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Abstract 1 

Nucleotides are key subunits for nucleic acids and provide energy for intracellular metabolism. 2 

They can also be released from cells to act physiologically as extracellular messengers or 3 

pathologically as danger signals. Extracellular nucleotides stimulate membrane receptors in the 4 

P2 and P1 family. P2X are ATP-activated cation channels; P2Y and P1 are G-protein coupled 5 

receptors activated by ATP, ADP, UTP and UDP or adenosine, respectively. Renal P2 receptors 6 

influence both vascular contractility and tubular function. Renal cells also express 7 

ectonucleotidases that rapidly hydrolyze extracellular nucleotides. These enzymes integrate this 8 

multi-receptor purinergic-signaling complex by determining the nucleotide milieu, as well as 9 

titrating receptor activation. 10 

Purinergic signaling also regulates immune cell function by modulating the synthesis and release 11 

of various cytokines such as IL1-β and IL-18 as part of inflammasome activation. Abnormal or 12 

excessive stimulation of this intricate paracrine system can be pro- or anti-inflammatory, and is 13 

also linked to necrosis and apoptosis. Kidney tissue injury causes a localized increase in ATP 14 

concentration, and sustained activation of P2 receptors can lead to renal glomerular, tubular  15 

and vascular cell damage. Purinergic receptors also regulate the activity and proliferation of 16 

fibroblasts, promoting both inflammation and fibrosis in chronic disease. 17 

In this short review we summarize some of the recent findings related to purinergic signaling in 18 

the kidney. We focus predominantly on the P2X7 receptor, discussing why antagonists have so 19 

far disappointed in clinical trials and how advances in our understanding of purinergic signaling 20 

might help to reposition these compounds as potential treatments for renal disease. 21 
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Introduction 22 

Since their discovery in the 1970s, P2 purinergic receptors (P2R) have evolved from an initially 23 

contentious biological concept 1, through to a progressive understanding of their complex 24 

physiological actions, emerging now as attractive and ‘druggable’ targets for disease 2, 3. To date, 25 

the most advanced potential therapeutic P2R targets are antagonists for P2Y12R to inhibit 26 

thrombosis 4, and P2X7R for the treatment of chronic inflammatory diseases such as 27 

rheumatoid arthritis 5 and COPD 6. Several P2X7R antagonists have completed Phase 2 clinical 28 

trials, but despite pre-clinical promise, these compounds have failed to deliver the expected 29 

benefit and so interest in P2X7R has declined. In this concise review we cover purinergic 30 

signaling in the kidney and explore the contribution of this system to renal physiology and 31 

disease. The main focus is on the role of P2X receptors , particularly P2X7R, in renal injury and 32 

disease. P2X7R can orchestrate interactions between the immune and vascular systems, and 33 

defining this complex interaction as inflammation and injury develop may help us unlock the 34 

potential of P2X7R antagonists as renal therapeutics.  35 

 36 

P2 receptors and purinergic signaling in the kidney 37 

Purinergic receptors are sub-classified as P1R that bind adenosine and P2R that are activated by 38 

purine/pyrimidine nucleotides; P2R are in turn subdivided into P2YR and P2XR. The 8 P2YRs are 39 

coupled to G-proteins and are activated with differing selectivity by adenosine triphosphate 40 

(ATP), adenosine diphosphate (ADP), uridine triphosphate (UTP) and uridine diphosphate (UDP). 41 

The 7 P2XRs are trimeric ligand-gated ion channels activated by ATP, but not, or only weakly, by 42 

ADP or adenosine monophosphate (AMP). The molecular properties of these receptors and 43 

their ligands are described in detail in the IUPHAR/BPS Guide to Pharmacology: 44 

http://www.guidetopharmacology.org. 45 

http://www.guidetopharmacology.org/
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P2 receptors are expressed in all segments of the nephron and renal cells often express multiple 46 

receptor subtypes at both the apical and basolateral cell membranes 7, 8. Renal cells can also 47 

release ATP and UTP into the extracellular space. This release is likely to be regulated and is 48 

facilitated by several transport systems that involve vesicular or lysosomal exocytosis , or 49 

channel-mediated release via connexins 9 or pannexins 10. Extracellular ATP and UTP have short 50 

half-lives due to rapid catabolism by ectonucleotidases (Figure 1) that are also expressed by 51 

renal cells 11, 12. Their immediate breakdown products, ADP and UDP, are potent agonists at 52 

P2Y1R,12R,13R, and P2Y6R,14R, respectively. Further metabolism of ADP produces the 5’AMP 53 

(through CD39) and eventually adenosine (through CD73), the agonist at P1R (A1,2A,2B,3) that 54 

are also present in renal epithelia. Thus, the kidney has complex and regulated machinery for 55 

hierarchical purinergic signaling integrated by the action of ectonucleotidases. Ascribing specific 56 

physiological functions to a given receptor subtype has been challenging: avai lable receptor 57 

agonists are not sufficiently selective and are often unstable 11. In contrast, selective and 58 

specific receptor antagonists are providing a pharmacological means of assessing the function(s) 59 

of this system in vivo. 60 

Extracellular nucleotides can influence a range of physiological functions, from cell -proliferation 61 

and growth, through to energy metabolism and transepithelial solute flux. These functions have 62 

been reviewed in depth recently 13 and we can provide only a brief overview. It is evident that 63 

abnormal P2R activity can occur in various inflammatory and non-inflammatory disease states 64 

ranging from hypertension 14 to transplant rejection, to polycystic kidney disease 15. However, 65 

more beguiling is the therapeutic potential for P2XR antagonists in chronic kidney disease (CKD).   66 

 67 

 68 

 69 
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P2 receptors control renal vascular and microvascular function 70 

P2 receptors are expressed throughout the vasculature and microvasculature (Figure 2) and 71 

strongly influence vessel function 16. The renal vasculature and microvasculature also expresses 72 

NTPDase1 (CD39) that hydrolyses ATP to ADP and AMP, and thereby rapidly curtail purinergic 73 

signaling 17. P2X1R is the dominant receptor in vascular smooth muscle and application of ATP 74 

to the adventitia evokes contraction in the pre-glomerular vasculature 18, 19. P2X1R null mice 75 

display an attenuated pressure-induced constriction of the afferent arteriole 20 and targeted 76 

deletion of NTPDase1 prolongs the half-life of extracellular ATP, enhancing the vascular 77 

response to increased pressure 21. 78 

Direct renal artery infusion of ATP increases blood flow, causing vasodilation due to production 79 

of nitric oxide (NO) by the endothelium 22 and also NO-independent vasodilatation induced by 80 

intra-renal prostanoids 23. The P2 receptor subtype(s) that mediates the vasodilatatory response 81 

to ATP is unknown. In human arterial endothelial cells and endothelial cells cultured from the 82 

mouse pulmonary artery, P2X4R is the most abundantly expressed receptor, followed by P2X7R 83 

24-26. P2X4R mediates the release of NO in response to increased shear stress 24. This response is 84 

lost in P2X4R null mice, which have endothelial dysfunction and hypertension 25. P2X7R 85 

activation seems to promote a tonic vasoconstriction of both the pre-glomerular arteries and 86 

medullary microcirculation 14, which is discussed more below. Other P2 receptors can influence 87 

endothelial function, for example, vasodilatation caused by UDP is abolished in P2Y6R null mice 88 

27. The descending vasa recta are also affected by extracellular nucleotides, since infusion of 89 

ATP into the renal artery reduces medullary blood flow as a result of P2X1R activation 23, and 90 

ATP released from sympathetic nerves causes constriction of vasa recta pericytes 28.  91 

 92 
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Multiple P2R subtypes are expressed in glomerular cells (Figure 2). Under normal conditions, 93 

P2YR predominate 29 and extracellular nucleotides influence mesangial proliferation and 94 

contraction, as well as contraction of the parietal sheet 29. In podocytes, P2Y1R is the dominant 95 

functional receptor as demonstrated by comprehensive pharmacological profiling and 96 

immunolocalization 30; however, recently P2X4R has been shown to have a mechano-sensitive 97 

role affecting the podocyte actin cytoskeleton 31, although P2X4R knockout mice, while 98 

hypertensive, have no obvious gross glomerular phenotype and are not known to be proteinuric. 99 

In contrast, P2Y1R null mice are protected from acute nephrotoxic injury, showing preserved 100 

renal function, reduced capillary rarefaction and fibrosis, and enhanced survival 32. P2Y1R 101 

activation may, therefore, contribute to glomerular injury. P2X7R expression also seems to be 102 

associated with glomerular injury, since it is increased in multiple glomerular cells types, 103 

including inflammatory cells, in models of severe hypertension, type 1 diabetes 33, and acute 104 

inflammatory glomerulonephritis 34. Uncovering the primary role of this increased glomerular 105 

P2X7R expression remains an active area of research. 106 

 107 

P2 receptors and renal tubular physiology 108 

P2R exert a largely inhibitory effect on tubular electrolyte transport and this, together with 109 

expression in specific nephron segments, has been reviewed extensively elsewhere 35 and is 110 

summarized in Figure 2. The processes are best defined for sodium flux, which is tonically 111 

suppressed by P2R activation in several nephron segments  36. It is likely that such paracrine 112 

control by extracellular nucleotides provides a route for rapid modulation of tubular transport 113 

that can link solute and fluid delivery to adaptive transport capacity, for example adenosine-114 

mediated tubuloglomerular feedback is impaired in CD73-/- mice 37. This form of control can 115 

integrate with more slowly adapting hormonal systems, for example the renin-angiotensin-116 
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aldosterone system (RAAS) to regulate the phenomenon of aldosterone escape 38. Indeed, ATP 117 

release by tubular cells, stimulated by increased flow, contributes to the control of extracellular 118 

fluid volume by the kidney, and blood pressure regulation, as discussed below.  119 

 120 

Proximal tubule  121 

The proximal tubule, which expresses apical P2Y1R and P2X5R, and basolateral P2Y4R and 122 

P2Y6R 39, 40, accounts for reabsorption of ~65% of the filtered sodium load. Extracellular 123 

nucleotides inhibit the major sodium transporters in this segment, NHE3 41, NaPi2 42 and Na,K-124 

ATPase 43, and inhibition of transepithelial flux has been confirmed in vivo 44. The ATP 125 

concentration in tubular fluid is unknown, although measurements in bulk fluid collected from 126 

the end of the proximal convoluted tubule (PCT) report concentrations of 100-300nmol/l 45. The 127 

brush border membrane expresses ENPP3 (ectonucleotide pyrophosphatase/ phospodiesterase 128 

3) and ecto-5’-nucleotidase (NT5E; CD73) 12 that should terminate physiological signaling. 129 

Microperfusion studies using nucleotide scavengers suggest that the ‘ambient’ concentration of 130 

the physiological purinergic ligand, most probably ADP, is ~10mol/l, exerting a tonic inhibitory 131 

effect that may help to balance tubular sodium reabsorption with glomerular filtration 44. 132 

 133 

The distal nephron 134 

Increased fluid flow or changes in osmolality of the tubular fluid promotes nucleotide secretion 135 

in both the thick limb of Henle 46 and collecting duct 47, inhibiting transport in downstream 136 

nephron segments. In the thick ascending limb of Henle (TALH), ATP release is dependent on 137 

activation of the transient receptor potential cation channel TRPV4 osmosensor 48. These 138 

nucleotides activate endothelial NO synthase (NOS3) in thick limb cells, and P2R signaling 139 

underpins the flow-dependent increase in NO production 49 and subsequent inhibition of apical 140 
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NKCC2 and basolateral Na,K-ATPase activity 50. Studies in knockout mice suggest P2X4R and 141 

P2Y2R contribute to this signaling arc 51, 52.  142 

Extracellular ATP has long been known to inhibit the epithelial sodium channel (ENaC), the rate-143 

limiting step for sodium transport in the connecting tubule and collecting duct 53. Studies in 144 

isolated segments show that ATP activates P2Y2R to reduce the open probability of ENaC 54-56. 145 

P2yr2 null mice lack the tonic suppression of ENaC and are hypertensive 54. Studies in vivo 146 

suggest that P2X4R activation also inhibits ENaC 53, 57 and our own pilot studies in a P2X4R null 147 

mouse suggest that this receptor may be important in the modulation of sodium transport by 148 

aldosterone (Craigie et al, unpublished).  149 

 150 

P2R and blood pressure regulation 151 

Hypertension is a major modifiable risk factor for cardiovascular and renal disease and is highly 152 

prevalent 58. Human genetic studies have found an association between SNPs in P2XR encoding 153 

genes and blood pressure or cardiovascular disease. The loss of function variant rs28360472 in 154 

P2RX4 associates with increased pulse pressure 59, itself an important cardiovascular risk factor. 155 

An intronic SNP (rs591874) in the gene encoding P2X7R is associated with elevated blood 156 

pressure 60. The loss of function variant rs3751143 is common (25% heterozygosity and up to 3% 157 

homozygosity) and protects against ischemic stroke 61. The physiology of P2RX7 genetic 158 

variation is almost certainly subtle, if not complex. For example, rs3751143 does not associate 159 

with impaired endothelial dysfunction or vascular stiffness in essential hypertensives 62, but 160 

does confer a significantly reduced sensitivity to P2X7R antagonism 63. 161 

Pressure-natriuresis is an important mechanism of long-term blood pressure control 64 and is 162 

modulated by paracrine factors that inhibit sodium transport in the renal proximal tubule, 163 

including extracellular nucleotides. Microdialysis experiments reveal a direct relationship 164 

between renal artery perfusion pressure and the concentration of ATP in the interstitial fluid of 165 



 9 

the kidney cortex 65. As mentioned earlier, extracellular nucleotides inhibit the key transporters 166 

in the proximal tubule 41-43. This natriuretic effect is buttressed by inhibition of sodium transport 167 

in the distal nephron. Increased flow through the collecting duct promotes ATP secretion to 168 

inhibit ENaC. This ATP release is abolished in connexin 30 knockout mice, severely attenuating 169 

the pressure-natriuresis response 9. Consistent with this, mice over-expressing human 170 

NTPDase1 (CD39), a cell surface enzyme that scavenges extracellular nucleotides, display a small 171 

impairment of the natriuretic response to a high sodium diet and concomitant aldosterone 172 

infusion 66. It is assumed that P2Y2R mediates the inhibitory effect of ATP on distal tubule 173 

sodium transport. Receptor agonists have been considered as potential antihypertensives. 174 

P2yr2 null mice display enhanced ENaC activity and are hypertensive. Surprisingly, blood 175 

pressure is salt resistant 67 and endothelial dysfunction with impaired NO release may be causal. 176 

Recent studies also suggest that ATP can inhibit ENaC indirectly: in IMCD cells, activation of 177 

P2X7R promotes synthesis of endothelin-1, which is pro-natriuretic due to ETB-mediated 178 

inhibition of ENaC 68.  However, the significance of this cell line-based study is not clear, since 179 

acute P2X7R antagonism in vivo improves the pressure-natriuresis relationship 14. 180 

Although P2X7R activation contributes to the physiological control of blood pressure by the 181 

kidney, sustained activation of the receptor, which does not de-sensitize with repeated 182 

exposure to ATP, promotes hypertensive renal injury. Thus, prophylactic P2X7R antagonism 69 or 183 

‘knock-out’ of the murine P2X7k transcript 70, which leaves several functional P2RX7 transcripts 184 

intact 71, protects against the injury associated with salt-sensitive hypertension. P2X7R 185 

antagonism/deletion reduced albuminuria and interstitial fibrosis, lowered blood pressure and 186 

reduced the infiltration of T and B cells, macrophages and leucocytes. The mechanisms 187 

underpinning these effects are not known, as discussed further below. Our data suggest that 188 

P2X7R in the renal vasculature and microvasculature may impair blood pressure regulation by 189 

the kidney 14. We identified elevated renal expression of P2X7R (and P2X4R) as a candidate gene 190 
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for hypertensive renal vascular injury in rats 72. P2X7R localized to the vascular and 191 

microvascular endothelium down to afferent arterioles. The selective P2X7R antagonist 192 

AZ11657312 increased renal medullary perfusion and improved tissue oxygenation in 193 

angiotensin II–treated rats 14; these beneficial effects were partially dependent on NO synthesis. 194 

Overall, activation of P2X7R induces microvascular dysfunction and regional hypoxia, 195 

particularly under high angiotensin II tone. These effects are pro-inflammatory and may 196 

contribute to progression of renal injury. In the next section, we discuss the role of P2X7R in 197 

renal injury and disease and assess the potential for antagonists as renal therapeutics.  198 

 199 

P2XR and renal injury 200 

There is consistent pre-clinical evidence supporting a role for P2X7R in inflammation (Figure 3), 201 

and, as already mentioned, P2X7R antagonists have been explored as a treatment target in 202 

rheumatoid arthritis 5, COPD 6, and IBD 73, but with mixed or generally disappointing results. This 203 

has caused interest in the receptor to wax and wane. However, it is likely that an improved 204 

understanding of the biological roles of P2X7R, including its unique two-stage ability to induce 205 

membrane permeability to large (>900 Da) molecules, rather than cations alone, as well as the 206 

regulation and function of the main splice variants, will provide a fresh impetus to the clinical 207 

testing of antagonists. 208 

In the normal kidney P2X7R is typically only present at low levels, often undetectable by RNA 209 

analysis in whole kidney extracts. The receptor is normally localized to certain compartments, 210 

particularly the vasculature and microvasculature, at least in the rat 7, 14, 72. A wealth of data 211 

shows that injury/inflammation increases expression in renal cells. For example, TNFα can 212 

induce expression of P2X7R in cultured mesangial cells  74. In renal biopsy material from patients 213 

with lupus nephritis, increased expression of P2X7R protein has been found 75. Nevertheless, it 214 



 11 

remains to be investigated whether the extent of P2X7R expression correlates with the severity 215 

of clinical disease and a more detailed study with larger patient numbers is needed.  216 

 217 

Glomerulonephritis 218 

A more detailed characterization of the expression and potential function of P2X7R have been 219 

carried out in rodent models of nephrotoxic nephritis (NTN) 75. In a mouse model of accelerated 220 

NTN, increased expression of P2X7R was co-localized to glomerular macrophages as well as 221 

intrinsic glomerular cells. In NTN in WKY rats, onset P2X7R expression coincided with onset of 222 

proteinuria. The inflamed glomeruli are infiltrated by macrophages showing the NLRP3 223 

inflammasome activation 76. The WKY strain of rat is known to be more susceptible to 224 

developing severe and progressive glomerulonephritis when compared with the resistant LEW 225 

rat strain. WKY and LEW rats have identical MHC genes, but have distinct genetic differences 226 

and differences in their expression of P2X7R and the NLRP3 inflammasome 76. More specifically, 227 

bone marrow derived (BMD) macrophages from WKY rats have increased expression of P2X7R 228 

protein and mRNA associated with increased expression of multiple genes of the NLRP3 229 

inflammasome pathway, even in their basal state in vitro, again when compared with BMD 230 

macrophages from LEW rats. Following priming with endotoxin and stimulation with 231 

extracellular ATP, compared with LEW rats, macrophages from WKY rats have higher levels of 232 

caspase-1 activation and secretion of more mature IL-1β and IL-18. Thus, strain differences in 233 

expression of P2X7R and subsequent downstream activation of the inflammasome may be 234 

responsible for the difference in susceptibility to experimental glomerulonephritis. 235 

The functional importance of P2X7R was investigated in gene knockout mice and with systemic 236 

treatment by a small molecule P2X7R antagonist 34. Using the model of accelerated NTN, the 237 

P2X7R knockout mice had lower urinary monocyte chemoattract-1 (CCL2), fewer infiltrating 238 
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glomerular macrophages, less glomerular fibrin deposition and less proteinuria than in wild-type 239 

mice. In NTN rats, treatment with the P2X7R antagonist A438079 significantly reduced 240 

glomerular expression of CCL2, glomerular macrophage infiltration, glomerular fibrinoid 241 

necrosis and proteinuria compared with vehicle-treated rats. However, exactly how P2X7R is 242 

involved in antibody-mediated glomerulonephritis is unclear. Typically, extracellular ATP binds 243 

to P2X7R in endotoxin-primed macrophages, resulting in inflammasome activation and release 244 

of mature IL-1βand IL-18 77, yet endotoxin or other bacterial products are not involved in the 245 

induction of NTN in WKY rats 34. The interaction between immune complex stimulation and 246 

P2X7R needs further investigation and to ascertain whether treatment with the P2X7R 247 

antagonist after the onset of disease is effective in reducing the severity of glomerulonephritis. 248 

There is also recent evidence in lupus prone mice that treatment with a P2X7R antagonist can 249 

decrease the severity of renal injury and levels of dsDNA antibodies  78.  250 

 251 

Acute kidney injury 252 

Renal ischemia-reperfusion injury (IRI) is a common occurrence in many clinical settings from 253 

sepsis to major surgery, including renal transplantation. There is increased expression of P2X7R, 254 

mainly in the renal tubules, in a mouse model of renal IRI; treatment with A438079 reduced 255 

renal expression of chemokines (MCP-1 and RANTES), p-ERK, NGAL, renal tubular injury and cell 256 

death 79. 257 

As well as the mentioned increase in P2X7R in a rat model of type 1 diabetes 33, in a mouse 258 

model of high fat diet-induced metabolic disease, proteinuria and albuminuria developed in the 259 

wild-type mice, but not in P2X7a variant knockout mice 80. In the high fat diet fed mice there 260 

was also increased renal expression of P2X7R and components of the NLRP3 inflammasome that 261 

were attenuated in the high fat diet fed P2X7R knockout mice, as was renal expression of 262 
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chemokine CCL2, macrophage infiltration and expression of extracellular matrix protein. 263 

Moreover, increased expression of P2X7R and inflammasome components were found in renal 264 

tissue from patients with glomerulonephritis 75. 265 

 266 

Fibrosis  267 

Purinergic signaling is involved in tissue remodeling (Figure 3) and several studies in various 268 

tissues suggest that these pathways may also drive tissue fibrosis in chronic injury, one feature 269 

of which is a sustained increase in ambient concentrations of ATP, ADP, UTP and UDP 81. Tissue 270 

fibroblasts express multiple P2R subtypes and respond to extracellular nucleotides by activating 271 

key pathways for the production of extracellular matrix. In cardiac fibroblasts, for example, 272 

P2Y2R activation is strongly pro-fibrotic 82, and activation of P2X4R and P2X7R promotes 273 

ERK1/2-dependent fibroblast proliferation 83. This cluster of P2Rs is also relevant to the kidney 274 

in which fibroblasts and mesangial cells mainly determine ECM deposition. In this context, 275 

P2Y2R activation increases mesangial cell proliferation 74 and P2X7R activation increases matrix 276 

production by mesangial cells 84. 277 

The role of P2 receptors in renal fibrosis has been investigated in the unilateral ureteral 278 

obstruction (UUO) model 85. Transient expression of P2X7R was detected only in tubular 279 

epithelial cells 7 days after induction of UUO in wild-type mice. The renal tubular expression of 280 

TGF-β1, macrophage infiltration, tubular apoptosis and tubulointerstitial fibrosis were reduced 281 

in P2X7R knockout mice compared with wild-type mice by day 14. The role of the 282 

inflammasome in this model has also been investigated. Knockout of apoptosis-associated 283 

speck-like protein containing a caspase recruitment domain (ASC) in mice results in reduced 284 

UUO-mediated tubulointerstitial fibrosis, together with fewer infiltrating inflammatory cells and 285 

reduced renal expression of mRNA for IL-1β, CCL2, TGFβ1 and collagen I; however, it is not clear 286 
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how P2X7R may regulate TGF-β1 expression 86. While there is a well-established relationship 287 

between stimulation of P2X7R and activation of the inflammasome, it is not known what the 288 

priming signal is in the sterile UUO model and what triggers fibrogenesis.  289 

P2X4R is closely related to P2X7R and there has been ongoing controversy over whether P2X4R 290 

and P2X7R can form heterotrimers 87, 88. The potential importance of P2X4R in renal fibrosis has 291 

been investigated in the UUO model. Surprisingly, the P2X4R knockout mice showed increased 292 

renal fibrosis following induction of UUO associated with increased expression of TGFβ1 and 293 

connective tissue growth factor (CTGF, also known as CCN2), and increased amounts of type I 294 

collagen 89. These results suggest that P2X7R is pro-fibrotic in this model and that P2X4R may 295 

have an anti-fibrotic role through its regulation of pro-fibrotic growth factors. 296 

More recent studies show that nucleotidases may also contribute to fibrosis by regulating the 297 

half-life of ATP. ENTPD1 (CD39)-null mice are more sensitive to ischemic tissue injury than wild-298 

type mice 90, because ATP persists and its hydrolysis to protective adenosine is blunted.  299 

Similarly, these null mice have more pronounced renal injury in the IRI model 91, 92; although in 300 

this setting the role of adenosine is less certain, since the deletion of CD73, the enzyme that 301 

converts AMP to adenosine, was also protective 93. Overall, these data suggest that enzymes 302 

involved in terminating P2R signaling may be less tractable as therapeutic targets than the 303 

receptors themselves. Recent studies indicate that CD39 expression by T-reg lymphocytes is 304 

essential for their pro-reparative role in response to chronic renal injury 94. 305 

 306 

What now for P2X7R antagonists? 307 

P2X7R antagonists may have failed because of significant gaps in our knowledge about the 308 

complex processing and diverse roles of P2XR7 gene products and the implications this may 309 

have for P2X7R in disease. Single nucleotide polymorphisms (SNPs) such as rs3751143 (causing 310 
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Glu496Ala) can impair P2X7R function 95, 96: ATP-dependent IL-1 release from lymphocytes is 311 

significantly suppressed in individuals carrying this SNP 97. Alternative splicing can produce novel 312 

protein isoforms that are emerging as important factors in disease pathogenesis, as well as in 313 

determining the right treatment target 98.  314 

Human P2X7R has at least 10 splice isoforms, the functions of which have not been unraveled; 315 

however, in rodents, the common ‘k variant’ of P2X7R is much more sensitive to ATP than the 316 

original full-length ‘a variant’ 99. Pre-clinical data suggest that genetic variation in P2X7R will 317 

increase the population wide variance of both agonist and antagonist binding affinities, 318 

suggesting that we need to re-evaluate or redefine clinical trials on the basis of the P2X7R 319 

“fingerprint”. The tissue distribution, regulation and function of these splice isoforms in the 320 

healthy kidney is just beginning to be explored; the pharmacogenomics of P2X7R and the impact 321 

of disease is largely unknown. The next phase of research will define these key biological 322 

processes involving P2X7R, which may not all be ‘bad’ 100, and provide a better understanding of 323 

how isoform-specific receptor antagonists should be deployed in kidney disease. Is this P2X7R 324 

Redux? 325 

  326 
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Figure 1: The autocrine / paracrine purinoceptor system 679 

A range of stimuli including cellular stretch, trauma, or agonist binding triggers ATP release into 680 

the extracellular space. Ectonucleotidases located on the plasma membrane catalyse sequential 681 

hydrolysis of ATP to ADP, 5’AMP and adenosine. P1 receptors recognize adenosine while P2 682 

receptors bind di- and tri-phosphate nucleotide molecules. P2X receptors are non-selective 683 

cation channels with 3 protein subunits that may form homo- or heteromeric arrangements; all 684 

bind ATP. P2Y receptors are 7 transmembrane-spanning domain G-protein-coupled receptors; 685 

agonist preferences span adenosine and uracil di- and tri- nucleotides. NTPDase: ectonucleoside 686 

triphosphate diphosphohydrolase. 687 

 688 

Figure 2: P2 Receptors in the kidney 689 

P2Y and P2X receptor expression along the nephron: vasculature, glomeruli and tubules. 690 

 691 

Figure 3: P2XR related inflammation in (diabetic) kidney disease 692 

Local production of chemokines, adhesion molecules and inflammatory cytokines are 693 

upregulated under chronic stimulation of factors including hyperglycemia. Macrophages are the 694 

main infiltrating inflammatory cell type (expressing P2X7R) in both the glomerular and 695 

tubulointerstitial compartments where they contribute to extracellular matrix (ECM) secretion, 696 

amplification of the inflammatory cascade and eventually fibrosis. 697 
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