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Abstract

Motivation: Fine mapping is a widely used approach for identifying the causal variant(s) at disease-

associated loci. Standard methods (e.g. multiple regression) require individual level genotypes.

Recent fine mapping methods using summary-level data require the pairwise correlation coefficients

(r2) of the variants. However, haplotypes rather than pairwise r2, are the true biological representa-

tion of linkage disequilibrium (LD) among multiple loci. In this article, we present an empirical itera-

tive method, HAPlotype Regional Association analysis Program (HAPRAP), that enables fine map-

ping using summary statistics and haplotype information from an individual-level reference panel.

Results: Simulations with individual-level genotypes show that the results of HAPRAP and multiple

regression are highly consistent. In simulation with summary-level data, we demonstrate that

HAPRAP is less sensitive to poor LD estimates. In a parametric simulation using Genetic

Investigation of ANthropometric Traits height data, HAPRAP performs well with a small training

sample size (N<2000) while other methods become suboptimal. Moreover, HAPRAP’s perform-

ance is not affected substantially by single nucleotide polymorphisms (SNPs) with low minor allele

frequencies. We applied the method to existing quantitative trait and binary outcome meta-

analyses (human height, QTc interval and gallbladder disease); all previous reported association

signals were replicated and two additional variants were independently associated with human

height. Due to the growing availability of summary level data, the value of HAPRAP is likely to

VC The Author 2016. Published by Oxford University Press. 79

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 33(1), 2017, 79–86

doi: 10.1093/bioinformatics/btw565

Advance Access Publication Date: 1 September 2016

Original Paper

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw565/-/DC1
http://www.oxfordjournals.org/


increase markedly for future analyses (e.g. functional prediction and identification of instruments

for Mendelian randomization).

Availability and Implementation: The HAPRAP package and documentation are available at http://

apps.biocompute.org.uk/haprap/

Contact: jie.zheng@bristol.ac.uk or tom.gaunt@bristol.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) have identified thousands

of single nucleotide polymorphisms (SNPs) associated with human

complex traits and diseases (Hindorff et al., 2009; Manolio, 2010).

To increase the power to detect small genetic effects associated with

common complex traits, meta-analysis of multiple GWAS studies

have also been conducted including blood lipids (Teslovich et al.,

2010, Electrocardiographic (ECG) traits (Arking et al., 2006; Gaunt

et al., 2012; Newton-Cheh et al., 2009; Pfeufer et al., 2009) and

human height (Wood et al., 2014) amongst others. )

When a plausible hit has been identified within a GWAS, the

challenge becomes one of determining the independent potentially

causal SNP signals from a background of many correlated variants

within the linkage disequilibrium (LD) block. A common strategy

adopted is to take the top association signal to represent the associ-

ation in a genomic region. However, this design does not take into

account the possibility of multiple causal variants within a region,

which will result in an underestimation of the total variation that

could be explained at a locus (Yang et al., 2012). Statistical methods

are available to identify independent hits; however these methods ei-

ther require access to individual level data, or rely on pairwise LD

estimates when summary statistics are used.

Conditional analysis is time consuming when individual level

genotype data from several cohorts needs to be analysed separately

and then combined in meta-analysis (Zheng et al., 2013). Providing

the pairwise LD structure is consistent in samples from the same eth-

nic group (Ke et al., 2004), there are two approximate conditional

analysis methods that can effectively use GWAS summary data:

Genome-wide Complex Trait Analysis (GCTA) conditional and

joint effect analysis (COJO) (Yang et al., 2012) and Sequential senti-

nel SNP Regional Association Plots (SSS-RAP) (Zheng et al., 2013).

COJO is a state-of-the-art method extending the scope of mul-

tiple regression to summary-level meta-analysis. COJO estimates the

approximate joint SNP effects from summary statistics in a meta-

analysis and LD information from an appropriate reference sample.

SSSRAP is a numerical and graphical approach that transforms the

marginal SNP effect of a sentinel SNP to the joint SNP effect of a

test SNP through a 2�2 SNP-haplotypes matrix.

These existing approximate conditional analysis methods use pair-

wise correlation coefficients (r2) between SNPs to represent LD struc-

ture in each associated region. However, when considering regions

with three or more causal variants, utilizing allele frequencies and pair-

wise LD correlation may lose LD information. Three-locus systems

may place additional constraints on the maximum and minimum val-

ues for the pair-wise LD terms (Robinson et al., 1991). Haplotypes,

which represent combinations of co-inherited alleles within the same

chromosome, are a more biologically correct way to represent LD

among multiple loci. Fine mapping using haplotypes will pick up the

LD information that is not detected using pairwise LD measures.

To aid the ‘missing LD information’ problem, we propose an em-

pirical iterative method HAPlotype Regional Association analysis

Program (HAPRAP) to improve the accuracy of approximate

conditional analysis using GWAS summary data. The important dif-

ference between HAPRAP and COJO is that the former estimates

the joint SNP effects by using haplotypes (rather than pair-wise LD)

estimated from a reference sample. We use both simulations and

real-data from the British Women’s Heart Health Study (BWHHS)

(Lawlor et al., 2003) to show that HAPRAP outperforms COJO on

a range of performance measures. We applied the method to group-

level QTc interval data from the UCL-LSHTM-Edinburgh-Bristol

(UCLEB) meta-analysis (Shah et al., 2013), with the haplotype infor-

mation estimated from imputed genotype data from the BWHHS;

and human height from the Genetic Investigation of

ANthropometric Traits (GIANT) meta-analysis (Wood et al., 2014),

with the haplotype information estimated from the Avon

Longitudinal Study of Parents and Children (ALSPAC). Both cases

suggest that HAPRAP has increased power for fine mapping com-

pared to COJO. We extended HAPRAP to binary phenotypes and

we illustrate this with an example of meta-analysis for gallbladder

disease (GBD) SNP hits (Rodriguez et al., 2015).

2 Materials and methods

2.1 Overview of the methodology
We aim to combine summary level statistics with the full informa-

tion from haplotypes (rather than using the traditional pairwise LD

approach) to fine map genetic regions. Our algorithm iteratively up-

dates haplotype effects based on haplotype frequencies and observed

marginal SNP effects from meta-analyses to estimate the approxi-

mate joint SNP effect. This approach allows researchers to conduct

conditional analysis more accurately without access to individual

level genotypes.

2.1.1 Theory

The haplotype-based approach we propose in this article is closely

related to a single regression model. In a single regression model, we

treat the major allele as the baseline allele; and the minor allele as

the effect allele. The marginal SNP effect refers to the effect estimate

from an outcome Y regressed on a single SNP (i.e. the allelic effect

from a simple linear regression model). The joint SNP effect, which

we aim to estimate, refers to the SNP effect obtained from Y re-

gressed on multiple SNPs within the region. The joint SNP effect is

adjusted for the correlation with surrounding SNPs, whereas the

marginal SNP effect is not.

A simple extension of the single regression model to multi-locus data

is to integrate two popular haplotype-based analysis strategies together:

(i) dichotomize haplotypes into two groups (Lin and Zeng, 2006) and

(ii) treat each group as a bivariate allele (Purcell et al., 2007a).

Assume we obtain a SNP by haplotype matrix M, with

mk;j ¼ 0 or 1, from a sample population, we split existing haplo-

types into two groups to estimate the joint effect of SNP j:

HEj ¼ fl : ml;j ¼ 1g

HBj ¼ fo : mo;j ¼ 0g

(
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HEj is the set of haplotypes containing the effect allele of SNP j;

and, HBj is the set of haplotypes containing the baseline allele of

SNP j. For example for SNP1 in Figure 1, HE1 is the set of haplo-

types from Haplotypes 5–8, whereas HB1 is the set of haplotypes

from Haplotypes 1–4. We also split the haplotype frequencies into

two groups based on the relevant haplotypes Fl and Fo.

We then define the estimated marginal SNP effect of a SNP j, Uj

as:

Uj ¼ zl;j � zo;j; l 2 HEj and o 2 HBj; (1)

where zl;j (or zo;jÞ is the average of the additive effect over the set of

haplotypes HEj ðor HBjÞ. These additive haplotype effects can be

transferred to joint SNP effects using a generalized inverse matrix

approach. This extension is applicable to both linear and logistic re-

gression models.

2.1.2 HAPRAP algorithm for estimating the joint SNP effect

As individual-level genotype data is usually not publicly available

for GWAS meta-analysis, we cannot estimate haplotype effects by

conducting a haplotype-based association analysis. Thus, we use an

iterative method to estimate the haplotype effects from marginal

SNP effects. The iteration involves four steps (Fig. 2):

Step 1: Setting initial values for joint SNP effects and haplotype ef-

fects transformation.

Step 2: The marginal SNP effects estimation.

Step 3: The haplotype effects adjustment.

Step 4: Convergence and the generalized inverse matrix approach.

Table 1 provides details of the notation used in describing our

method.

Step 1. Setting initial values for joint SNP effects and haplotype

effects transformation: The algorithm starts with setting up a ran-

dom set of initial joint effects for SNPs, Vð0Þ

Assuming that haplotypes (and haplotype frequencies) in the ref-

erence panel are the same as those in the GWAS meta-analysis, we

estimate the haplotype frequencies F and the SNP by haplotype ma-

trix M from the reference panel.

Assuming an additive linear model, the initial estimated haplo-

type effect Zð0Þ is the matrix product of M and Vð0Þ (Fig. 1):

MV 0ð Þ ¼ Z 0ð Þ: (2)

Step 2. Marginal SNP effects estimation:

As mentioned in Equation (1), we define the marginal SNP effect

as the difference between the sums of the additive effects of the two

sets of haplotypes HEj and HBj.

Thus, for the g iteration, where g¼ {0. . .G}, the marginal SNP ef-

fect of SNP j, U
gð Þ

j , is estimated by counting the difference between

the two groups of haplotype effects, Z
gð Þ

j;l and Z
gð Þ

j;o , and standardized

by the relevant haplotype frequencies, Fl and Fo:

U
gð Þ

j ¼
1P

l2HEj
Fl

X
l2HEj

FlZ
gð Þ

j; l

� �

� 1P
o2HBj

Fo

X
o2HBj

FoZ
gð Þ

j; o

� �
: (3)

We tested the reliability of Equation (3) by a simulation and

found that given any set of joint SNP effects, application of

Equation (3) never generated non-zero effect estimates for SNPs that

were simulated to have truly null effects (Supplementary Text S2).

Fig. 1. The SNP by haplotypes matrix for HAPRAP. The iteration of HAPRAP is

built based on a matrix summarizing the haplotypes and haplotype frequen-

cies for a certain population. ‘0’ in the matrix means the haplotype contains

the baseline allele for the relevant SNP, whereas ‘1’ means the haplotype con-

tains the effect allele for the relevant SNP. The small arrow (from left to right)

is the marginal SNP effects estimation step. The large arrow (from right to

left) is the haplotype effects adjustment step

Fig. 2. Schematic diagram of HAPRAP

Table 1. Notation of HAPRAP

Par. Description

M K� J SNP by haplotype matrix, with mk;j ¼ 0 or 1, with 0 being

the baseline allele of SNP j, 1 being the effect allele of SNP j

HEj The set of haplotypes containing the effect allele of SNP j

HBj The set of haplotypes containing the baseline allele of SNP j

Fl The set of haplotype frequencies containing the baseline allele of

SNP j

Fo The set of haplotype frequencies containing the baseline allele of

SNP j

O J � 1 vector of observed marginal SNP effects from GWAS/

meta-analysis

V(0) J � 1 vector of random initial joint SNP effects

U(g) J � 1 vector of the estimated marginal SNP effects in the gth

iteration

Z(g) K� 1 vector of the estimated haplotype effects of in the gth

iteration

x(g) The SNP with the greatest deviation between the observed mar-

ginal SNP effect and the estimated marginal SNP effect in the

g iteration

V(g) J � 1 vector of the estimated joint SNP effects in the gth iteration

Column ‘Par.’ lists the parameters used in HAPRAP.
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Step 3. Haplotype effects adjustment: the adjusted marginal SNP

effects for iteration g, U gð Þ are compared to the observed marginal

SNP effects, O. Reconciling the difference between U gð Þ and O is im-

portant because it equates the marginal SNP effects observed from

the meta-analytic data with those that would arise under the distri-

bution of haplotypes in the reference panel. The SNP with the great-

est deviation, denoted xðgÞ, is adjusted for the next iteration gþ1,

the other SNP effects remain the same:

U
gþ1ð Þ

j ¼
U

gð Þ
j �Oi where j ¼ xðgÞ

U
gð Þ

j where j 6¼ xðgÞ
:

8<
: (4)

Then the haplotype effect Z gþ1ð Þ will be adjusted based on the

change of U
gþ1ð Þ

j . For haplotype k, we get:

Z
ðgþ1Þ
k ¼ Z

ðgÞ
k þ U

gð Þ
j mk;j where j ¼ xðgÞ: (5)

Step 4. Convergence and the generalized inverse matrix ap-

proach: After the estimated marginal SNP effects, U gð Þ converge to

within 10 decimal places of the observed SNP effects, O, we stop the

iteration. The joint SNP effects, V gð Þ, is estimated using the

generalized inverse matrix approach:

M�1Z gð Þ ¼ V gð Þ: (6)

2.2 Estimating standard errors of the estimated joint

SNP effects and testing SNP significance using

parametric bootstrap
We estimate the standard errors (SE) of the estimated joint SNP ef-

fects using a bootstrap approach so that we can apply the stepwise

elimination using the joint P-value in the next step.

2.2.1 Pre-test of SNP significances

Generating bootstrap SE can use computational resources inten-

sively. To improve computational efficiency, we first pre-test the sig-

nificance of the candidate SNPs using the estimated joint SNP effects

V gð Þ and the SE of the observed marginal SNP effects (since the un-

certainty of the effect of a given SNP is larger in a multivariate

model than that in a single SNP model). SNPs with the highest P-

value will be step-wise eliminated from the model until all SNPs

reach the P-value threshold we set.

If two or more SNPs remain in the model after the pre-test using

SEs from single locus regression, we then estimate the SE of

HAPRAP betas of these SNPs using a simulation based HAPRAP

program (simHAPRAP) (Supplementary Fig. S1). The simHAPRAP

program starts with simulating a population with sample size equal

to the total number of participants in the meta-analysis. Genotypes

for each individual are generated based on the haplotypes and

haplotype frequencies. Quantitative phenotypes are simulated from

a normal distribution with mean equal to zero and SE equal to the

observed SD of the phenotype; whereas binary phenotypes are simu-

lated from a binomial distribution which matches the observed

probability of cases. A weighted genetic risk factor is used as the

total genetic effect on the trait (Supplementary Fig. S1).

We repeat the simHAPRAP procedure 2000 times. The SE of the

betas over the 2000 replications are used as the SE of the HAPRAP

betas (defined here as simHR SE).

2.2.2 Stepwise backwards elimination

t-test P-values are calculated using HAPRAP betas and simHAPRAP

SEs. We backward eliminate the SNPs with the highest P-values

until all SNPs in the model reach a pre-set P-value cut-off.

2.2.3 HAPRAP availability

The HAPRAP software and a web-based instruction manual (de-

veloped using HTML and Cascading Style Sheets (CSS)) are avail-

able at http://apps.biocompute.org.uk/haprap.

2.3 Sample datasets
The real cases and simulated datasets we used for this analysis are

explained in Supplementary Text S3.

2.4 Simulation framework and empirical comparison
Firstly, we simulated a pool of 100 000 individuals (details in

Supplementary Text S3) and performed a series of simulations to

test the influence of LD structure and sample size of reference panel.

For each model explained in Supplementary Text S3 and

Supplementary Table S1, we applied HAPRAP and COJO to the

summary statistics and the genotypes of a specific reference panel.

We also applied multiple regression using individual-level pheno-

types and genotypes from the reference panel. For each method, the

mean and SD of the joint SNP effect were estimated 1000 times. In

addition, multiple regressions on the 100 000 individuals were con-

ducted (Supplementary Text S3) and the resulting joint SNP effects

were set as the gold standards. Mean square error (MSE) of the gold

standard effect was used to measure the accuracy of each method.

Secondly, we performed a parametric simulation to test the influ-

ence of the sample size of a meta-analysis. The GIANT height meta-

analysis data were used as the basis of this simulation (Wood et al.,

2014). We selected 20 nearest SNPs from the ACAN region.

ALSPAC pre-phased haplotypes of 8263 unrelated children were

used to build a genotype pool for 253 288 individuals. We randomly

selected 100 000, 50 000, 10 000, 5000, 2500, 1750 and 1000 indi-

viduals from the pool, comparing the performance of HAPRAP and

COJO using multiple regression as the gold standard. 1000 replica-

tions were processed to estimate the MSE and SD of the MSE.

Thirdly, as an empirical comparison between HAPRAP and

COJO, we explored these methods using real data from the

BWHHS and the 1000 Genomes project (1000 Genome Project

Consortium, 2010). Details of the performance comparisons are ex-

plained in Supplementary Text S4.

2.5 Case study for quantitative traits: GIANT height
We firstly applied HAPRAP to two meta-analyses. Details of these

two case studies are explained in Supplementary Text S5. We further

applied HAPRAP to summary-level data from the GIANT height

meta-analysis (sample size 253 288). The pre-phased haplotypes of

8263 unrelated children from ALSPAC were used as the reference

panel. Three genomic regions with more than one robust independ-

ent association signal were selected (Wood et al., 2014). All SNPs

within these regions were selected (782 SNPs for ACAN, 1477 SNPs

for ADAMTS17 and 1936 SNPs for PTCH1).

3 Results

3.1 Simulation and empirical comparison
Firstly, we fixed the sample size of the meta-analysis (N¼100 000)

and compared the performance of HAPRAP and COJO across differ-

ent LD structures and different sample sizes of reference panel using a

simulation data set (details in Supplementary Text S3). As shown in

Supplementary Table S2, HAPRAP outperformed COJO under a var-

iety of LD structures and was less sensitive to poor LD estimation.

In the two-SNP models with one causal SNP and one non-effect

SNP, HAPRAP was slightly (up to 29%) more accurate than COJO
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across 16 models (Supplementary Fig. S2A and Supplementary

Table S2A). Both methods performed well when the sample size of

the reference panel was larger than 5000. When the sample size of

the reference panel was limited to 500–1000, HAPRAP started to

outperform COJO. On the other hand, considering the influence of

LD structure, HAPRAP was up to 54% more accurate than COJO

when LD between the two SNPs was extremely high (r2 ¼ 0.9).

In the three-SNP models with two causal SNPs and one non-effect

SNP (Fig. 3 and Supplementary Fig. S2B), both methods performed

relatively well when the sample size of the reference panel was larger

than 5000 (although with more errors compared to the two-SNP

models). However, both methods struggled to eliminate the non-effect

SNP when the sample size of reference panel is <1000 and LD was

very high amongst three SNPs. However, in a more realistic LD range

(r2 between each pair of SNPs from 0.1 to 0.5) and with a small refer-

ence sample size (N¼1000), HAPRAP was, on average, 63% more

accurate than COJO (Supplementary Table S2B).

We demonstrated in this simulation that, when individual-level

data is extremely limited, HAPRAP (using summary level data and a

reference panel with a small number of individuals) is a better op-

tion than applying multiple regression to the reference panel with

limited sample size (Supplementary Fig. S2C and Supplementary

Table S2).

Secondly, in the parametric simulation using GIANT height

data, we assumed perfect LD estimation and only consider the influ-

ence of sample size of the meta-analysis. As shown in Figure 4 and

Supplementary Table S3, HAPRAP and COJO were close to optimal

(Supplementary Text S6 explains the reason COJO is not perfectly

optimal in this situation) when the sample size of the meta-analysis

was large (N�10 000). When the training sample size was between

1750 and 5000, HAPRAP’s MSE was still under 0.1 while COJO

became suboptimal.

Thirdly, we utilized individual-level data of �2000 BWHHS indi-

viduals on a total of 115 SNPs to compare the accuracy of HAPRAP

[haplotypes phased by both segmented haplotype estimation and impu-

tation tool (SHAPEIT) (Delaneau et al., 2012) and PLINK] and COJO

using multiple regression as the gold standard (Supplementary Table

S4). The details of the comparison can be found in Supplementary Text

S4. In summary, the comparisons suggested that HAPRAP was compar-

able to multiple regression when the individual-level genotypes are

available for the entire cohort. In addition, HAPRAP was on average

10.86% more accurate than COJO when the sample size of the refer-

ence panel was extremely limited (Sample size<200).

3.2 Case study: GIANT meta-analysis of height
We further analysed three genomic regions reported to be associated

with human height by the GIANT consortium. The original fine

mapping analyses were processed using COJO, resulting in 18 asso-

ciated SNPs with P-value<5�10�8 at these 3 loci (Wood et al.,

2014). Here, we applied HAPRAP to a total of 4195 SNPs using

8263 unrelated ALSPAC children as a reference panel. The allele fre-

quencies of GIANT and the ALSPAC children were quite similar

(Supplementary Table S5). As shown in Table 2, HAPRAP repli-

cated all 18 previously reported association signals at these 3 loci

(Table 2). Moreover, HAPRAP identified two novel signals,

rs1529889 (an intronic variant in ADAMST17 with joint effect of 0.

019) and rs357564 (a missense variant in PTCH1 with joint effect

of �0.034), independently associated with height, (Table 2). As

shown in Supplementary Table S6, these two SNPs are in low LD

with independent SNPs in the same genomic region.

Surprisingly, when we applied COJO to the same data using a

different reference panel (ALSPAC instead of ARIC), only 16 SNPs

were significantly associated with height, leaving two SNPs un-

selected (Supplementary Table S5).

We also conducted two case studies of GBD and QTc intervals.

Details of these case studies are in Supplementary Text S5.

4 Discussion

Meta-analysis summary association statistics are becoming more and

more widely available to the scientific community (Bulik-Sullivan

Fig. 3. Performance comparison between HAPRAP and COJO in one of the

three-SNPs Model MSE is MSE of HAPRAP (or that of GCTA) compare to joint

effect from multiple regression mode. X-axis is the number of individuals in

the reference panel on a log scale, which is equivalent to sample size of

10 000, 5000, 1000 or 500, respectively. In this simulation, SNP1 is a signal

with a joint effect of 1, SNP2 is a bystander SNP with no effect, SNP3 is a sec-

ondary SNP with a joint effect of 0.3, r2 between SNP1 and SNP2 was 0.8, r2

between SNP1 and SNP3 was 0.5

Fig. 4. Performance comparison of HAPRAP and COJO using parametric simula-

tion of 20 SNPs from GIANT height meta-analysis MSE is the MSE of the

method compare to multiple regression. X-axis is the number of individuals in

the meta-analysis in Log scale. Horizontal line is the threshold line of MSE of 0.1
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et al., 2015a). Several genetic analysis methods have been developed

to exploit these resources (using summary rather than individual-level

data), for example LD score regression (Bulik-Sullivan et al., 2015a,b;

Finucane et al., 2015), Gaussian imputation (Pasaniuc et al., 2014)

and two-sample Mendelian randomization (Pierce and Burgess,

2013).

In this article, we introduced a novel approach for statistical fine

mapping using meta-analysis summary statistics. The proposed

method (HAPRAP) uses haplotypes to represent LD structure

among multiple variants in a region. Using haplotypes has four sig-

nificant advantages compared to existing conditional analysis meth-

ods that utilize pairwise correlation coefficients (r2) between SNPs

[such as COJO (Yang et al., 2012) and SSSRAP (Zheng et al.,

2013)]:

1. It considers all loci simultaneously, rather than pairwise, thus it

is less susceptible to poor LD estimates that occur if the reference

LD structure does not closely match the populations studied in

the GWAS data.

2. It is more accurate than COJO when the sample size of the

meta-analysis is limited (e.g. N � 5000).

3. It is more accurate and powerful for regions with three or more

independent signals. Compared to Bayesian fine mapping meth-

ods such as Probabilistic Annotation INtegraTOR (PAINTOR)

(Kichaev et al., 2014; Kichaev and Pasaniuc 2015), CAusal

Variants Identification in Associated Regions (CAVIAR)

(Hormozdiari et al., 2014) and CAVIAR Bayes factor

(CAVIARBF) (Chen et al., 2015), HAPRAP does not require the

user to specify the number of causal variants. This can impair

the performance of CAVIARBF for cases where there are mul-

tiple causal variants (Kichaev et al., 2014). We observed a power

improvement in our case study of human height (e.g. with 3þ in-

dependent signals within each associated region).

4. It is more accurate when analysing rare variants (i.e. minor allele

frequency (MAF)< 0.01) than other methods using pair-wise LD.

Our empirical demonstration using the 1000 Genomes Project

(1000 Genome Project Consortium, 2010) data comparison is mean-

ingful in three aspects: Firstly, high quality haplotypes data, which is

used by HAPRAP, are now widely available and should have already

been pre-phased within large-scale consortiums/cohorts such as the

aforementioned 1000 Genomes Project and ALSPAC. Secondly, for

researchers without individual-level genotype data, our method can

give researchers a general profile of the potentially multiple associ-

ated SNPs in the region(s) of interest using the public available 1000

Genome Project data, although the errors of using the 1000

Genomes Project data as a reference panel were relatively large since

the sample size is currently small. As more open access phased

haplotype data becomes available with the publication of projects,

such as UK10K (UK10K consortium, 2015), HAPRAP’s accuracy

advantage against COJO will increase. Thirdly, HAPRAP’s perform-

ance advantage will be more apparent for GWAS studies with rela-

tively smaller sample sizes, such as association analyses of DNA

methylation with expensive or high-dimensional phenotypes [e.g.

gene expression and methylation data (Gaunt et al., 2015; Shi et al.,

2014)].

In the case study using summary statistics of GIANT data

(Wood et al., 2014), we identified two additional variants,

rs1529889 and rs357564, independently associated with human

height. These findings could have been caused by the greater sample

size of the reference panel using ALSPAC (8263) compared to ARIC

(6654). rs357564 is a missense variant within PTCH1 and

rs1529889 is an intronic variant within ADAMST17. rs357564 is

predicted to be ‘functional’ by the prediction tool FATHMM

(Shihab et al., 2015) and was reported to be associated with oral

clefts, basal cell carcinoma and ameloblastoma (Begnini et al., 2010;

Carter et al., 2010; Farias et al., 2012).

Rare variants are on average younger than common variants

(Mathieson and McVean, 2014) and are more likely to be repre-

sented by longer haplotypes. Since HAPRAP uses haplotypes and

COJO uses pairwise LD, we show HAPRAP may have a theoretical

advantage over COJO in rare variant analyses. We performed a

simulation for two SNPs with MAFs near 0.08 (Supplementary

Table S7) and HAPRAP’s accuracy was higher than COJO in all

conditions. Moreover, we highlighted a rare variant in

Apolipoprotein B (APOB), rs41288783, as a proof-of-concept using

real data (Supplementary Table S8). This SNP had a MAF of 0.0018

in BWHHS individuals. The HAPRAP estimate (beta¼0.705) is

very close to the gold standard results (beta¼0.731), whereas the

COJO estimate is considerably different from the gold standard

(beta¼0.449).

We recommend using pre-phased haplotypes as HAPRAP input.

For a cohort without haplotype data, we recommend users phase

haplotypes using tools such as SHAPEIT (Delaneau et al., 2012),

BEAGLE (Browning and Browning, 2009), IMPUTE2 (Howie et al.,

2009) and Markov Chain Haplotyping algorithm (MACH) (Li

et al., 2010) rather than PLINK (Purcell et al., 2007b). PLINK

haplotype phasing function uses an E-M algorithm, which is only ac-

curate and fast when a small number of SNPs (N<10) are included

(Browning and Browning, 2011).

We also suggest controlling for collinearity before utilizing

HAPRAP. If SNPs with very high variance inflation factor (VIF) val-

ues are included, HAPRAP (and other tools) will return extremely

Table 2. Summary of 20 associated SNPs at 3 loci for height with

P< 5� 10�8 in the HAPRAP step-wise model selection analysis

using the ALSPAC cohort as a reference sample for LD

SNP COJO-GIANT HAPRAP

Beta P-value Beta P-value

rs1348002 0.020 1.5 � 10�10 0.018 2.8 � 10�09

rs11633371 0.024 2.1 � 10�15 0.028 4.8 � 10�20

rs16942341 �0.114 3.0 � 10�29 �0.122 3.4 � 10�34

rs2280470 0.031 5.5 � 10�21 0.032 1.9 � 10�25

rs3817428 0.022 2.6 � 10�09 0.019 1.2 � 10�08

rs2238300 �0.018 1.6 � 10�09 �0.020 3.8 � 10�11

rs2573625 0.030 3.7 � 10�22 0.025 2.4 � 10�15

rs1529889 Unselected Unselected 0.019 6.4 � 10�10

rs4246302 �0.027 1.4 � 10�16 �0.028 1.4 � 10�17

rs4548838 0.034 9.1 � 10�30 0.033 1.4 � 10�28

rs7170986 �0.019 1.1 � 10�08 �0.018 4.5 � 10�08

rs8042424 �0.022 5.1 � 10�10 �0.022 2.2 � 10�10

rs1257763 0.071 9.4 � 10�14 0.078 2.2 � 10�12

rs12347744 �0.056 2.8 � 10�20 �0.039 1.7 � 10�19

rs357564 Unselected Unselected �0.046 3.9 � 10�13

rs4448343 �0.035 1.1 � 10�28 �0.035 2.0 � 10�17

rs1329393 0.038 1.4 � 10�15 0.034 5.1 � 10�13

rs817300 �0.070 2.2 � 10�23 �0.085 4.8 � 10�16

rs10990303 0.032 1.4 � 10�19 0.036 5.4 � 10�18

rs7870753 �0.045 1.7 � 10�37 �0.043 1.3 � 10�30

Beta and P-value under COJO-GIANT refer to the joint SNP effect and its

P-value presented in the GIANT height paper. Beta and P-value under

HAPRAP are the joint SNP effect and its P-value for HAPRAP. ‘Unselected’

means the SNP was not selected by COJO in the step-wise selection. The com-

parison details are presented in Table S5.
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large betas for a pair of SNPs. Practically, it is necessary to remove

SNPs with VIF higher than seven before applying HAPRAP.

HAPRAP requires more time than COJO to finalize the step-

wise elimination process. There are several reasons: firstly, phasing

haplotypes is time consuming; secondly, it is time consuming to de-

termine the SE of the joint SNP effects using our bootstrap method

(simHAPRAP). However, the whole process does not usually take

more than an hour.

HAPRAP was originally designed for regional fine mapping, so

it is more suitable for moderately small numbers of markers and

computationally very fast when the number of SNPs in each test is

10 or fewer. To fit the HAPRAP framework to fine map the whole

genome, we recommend splitting regions with large numbers of

SNPs into smaller chunks (up to 20 SNPs in each chunk) before run-

ning HAPRAP. In the GIANT height example, we split the genomic

regions based on recombination hotspots, since LD patterns are dir-

ectly related to the underlying recombination process, which is a

more reasonable option compared to the physical distance used by

COJO. This can help reduce the run time of HAPRAP substantially.

Algorithms are often used effectively where the biological model is

well understood, but the statistical model is too complex to generalize

to all scenarios. For instance, a recent fine mapping method, probabil-

ity identification of causal SNPs (PICS), used an empirical constant in

its core algorithm to estimate the expected mean of the association

signal at a SNP (Farh et al., 2015). HAPRAP interprets a complex bio-

logical concept, haplotype effects, using a simple idea stemming from

allelic association analyses and extending it to the haplotype model.

The side effect is that an asymptotic analysis of convergence may not

be possible, thus we cannot exclude the possibility that HAPRAP will

not converge in some situations. However, in the hundreds of thou-

sands of simulations and real case examples we have tested, we did

not find any situation where HAPRAP did not converge.

In a recent review paper (Spain and Barrett, 2015), fine mapping

methods were classified into two groups: (i) methods for triaging

variants based on P-values or LD with the lead SNP, which includes

classic conditional analysis and approximate methods such as

COJO and HAPRAP; (ii) Bayesian methods that assign posterior

probabilities of membership in causal models to each SNP, such as

PAINTOR, CAVIAR, CAVIARBF and the most recent software,

FINEMAP (Benner et al., 2016). Compared to CAVIARBF,

FINEMAP used a new search algorithm and so is much faster and

overcomes the limitation of situations where there are more than

three causal variants in a genomic region. In addition, for the above

Bayesian methods (with the exception of FINEMAP), a parameter

must be set for the number of causal SNPs (Spain and Barrett,

2015). It has been shown that specifying this value to one can impair

performance in cases where there are two or more causal variants

(Kichaev et al., 2014). Based on this we consider HAPRAP and these

Bayesian methods as complementary. It would be interesting to ex-

plore the potential of integrating the HAPRAP methods with these

Bayesian algorithms to develop more powerful fine mapping meth-

ods in the future.

In conclusion, with increasing numbers of publicly available

meta-analysis summary statistics, the value of HAPRAP is likely to

be demonstrated in four ways: (i) for fine mapping both common

and rare variants and identifying additional variants independently

associated with complex traits; (ii) it can be used as a variable selec-

tion method for two-sample Mendelian randomization; (iii) to build

genome-wide allelic scores of biological intermediates for mining

the phenome (Evans et al., 2013); (iv) to provide a solid platform for

the functional annotation of casual variants using prediction tools

such as FATHMM (Supplementary Text S7).
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