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[1] 21st century climate change is projected to result in
an intensification of the global hydrological cycle, but
there is substantial uncertainty in how this will impact
freshwater availability. A relatively overlooked aspect of
this uncertainty pertains to how different methods of
estimating potential evapotranspiration (PET) respond to
changing climate. Here we investigate the global response
of six different PET methods to a 2�C rise in global mean
temperature. All methods suggest an increase in PET
associated with a warming climate. However, differences in
PET climate change signal of over 100% are found between
methods. Analysis of a precipitation/PET aridity index and
regional water surplus indicates that for certain regions and
GCMs, choice of PET method can actually determine the
direction of projections of future water resources. As such,
method dependence of the PET climate change signal is
an important source of uncertainty in projections of future
freshwater availability. Citation: Kingston, D. G., M. C.

Todd, R. G. Taylor, J. R. Thompson, and N. W. Arnell (2009),

Uncertainty in the estimation of potential evapotranspiration

under climate change, Geophys. Res. Lett., 36, L20403,

doi:10.1029/2009GL040267.

1. Introduction

[2] Robust estimates of the terrestrial water balance form
the basis of sustainable and equitable water management.
These estimates will be of increasing importance as effects
of climate change become more pronounced [Bates et al.,
2008]. Central to water-balance calculations are reliable
estimates of evapotranspiration (ET), as these typically
represent a substantial source of uncertainty. Most global
[e.g., Arnell, 1999] and catchment-scale hydrological models
[e.g., Arnold et al., 1998], as well as offline GCM land-
surface schemes [e.g., Gerten et al., 2004], estimate ET
using a conceptual variable, potential ET (PET), constrained
by available soil moisture. As such, clear understanding of
PET dynamics is vital for the assessment of hydrological
change and subsequent implications for sectors such as
ecosystem functioning and terrestrial carbon storage.
[3] More than 50 different methods exist by which PET

can be estimated [Lu et al., 2005]. The Food and Agricul-
tural Organisation of the United Nations (FAO) recom-

mends use of the Penman-Monteith equation [Allen et al.,
1998] as it directly incorporates the relevant meteorological
variables which control ET. In many locations, however,
insufficient data prevent use of Penman-Monteith and
compel application of simplified, empirical methods requir-
ing fewer input data. PET method intercomparisons [e.g.,
Vörösmarty et al., 1998; Lu et al., 2005] confirm that
Penman-Monteith is the most reliable where sufficient
meteorological data exist, but that in certain climatological
environments and where empirical calibrations are robust,
less data-intensive methods can also provide reliable
approximations of PET.
[4] Given the strong likelihood of future change in the

global hydrological cycle [Bates et al., 2008], there is a
need to understand the response of PET to climate change.
In climate change scenario studies, empirical PET methods
may be applied to climate settings where they are essentially
uncalibrated, adding uncertainty to water balance estima-
tions. In consequence, different PET methods can produce
different climate change signals (shown locally byMcKenney
and Rosenberg [1993], Arnell [1999], and Kay and Davies
[2008]). There is, however, little understanding at the global
scale of the impact of applying different PET methods on
future estimates of the terrestrial water balance. This paper
addresses this research gap by comparing the global climate
change signal in PET from a 2�C rise in global mean
temperature (relative to a 1961–1990 baseline) from six
commonly used PET methods. Two further analyses are
performed to indicate the implications of different rates of
change in PET for global and regional water resources: an
aridity index, and regional precipitation minus PET water
surplus.

2. Data

[5] To calculate PET, global land-surface gridded climate
data (at 0.5� � 0.5� resolution) comprising monthly tem-
perature, precipitation, vapour pressure and cloud cover
were obtained from the CRU TS 3.0 data set [Mitchell
and Jones, 2005] for a baseline period (1961–1990). Future
climate scenarios were produced for each variable using the
ClimGen pattern-scaling approach [Arnell and Osborn,
2006]. By scaling the spatial pattern of global climate
change by the change in global mean temperature, this
approach enables the climate change signal associated with
any change in global mean temperature to be derived. Here,
changes associated with a 2�C rise in global mean temper-
ature were simulated using five different GCMs: UKMO
HadCM3, CCCMA CGCM31, IPSL CM4, MPI ECHAM5,
and NCAR CCSM30. These GCMs have been selected
from the CMIP-3 database [Meehl et al., 2007] as exemplar
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GCMs representing different future representations of key
global climate system features.
[6] The 2�C rise in global mean temperature scenario is

used to gain understanding of the uncertainty in PET
response to a given magnitude of climate change (thereby
removing the uncertainty associated with GCM climate
sensitivity). Different GCMs are used to explore uncertainty
associated with differences in the spatial patterns of change
in climate between GCMs, and of different GCM relation-
ships between the scaling factor (i.e., temperature) and other
climate variables. The set of projected patterns of climate
change was interpolated to a 0.5� � 0.5� grid and imposed
upon the 30-year historical baseline CRU TS 3.0 data for
each grid cell.

3. Methods

[7] Six different PET methods have been investigated:
Penman-Monteith, Hamon, Hargreaves, Priestley-Taylor,
Blaney-Criddle and Jensen-Haise. They have been selected
to represent a sample of PET schemes commonly used
within hydrological models. Penman-Monteith (based on
net radiation, temperature, wind-speed and vapour pressure)
is used in the MacPDM global hydrological model [Arnell,
1999]. Priestley-Taylor is a widely used simplification of
Penman-Monteith based on net radiation and temperature
[Priestley and Taylor, 1972], and is used in the WaterGAP
global hydrological model [Alcamo et al., 2007]. Jensen-
Haise is another radiation-based method (using net short-
wave radiation and temperature) [Jensen and Haise, 1963].
Hargreaves is based on mean, minimum and maximum
temperature and extra-terrestrial solar radiation, and is the
method recommended by the FAO in the absence of
sufficient data to calculate Penman-Monteith [Allen et al.,
1998]. Hamon and Blaney-Criddle are both based on
temperature and day-length. Hamon is used in the WBM
global hydrological model [Vörösmarty et al., 1998], whilst
Blaney-Criddle is a simple, ‘rough estimate’ method that is
nevertheless frequently used.
[8] The monthly version of Penman-Monteith was calcu-

lated according to FAO-56 guidelines [Allen et al., 1998],
with three exceptions: (1) cloud cover was used to derive
sunshine hours [Hulme et al., 1995] and then short-wave
radiation following FAO-56; (2) surface albedo from the
Earth Radiation Budget Experiment (ERBE) satellite data
set [Barkstrom, 1984] was used in the calculation of net
short-wave radiation; and (3) climatological wind-speed
values from CRU CL 1.0 [New et al., 1999] were used
for both baseline and scenario calculations. Hargreaves,
Priestley-Taylor, and Hamon were calculated according to
Lu et al. [2005], Jensen-Haise according to Vörösmarty et
al. [1998], and Blaney-Criddle following Brouwer and
Heibloem [1986]. The radiation terms in Priestley-Taylor
and Jensen-Haise were derived as per Penman-Monteith.
PET for all methods was calculated on a monthly basis,
where mean monthly temperature >0�C, and for 60�S–
60�N. Given the brevity of this paper, annual latitudinal
averages are used to provide overall representation of the
large scale sensitivity to PET method.
[9] To explore the impact of uncertainty in PET on water

availability, two measures are applied. Firstly, a global
annual aridity index is calculated. Following the United

Nations Environment Program [1992], this is defined as
mean annual precipitation (P) divided by PET (on a grid cell
basis). Grid cells are defined as arid if P/PET is <1.0 and
humid where P/PET is �1.0. Secondly, the annual water
surplus is calculated as annual P-PET, from months in
which P>PET. This was derived for regions highlighted
by the IPCC AR4 report [Christensen et al., 2007] as having
coherent precipitation change signals (i.e., in the distribu-
tion of precipitation response between the 21 AR4 GCMs,
where the middle half of the distribution is of the same
sign), specifically the Mediterranean (drying), East Africa
and Southeast Asia (wetting).

4. Results

[10] The latitudinal structure of baseline (1961–90) PET
(Figure 1a) for all methods consists of a primary (secondary)
peak in the northern (southern) subtropics as a result of
seasonal maxima in temperature and solar radiation. How-
ever, the magnitude of PET differs substantially between
methods (by up to 600 mm), with differences between
methods not consistent across latitudes. For example,
Jensen-Haise provides the highest estimate of PET at
20�N, but the lowest PET between 50–60�S and N.
[11] For the 2�C climate scenario PET increases at all

latitudes in all GCMs and for all PET methods (Figures 1
and 2). PET changes broadly follow the temperature climate
change signal (i.e., peaks at approximately 25�S and N).
However, differences of over 100% (>200 mm in the
tropics) exist in the PET climate change signal between
methods in all GCMs (Figures 1b–1f). Maximum absolute
differences occur at the same latitude as the peak PET
climate change signal; these are unrelated to differences in
baseline PET. At most latitudes Hamon produces the largest
climate change signal, followed closely by Jensen-Haise.
Hargreaves, Penman-Monteith and Priestley-Taylor are gen-
erally closely grouped, but still exhibit differences of over
60 mm in places. Whilst the Blaney-Criddle climate change
signal is of a similar magnitude to the other methods, its
latitudinal variation is remarkably constant in comparison.
[12] The absolute magnitude of the PET climate change

signal varies between GCMs (Figure 2), but the relative
differences between methods are similar for each GCM
(Figure 1). For all methods except Jensen-Haise, the uncer-
tainty between GCMs is lower than the uncertainty between
methods within each individual GCM. The NCAR
(HadCM3) GCM generally produces the lowest (highest)
PET climate change signal.
[13] Results from the aridity index show different levels

of change in humid and arid land-surface areas between
PET methods (Figure 3). Differences also occur between
GCMs (reflecting substantial differences in precipitation
response between GCMs), but similar relative patterns are
present between PET methods in each GCM (following
Figures 1 and 2). As such, Hamon and Jensen-Haise
generally give the greatest changes in humid and arid land
surface areas (up to 13.3 million km2); Penman-Monteith
and Priestley-Taylor frequently show the smallest changes.
Penman-Monteith, Priestley-Taylor and Hargreaves again
give relatively similar results, although differences between
these methods remain large (e.g., for the IPSL GCM,
changes differ by 4.25 million km2).

L20403 KINGSTON ET AL.: UNCERTAINTY IN PET UNDER CLIMATE CHANGE L20403

2 of 6



[14] Estimates of regional water surpluses (Table 1)
further confirm the influence of PET method on projections
of water availability. In each region the projected mean
water surplus change is consistent with the mean precipita-
tion change documented in the IPCC AR4 report (drying for
the Mediterranean, wetting in East Africa and Southeast
Asia). Crucially, however, the uncertainty in water surplus
between PET methods from each GCM is of comparable
magnitude to the uncertainty between GCMs for a given
PET method, resulting in substantially increased overall
uncertainty.

5. Discussion

[15] This paper has shown that clear differences exist in
the global PET climate change signal produced by different
PET methods (following the findings produced by more

limited localised studies [Arnell, 1999; Kay and Davies,
2008]). Similar differences between methods occur for each
GCM. Furthermore, calculation of an annual aridity index
and regional water surpluses have indicated that different
rates of change in PET have comparable impacts on water
balances at global and regional scales.
[16] The method dependence of the PET climate change

signal can be attributed to two factors: (1) inclusion of
different meteorological variables in each method and
(2) different empirical formulation of each method. The first
factor is exemplified by comparison of Penman-Monteith
and Priestley-Taylor climate change signals. Although these
methods yield similar values at certain latitudes, they
strongly diverge at latitudes encompassing large arid or
semi-arid zones (e.g., 10–30�N). This suggests that the
absence of humidity data in Priestley-Taylor is important, and
follows previous work showing that this method often per-

Figure 1. (a) Latitudinally averaged annual PET for 1961–1990 baseline and (b–f) 2�C climate change signal (scenario
minus baseline for each method), grouped by GCMs (Ham, Hamon; Har, Hargreaves; PM, Penman-Monteith; PT, Priestley-
Taylor; BC, Blaney-Criddle; and JH, Jensen-Haise).
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forms poorly in moisture limited environments [McAneney
and Itier, 1996].
[17] The role of empirical formulation is demonstrated by

comparison of Hamon and Blaney-Criddle. Both methods
are based on mean monthly temperature and daylength, yet
have markedly different climate change signals. Further
comparison with Hargreaves, and the similarity of Har-
greaves to Penman-Monteith and Priestley-Taylor, suggests
that the empirical approximation of humidity may be the
cause of these differences. Hargreaves is also based on
temperature and an equivalent variable to daylength, but
importantly, also includes minimum and maximum monthly
temperature (the difference between these variables is a
good indicator of humidity [Allen et al., 1998]).
[18] It is difficult to state here which method is most

reliable for assessing climate change impacts on water
resources. Penman-Monteith has the strongest physical
basis, and is the only method to directly include all relevant

meteorological variables.Whilst Penamn-Monteith is subject
to non-meteorological uncertainties such as specification of
canopy conductance, it should be the most reliable method.
It follows that methods with similar results (Priestley-Taylor
and Hargreaves) should be reliable alternatives. However,
this assertion is dependent on the reliability of input climate
data. For instance, whilst relatively high confidence can be
placed in gridded-observed and GCM-simulated tempera-
ture [New et al., 1999; Randall et al., 2007], less confidence
can be placed in cloud cover and vapour pressure. The
empirical conversion from cloud cover to sunshine hours is
also subject to bias [Hulme et al., 1995]. This poses the
important question of whether more reliable estimation of
changes in PET can be obtained from physically-based
methods (e.g., Penman-Monteith) with uncertain data qual-
ity, or more empirical methods (e.g., Hargreaves) with more
reliable input data.

Figure 2. Latitudinally averaged PET 2�C climate change signal (scenario minus baseline for each method), grouped by
PET method.
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[19] The occurrence of method-dependence in both humid
and arid categories of the aridity index climate change signal
suggests that differences between PET methods are not
simply a function of different PET estimates in moisture-
limited environments (i.e., where no actual ET occurs). As
such, these results have important implications for assess-
ment of changes in the overall terrestrial water budget (e.g.,

WaterMIP, http://www.eu-watch.org/nl/25222736-Global_
Modelling.html, accessed 07/2009). This is further demon-
strated by analysis of regional water surpluses. In each case
the choice of PET method adds substantial uncertainty to
the existing uncertainty associated with the climate change
signal between GCMs. Indeed, in the case of East Africa
and Southeast Asia the choice of PET method for certain

Figure 3. (a) Baseline global land coverage of arid and humid areas and (b–f) percent change in extent of arid and humid
areas from the baseline to the 2�C scenario, using different GCMs (Ham, Hamon; Har, Hargreaves; PM, Penman-Montieth;
PT, Priestly-Taylor; BC, Blaney-Criddle; and JH, Jensen-Haise).

Table 1. Statistics of Percentage Changes in Water Surplus for Selected Regions

Mean Range Between
PET Methodsa

Mean Range Between
GCMsb

Absolute Minimum
and Maximum Change

Mediterranean
(30�N, 10�W to 48�N, 40�E)

14.1 9.7 �4.2, �27.6

East Africa
(12�S, 22�E to 18�N, 52�E)

15.4 23.3 �12.4, 25.5

Southeast Asia
(11�S, 95�E to 20�N, 115�E)

7.9 12.8 �1.1, 20.9

aUncertainty associated with PET methods (i.e., mean over all GCMs of the range from different PET methods).
bUncertainty associated with GCMs (i.e., mean over all PET methods of the range from different GCMs).
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GCMs can actually determine the direction of projected
change in water surplus. As such, the apparent coherence in
projected changes in water availability identified in these
(and other) regions [e.g., Bates et al., 2008] may not be as
strong as previously suggested.

6. Conclusions

[20] Considerable uncertainty remains in projections of
global freshwater availability under conditions of climate
change and rapidly growing demand, limiting capacity to
develop robust and equitable water management strategies
[Bates et al., 2008]. Results presented here demonstrate that
characterisation of the PET climate change signal, a previ-
ously under-researched topic, is an important contributor to
this uncertainty, particularly in regions where precipitation
is closely in balance with PET. As such, these results have
important implications for how future assessments of
changes in the hydrological cycle are undertaken, and also
for the interpretation of previous studies. Further work is
required to more fully integrate the uncertainty in the PET
climate change signal into projections of future freshwater
availability. Although many other sources of uncertainty
exist in relation to the projection of future freshwater
availability, improving understanding of changes in PET
is an important step in the process of improving confidence
in such projections.
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Research Unit, University of East Anglia) produced the climate scenarios.
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