculated to be in equilibrium with majoritic 

garnet and calcium perovskite inclusions in the Juina-5 diamonds (this study). Equilibrium melts were 

calculated using the partition coefficients for calcium silicate perovskite and metabasic majorite from 

table 1. 

Figure 7: The results from modelling source rock compositions for ‘calcium silicate perovskite’ 

inclusions (a) Ju5-115c and (b) Ju5-82. The reported inclusion composition is the upper blue line and 

the red line is the melt in equilibrium with this inclusion surrounded by 95 % confidence intervals. 

The green curve is the calculated source rock, which can be compared with the composition of ALL-

MORB (Gale et al., 2013) and/or “processed MORB”, the black dotted and solid lines respectively. 

Details of modelling are described in the text. 

Figure 8: (a) Ca (per formula unit) plotted against Sm/Lu (BSE normalised), coloured by calculated 

pressure, for global majoritic garnet inclusions. (b) Calculated melts in equilibrium with all majoritic 

inclusions using partition coefficients specific to each inclusion composition, from a lattice strain 

model (equation 1) using r0, E and D0 calculated using equations 2, 3 and 5. The pressure of each 

inclusion was calculated from its chemistry using the barometer presented by Beyer (2015) and the 

temperature of inclusion formation was assumed to be 1600 °C for all samples. 

Figure 9: (a) fractional crystallisation model where majoritic garnet and calcium perovskite are 

removed from the melt in a 10:1 mass ratio (b) only calcium perovskite is removed from the melt in 

each model step. The bold black curve is the most most enriched ‘calcium perovskite’, which is used 

as the model’s starting point. The green lines are other Juina-5 ‘calcium silicate perovskite’ inclusions. 

The red lines are Juina-5 majoritic garnet inclusions. The light grey lines are literature majoritic garnet 

inclusions. The pink dashed lines are calcium perovskite minerals produced in the model 

crystallisation sequence; in (a) after 160 model steps and (b) after 85 and 200 model steps. The light 

blue line is the majorite in equilibrium with the initial melt composition. The bold dark blue solid line 

is the majoritic garnet produced after 115 model steps in both models. The various other blues lines 

in (b) demonstrate the effects of varying pressure and temperature on the composition of 

crystallising majoritic garnet. 
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Figure 2 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Thomson et al. revision 1 submitted 19/08/2015   

 29 

 

Figure 3 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Table 1 

Phase Calcium 

silicate 

perovskit

e 

Calcium 

silicate 

perovsk

ite 

Magnesi

um 

silicate 

perovski

te 

Peridoti

tic 

majoriti

c garnet 

Metaba

sic 

majoriti

c 

garnet 

Peridotitic 

clinopyrox

ene 

  Eclogitic 

clinopyrox

ene 

  Olivine   Ferroperi

clase 

Magnes

ite 

Stishov

ite 

Refere

nce 

this study 

(Dalou et 

al. 2009 

and 

Keshav et 

al. 

unpublish

ed) 

this 

study 

(Corgne 

et al. 

2002 

average

) 

this 

study 

(Walter 

et al. 

2004 and 

Corgne 

et al. 

2005) 

Corgne 

et al. 

(2012) 

convert

ed to 

1600 °C 

Suzuki 

et al. 

(2012) 

convert

ed to 

1600 °C 

Dasgupta 

et al. 

(2009) 

  Suzuki et 

al. (2012) 

  Dasgupta 

et al. 

(2009) 

  Walter et 

al. (2004) 

Dasgupt

a et al. 

(2009) 

This 

study 

P (GPa) 20 25 25 15 15 8.6  15  -  25 8.6 - 

T (°C) 1600 2250 2300 1600 1600 1470   2000   -   2300 1470 - 

3+                
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D0 38.51  3.05 3.109
#
 3.109

#
       0.05    

E 400.17  410.54 678.91 519.50       164.40    

r0 1.04   0.84 0.92 0.91             0.98     

4+                

D0 89.81  1.76             

E 340.53  762.32             

r0 1.03   0.82                       

Rb 0.0130 0.2150 0.0225 0.0920 0.0055 0.0030 AG0

1 

0.0030 AG0

1 

0  0.5 0.0105 0.0001 

Ba 0.0066 0.1500 0.0218 0.0460 0.0001 0.0080 AG0

1 

0.0080 AG0

1 

0.000000

001 

K03 0.64 0.0110 0.0001 

Li   0.1064 0.0630 0.2300 0.0000  0.8800  0  0.5 0.0100 0.0001 

Th 86.6373 7.6974 0.0018 0.0120 0.0400 0.0020  0.0022 K[u 0.000000 K03 0 0.0031 0.0001 
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p] 001 

U 83.4665 6.8050 0.0299 0.0160 0.0230 0.0010  0.0020 K[u

p] 

0.000000

001 

K03 0 0.0015 0.0001 

Nb 0.7683 0.2900 0.1555 0.0120 0.0100 0.0010  0.0003 K[u

p] 

0  0.002 0.0015 0.0001 

Ta 1.6202 0.3950 0.3025 0.0140 0.0060 0.0020  0.0007 K[u

p] 

0  0.002 0.0020 0.0001 

La 8.3315 4.2698 0.0013 0.0056 0.0006 0.0060  0.0180  0.000007  0.017823

613 

0.0041 0.0001 

Ce 12.6667 4.9346 0.0032 0.0140 0.0020 0.0120  0.0280  0.00001  0.021637

074 

0.0036 0.0001 

Pr 17.9568 5.5313 0.0073 0.0321 0.0062 0.0225 * 0.0480  0.00004  0.025696

739 

0.0055 0.0001 

Sr 0.3836 0.8600 0.0117 0.0110 0.0120 0.0300 D09 0.0960  0.02 S95 0 0.0485 0.0001 
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Nd 23.7822 6.0155 0.0156 0.0683 0.0170 0.0330  0.0600  0.00007  0.029873

242 

0.0070 0.0001 

Zr 6.1194 0.8577 1.6900 0.1500 0.0650 0.0240  0.0400  0.036 S95 0.15 0.0080 0.0001 

Hf 4.6768 0.7093 1.7454 0.2300 0.0670 0.0630  0.0740  0.036 S95 0.076 0.0060 0.0001 

Sm 33.2705 6.4895 0.0519 0.2161 0.0797 0.0530  0.1100  0.0007 K03 0.037054

011 

0.0125 0.0001 

Eu 36.1927 6.5216 0.0827 0.3321 0.1420 0.0700  0.1100  0.00095 K03 0.039901

395 

0.0198 0.0001 

Gd 37.9857 6.4470 0.1278 0.4900 0.2400 0.0900  0.1400  0.0012 K03 0.042484

374 

0.0110 0.0001 

Tb 38.4969 6.2719 0.1914 0.6948 0.3848 0.1050 * 0.1600  0.0026 * 0.044737

286 

0.0300 0.0001 

Dy 37.7060 6.0069 0.2781 0.9476 0.5862 0.1200  0.2000  0.004 K03 0.046603

688 

0.0370 0.0001 
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Y 36.6149 5.8051 0.3448 1.1255 0.7407 0.1300  0.2000  0.023 K03 0.047540

182 

0.0523 0.0001 

Ho 35.9133 5.6947 0.3823 1.2200 0.8267 0.1400 * 0.2100  0.016 * 0.047944

518 

0.0550 0.0001 

Er 33.5193 5.3630 0.5007 1.4955 1.0922 0.1500  0.2100  0.009 K03 0.048829

053 

0.0705 0.0001 

Tm 30.8662 5.0331 0.6287 1.7593 1.3653 0.1550 * 0.2300  0.016 * 0.049336

834 

0.0900 0.0001 

Yb 28.2107 4.7199 0.7608 1.9996 1.6296 0.1600  0.2300  0.023 K03 0.049549

531 

0.1135 0.0001 

Lu 25.7246 4.4335 0.8913 2.2090 1.8719 0.1700   0.2400   0.03 K03 0.049545

131 

0.1375 0.0001 

Data from alternative sources - AG01, Adam and Green (2001); D09, Dasgupta et al (2009) 6.6 GPa experiment; K03, Kelemen (2003); S95, Sweeney (1995); 

K[up], Keshav (unpublished) *interpolated from adjacent elements in this study.
 #

Fixed using Equation 5. 
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Table 2 

Sampl

e 

Ju5

-20 

Ju

5-

20 

Ju

5-

31

a 

Ju

5-

31

a 

Ju

5-

31

a 

J

u

5

-

3

1

b 

Ju

5-

31

b Ju5-32 

J

u

5

-

4

2 

Ju

5-

42 

Ju

5-

43 

Ju

5-

43 

Ju

5-

43 

Ju

5-

47 

Ju

5-

47 

Ju

5-

52 

Ju

5-

52 

Ju

5-

52 

Ju

5-

67 

Ju

5-

73

a 

Ju

5-

74 

Ju

5-

74 

Ju5

-82 Ju5-83 

Ju

5-

84 

Ju

5-

84 

Ju

5-

89 

J

u

5-

9

0 

Ju

5-

90 

Ju

5-

10

2 

Ju

5-

10

2 

Ju

5-

10

2 

Ju

5-

10

2 

Ju

5-

10

4 

Ju

5-

10

5 

Ju5

-

11

5c 

Ju5

-

11

5c 

Ju

5-

11

6a 

Ju

5-

11

6a 

Ju

5-

11

7a 

Ju

5-

11

7a 

Ju

5-

11

9 

Ju

5-

11

9 

miner

al 

phase CF CF 

M

gP

v 

M

gP

v 

M

gP

v 

N

A

L 

N

AL 

Majori

te 

garnet 

N

A

L 

N

AL 

M

gP

v 

M

gP

v 

M

gP

v 

M

gP

v 

M

gP

v 

Ca

Pv 

Ca

Pv 

Ca

Pv 

NA

L 

oli

vin

e 

NA

L 

NA

L 

Ca

Pv 

Majori

te 

garnet 

N

AL 

NA

L 

NA

L 

Si

O

2 

Si

O

2 

M

gP

v 

M

gP

v 

M

gP

v 

M

gP

v 

Ca

Pv CF 

Ca

Pv 

Ca

Pv 

cp

x 

cp

x 

M

gP

v 

M

gP

v 

ga

rn

et 

ga

rn

et 

Rb 2.1 

39

.9 

57

.3 

10

.1 

18

8.

2 

1.

0 

42

.6 

36

.9 

29

3.

8 

54

.3 

0.

6 

0.

3 

0.

9 

0.

2 

0.

4 

Ba 0.5 

0.

4 

0.

2 

1.

0 

4

0.

0 

26

.4 0.2 

8

8.

3 

3.

3 

41

.8 

1.

9 

1.

4 

0.

3 

1.

1 

7.

0 

10

4.

1 

5.

2 

5.

2 

2.

3 

0.

6 8.1 1.0 

20

4.

5 

17

5.

9 

0.

5 

0.

5 

0.

3 

0.

3 

0.

2 

5.

8 

0.

3 

11.

7 5.9 

0.

6 

1.

4 

0.

1 

0.

2 

0.

4 

0.

4 

Th 0.0 

0. 0. 9. 0. 46

0.0 

0. 11 42 12
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0 5 7 4 1.0 4 .8 48.

3 

86.

8 

U 

0.

2 

0.

4 

0.

0 

1.

0 

21.

3 0.0 

0.

3 

0.

2 

0.

7 

10

.9 

0.

1 

11

66.

5 

33

2.4 

Nb 0.3 

0.

2 

93

.6 

11

2.

0 

11

1.

0 

1.

1 

1.

0 0.3 

3.

6 

1.

4 

20

5.

4 

64

.4 

79

.1 

60

.7 

66

5.

3 

2.

8 

2.

8 

1.

5 

1.

2 

73

9.6 0.4 

3.

8 

3.

7 

3.

3 

44

.4 

55

1.

3 

45

.7 

36

.8 

20

.4 

1.

7 

13

48.

1 

34

1.8 

30

.0 

27

.6 

0.

1 

0.

2 

Ta 

4.

9 

5.

7 

7.

4 

0.

2 

0.

2 0.1 

0.

2 

13

.5 

3.

5 

4.

9 

2.

5 

30

.4 

2.

1 

1.

5 

0.

1 

0.

1 

0.

5 

54.

1 

0.

4 

0.

2 

2.

5 

14

.7 

3.

0 

2.

1 

4.

1 

0.

3 

10

5.6 4.0 

0.

9 

1.

2 

0.

6 

0.

5 

La 

0.

2 

0.

1 

0.

5 0.0 

0.

7 

0.

7 

29

.5 

2.

1 

0.

8 

0.

2 

57

3.

7 

56

1.

6 

58

9.

7 

0.

1 

0.

3 

0.

1 

24

79.

2 0.1 

1.

6 

0.

7 

0.

5 

0.

2 

10

05

.3 

0.

1 

57

33.

3 

14

14.

2 

0.

9 

1.

0 

0.

1 

0.

1 

0.

1 

Ce 0.1 

0.

5 

0.

5 0.1 

0.

2 

0.

7 

0.

5 

0.

0 

0.

0 

0.

3 

89

0.

8 

86

9.

4 

88

3.

8 

0.

1 

0.

5 

10

17

3.4 0.3 

0.

2 

0.

3 

0.

5 

0.

2 

38

84

.7 

0.

1 

39

45

4.7 

81

49.

1 

1.

8 

2.

2 

1.

8 

1.

8 
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Pr 

0.

1 

0.

1 0.0 

0.

0 

1.

7 

0.

1 

0.

1 

0.

5 

94

.9 

93

.2 

97

.5 

0.

4 

11

93.

4 0.1 

0.

2 

0.

2 

0.

1 

0.

1 

57

5.

5 

41

93.

4 

85

1.3 

0.

8 

0.

7 

Sr 7.9 

23

.7 

2

4.

5 

17

.7 0.7 

4

4.

2 

24

.0 

6.

3 

0.

3 

1.

7 

12

82

.5 

12

22

.4 

12

07

.7 

13

.8 

29

.1 

16

.7 

12

2.1 0.6 

18

7.

9 

13

1.

4 

27

.9 

80

7.

6 

0.

4 

43

4.5 

15

2.2 

70

.8 

72

.5 

3.

3 

3.

3 

Nd 

0.

7 

0.

4 

1.

1 0.4 

6.

5 

0.

5 

0.

1 

40

5.

3 

39

2.
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