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Shifting nodal-plane suppressions in high-order-harmonic spectra from diatomic molecules in
orthogonally polarized driving fields
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We analyze the imprint of nodal planes in high-order-harmonic spectra from aligned diatomic molecules in
intense laser fields whose components exhibit orthogonal polarizations. We show that the typical suppression
in the spectra associated to nodal planes is distorted, and that this distortion can be employed to map the
electron’s angle of return to its parent ion. This investigation is performed semianalytically at the single-molecule
response and single-active orbital level, using the strong-field approximation and the steepest descent method.
We show that the velocity form of the dipole operator is superior to the length form in providing information
about this distortion. However, both forms introduce artifacts that are absent in the actual momentum-space
wave function. Furthermore, elliptically polarized fields lead to larger distortions in comparison to two-color
orthogonally polarized fields. These features are investigated in detail for O2, whose highest occupied molecular
orbital provides two orthogonal nodal planes.
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I. INTRODUCTION

Strong, orthogonally polarized fields have a wide range
of applications in the attosecond imaging of molecules, and
provide access to a parameter range difficult to be probed
by other means. This includes molecules that are difficult to
align, degenerate orbitals, or the reconstruction of molecular
orbitals from a single-shot measurement, which have been
probed using high-order-harmonic generation (HHG) [1–7].
Thereby, one makes use of the fact that HHG is the result
of the recollision of a previously ionized electron with its
parent ion [8]. Orthogonally polarized fields provide a means
of controlling the angle with which the active electron reaches
the continuum, or returns to the molecular target [2,4,5].
This angle varies with the harmonic frequency [9]. Recently,
two-color fields with orthogonal polarizations have also been
used to control resonancelike enhancements near channel
closings [10]. This control is made possible by the fact that,
from a semiclassical viewpoint, such enhancements are caused
by the quantum interference of many electron orbits returning
to the target, whose features are influenced by the field [11].

Care must be taken, however, as the orthogonal polarization
introduces dynamical aspects in purely structural features. A
good example is the interference patterns related to electron
recollision in different centers in the molecule. For linearly
polarized fields, these patterns have been widely studied within
the single active electron, single active orbital approximation.
They depend only on the internuclear distance, the geometry
of the active orbital, and on the molecule orientation with
regard to the field [12,13] (for reviews see, e.g., [14] and
our recent publication [15]). This is in striking contrast to
what happens if the field is orthogonally polarized. In fact,
in a recent publication we have shown that the electron’s
angle of return is effectively incorporated in the two-center
interference condition [16]. Because this angle depends on the
harmonic energy and the orbit along which the electron returns,
a coherent superposition of orbits will lead to a blurring in
the structural minima. This blurring has also been identified,
but not analyzed, in [17,18]. Fortunately, the contribution
of specific orbits can be eliminated by appropriately chosen

macroscopic propagation conditions. This means that the shift
caused by a nonvanishing angle of return can be observed in a
realistic scenario [19].

In this paper, we assess the influence of orthogonal fields
in the suppression that occurs across the HHG spectrum when
a molecular nodal plane is in alignment with the driving-field
polarization (see, e.g., [20–23]). This suppression arises from
the fact that nodal planes are areas of vanishing probability
density. Hence, either ionization is strongly suppressed or the
overlap between the recolliding electronic wave packet and the
core wave function is vanishingly small [24–26]. One should
note that this specific feature is related to the geometry of
the orbital with which the active electron recombines, and not
to the structural interference studied in [16,19]. Thus, nodal
planes provide an additional tool to those discussed in our
previous work [16]. As a target, we employ O2, whose highest
occupied molecular orbital (HOMO) exhibits two orthogonal
nodal planes. We also investigate which type of driving fields,
of one or two colors, is the most appropriate for observing
such distortions. The present studies are different in the sense
that distorted nodal-plane suppressions in elliptically polarized
fields can be seen in [17], but they have not been analyzed.
Furthermore, previous publications that have addressed nodal-
plane suppressions and elliptical fields [27,28] have focused
on ionization, but not on recombination. They found that, al-
though, on their own, nodal planes and elliptical fields suppress
ionization, the combination of both can in fact compensate for
each other. This increases the HHG signal when the major
polarization axis and the nodal plane are in alignment.

Throughout, we use the strong-field approximation (SFA)
and the steepest descent method. This approach has been
widely employed in the theoretical study of molecular
HHG [17,20,21,29–35], as (i) it allows an intuitive interpre-
tation in terms of electron orbits, and (ii) by being analytic,
the SFA provides a high degree of flexibility, as the influence
of its building blocks in the HHG spectra can be singled out
at will. The SFA has also been successfully used to infer an
electron’s angle of return in orthogonally polarized fields from
the ratio between even and odd harmonics in experiments [36].
Furthermore, in [4], it has been shown, in the context of
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strong-field ionization, that the returning angle predicted by
the SFA corresponds to the average angle obtained from a
classical-trajectory calculation. The SFA, however, has serious
limitations. Apart from the gauge dependence and its influence
on the structural interference [32,33,37], different forms of
the recombination dipole matrix element affect the HHG
spectra [21,38,39]. The most appropriate form to be used has
raised considerable debate in the context of the tomographical
reconstruction of molecular orbitals [40–42]. It is generally
accepted that the velocity form is superior when dealing with
molecules, but that the artifacts introduced by the length form
are under control and can be eliminated. In this work, we revisit
this issue and show that orthogonally polarized fields expose
artifacts in the length form of the SFA, which cannot be probed
with linearly polarized fields.

This article is organized as follows. In Sec. II, we provide
the necessary theoretical background. In Sec. III, we compute
HHG spectra using one- and two-color orthogonally polarized
fields, and analyze the features encountered. This includes
the nodal-plane distortions for individual orbits, the most
convenient form of the strong-field approximation, and the
most favorable field configurations in order to observe the
shifts. Finally, in Sec. IV, we state our conclusions.

II. MODEL

Below, we explicitly give the orthogonally polarized fields
employed in this work. The electric field and the corresponding
vector potential read

E(t) = E‖(t)ε̂‖ + E⊥(t)ε̂⊥ (1)

and

A(t) = A‖(t)ε̂‖ + A⊥(t)ε̂⊥, (2)

respectively, where the subscripts (||) and (⊥) designate field
components parallel to the major and minor polarization axes,
respectively. The unit vectors along the major and the minor
polarization axes are denoted by ε̂‖ and ε̂⊥, respectively. Both
fields are related to each other through E(t) = −dA(t)/dt .

A. Transition amplitude

For orthogonally polarized driving fields, the HHG spec-
trum is proportional to

S(�) ∝
∑

b

|Mb(�)|2, (3)

where b =‖ , ⊥ refer to the components of the HHG transition
amplitude M(�) parallel and perpendicular to the major
polarization axis of the laser field [17,18]. We compute the
transition probability |M‖(�)|2, which gives the polarization
component of the harmonics along the major axis. This
contribution is much larger than that from the perpendicular
component for the ellipticity ranges used, and provides the
main features in the spectra.

The transition amplitude is computed using the SFA [43],
which has been extended to orthogonally polarized fields [16].

Explicitly,

M‖(�) = −i

∫ ∞

−∞
dt

∫ t

−∞
dt ′

∫
d3pd∗

rec(p + A(t))

× dion(p + A(t ′))eiS(t,t ′,�,p) + c.c. (4)

For the field in Eqs. (1) and (2), the semiclassical action is
given by

S(t,t ′,�,p) = −1

2

∫ t

t ′
dτ [p|| + A||(τ )]2

− 1

2

∫ t

t ′
dτ [p⊥ + A⊥(τ )]2 − Ip(t − t ′) + �t.

(5)

Equation (5) describes the propagation of an electron in the
continuum with intermediate momentum p from the time in
which it ionizes, t ′, to the time t when it recombines to its
parent molecule. In the above-stated equations, Ip and �

give the ionization potential, and the harmonic frequency,
respectively. The indices b =‖ and b =⊥ refer to the
momentum components along the major or minor polarization
axis, respectively.

Equation (4) is calculated using the steepest descent
method, in which we find t ′, t , and p for which the action is
stationary. The resulting saddle-point equations give the con-
servation of energy upon tunnel ionization and recombination,
and introduce constraints in the electron momentum so that it
returns to its parent molecule. It is important to bear in mind
that, since tunneling is classically forbidden, the solutions of
these equations will be complex. For details we refer to [16].

We employ a specific uniform approximation, which treats
pairs of orbits collectively. When computing the transition
probabilities associated with individual orbits we use the
standard saddle-point approximation, which treats the orbits
individually. This method can break down for one of the orbits
when the imaginary part of the solutions diverges, leading to
an increase in the harmonic yield after the cutoff (for details
see Ref. [44]).

All the information about the structure of the molecule are
contained within the ionization and recombination prefactors,
which, along the major polarization axis, are given by

dion(p) = 〈p|HI (t ′)|�0〉 (6)

and

drec(p + A(t)) = 〈p + A(t) | d̂ · ε̂‖|�0〉, (7)

respectively, where d̂ gives the dipole operator. We neglect
the motion of the nuclei and use the single active orbital ap-
proximation, which assumes that only the HOMO contributes
to HHG. For a theoretical approach which includes the core
dynamics, see [23,45].

We represent the HOMO wave function �0(r) by a linear
combination of atomic orbitals (LCAO), which gives

�0(r) =
∑

a

ca

[
ψa

(
r + R

2

)
+ (−1)�a−ma+λaψa

(
r − R

2

)]
,

(8)
where ψa(r), R, and ca are the atomic orbitals, the internuclear
distance, and the LCAO coefficients, respectively, while �a
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and ma refer to the orbital and to the magnetic quantum
number, respectively. The indices λa = ma correspond to
gerade (g) and λa = ma + 1 to ungerade (u) orbital symmetry.
The orbitals used in this work have been computed with
GAMESS-UK [46].

B. Different dipole forms

The recombination prefactor (7) can be written in dif-
ferent forms, which will lead to different results. The form
of the dipole operator should not be confused with the
gauge [21,33,39], which determines how the Hamiltonian
is written. Explicitly, the length, velocity, and acceleration
forms of the dipole operator read d̂(l) = r̂, d̂(v) = p̂, and d̂(a) =
−∇V (r̂), respectively, where the hats denote operators. In this
work we have used the length gauge, so that the interaction
Hamiltonian in Eq. (6) is given by HI (t ′) = r̂ · E‖(t ′) and we
consider the length and velocity forms of the dipole operator.

Thus, one can write the dipole matrix element drec(p +
A(t)) for the wave function (8) in the length form as

d (l)
rec(p(t)) =

∑
a

ca[eip(t)· R
2 + (−1)�a−ma+λa e−ip(t)· R

2 ]

× i∂p‖(t)ψa(p(t)), (9)

and in the velocity form as

d (v)
rec (p(t)) =

∑
a

ca[eip(t)· R
2 + (−1)�a−ma+λa e−ip(t)· R

2 ]

×p‖(t)ψa(p(t)), (10)

where p(t) = p + A(t) and ψa(p(t)) is the Fourier transform of
Eq. (8). In Eq. (9), the term related to the lack of orthogonality
between the bound state and continuum states that occurs in
the SFA has been removed by hand. This is a widely used
procedure, and it is related to the fact that this term is an artifact
that blurs the two-center interference condition (see [32,33,37]
for discussions).

The reference frame of the molecule is rotated by the
alignment angle θL with regard to the major polarization axis
of the field. If we consider xz as the polarization plane, we
may relate the p‖, p⊥ components to the components px , pz

parallel and perpendicular to the molecular axis via
(

p‖
p⊥

)
=

(
cos θL sin θL

− sin θL cos θL

)(
px

pz

)
. (11)

Throughout, Gaussian-type orbitals have been used in
the construction of the HOMO, and only s and p orbitals
are included in the basis sets. In this specific case, the derivative
of the momentum-space wave function in the direction of the
main polarization axis reads

∂p‖ψa(p) =
(

− i

2

)�a

bacaπ
3
2 χ

−�a− 3
2

a e−(p2
‖+p2

⊥)/(4χa )

× [K1(p‖,p⊥,θL) + K2(p‖,p⊥,θL)], (12)

where

K1(p‖,p⊥,θL) = −�a sin θL(−p‖ sin θL + p⊥ cos θL)�a−1

(13)

and

K2(p‖,p⊥,θL) = − p‖
2χa

(−p‖ sin θL + p⊥ cos θL)�a . (14)

In Eqs. (12)–(14), ba and χa give the contraction and the
exponential coefficients, respectively.

C. Angle Of return

The effective shift derived in [16], whose real part can be
associated with the electron’s angle of return, reads

ζ (t,t ′) = arctan

[
p⊥ + A⊥(t)

p|| + A||(t)

]
, (15)

where the stationary momentum components read

pb = −1

t − t ′

∫ t

t ′
Ab(τ )dτ, (16)

with b =‖ , ⊥. Equation (15) shows that the angle with which
the electron returns will be strongly influenced by the vector-
potential components at the electron’s return time along each
orbit. Furthermore, p‖ and p⊥ are functions of the return and
ionization times according to Eq. (16). Hence, different orbits
will have different angles of return.

Throughout, the shift in the nodal-plane suppression will
be calculated using Re[ζ (t,t ′)]. A similar expression has been
used in [4], as a comparison with the outcome of a classical-
trajectory computation. Therein, it was found that the mean
values of the numerically determined angles are well described
by the SFA.

III. HIGH-HARMONIC SPECTRA

In the following results, we use orthogonally polarized
fields of the form

E(t) = E0√
1 + ξ 2

[sin(ωt)ε̂‖ + ξ sin(nωt − 2πφ)ε̂⊥], (17)

where the frequency ratio of n = 1 gives an elliptically
polarized field and n = 2 corresponds to an orthogonally
polarized two-color (OTC) field. In Eq. (17), the strength of
the field component along the minor polarization axis relative
to its component along the major axis is determined by ξ ,
and the relative phase φ controls the time delay between both
waves. The field has been normalized in order to keep the
time-averaged intensity 〈E2(t)〉t constant. This renders the
total ponderomotive energy Up = 〈A2

‖(t)〉t /2 + 〈A2
⊥(t)〉t /2

constant for elliptical fields, and causes a decrease in Up with
ξ for OTC fields.

Throughout we employ O2 as a molecular target, which is
particularly convenient since its HOMO is a 1πg orbital [see
Fig. 1]. This leads to two nodal planes that are perpendicular to
each other and produce suppressions in the HHG signal when
the molecular axis of O2 is aligned at θL = 0, π/2, π , and 3π/2
with respect to the major polarization axis of the field. We also
avoid the effects of two-center interference by an appropriate
choice of driving-field intensity. We consider either a coherent
superposition of the two dominant, shortest pair of orbits,
or contributions from individual orbits. The two dominant
orbits are well known in the literature as the “long orbit”
and “short orbit” [47], and correspond to electron excursion
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FIG. 1. Panels (a) and (b) show the real parts of the position- and
momentum-space wave functions of the HOMO of O2, respectively,
computed using Eq. (8) and its Fourier transform. Panels (c) and (d)
show the corresponding probability densities |�0(r)|2 and |�0(p)|2,
respectively. The HOMO of O2 is a 1πg orbital with ionization
potential Ip = 12 eV and internuclear separation R = 2.28 a.u., with
two perpendicular nodal planes. The nodal planes are designated
by the white lines in the lower panels. The contours have been
normalized to the maximum yield in each panel, and the blue [red]
lobes correspond to the negative [positive] values of the real parts of
the wave functions. In this picture, the internuclear axis is oriented
along the z axis.

times of the order of three-quarters of a field cycle. In previous
work, we have found that, for orthogonally polarized fields,
the remaining orbits do not play a very important role [16].
For clarity, in the results that follow we restrict the electron
ionization times to the first half cycle of the driving field.

A. Individual prefactors

The first row of Fig. 2 [Figs. 2(a) to 2(c)] shows that, for
increasing driving-field ellipticity, the suppressions begin to
weaken and the alignment angle for which they appear in the
spectrum changes. These changes become less substantial for
increasing harmonic order and seem to behave differently for
suppressions around even and odd multiples of π/2. For θL =
nπ , we observe more blurring and larger shifts, in comparison
to the behavior near θL = (2n + 1)π/2.

In the remaining rows of Fig. 2, we show the effect of
using only the recombination or the ionization prefactor in
the calculation of |M‖(�)|2, which are presented here for
analytical purposes (second and third rows, respectively).
These figures show us that, as the ellipticity of the field is
increased, the shifted nodal-plane suppressions are determined
by the recombination prefactor. All the structure in the
ionization prefactor is washed out for large enough ellipticity.
This is in agreement with [28], which found that, although the
individual effects of the nodal plane and of the field ellipticity
are detrimental to HHG, they can cancel each other when
combined.

FIG. 2. Contributions |M‖(�)|2 of the dipole component along the major polarization axis to the HHG spectra computed using the
length form of the dipole operator for a coherent superposition of the dominant long and short orbits, as functions of the alignment angle
θL for O2 (Ip = 12 eV and internuclear separation R = 2.28 a.u.) in an elliptical field described in Eq. (17) with n = 1, ω = 0.057 a.u.,
I = 4 × 1014 Wcm−2, and time delay φ = 0.25. The complete prefactor is calculated in the first row while only the recombination and
ionization prefactors are used to calculate the spectra in the second and third rows, respectively. The first, second, and third columns give an
increasing value of the field ellipticity of ξ = 0,0.15, and 0.3, respectively. All panels are displayed in a logarithmic scale.
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FIG. 3. Panels (a) and (b) show the transition probabilities
|M‖(�)|2 along the major polarization axis plotted in a logarithmic
scale as functions of the alignment angle θL for O2 in an elliptical
field described in Eq. (17), using the same parameters as in Fig. 2
and the length form of the dipole operator. Panel (a) [panel (b)]
shows the individual contributions from the long [short] orbit. In panel
(a), the shifted positions of the nodal-plane suppressions calculated
using Re[ζ (t,t ′)] [Eq. (15)] are indicated by the white short dashed
curves, and in panel (b) they are given by the solid black lines.
For comparison, we also indicate the position of the nodal-plane
suppressions for linearly polarized fields as the dashed black lines.
The increase in the harmonic yields after the cutoff observed in
panel (b) is related to a breakdown of the standard saddle-point
approximation for the short orbit (for details, see Ref. [44]). In panel
(c) we have plotted the real parts of the effective shifts ζ (t,t ′) as
functions of the harmonic order computed for the long (red dashed
curves) and short (blue solid curves) orbits in laser fields of increasing
ellipticity and the same relative phase, intensity, and frequency as in
panels (a) and (b). The ellipticity has been increased from ξ = 0 to
ξ = 0.3 in increments of δξ= 0.05. A lighter color indicates a higher
ellipticity and a vanishing shift is indicated by a vertical black line.
Panel (d) shows a schematic representation of the major and minor
components of the vector potential A(t) for ellipticity ξ = 0.3 and
relative phase φ = 0.25. The electron return time at t = 2π/ω is
indicated by the thick vertical black line in the figure. For simplicity,
all fields have been normalized to the vector potential amplitude
A0 = E0/ω.

B. Individual orbits and different SFA forms

In the upper row of Fig. 3, we show the transition
probabilities |M‖(�)|2 associated with the long and short
orbits as functions of the alignment angle θL [panels (a) and
(b), respectively], plotted in a logarithmic scale. In general,
their positions are orbit dependent. For the long orbit, they
are displaced to the right, while for the short orbit this
displacement is to the left. We also see that the displacement
decreases for both orbits with increasingly higher harmonics.
At the cutoff, the shifts vanish and the suppressions occur at
θL = (2n + 1)π/2, as in the linearly polarized case.

Figure 3(c), in which the real parts of the effective shifts
ζ (t,t ′) are plotted for driving fields of increasing ellipticity,
confirms this trend. It shows two approximately symmetric
shifts which decrease with harmonic order until they eventually
vanish at the cutoff. This happens because, around the cutoff,
the electron returns at a crossing of the electric field, i.e.,

FIG. 4. Panels (a) and (b) show the transition probabilities
|M‖(�)|2, plotted in a logarithmic scale, for the long and short
individual orbits, respectively, as functions of the alignment angle
θL for O2 in an elliptical field described in Eq. (17) using the same
parameters as in Fig. 2, but calculated using the velocity form of the
dipole matrix elements. Panel (c) shows |M‖(�)|2 for a coherent
superposition of the dominant long and short orbits considered
in panels (a) and (b). The shifted positions of the nodal-plane
suppressions calculated using Re[ζ (t,t ′)] [Eq. (15)] are indicated
by the white short dashed curves for the long orbit, and by the solid
black lines for the short orbit. For comparison, we also indicate the
positions of the nodal-plane suppressions for linearly polarized fields
as the dashed black lines. The color map on the right-hand side refers
to all panels in the figure.

at a crest of A‖(t) [see Fig. 3(d)]. At such times, A⊥(t) =
0 for both orbits, which translates into a vanishing shift.
Below the cutoff, the short and long orbits are subjected to
equal but opposite perpendicular momenta, which increase
for decreasing harmonic frequency. Hence, the nodal-plane
suppressions are increasingly displaced in opposite directions
for each orbit as the harmonic order decreases. Similar effects
are described in more detail in Ref. [16], albeit in a different
context, namely, two-center interference. This also confirms
that Eq. (15) is applicable to features near nodal planes.
This is not obvious, as it has been derived directly from the
interference condition.

Throughout, we observe an excellent agreement between
Eq. (15) and the outcome of the SFA computations for the
nodal-plane suppressions that are positioned at θL = (2n +
1)π/2 for linearly polarized fields. For the suppressions near
even multiples of θL = π/2, the calculated effective shift does
not fit the SFA outcome. The latter is strongly exaggerated for
lower harmonics, and even meet the other shifted suppressions
near the ionization threshold (see white short dashed lines in
the picture). We also see that the suppressions are more blurred
than those encountered for θL = (2n + 1)π/2.

If, instead, the matrix element d (v)
rec (p · ε̂‖) in the velocity

form is used, the agreement between the SFA and the analytical
condition (15) improves significantly near θL = 0,π , and
2π . There is, however, some blurring, if compared with the
suppressions observed near odd multiples of π/2 for the low
harmonic ranges. These results can be seen in Fig. 4, for the
individual contributions of the long and short orbit [Figs. 4(a)
and 4(b), respectively], together with the results obtained using
their coherent superposition [Fig. 4(c)].
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FIG. 5. In the first, second, and third columns we compare the probability density |�0(p)|2 in momentum space with the absolute squares of
the dipole matrix elements d (v)

rec (p · ε̂‖) and d (l)
rec(p · ε̂‖) along the major polarization axis, respectively, for the HOMO of O2. The alignment angle

θL is increased from the top row θL = 0 to the bottom row θL = π/2 in increments of δθL = π/8. The HOMO of O2 is a 1πg orbital where
Ip = 12 eV and the internuclear separation is R = 2.28 a.u. The green and red lines in all the panels indicate the orientation of nodal planes
constructed using atomic basis functions at single and different atomic centers, respectively. The quantity in each panel has been normalized
by its maximum value.

These distortions are related to artifacts in the recombina-
tion dipole matrix elements, which leads to geometrical fea-
tures that do not exist in the HOMO. In the present framework,
the nodal structures are constructed in two ways. One may
either employ nodes in the atomic orbitals at a single center in
the molecule, or the sum or subtraction of atomic orbitals at
different centers within the LCAO approximation. The former
type of construction causes the suppressions at θL = nπ , while
the latter lead to the suppressions at θL = (2n + 1)π/2. The

velocity form of the SFA along the major polarization axis
multiplies the momentum-space wave function by p‖, while
the length form of the SFA takes the partial derivative ∂p‖ψa(p)
of the atomic momentum wave functions used to construct
the orbital [see Eq. (9)]. Both procedures modify the nodal
structures constructed using a single center. This spurious
behavior becomes evident as the molecule rotates.

This is exemplified in Fig. 5, where we display the HOMO
probability density |�0(p)|2 for O2 in momentum space, to-
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gether with the absolute squares of the dipole matrix elements
d (v)

rec (p · ε̂‖) and d (l)
rec(p · ε̂‖) along the major polarization axis,

for several alignment angles θL. For θL = 0, the three pictures
are similar, with four lobes separated by two orthogonal nodal
planes [see first row in the figure]. For θL �= 0, however, this
scenario changes, as shown in the remaining rows of the figure.
While |�0(p)|2 does not alter its structure and merely rotates,
for the velocity form there is an additional nodal plane at
p‖ = 0. For the length form, the behavior is more extreme
and the node constructed with a single center begins to warp,
split, and shift away from the original shape and orientation of
�0(p) indicated by the green lines.

Both structures can be understood by inspecting the two
prefactors. In the velocity form, p‖ψa(p) implies that there
will be a suppression at p‖ = 0. For θL = nπ , this condition
coincides with the nodal plane given by tan θL = p⊥/p‖,
which is obtained by imposing ψa(p) = 0. For other angles,
however, it leads to the spurious nodal structure. For the length
form, the two terms in ∂p‖ψa(p) lead, in general, to structures
that are quadratic in p‖. Specifically, Eq. (13) moves the
suppression away from the axis p‖ = 0, and the term given
by Eq. (14) gives the above-mentioned warping. Once more,
these spurious effects disappear for θL = nπ . These artifacts
are overlooked by linearly polarized fields, as the electron’s
angle of return is always vanishing. This means that linearly
polarized fields only probe the p‖ axis in Fig. 5. If the nodal
planes are not parallel to this axis, the returning electron will
“see” a nonvanishing probability density and no suppression
will occur. Hence, linearly polarized fields can only probe the
nodal planes at multiples of π/2, for which the distortions
cannot be seen along this axis.

The length or velocity form of the SFA dipole matrix
elements has caused a lot of debate. In the single-active
electron, single-active orbital approximation, it is known
that the velocity form is superior in predicting structural
interference minima, and provides the best agreement with
the double-slit physical picture [39]. However, for linearly
polarized driving fields the spurious terms introduced by the
length form are well understood and easy to eliminate. They
are caused by the lack of orthogonality between the bound
and continuum states that exists in the SFA [33,37], and are
absent from the start in the expressions used in this paper [see
Eq. (9)].

The results in Figs. 3 to 5 tell us that, although for a
linearly polarized field the form of the dipole operator may
not make much difference, to the nodal suppressions in the
HHG spectrum for an elliptically polarized field it does. This
is because in this type of field the returning electron can
probe dynamics of the wave function that would previously be
unreachable. This exposes other artifacts in both forms of the
SFA dipole, which are more difficult to eliminate. Nonetheless,
the velocity form provides better results, if compared to the
length form.

C. Phase and field selections

Our previous results show that the electron’s angle of
return modifies the suppressions in the HHG spectra near
nodal planes. However, if one wishes to observe these shifts
experimentally, they should be large and occur throughout the

FIG. 6. In panels (a) to (f), we show |M‖(�)|2 calculated using the
length (first column) and the velocity (second column) forms of the
SFA, plotted in a logarithmic scale. The first, second, and third rows
have been calculated using the coherent superposition of the dominant
orbits [panels (a) and (b)], and the individual contributions of the long
[panels (c) and (d)] and short orbits [panels (e) and (f)], respectively.
The parameters used are the same as in Fig. 2, but with a time delay
φ = −0.1 between the parallel and perpendicular waves. The black
dashed lines indicate the positions of the nodal-plane suppressions
for a linearly polarized field, while the white short dashed and solid
black curves give the calculated positions of the suppressions for the
long and short orbits, respectively, for elliptically polarized fields.
In panel (g) we have plotted the real parts of the effective shifts
ζ (t,t ′) as functions of the harmonic order computed for the long (red
dashed curves) and short (blue solid curves) orbits in laser fields
of increasing ellipticity and the same relative phase, intensity, and
frequency as in panels (a) to (f). The ellipticity is increased from ξ =
0 to ξ = 0.3 in increments of δξ= 0.05. A lighter color indicates a
higher ellipticity and a vanishing shift is indicated by a vertical black
line. Panel (h) provides a schematic representation of the major and
minor components of the vector potential A(t) for ellipticity ξ = 0.3
and relative phase φ = −0.1. The electron return time at t = 2π/ω is
indicated by the thick vertical black line in the figure. For simplicity,
all fields have been normalized to the vector potential amplitude
A0 = E0/ω.

whole spectrum, or at least in a broad harmonic range. Below
we explore some fields choices which are favorable to this
behavior.

One can, for instance, choose a different time delay between
both waves in order to guarantee that. An example is provided
in Fig. 6, for which we have chosen a phase difference of
φ = −0.1, using the whole dominant pair, the long and the
short orbits [first, second, and third rows, respectively]. For
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comparison, we include results in the length [Figs. 6(a), 6(c),
and 6(e)] and velocity [Figs. 6(b), 6(d), and 6(f)] forms of
the SFA. For the short orbit, the shifts are large and present
for the whole harmonic range, including the cutoff region.
Indeed, Fig. 6(g), in which Re[ζ (t,t ′)] is plotted, shows a large
positive shift for the short orbit, which remains throughout
the spectra. For the long orbit the behavior is more complex,
but in both cases the residual shift at the cutoff is large. This
is due to the fact that A⊥(t) is nonvanishing and positive at
the cutoff return times [see Fig. 6(h)]. Once more, we see a
better overall agreement between the analytical condition and
the velocity form of the SFA. For the coherent superposition
of the two orbits [Figs. 6(a) and 6(b)], despite some blurring in
the plateau and threshold harmonics, the shift can be seen very
clearly at the cutoff. Only the velocity form gives the correct
shifts [Fig. 6(b)].

Another option would be to consider two-color orthogonal
fields, for which the electron has a higher probability of return.
This is an advantage over elliptically polarized fields, for

FIG. 7. In panels (a) to (c), we show the transition probabilities
|M‖(�)|2 along the major polarization axis plotted in a logarithmic
scale as functions of the alignment angle θL for O2 (ionization
potential Ip = 12 eV and internuclear separation R = 2.28 a.u.).
The parameters used are the same as in Fig. 2, but with n = 2 for
the perpendicular wave, which is in phase (φ = 0) with the parallel
component of the laser field. Panels (a) and (c) give the individual
contributions from the long and short orbits, respectively, while (b)
shows the result using their coherent superposition. The black dashed
lines indicate the positions of the nodal-plane suppressions in the
spectrum for a linearly polarized field, while the white short dashed
and red curves give the calculated positions of the suppressions for the
long and short orbits, respectively, for elliptically polarized fields. The
increase in the harmonic yields after the cutoff observed in panel (a)
is related to a breakdown of the standard saddle-point approximation
which occurs to the long orbits for this particular phase difference (for
details, see Ref. [44]). In panel (d) we have plotted the real parts of the
effective shifts ζ (t,t ′) as functions of the harmonic order computed
for the long (red dashed curves) and short (solid blue curves) orbits
in laser fields of increasing ellipticity and the same relative phase,
intensity, and frequency as in panels (a), (b), and (c). The ellipticity is
increased from ξ = 0 to ξ = 0.3 in increments of δξ= 0.05. A lighter
color indicates a higher ellipticity and a vanishing shift is indicated
by a vertical black line. The color map on the upper right column
refers to panels (a) to (c).

which it decreases as ξ increases, eventually leading to low
HHG efficiency. In Fig. 7, we present transition probabilities
computed in a logarithmic scale for two-color fields and
relative phase φ = 0. We consider a coherent superposition of
the two dominant orbits [Fig. 7(b)], together with the individual
contributions from the long and short orbits [Figs. 7(a)
and 7(c), respectively]. The figure shows that the shifts in
the nodal-plane suppressions are much smaller than those
obtained in the elliptically polarized case. For instance, for ξ =
0.3, an elliptical field may lead to shifts up to Re[ζ (t,t ′)] =
0.25, while for a two-color field the effective shift reaches
up to Re[ζ (t,t ′)] = 0.05. This can be seen by comparing the
effective shifts in Fig. 7(d) with the elliptical-field examples
in Figs. 3(c) and 6(g). Hence, a two-color field would be less
suitable for finding the shift in experiments, despite the higher
probability of return.

IV. CONCLUSIONS

In conclusion, this paper shows that nodal planes can be
used as a tool in order to infer an electron’s angle of return
from high-order-harmonic spectra in molecules. This may
provide an additional resource to steer electron motion in the
continuum and probe systems which are difficult to access
otherwise. Signatures of this angle are imprinted in the spectra
as distortions in the nodal-plane suppressions. While for
linearly polarized fields these suppressions are well known and
occur at fixed alignment angles, if the fields are orthogonally
polarized they are orbit and harmonic dependent. They can
be controlled by changing the driving-field parameters, such
as the relative phase, intensity, and frequency ratios between
the two orthogonal waves. Nodal planes have advantages in
comparison with two-center interference, which was addressed
in our previous publications [16,19]. First, the shifts are in
general larger, and spread across a broader harmonic region.
Second, the distortions caused by the angle of return near nodal
planes are in principle easier to identify as the suppressions are
stronger. This would facilitate their observation in a realistic
setting.

On a more technical note, we have also verified that the
analytic expression for this angle, which was derived in [16],
also works around nodal planes. This actually confirms that
the shift encountered in [16] can be interpreted as a dynamical
effect which is not exclusive to two-center interference. The
suppressions encountered also expose limitations in the strong-
field approximations, which have never been found for linearly
polarized fields, or for two-center interference. They consist
of artifacts in the recombination dipole matrix element, which,
within our framework, gives the HHG suppressions. They
occur both for the length and the velocity form of the dipole
operator. Nonetheless, while for the velocity form they lead to
a light blurring around the analytical condition, in the length
form they are very extreme and lead to exaggerated distortions.
Hence, the length form of the SFA should be avoided when
mapping nodal planes using orthogonal fields.

Because the shifts are orbit dependent, they may be difficult
to extract unless a particular return event can be singled out.
This problem can, however, be solved through propagation,
as the two dominant orbits phase match differently [48,49],
aided by polarization gating [50]. Examples of this trajectory
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selection have been provided in our previous publication [19].
Another feature which will lead to a suppression of the
contributions from the longer orbits already at the single-
molecule level is bound-state depletion. Depletion has been
neglected in this work, and will gain in relevance as the
driving-field intensity increases.

We have also found that elliptically polarized fields provide
better conditions for observing the shifts experimentally,
in comparison with OTC fields. First, using an elliptically
polarized field gives rise to a much larger shift. Second, for
these fields the shift remains the same for subsequent half
cycles, while for OTC fields it flips [16]. This was a major
problem in [19], which was overcome by using a few-cycle
pulse in which a specific cycle was dominant in the region
of interest. For elliptical fields, however, there is no need to
restrict ionization events to a single half cycle. Hence, any
pulse length can be employed.

Finally, in this work we have considered (a) the strong-
field approximation and the steepest descent method and (b)
the single-active electron, single-active orbital approximation.
Hence, one must guarantee that approximations (a) and (b)
hold in the parameter range of interest.

The strong-field approximation neglects the binding po-
tential when the electron is in the continuum. This potential
will alter the topology of the electron orbits, which may
be important when dealing with coherent superpositions (for
examples in strong-field ionization, see [51–53]). Furthermore,
Coulomb focusing will introduce extra phases [54] and is

expected to alter the electron’s angle of return. The steepest
descent method eliminates the momentum spread associated
with the electronic wave packet [55] and also leads to
an over-enhancement of the long orbit [56,57]. Still, on a
qualitative level, there is evidence that the angle of return
may be estimated by the SFA. This evidence has been
provided by comparisons with experimental data [36] or
with classical-trajectory methods which incorporate the initial
electron momentum spread and the binding potential [4].

The single-active electron, single-active orbital approxima-
tion requires that the influence of the inner orbitals and of the
core dynamics be minimized in the parameter range of interest.
If the driving field intensity is such that the HOMO does not
become strongly depleted, and if structural effects prevail over
dynamical features, the method discussed here is reliable. The
latter features have been found to be dominant in the cutoff
region, or near the two-center interference minimum. The
present work has been performed in the plateau and far away
from the two-center minimum, so that we expect structural
effects to be dominant [58,59].
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