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Time evolution and deterministic optimization of correlator product states
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We study a restricted class of correlator product states (CPS) for a spin-half chain in which each spin is
contained in just two overlapping plaquettes. This class is also a restriction upon matrix product states (MPS)
with local dimension 2n (n being the size of the overlapping regions of plaquettes) equal to the bond dimension.
We investigate the trade-off between gains in efficiency due to this restriction against losses in fidelity. The
time-dependent variational principle formulated for these states is numerically very stable. Moreover, it shows
significant gains in efficiency compared to the naively related matrix product states—the evolution or optimization
scales as 23n for the correlator product states versus 24n for the unrestricted matrix product state. However, much
of this advantage is offset by a significant reduction in fidelity. Correlator product states break the local Hilbert
space symmetry by the explicit selection of a local basis. We investigate this dependence in detail and formulate
the broad principles under which correlator product states may be a useful tool. In particular, we find that scaling
with overlap/bond order may be more stable with correlator product states allowing a more efficient extraction
of critical exponents—we present an example in which the use of correlator product states is several orders of
magnitude quicker than matrix product states.
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I. INTRODUCTION

Variational Ansätze have underpinned many advances in the
study of correlated quantum systems, BCS superconductivity
[1] and the Laughlin wave functions [2] being notable exam-
ples. The essence is to identify key physical features of a quan-
tum state such that they can be parameterized by relatively few
numbers, providing an analytically or numerically tractable
approximation. The idea of covering the system with coupled
plaquette clusters is basis of several Ansätze. Examples include
coupled cluster methods [3], contractor renormalization meth-
ods [4], and various hierarchical mean-field approaches [5].
Within all of these methods, the configurations and correlations
of the single plaquette or cluster are evaluated exactly,
however, the interplaquette couplings are essentially treated
in mean field. Correlator product states (CPS, also referred to
as entangled plaquette states) [6–14] go beyond the mean-field
approximation by fully parameterizing the wave function
on a set of overlapping plaquettes. Consistency between
the wave functions in the regions of overlap communicates
entanglement across the system.

The realization of the central importance of the entangle-
ment structure of quantum many-body states has led to the
introduction of many variational families of tensor network
states that efficiently parameterize it. The progenitor of these
are matrix product states (MPS) [15,16]. MPS have been
extended to higher dimensions using projected entangled pair
states (PEPS) [17], and to accommodate various aspects of the
renormalization of entanglement at critical points [18–20].
Such states naturally obey an “area law,” which, in any
dimension, refers to the property that the entanglement entropy
of a large enough region scales not with the volume, but with
the area of the boundary of that region. It is proven for gapped
systems in one dimension [21,22]—and suspected in higher
dimensions—that ground states obey an area law and so can
be efficiently described by tensor networks with relatively few
components.

However, the ability to represent a state efficiently in no way
implies that quantities such as expectation values of local op-
erators can be calculated efficiently. It has been demonstrated
[23] that, unlike the computational complexity of contracting
an arbitrary MPS, which is in P, the computational complexity
of contracting a general PEPS network—the natural higher
dimensional—is #P complete.1 In practice this means that,
while there exist few classes of tensor networks that can
be contracted exactly, accurate and efficient approximations
are still generally available [25]—either in form of some
approximate contraction scheme, or via statistical, Monte
Carlo type methods.

A possible strategy is to place additional restrictions upon
the tensor network that render the quantities of interest easier to
calculate. Such restrictions involve a compromise in accuracy,
which must be balanced against gains in efficiency. Here, we
consider the set of states at the intersection between MPS
and CPS. The subset of CPS in which each spin is contained
in only two plaquettes are also a subset of PEPS—the latter
restricted to states with the same bond dimension and local
Hilbert space dimension. Examples include stabilizer states
[26] and Kitaev’s toric code [27]. In common with string bond
states [28], of which they are a subset, CPS are efficiently

1Problems in P are decision problems that have polynomial-time
algorithms, whereas a problem in NP only requires the existence of
polynomial time algorithm that can verify whether a given solution is
correct. #P is a complexity class related to NP: while a problem in NP
is a decision problem, #P is concerned with determining the number
of solutions to an NP problem. Thus #P-complete problems are even
more difficult that NP-complete ones (where “complete,” in general,
means that the problem belongs to the set of the “most difficult”
problems in said class). For more details on these computational
complexity concepts see, e.g., Ref. [24].
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sampleable, but not in general efficiently contractible,2 and can
be used to calculate expectation values of local observables
efficiently. The trade-off is that CPS are basis dependent—
meaning that CPS defined with respect to different bases do
not cover the same submanifold of the Hilbert space. Physical
insights can motivate a judicious choice of basis for a given
Hamiltonian.

We focus upon the above-mentioned subset of uniform CPS
(uCPS), in one spatial dimension, and in the thermodynamic
limit. We have two main aims (i) to develop the deterministic
methods for optimising and evolving uCPS. Our main tool will
be a deterministic algorithm based upon the time-dependent
variational principle (TDVP), an approach that projects the
exact Schrödinger time-evolution onto the uCPS sub-manifold
of the full Hilbert space. Other deterministic methods have
been developed in Ref. [6,29], and we will address the
relationship of our method to this work in Sec. VII. Beyond
this, our deterministic TDVP approach is somewhat orthogonal
to the usual statistical setting in which CPS are utilized.
This brings with it certain advantages, such as a very robust
algorithm, as well as the ability obtain time-evolution informa-
tion straightforwardly; but the main disadvantage is that with
current techniques we are restricted to the one-dimensional
setting. Nevertheless, many of the results provide insight about
higher dimensional behavior. Our construction will follow
closely the TDVP implementation for MPS given in Ref. [30].

(ii) To provide a systematic study of basis dependence of
uCPS and its interplay with computational speedup. Speedup
is expected due to the due to the ability to store and manipulate
uCPS matrices more efficiently than their unrestricted uMPS
counterparts, but this advantage is offset by the lower capacity
of uCPS to encode ground state and quench information.
Indeed, the interplay that we reveal is more subtle than one
might anticipate.

II. OUTLINE

The basics of (u)CPS are reviewed in Sec. III, and their
relation to (uniform) matrix product states (u)MPS is derived.
The (u)CPS → (u)MPS mapping necessitates the introduction
of the so called copier tensor. This construction is not sensitive
to our one-dimensional analysis, and it is the structure of the
copier tensor in higher dimensions that is the starting point, and
can provide indications of how our one-dimensional results can
be generalized.

In Sec. IV, the time-dependent variational principle (TDVP)
for uCPS is derived. Since the cost of a single uMPS TDVP
step scales as O(dD3), where d is the size of the physical and
D of the virtual dimension, one naively expect the cost of each
TDVP step to scale as O(D4), but we demonstrate that for
uCPS the cost drops to O(D3).

Section V provides a detailed study of the properties of
uCPS ground-state approximations, exemplified by a number
of models: the quantum Ising, the Heisenberg, and the

2Even though CPS are usually defined in terms of physical indices
only, without reference to any auxiliaries, since they form a subset
of string bond states, their contractibility can be discussed as for any
tensor network. This is addressed in detail in Sec. III.

XY-model (all spin 1
2 ). The imaginary-time algorithm con-

verges to the global minimum uniquely only for Hamiltonians
that do not have degenerate ground states. When the ground
state is degenerate it may still be possible to find a special
choice of basis for which convergence is unique, however,
in general it turns out that uCPS breaks the degeneracy due
to its basis dependence, and TDVP may converge to local
minima associated with this breaking. When convergence is
not unique, the algorithm acquires a probabilistic ingredient.
For a Hamiltonian with a discretely degenerate ground state the
computational cost is increased only by a constant factor, but if
the vacuum has a continuous degeneracy this factor seems to be
larger than constant, and the number of possible local minima
that TDVP can converges to seems to increase in an unbounded
manner with bond dimension. Next, the efficiency of uCPS is
compared with uMPS. We uncover an intricate picture. Naively
one might expect that the uCPS in its optimal basis would
capture a state with accuracy comparable to uMPS of which it
is a restriction, i.e., uMPS with bond order equal to the local
Hilbert space dimension. In fact, the situation is considerably
worse; the plaquette overlap required to match the accuracy of
a uMPS of a given bond dimension is proportional to that bond
dimension. This is exponentially worse than naive expectation
since the local Hilbert space dimension scales exponentially
with the size of the overlap region. However, in the optimal
basis, we find that the computer time needed to converge the
ground-state approximation to a desired accuracy scales in the
same way for both uCPS and uMPS. We also study the scaling
of quantities, such as energy, entanglement entropy, or the
correlation length, with bond dimension in detail. The scaling
behavior is generally basis dependent, but much smoother for
uCPS than for uMPS. This allows for more accurate estimates
of certain physical quantities to be made with uCPS than with
uMPS with the same computational time cost (but, still, at
exponentially larger computer memory cost). In general we
find that an optimal basis corresponds to one that is aligned as
closely as possible with the entanglement generating terms3 in
the Hamiltonian.4

In Sec. VI, real-time TDVP is applied to uCPS in order to
simulate quantum quenches. We concentrate in particular upon
quenches across a critical point that exhibits dynamical phase
transitions. It is found that the capacity of uCPS to correctly
capture a quench to a desired accuracy scales, analogously to
the static context above, exponentially worse than uMPS in
memory requirements but in the same manner as far as time
costs are concerned. This is again only true provided one is
working in the optimal basis, or reasonably close to it; but
unlike the static case, here there are no probabilistic aspects to
contend with. It is also found that for a suboptimal basis choice,
the uCPS approximation to the quench can completely miss
the dynamical phase transition. In fact, with the same basis

3For the Hamiltonians studied in this paper these are simply the
two-site terms, the presence of which is responsible for nonzero
entanglement entropy in the ground state.

4This is clearly only a loose guiding principle, discussed at length in
Sec. V, and exemplifies the issue one needs to address for CPS/string
bond states in general, of identifying the optimal basis for the physics
one wishes to study.
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choice, the uCPS approximation of the ground state misses the
equilibrium phase transition. All of this gives some indication
of the types of issues one may encounter with CPS in general,
if working in a suboptimal basis.

We elaborate upon these issues in Sec. VII and give a final
brief summary in Sec. VIII. To keep things as self-contained
as possible, a basic review of MPS and TDVP is provided in
Appendix A. Appendix B details the contraction ordering that
achieves the optimal O(D3) scaling of a single uCPS TDVP
step, while details of a preconditioning step necessary for an
iterative subroutine in the TDVP algorithm to scale optimally
is provided in Appendix C.

III. CORRELATOR PRODUCT STATES

In this section, the basics of correlator product states (CPS)
and the relationship of the CPS variational class to string
bond states will be reviewed. We then focus upon the main
subject of this paper, uniform correlator product states (uCPS)
in the thermodynamic limit, detail how the uCPS class can
be understood as a subset of uniform matrix product states
(uMPS), and discuss a number of implications. For a brief
review of matrix product states (MPS), the reader is referred
to Appendix A.

A. Definition of CPS

A CPS wave function on an N -site spin lattice is formed
by dividing the lattice into a set of overlapping subsets called
plaquettes—labeled here by P . Wave functions are defined
over each plaquette by a tensor CP and a correlated product
between them taken according to

|�[C]〉 =
∑

i1,i2,...,iN

∏
P

C
i1,...,il
P |i1,i2, . . . ,iN 〉 (1)

in order to maintain consistency in the regions of overlap and
thereby entangling spins in disjoint plaquettes. The plaquette
sizes are taken to be independent of the size of the system, and
sufficiently small that the wave function on each can be stored
and manipulated with small computational cost. The accuracy
of this Ansatz is influenced by a large number of factors,
including the structure of the Hamiltonian, the choice of basis,
and size and number of overlaps between the plaquettes.

The key requirement for the Ansatz of the form (1) to
be amenable to Monte Carlo type algorithms is that the
coefficients of the wave function |�[C]〉 in (1) be efficiently
calculable.5 This is clearly satisfied whenever the coefficients
CP are efficiently calculable individually. For CPS, this
requirement holds simply because the plaquettes are by
construction taken to be of a small constant size, but more
generally any efficient format for CP will be a priori equally
suitable. The definition of the class of string bond states [28] is
also of the general form (1), but with the sublattices P taken to
be strings of arbitrary length instead of plaquettes, and the CP

coefficients given by a matrix product form. Examples of both
a CPS with single-site overlap, and a string bond state given

5This is only a necessary condition and is not sufficient to guarantee
that the Monte Carlo algorithm will converge.

FIG. 1. The diagram on the left-hand side depicts a CPS in two
dimensions with single-site overlaps. The squares represent the C

tensors, and the black dots denote the spins, each C tensor thus having
four indices. The right-hand side depicts a string bond state consisting
of a product of two matrix product states, each covering the entire
lattice. The dashed circles are present at sites where the underlying
CPS/string bond state tensors overlap, and each such circle can be
understood as representing the copier tensor projecting the indices in
the overlap onto the physical spin.

by a product of two MPSs, each covering the entire lattice, are
depicted in Fig. 1.

Since a general-form wave function on a constant size
plaquette can always be recast in MPS form, CPS clearly form
a subset of string bond states. It is, however, not the case that
in general either CPS or String Bonds States can be efficiently
represented as PEPS (or MPS in one dimension). The number
of overlapping plaquettes for a CPS, or strings for a string
bond state, is allowed to be of the order of system size, yet
representing such a state as PEPS/MPS requires in general an
exponentially large bond dimension. The Laughlin state, for
example, can be written as a two-site CPS [6], but the number
of overlapping CPS tensors at each site is equal to the system
size; a diagram depicting the general form of the Laughlin
state is given in Fig. 2.

A one-dimensional CPS with open boundary conditions,
and with the restriction that only two plaquettes overlap, is
given by

|�[C]〉
=

∑
i1,i2,...,iN

v
i1
LC

i1i2
1 C

i2i3
2 , . . . ,C

iN−1iN
N−1 v

iN
R |i1,i2, . . . ,iN 〉.

(2)

B. The copier tensor

In order to write down a tensor network for a CPS it is
necessary to introduce the copier tensor. For the state (2), for
example, the copier is given by 1ijk , defined as the tensor with
components equal to unity when all its indices are equal, and
zero otherwise. It will be convenient to represent the copier
graphically as ; the CPS state in (2) can then be represented
as:

vL C1 vRC2 CN… ,
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FIG. 2. This diagram depicts the general form of a tensor network
corresponding to the CPS representation of the Laughlin state
over four spins, and exemplifies a CPS for which the number of
overlapping CPS tensors at each physical spin is of the order of system
size. The circles denote the CPS tensors, with their indices depicted
by lines ending in the black dots, and the dashed ovals represent the
action of the copier tensors mapping overlaps of the CPS tensors
onto the four physical spins. The diagram corresponding to the CPS
representation of a Laughlin state over an arbitrary number of spins
follows the same pattern.

where any variation of the dimensionality of the indices
in (2) along the chain can be indicated by an additional
label if necessary. As each physical index in (2) corresponds
to the overlap of the corresponding CPS plaquette, for an
n-site overlap the dimensionality of the index is obtained
by grouping the n fundamental spins s together and is
given by sn. The dimensionality of these indices therefore
grows exponentially with the size of the overlap. The basis
dependence of CPS/string bond states is made explicit by the
noncovariant definition of the copier tensor, and it is easily
verified that a rotation by a local unitary on the physical leg
can not in general be “pulled through” to the virtual level.6

The copier tensor generalizes straightforwardly to more
general CPS, and to higher dimensions. For example, the
dashed circles in Fig. 1 should in fact be understood as
representing three-index copier tensors. For the Laughlin state
depicted schematically in Fig. 2, the dashed circles again
represent copiers, but the number of virtual legs is now of
the order of system size. This diagrammatic representation
follows straightforwardly from the CPS representation of the
Laughlin state given in Ref. [6].

Furthermore, using the tensor network representation of
CPS, a natural generalization of the CPS/string bond state
variational class can be achieved by promoting the copier to
any tensor that is sufficiently sparse to leave sample-ability
intact. As an example, one can imagine a CPS-type Ansatz
for which the copier is replaced by a tensor the nonzero
components of which are given by an n-site MPS.

6We note that for MPS unitaries can in general also not be pulled
through to the virtual level, however, the state still retains the MPS
form. Applying a unitary to CPS means that the state is no longer in
general of CPS form. One can consider adding such local unitaries, or
more general matrices, in order to enlarge the CPS variational class
and restore rotation independence.

C. Mapping one-dimensional CPS into MPS

One-dimensional CPS of the form (2) form a subclass of
MPS with open boundary conditions:

|�[A]〉

=
d∑

i1,i2,...,iN

v
†
LA

i1
1 A

i2
2 . . . A

iN
N vR|i1,i2, . . . ,iN 〉, (3)

provided that the physical spin- and bond-dimensions of the
MPS tensors, which at site K we denote as d (K) and D(K),
respectively, are the same either to the left or to the right (i.e.,
provided that either d (K) = D(K−1), or d (K) = D(K)). There
are many ways to map the CPS defined in (2) into an MPS of
this type. One possibility is the following:

Cm-1 Cm… …

= AmAm-1 ……

Cm+1

Am+1 .

.

Alternatively, the C matrix can be placed to the right of the
copier in the identification, or placed both to the left and
the right of the copier after decomposing each C matrix
into a product of two matrices. In higher dimension, any
CPS/string bond state with a constant number of overlapping
plaquettes/strings can be mapped to a PEPS with small bond
dimension using analogous considerations.

D. Uniform correlator product states (uCPS)

This paper is concerned mainly with uniform translation
invariant CPS in the thermodynamic limit. In order to achieve
a fully translation invariant representation, it is necessary that
the plaquettes contain an even number of spins, so that half of
the spins of each plaquette overlap with half of the spins of
a neighboring plaquette.7 This means that the C matrices are
square and that the bond dimension along the chain is constant.
These states will be referred to as uniform correlator product
states (uCPS), and form a proper subset of the uMPS class
described in Appendix A. Graphically, a uCPS is represented
as

C C… … .

The uCPS → uMPS mapping is achieved in the same manner
as in the nontranslation invariant setting described above, with
analogous freedom in how this mapping is realized.

The increase in uCPS bond dimension is achieved by
increasing the size of the overlap between plaquettes. If n is

7More generally one can consider representations that are invariant
under translations by m sites, with m > 1.
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the number of fundamental spins in each overlap, for a lattice
of s-level spins, the size of the C matrices is sn × sn, and
the bond dimension D, given by D = sn, therefore increases
exponentially with n.

E. The uCPS transfer matrix

The transfer matrix Ẽ [see Eq. (A6)] corresponding to the
uCPS → uMPS mapping with the C matrix placed to the right
of the copier tensor takes the form

C

C

= .

Due to the sparseness of the copier tensor, Ẽ has only D

nonzero eigenvalues. This is related to the fact that the the
object is a projector that effectively reduces the size of a
D2-dimensional index to a D-dimensional one. It also follows
from this that the uCPS variational class is in fact a subclass of
reduced rank—not full rank—uMPS. It is sufficient therefore
to work with the projected version of the above object, E:

C

E =

C

,

the nonzero subspace of which is given by the D × D

dimensional matrix:

Eij = Cij (.∗)Cij . (4)

The operator (.∗) denotes componentwise multiplication for
repeated indices. As for uMPS, in order to ensure finite
normalization of the state, it is necessary to normalize the
C matrices so that the largest eigenvalue of E is one.

As discussed in Appendix A, the left and right eigenvectors
of the transfer matrix Ẽ corresponding to eigenvalue one
are centrally important objects, which determine the Schmidt
coefficients across a cut of the infinite chain into two semi-
infinite intervals, and, more generally, represent the cumulative
effect of the environment when calculating the expectation
value of a local operator, from its insertion to ±∞. In order
to fully utilize the special form of uCPS over a generic uMPS
in the TDVP algorithm (see Sec. IV), it is necessary to work
directly with the D-dimensional left and right eigenvectors
of E (4) corresponding to eigenvalue one (rather than with
the eigenvectors of Ẽ), which we will refer to as VL and VR ,
respectively [these should not be confused with the boundary
vL and vR of open-boundary finite MPS (3)]. We note that,
while the left eigenvector of Ẽ is given by

VL , (5)

the right eigenvector explicitly depends on C as

VR

C

C

. (6)

Had we made the identification with uMPS by placing the C

matrices to the right of the copier tensor, the situation would be
the reverse of the above, with the right eigenvector depending
only on VR , and the left on VL, C, and C.

A uMPS can always be gauge-transformed (A8) to the left
or right canonical gauge, as discussed in Appendix A, meaning
that either the left or right environment matrix is equal to the
unit matrix. This is in general not achievable with uCPS, since
the set of uMPS gauge transformations that preserve the uCPS
form is extremely restricted, and the remaining gauge freedom
is not sufficient in general to achieve the left or right canonical
gauge. Stated in another manner, uCPS corresponds to a very
restricted type of uMPS, and imposing such a restriction
on uMPS fixes nearly all of its gauge freedom. One of the
implications of all of this is that it does not seem possible, at
least straightforwardly, to implement an analog of the IDMRG

algorithm [31] for uCPS, since it relies upon the ability to
achieve the left and right canonical gauges and to switch
between them. It is interesting that there are nevertheless two
natural gauge choices for uCPS, as explained above, related to
the freedom of placing the copier to the left or to the right of
the C matrix in the uCPS → uMPS mapping.

F. Computational cost of contracting uCPS

Since a uCPS maps to a uMPS with equal bond and physical
dimensions, i.e., d = D, and the cost of calculating a local
uMPS observable is O(dD3) (see Appendix A), one naively
expects that the cost of calculating expectation values of local
observables for uCPS scales as O(D4). It turns out, however,
that one can do better. One possible reduction in cost occurs
due to the fact that the copier tensor factorizes, and that a uCPS
with overlap of size n and local spin of dimensionality s, can
be mapped to an n-site8 uMPS with bond dimension D = sn.
How this is achieved is most clearly demonstrated graphically.
For example, for n = 3 and D = s3, the uMPS tensor of the
uCPS form can be decomposed into three MPS tensors as:

,C

s3

s3s3 C
s
s
s

s
s
s

s s s

where the dashed regions identify the three MPS tensors
with physical dimension s.9 The cost of calculating local
expectation values for an n-site uMPS can therefore be reduced

8An n-site uMPS is a MPS in the thermodynamic limit such that its
tensors are unchanged after a translation by n sites.

9Clearly, all the uCPS information has been incorporated into the
left-most tensor for this particular choice of decomposition, but if
desired C can be distributed over the n MPS tensors in a symmetrical
manner by performing a suitable factorization.
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to O(log(D)sD3) = O(log(D)D3), simply by applying an
optimal contraction ordering for n-site uMPS after making
the above decomposition.

The presence of the D2 → D projector in the transfer
matrix Ẽ hints that an even lower cost may be achievable. This
turns out to be the case, and in the next section we demonstrate
that, in addition to the computation of expectation values of
local operators, all the steps of the uCPS TDVP algorithm can
be computed with cost O(D3).

IV. TDVP WITH uCPS

The time-dependent Schrödinger equation d
dt

|�(t)〉 =
−iĤ (t)|�(t)〉 does not in general have an exact solution if
the state vector is restricted to remain within some class of
variational states |�(VX)〉 during the evolution, where VX

denotes some set of variational parameters labeled by an index
X. This can be observed by considering the equation

∑
X

V̇X

∂

∂VX

|�(VX)〉 + iĤ (t)|�(t)〉 = 0, (7)

where the second term can correspond to an arbitrary direction
in Hilbert space, but the first is highly restricted. Instead,
one must adopt some procedure for obtaining an optimal
V̇X that minimizes the left-hand side of (7) with respect to
some cost function. The time-dependent variational principle
(TDVP) corresponds to the natural cost function in a quantum
mechanical setting, namely, the 2-norm, and the solution to
V̇ ∗

X is given by10

V̇ ∗
X = arg min

V̇X

∥∥∥∥∥
∑
X

V̇X

∂

∂VX

|�(VX)〉 + iĤ (t)|�(t)〉
∥∥∥∥∥

2

. (8)

The full variational space of uCPS consists of a general
variation dC of the uCPS matrix C. In the context of the uCPS
→ uMPS mapping described in Sec. III, this corresponds to a
restricted uMPS variation of the form

dC=dA ,
(9)

and can be understood as a tangent vector to the uCPS manifold
(see also Appendix A). Writing this out symbolically,

|�(dC,C)〉 :=
∑
i,j

dCij

∂

∂Cij

|�(C)〉 ≡ dCij |∂ij�(C)〉,

(10)

the solution to the minimisation problem (8) is given by
∑
k,l

Gij |klĊ
kl = − i〈∂ij�(C(t))|Ĥ (t)|�(C(t))〉, (11)

where G is the uCPS Gram matrix [cf. (A10)]:

Gij |kl := 〈∂ij�(C)|∂kl�(C)〉. (12)

10See Refs. [30,32] and Appendix A in reference to the application
of TDVP to (u)MPS.

However, the solution in (11) contains terms that diverge if
the variations dC are left fully unconstrained. The full tangent
space spanned by |�(dC,C)〉 includes transformations along
the state |�(C)〉 itself, and it is precisely such norm-changing
variations that generate divergences. These must be projected
out, which can be achieved by implementing the uCPS analog
of the uMPS left or right tangent space gauge condition (A9).
Moreover, the tangent space gauge condition simplifies the
form of the Gram matrix, which becomes local, meaning that
all the contributions to (12) vanish except those for which the
variations dC in the bra and ket occur at the same lattice site.

A. Gauge fixing for uCPS

For the sake of concreteness, we will demonstrate how to
impose the left tangent gauge condition for uCPS, which reads

dC

VL = 0
C

,

or symbolically

V(L)i(.∗)dCij (.∗)Cij = 0. (13)

A solution to this equation is given by dC of the form

dCij =
∑
α̃β

Bα̃βV α̃
(R)iV

β

(L)j (.∗)(1(./)Cij ), (14)

where B is an arbitrary (D − 1) × D matrix, (./) denotes
componentwise division, and V α

(L) and V α
(R) are the D left and

right eigenvectors of the transfer matrix (4), so that

E =
∑

α

λαV α
(L)V

α
(R). (15)

By convention V 1
(L) ≡ V(L), and V 1

(R) ≡ V(R), and the α̃ index
in (14) thus runs from 2 to D.

With the tangent space gauge condition in place, the analog
of (11) for B is given by

∑
γ̃ δ

Gα̃β|γ̃ δB
γ̃ δ = − i〈∂α̃β�(C(t))|Ĥ (t)|�(C(t))〉, (16)

where ∂α̃β on the right-hand side stands for a derivative with

respect to B
α̃β

, after making use of the chain rule applied to
a differential dC of the form (14). After deriving the solution
for Bα̃β , by applying the inverse of the Gram matrix to (16),
the TDVP update for C is obtained via (14).

B. Efficient implementation

As discussed at the end of Sec. III, naively following an
optimal uMPS contraction ordering in the uCPS setting will
yield a computational cost that scales at best as O(log(D)D3)
for a local Hamiltonian, and we expect to be able to do
better. Details of a contraction ordering such that the cost
of calculating the right-hand side of (16) scales as O(D3) are
given in Appendix B.

In addition to this, it is necessary to find an O(D3)
implementation for the action by the inverse of the D2 × D2
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matrix G on equation (16). Stemming from the fact that our
parameterization of variations dC satisfying the tangent left
gauge condition (14) depends in a complicated way on the
eigenvalue decomposition of the transfer matrix, the uCPS
Gram-matrix turns out to be a much more complex object than
its uMPS equivalent [given simply by ρl ⊗ ρr (A13)] and is
given by

Gγ̃δ|α̃β =
∑
ij

λijT
γ̃ δ|α̃β

ij , (17)

where

T
γ̃ δ|α̃β

ij = (
V

γ̃

(R) iV
δ

(L) j

)
(.∗)

(
V α̃

(R) iV
β

(L) j

)
(18)

and

λij = V 0
(L) iV

0
(R) j (.∗)(1(./)Eij ). (19)

Naively, both the cost of calculating G−1, as well as its action
on a vector, scales as O(D6); an obvious approach to reduce
this cost would be to attempt to write G in a decomposition
that would allow the action of its inverse on a vector to be
calculated with cost O(D3), analogous to the manner in which
a O(d2D6) → O(dD3) reduction in cost is achieved for uMPS
TDVP. As far as we have been able to ascertain, this is not
possible for (17). While such an inverse does exist for the
matrix obtained by replacing all tilde indices in (17) by their
nontilde extensions, and is given by inverting all the constituent
matrices and taking λij → 1(./)λij , the truncation of the
eigenvalue-one eigenvector seems to conclusively obstruct
achieving any appropriate decomposition for G−1 itself. It
is nevertheless possible to use an iterative method (such as the
biconjugate gradient algorithm) in order to calculate the action
of G−1 and retain O(D3) efficiency, since this only requires
that the action of G on an arbitrary vector be calculable with
cost O(D3).

A further caveat to the above is that in order to achieve
O(D3) scaling, the number of iterations in the iterative
subroutine required to achieve some desired accuracy must
scale as a constant for large enough D, and this is not
guaranteed. For example, the number of iterations does
scale worse than constant if the preconditioning step is not
implemented appropriately (its implementation is described
in Appendix C). However, beyond this observation, for all
the examples studied in this paper the iterative subroutine is
observed to scale as O(D3).

Finally, it should be noted that while the general uMPS
TDVP algorithm does not require an iterative subroutine for
the Gram-matrix inverse step in order to achieve optimal
efficiency, it does require such a subroutine in order to calculate
the third term in (A14) with cost O(dD3). The same term in
uCPS TDVP, on the other hand, can be calculated explicitly
with cost O(D3), as is described in Appendix B.

V. PROPERTIES OF uCPS GROUND-STATE
APPROXIMATIONS

In this section, the imaginary-time uCPS TDVP algorithm
is used to obtain uCPS ground-state approximations for a
number of exemplary models: the quantum Ising model in
a transverse magnetic field, the XY model, and the Heisenberg
model (all spin 1

2 ). The general aim is to study the capacity
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FIG. 3. The behavior of two-site overlap uCPS ground-state
energy approximations for the quantum Ising model at criticality,
as a function of the global rotation angle around the y axis away from
the z-basis choice. The TDVP algorithm exhibits unique convergence
to the global minimum only at the points marked by the red circles,
which denote the z- and x-basis choices, and at one intermediate point.
In general, depending upon the details of the initial random state,
imaginary-time TDVP will converge to one of the minima associated
with the splitting of otherwise degenerate energy levels, which occurs
due to the lack of rotation invariance of the uCPS Ansatz.

of uCPS to capture ground-state properties both at and away
from criticality, while carefully considering the effects of
uCPS basis dependence. We provide a detailed study of
the convergence properties of uCPS ground-state energy
estimates, and of the convergence/scaling11 behavior of the
entanglement entropy and of the correlation length, all with
respect to the size of the uCPS overlap n (or, equivalently,
with respect to the bond dimension D, related to the overlap
by D = sn). In addition, the performance of the uCPS TDVP
algorithm is analysed, and compared with the general uMPS
imaginary-time TDVP algorithm applied to the same models.

A. Basis dependence

In order to demonstrate the effect of uCPS basis choice,
we calculate the uCPS ground-state energy estimates for the
transverse field Ising Hamiltonian:

Ĥ =
∑
i∈Z

−J σ̂ z
i σ̂ z

i+1 + hσ̂ x
i , (20)

the orientation of which remains fixed while the uCPS basis is
rotated from the x to the z direction (throughout this section
we will be keeping the Hamiltonians fixed, while rotating
the uCPS basis). Here, {σ̂ x,σ̂ y,σ̂ z} are the Pauli matrices, J

determines the coupling strength between nearest-neighbor
spins, and h determines the strength of the magnetic field; the
model is critical for h

J
= ±1.

The results for two-site uCPS overlap (D = 4), at h = 1,
are displayed in the plot in Fig. 3. At the points at which

11The entanglement entropy and the correlation length do not
converge at criticality, so only the scaling properties of these quantities
can be considered.
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the two branches cross, imaginary-time TDVP converges to a
unique global minimum; this occurs for rotations away from
the z basis by integer multiples of π

2 , i.e., for z- and x-basis
choices, and at one additional intermediate angle, the precise
value of which depends upon uCPS overlap. Away from the
special points at which the branches cross in Fig. 3, TDVP
converges to the global minimum only for a certain fraction of
TDVP runs initiated from a random uCPS state.

The branching occurs due to the fact that, except for very
special basis choices, uCPS breaks the twofold degeneracy
that is present in the uMPS approximation of the ground state
at h = 1.12 Thus two states that would have exactly the same
energy in the uMPS approximation acquire slightly different
energies with uCPS due to the rotation dependence of the
uCPS Ansatz. TDVP converges to one of these two solutions,
depending upon details of the initial random state. At present,
we do not understand precisely how the outcome is encoded
in the initial state. A hint might perhaps be contained in the
fact that a local unitary cannot be pushed through the copier
tensor, so that the CPS parametrisation divides the Hilbert
space into topologically distinct classes [34]. As one would
expect, the branching is present for all values of h in the
ferromagnetic phase, and the two branches collapse as one
enters the paramagnetic phase.

In general, imposing constraints on uMPS can potentially
introduce local minima on the variational manifold. For
example, uMPS TDVP often gets stuck in local minima when
uMPS matrices are restricted to be real, and in that case some of
the local minima can be singular.13 In the present situation, the
local minima do not correspond to singular points on the uCPS
manifold, and thus no associated numerical complications are
encountered. Moreover, as long as the number of branches is
constant as a function of uCPS overlap, in order to be certain
of having reached the ground state with some probability, the
algorithm needs to be run a fixed number of times: O(2)
times for the example of the quantum Ising model in the
ferromagnetic branch away from the special points.

Let us next consider the XY model, which is described by
the Hamiltonian:

Ĥ = −
∑
i∈Z

1 + γ

2
σ̂ x

i σ̂ x
i+1 + 1 − γ

2
σ̂

y

i σ̂
y

i+1 + hσ̂ z. (21)

The ground state is twofold degenerate for 0 < h < 1 and
0 < γ < 1. In this regime we observe two branches, as in the
case of the quantum Ising model. For γ = 0, the symmetry
of the Hamiltonian is increased to U (1), and here the number
of local minima that uCPS converges to is not bounded as the

12It should be noted that the exact ground state of the quantum Ising
model is doubly degenerate for h < 1, but at finite bond dimension
the h = 1 uCPS/uMPS approximations are still effectively in the
Ferromagnetic phase (see, e.g., Ref. [33], and also the discussion
relating to Fig. 11).

13Meaning that TDVP has in fact converged to a uMPS of a
lower bond dimension than that of the initial random state. As
some eigenvalues of the Gram-matrix go to zero in this limit, the
TDVP algorithm becomes numerically unstable, at least in its naive
implementation (for an implementation of MPS TDVP that avoids
such instabilities see Ref. [35]).

size of the uCPS overlap is increased, as far as our numerical
study is able to ascertain, and the O(D4) → O(D3) gains in
the scaling of computational costs associated with the special
structure of uCPS seem to be lost for this model. In addition,
no basis choice exists for which TDVP always converges to a
global minimum.

When the symmetry is increased to SU(2), however, as,
e.g., for the spin-1/2 Heisenberg model, described by the
Hamiltonian

Ĥ =
∑
i∈Z

J
(
σ̂ x

i σ̂ x
i+1 + σ̂

y

i σ̂
y

i+1 + σ̂ z
i σ̂ z

i+1

)
, (22)

multiple branches are no longer observed. Full rotation in-
variance means that optimal uCPS approximations of physical
quantities must be completely independent of the choice of
basis, and moreover, in the case of the Heisenberg model,
TDVP is always observed to converge to a global minimum.

At this stage it can be observed that, in a loose sense,
a judicious basis choice corresponds to one that is “opti-
mally” aligned with the entanglement generating terms in
the Hamiltonian. Clearly, for the quantum Ising model at
criticality, the z basis is maximally aligned with σ̂ z ⊗ σ̂ z, and
as demonstrated provides better energy estimates than those
obtained by picking the x − basis at equal overlap. Another
desirable property with this choice is that TDVP always
converges to the global minimum. However, as indicated by the
plot in Fig. 3, the best energy estimate is in fact achieved at an
intermediate angle, but the computational downside of picking
this point is that TDVP may get stuck in a local minimum,
and that one needs to scan in order to find the orientation
that achieves the lowest energy. In addition, the behavior of
uCPS is clearly highly model dependent. For example, the XY
model for γ = 0 has no basis choice at which convergence
is unique, so scanning in this context may be a more sensible
strategy than for the quantum Ising model. Moreover, due to
the U(1) invariance of this model, the number of minima that
TDVP converges to seems to increase indefinitely as overlap
size is increased. Since the TDVP algorithm converges to the
global minimum only for a small fraction of runs, the algorithm
becomes essentially statistical, and it is therefore questionable
whether imaginary-time TDVP has any advantages here over
Monte Carlo method, the standard approach for CPS/string
bond type Ansätze. For the SU(2) invariant Heisenberg mode,
the symmetry is large enough to eliminate such issues, but
since all basis choices yield the same approximations for
physical quantities, there is little motivation left for using a
basis dependent Ansatz in the first place. In conclusion, what
is meant by an “optimal basis” is a function of both the model
under investigation, and what it is that one wishes to achieve.
uCPS provides a good demonstration, in a well controlled
context, why identifying a good basis is such a difficult
problem for general CPS/string bond states. Nevertheless,
attempting to maximally align the basis with entanglement
generating terms certainly seems to be a good general guiding
principle.

B. Ground-state convergence at criticality

Next we investigate the ground-state convergence proper-
ties of the transverse field quantum Ising model at criticality,
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FIG. 4. Convergence of uCPS and uMPS ground-state energies
for the transverse Quantum Ising model at the criticality. The x axis
denotes an overlap size for uCPS data and a bond dimension for
uMPS data.

comparing uCPS in the z and x bases with uMPS. As noted,
TDVP always converges to the global minimum for these basis
choices. The plot in Fig. 4 demonstrates that the uCPS ground-
state energy estimates are better for the z- than for the x-basis
choice (that this is the case for two-site uCPS overlap is already
evident from Fig. 3). The more surprising observation is that,
while the uMPS energy converges roughly polynomially as
a function of bond dimension D(uMPS) (since the model is
critical), the uCPS energy converges instead polynomially with
the size of the uCPS overlap—note that the x axis in the plot is
shared between uCPS overlap size n and D(uMPS). Thus, since
D(uCPS) = 2n, to achieve the same order of accuracy in the
energy estimates uCPS requires an exponentially larger bond
dimension than uMPS. Complementing this result is another
surprising observation, depicted in the plot in Fig. 5: the total
time needed to reach convergence to same accuracy scales in

1 2 3 4 5 6
0

50

100

150

200

250

300

uCPS Overlap/D (uMPS)

C
on

ve
rg

en
ce

 ti
m

e 
(s

ec
)

uCPS z basis
uCPS x basis
uMPS

FIG. 5. Convergence times for uCPS and uMPS approximations
for the ground state of the quantum Ising model at criticality. The x

axis denotes an overlap size for uCPS data and a bond dimension for
uMPS data.
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FIG. 6. Convergence of uCPS ground-state energies for the
Heisenberg model. The horizontal line denotes the exact energy.
Whilst the uCPS approximations are not basis dependent, conver-
gence turns out to be very slow.

the same way for uMPS with respect to bond dimension as for
uCPS with respect to overlap size.

Thus, the indications from this example are that, even
though the computer memory costs are exponentially larger for
uCPS than for uMPS, the computer time needed to reach some
desired accuracy for the ground-state energy approximation
scales in the same way for both uCPS and uMPS. This result
seems to be generic, and is observed to hold for all the models
studied in this paper.

In this context, it is also useful to consider the SU(2)
invariant Heisenberg model, so that it is impossible to pick
out some preferred basis choice. While one avoids the
complications associated with basis dependence, the result of
using an orientation-dependent Ansatz on a rotation invariant
Hamiltonian seems to manifest itself in extremely slow
convergence, as a function of uCPS overlap, of the ground-
state energy approximations compared to what is observed
for models whose entanglement generating terms point in a
definite direction, such as, e.g., the quantum Ising model. This
is illustrated by the plot in Fig. 6. In addition, the times required
for TDVP to converge are much longer, at equal uCPS overlap,
than for the quantum Ising model. For example, the maximal
bond dimension that we could achieve in reasonable time is
DuCPS = 26, and the corresponding energy density reproduces
the correct result only to three digits. This slowdown originates
in the iterative subroutine of the TDVP algorithm, which
requires a much larger number of iterations to converge to
the required accuracy.

C. Ground-state convergence in a gapped phase

Next, we examine the ground-state convergence of uCPS
deep in the gapped phase. The observations made above,
regarding the computational time and memory costs of uCPS
vs. that of uMPS, remain true away from criticality. Here, we
shall demonstrate that the analogous observations also hold
for two rather different types of physical quantities, namely
the correlation length μ and the entanglement entropy S. The
correlation length is obtained from the largest eigenvalue λ2
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FIG. 7. Entanglement entropy S as function of uCPS over-
lap/uMPS bond dimension D, for the quantum Ising model in the
ordered gapped phase (J = 1 and h = 0.5).

of the transfer matrix smaller than 1 as

μuMPS = − 1

ln
(
λ

(uMPS)
2

) , μuCPS(n) = − n

ln
(
λ

(uCPS)
2

) , (23)

for uMPS and uCPS, respectively, where n is the uCPS overlap.
The entanglement entropy S is the simplest measure, for
pure quantum states defined on a region R, of entanglement
between a subregion A ∈ R and the rest of the system. It is
defined as

S = −tr(ρA ln(ρA)) = −
∑

i

λ2
i ln

(
λ2

i

)
, (24)

where λi are the Schmidt coefficients corresponding to the
density matrix ρA associated with the subregion A. One can
show that the Schmidt coefficients corresponding to a cut of the
infinite spin chain into two semi infinite subchains are given

by the singular values of ρ
1
2
l ρ

1
2
r , where ρl and ρr are the left

and right uMPS environment matrices defined in Appendix A;
for uCPS left and right environment eigenvectors, see (5) and
(6).

The convergence of S for a half-infinite chain, for the
quantum Ising model in the paramagnetic phase (specifically
for J = 1, h = 0.5), is depicted in the plot in Fig. 7. We note
that for the z-basis choice convergence of S approaches that
of uMPS. This is not surprising, given that in the limit h → 0
the ground state approaches a product state aligned along the
z basis, and so one would expect uCPS in this basis to be
capable of capturing the exact state accurately already at small
overlap.

The present example also demonstrates that uCPS is able
to reproduce ground-state energies to machine precision both
for z- and x-basis choices. Due to the exponentially higher
memory cost of uCPS compared to uMPS, in practice it is
necessary to be far in the gapped phase to observe such
convergence; for example, for J = 1 and h = 0.5, machine
precision is achieved for both basis choices with a seven-site
uCPS overlap (which already corresponds to DuCPS = 128),
while for J = 1, h = 0.7, the necessary overlap size is out
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FIG. 8. Correlation length μ as a function of uCPS overlap/uMPS
bond dimension D, for the quantum Ising model in the ordered gapped
phase (J = 1 and h = 0.5).

of reach for a desktop with 16 GB of RAM. Remarkably, a
naive first-order implementation of uCPS TDVP is sufficient
to achieve this; despite the fact that most of the Gram matrix
eigenvalues are zero to machine precision in this regime, no
numerical instabilities are encountered. This behavior depends
crucially on implementing an appropriate preconditioner in the
iterative subroutine step responsible for applying the inverse
of the Gram matrix to a vector, as is described in Appendix C.

The convergence of the correlation length with uMPS bond
dimension/uCPS overlap is depicted in the plot in Fig. 8. A
notable feature is that, for both x- and z-basis choices, uCPS
convergence is much smoother than for uMPS. Such behavior
is also observed at criticality, as is discussed later in this section
(see Fig. 10).

Finally, let us also note that for the XY model, both at and
away from criticality, convergence properties are similar to
those of the quantum Ising model for γ close to one; as γ

approaches zero convergence becomes slower, and the TDVP
algorithm more sensitive to integration errors.

D. Finite entanglement scaling at criticality

Next, we study the scaling properties of the correlation
length (23) and entanglement entropy (24) for uCPS at critical-
ity. Since the area law no longer holds, these quantities, while
finite at any given bond dimension D, grow indefinitely as
D → ∞. Since a finite D bounds the amount of entanglement
that can be encoded in a CPS/MPS, scaling with respect to
D is referred to as finite entanglement scaling, and has been
extensively studied in the uMPS setting [33,36–38]. In what
follows, we demonstrate that also at criticality overlap size
plays the same role for uCPS as the bond dimension does for
uMPS, and furthermore show how universal quantities can be
calculated using uCPS finite entanglement scaling.

Let us first consider the scaling of the correlation length
μ (23) with uCPS overlap. The work [33] provides numerical
evidence that for a critical system uMPS scales with bond
dimension as (DuMPS)κ in the limit of large DuMPS, where κ is
a universal constant. In Ref. [36], it was furthermore argued
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FIG. 9. The logarithm of the correlation length μ vs the logarithm
of uCPS overlap for uCPS ground-state approximations for the
quantum Ising model at criticality, for both the x- and z-basis choices.
In the z basis, the linear fit is particularly accurate, with slope equal
to one to good approximation.

that κ only depends upon the central charge c of the critical
system via the relation:

κ = 6

c
(√

12
c

+ 1
) . (25)

The plot in Fig. 9 demonstrates that, to high accuracy, for uCPS
μ is instead proportional to nκ̃ , where n is the uCPS overlap,
and κ̃ a constant. For the critical quantum Ising model, a
linear fit of ln(μ) versus ln(n) for uCPS in the z basis yields
κ̃ = 1.004 ± 0.006. It seems plausible that the exact value of
κ̃ is equal to one in the limit n → ∞, i.e., that the correlation
length is exactly proportional to uCPS overlap size. In the
x − basis, as can be seen in Fig. 9, a significant oscillation
over the whole range of available n is present, and making
any conclusion regarding the value of κ̃ in the limit n → ∞ is
difficult. Based upon the available data, it is thus not possible
to say whether or not κ̃ is basis dependent in this limit. This in
turn makes it impossible to make any assertion as to whether
the value of κ̃ is universal (and if so, in what sense).

At present we can therefore not see any manner in which,
in the uCPS context, something akin to (25) could be used
to estimate the central charge c. Nevertheless, uCPS can
be used to calculate universal quantities along the lines
of Refs. [37,38], where it has been demonstrated that a
particularly powerful way to calculate critical exponents and
the central charge is to scale not directly with respect to D, but
with respect to the uMPS correlation length μ(D). The central
charge, for example, can be estimated from the scaling of the
entanglement entropy (27) with the correlation length (23) as
follows. For a (1 + 1) critical system, it has been shown [39,40]
that the entanglement entropy corresponding to an interval A
of length xA grows as

SA = c

3
ln(xA) + k, (26)

where c is the central charge of the system, and k a constant.
The entanglement entropy of the half-infinite line then scales
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FIG. 10. The scaling of uCPS/uMPS entanglement entropy S vs
ln(μ), where μ is the correlation length. The slope approaches a
constant value, which is theoretically predicted to be c

6 , where c is
the central charge.

as

S = c

6
ln(μ) + k̃, (27)

where μ is some length scale introduced in the system—in our
case, this is precisely the correlation length associated with
finite bond dimension (23)—and k̃ is again some constant.
Relation (27) in conjunction with (23) can thus be used to
obtain an estimate of the central charge.

The scaling of S versus ln(μ(n)) for the quantum Ising
model at criticality is depicted in the plot in Fig. 10. As
one can see, oscillations in the entanglement entropy as a
function of ln(μ) observed for uMPS are absent from uCPS in
a fixed basis. Performing a simple 1/n, n → ∞ extrapolation
for the slope of this curve, with z-basis data up to n = 10,
yields the estimate c = 0.504 ± 0.006 for the central charge,
at 95% confidence. This provides comparable accuracy to
result obtained via finite uMPS entanglement scaling using
all bond dimensions from D = 2 to D = 64 in Ref. [38]:
c = 0.496 ± 0.001 at 95% confidence. The time needed to
generate this uMPS data on an average spec current desktop,
even when using more advanced techniques than the simple
first-order implementation of imaginary-time TDVP (such as
the conjugated gradients method or iDMRG), is of the order
of a week. On a comparably powerful computer the uCPS data
used here was generated in a few hours. It should be noted,
however, that uMPS finite entanglement methods are much
more accurate for critical exponent than for the central charge
estimates, and that the exponentially larger memory cost of
uCPS means that uMPS is capable of accessing states with
a lot more entanglement (as Fig. 10 clearly demonstrates).
Nevertheless, for the range of bond dimensions for which
uCPS has a sufficient amount of RAM, the lack of oscillations
means that uCPS can in practice be useful for making accurate
estimates much more quickly than is possible with uMPS.

It is also interesting that uMPS and uCPS data points in
Fig. 10 lie roughly on the same line, and while uMPS data is
significantly noisier, it seems to be bounded by the optimal
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z- and the suboptimal x-uCPS basis choices. This gives an
indication that there may be some relationship between the
oscillations in the uMPS data and the rotation invariance of
the uMPS Ansatz.

E. In conclusion

While a single TDVP step scales better with bond di-
mension for uCPS than for uMPS, an exponentially larger
amount of computer memory is needed in order to achieve
the same accuracy with uCPS than with uMPS. However,
the computational time required to obtain the same accuracy,
surprisingly, scales in the same manner for both. The precise
nature of the scalings is sensitively dependent upon both the
model under investigation and the choice of basis. For models
with degenerate ground states, convergence to the global
minimum is in general only achieved for a certain fraction of
TDVP runs. The uCPS algorithm exhibits certain advantages
over uMPS when calculating universal quantities using finite
entanglement scaling; oscillations found in uMPS are not
present for uCPS, so scaling can be deduced more accurately
with comparable computer time (but larger computer memory)
cost. This seems to occur precisely because of the fixing of
the basis. It would be particularly useful if oscillations are
eliminated for CPS/string bond states in a similar manner
beyond one dimension, where obtaining large number of points
for a range of bond dimensions, as may be necessary with
oscillations present, can be prohibitively expensive.

VI. QUENCHES WITH uCPS

In this section, we use real-time TDVP applied to uCPS
to study quenches across the critical point in the quantum
Ising model (20) which exhibit so-called dynamical phase
transitions. Dynamical phase transitions can occur whenever
the return amplitude,

G(t) = 〈�0|e−iH t |�0〉, (28)

also referred to as the Loschmidt amplitude, has zeros [41].
The rate function for the return probability (referred to from
here on just as the rate function):

l(t) = − lim
L→∞

1

L
ln |G(t)|2, (29)

can acquire nonanalyticities, analogous to those present in the
free energy in a thermodynamic setting. For a uCPS/uMPS,
this quantity corresponds simply to the logarithm of the second
largest eigenvalue of the transfer matrix.

The thermodynamic equivalent of (28) is obtained from
purely imaginary-time evolution, i.e., t = −iτ with τ real.
In this case, G(τ ) corresponds to the canonical partition
function of a system with finite length in the τ direction,
and with boundaries described by |�0〉. Equilibrium phase
transitions of the system are in correspondence with the zeros
of G(τ ) that occur as one takes the thermodynamic limit
L → ∞, which, if present, result in nonanalyticities in the
free-energy − ln |G(τ )|2. It should be noted that, while the
thermodynamic partition function can acquire zeros only in
the thermodynamic limit, for the return amplitude (28), this
can also happen also at finite system size. Thus, in general, no
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FIG. 11. Both uCPS and uMPS are capable of capturing the quan-
tum Ising model equilibrium phase transition, from the ferromagnetic
phase, h < 1, characterized by a nonzero value for the order parameter
operator expectation value 〈σ z〉, to the paramagnetic phase h > 1
when 〈σ z〉 = 0. The accuracy of the uCPS approximation for the
critical point, h = 1, degrades as a function of the rotation angle
away from the z basis. In the x basis, the phase transition is entirely
missed.

simple correspondence between equilibrium and dynamical
phase transitions exists [42].

The rate function (29) can be calculated exactly for the
quantum Ising model, and a dynamical phase transition occurs
for quenches across the critical point [43,44], so in this
setting a simple correspondence between the dynamical and
equilibrium cases does exists. The ground state of the quantum
Ising model (20) undergoes an equilibrium phase transition
from a ferromagnetic phase for h < 1 to a paramagnetic phase
for h > 1. This transition is captured accurately by uMPS
even at small bond dimension, with the expectation value of
order parameter operator 〈σ̂ z〉 going from a positive value for
h < hc, to zero14 for h > hc, with hc approaching the exact
value hc = 1 from above with increasing bond dimension. The
uCPS behavior is highly basis-dependent, as is demonstrated
by the plot in Fig. 11. The critical point is approximated with
comparable accuracy by uMPS and uCPS in the z basis, at bond
dimension equal to uCPS overlap, but the uCPS approximation
gets increasingly less accurate for choices of basis away from
z, and completely misses the phase transition in the x basis.

In the following, we concentrate on a quench initiated in
the paramagnetic phase, with h = 1.5 in the quantum Ising
Hamiltonian (20), with the time evolution performed according
to a Hamiltonian with the magnetic field (instantaneously)
changed to h = 0.1; the postquench Hamiltonian is therefore
deep in the ferromagnetic phase. The reversed quench, from
the ferromagnetic to the paramagnetic phase, also exhibits a
dynamical phase transition, but is more unwieldy to analyze
[44]. As it yields very similar conclusions regarding the
properties of uCPS, it will not be explicitly discussed here.

14To machine precision.
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FIG. 12. The rate function vs time in the z basis for six-site
uCPS overlap compared with the exact evolution. The quench
corresponds to the ground state of the quantum Ising Hamiltonian with
h = 1.5 (paramagnetic phase) evolved with the h = 0.1 Hamiltonian
(ferromagnetic phase).

In the z basis, uCPS captures the dynamical phase transition
very accurately, as demonstrated in the plot in Fig. 12.
In addition to capturing nonanalyticities, simulations with
uCPS in this basis exhibit approximate recurrences at large
times, i.e., beyond the point at which the exact rate function
is captured correctly, for all values of uCPS overlap. For
single-site overlap, recurrences are in fact exact. Plots of uCPS
approximations for single- and three-site overlap in the z basis
are depicted in the two top plots of Fig. 14 and clearly show
recurrences.

In contrast, in the x basis (Fig. 13), uCPS do not capture the
nonanalyticities in the rate function at all. For times prior to the
first nonanalyticity, the accuracy of the uCPS approximation of
the rate function increases with increasing overlap, however,
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FIG. 13. The uCPS approximation, for two- and five-site uCPS
overlap in the x basis, of the rate function for the h = 1.5 → h = 0.1
quench in the quantum Ising model. In this basis uCPS completely
misses the dynamical phase transition. The behavior of the uCPS
approximation is analytical even at large times (not displayed).
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FIG. 14. Rate function vs time in z basis exhibits recurrence when
projected to the uCPS manifold. Recurrence is exact for one-site CPS
overlap (top), and approximate when the overlap is larger than one,
as demonstrated for the three-site uCPS overlap case (middle). The
uMPS approximation does not exhibit recurrences at large times;
beyond the point at which the rate function is accurately captured, the
behavior is chaotic (bottom), and the precise behavior is also highly
bond-dimension dependent.

the nonanalyticity is never actually captured. Beyond the point
at which the nonanalyticity occurs in the exact function, the
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behavior of the uCPS approximation completely misses the
correct behavior and is chaotic, not converging to any definite
function with increasing uCPS overlap size. It should be noted
that nonanalytic behavior is not observed at any time in the
x-basis uCPS approximation. This is very different to the large-
time behavior of uCPS in the z basis.

The behavior of the uMPS approximation of the quench, at
large times, exhibits a combination of that observed for z- and
x-basis uCPS approximations in the following sense: as can
be seen in lowermost plot in Fig. 14, beyond the point at which
the exact rate function is captured accurately (for a given bond
order), the uMPS behavior is chaotic, as is the case for uCPS
in the x basis, but it does exhibit nonanalyticities at arbitrarily
large times, a feature observed for uCPS in the z basis.

Comparing the D = 6 uMPS approximation in Fig. 14 with
the six-site uCPS overlap approximation in the z basis in
Fig. 12 demonstrates that the quality of the uCPS and uMPS
approximations is comparable. This is another example—
here in the context of real-time evolution—of the general
observation that the capacity of uCPS and uMPS to capture
the properties of spin systems is roughly the same, in an
optimal basis, for uCPS overlap equal to the uMPS bond
dimension. In addition, we observe that, for the examples
studied in this section, the time needed to run uMPS and
uCPS approximations of the same quench at uCPS overlap
size equal to uMPS bond dimension is roughly the same. This
demonstrates that also in the context of quenches it is only the
computer memory cost, and not the computer time cost, that
scales exponentially worse for uCPS.

VII. DISCUSSION

This paper has centered around developing the deterministic
TDVP algorithm to study a restricted class of uCPS states. Such
an algorithm is itself a departure as CPS states are usually
optimized stochastically and—as far as we are aware—not
used to study real-time Hamiltonian evolution. Our analysis
has revealed several interesting features of the numerical cost
of using uCPS and their sensitivity to choice of basis.

A. Computational cost of uCPS TDVP algorithm

The implementation of the TDVP algorithm shows inter-
esting efficiency gains, aspects of which may be extendible to
higher dimensions. In Sec. V, it has been demonstrated that the
cost of a single uCPS TDVP step scales, optimally, as O(D3).
Since uCPS maps to an uMPS with bond dimension equal to
the physical spin dimension, and the cost of one uMPS TDVP
step is O(dD3), one naively expect the cost of each uCPS
TDVP step to scale as O(D4), but the special structure of
uCPS enables this to be improved upon. This special structure
is most effectively analysed by considering the uCPS → uMPS
mapping, which necessitates the introduction of the so called
copier tensor, and the fact that a singe n-site coper factorizes
into a product of n single-site copiers already implies the
reduction to O(ln(D)D3). The mapping of a generic CPS to
PEPS involves copiers that factorize in a similar manner, so it
is likely that an increase in efficiency is possible also in more
than one dimensions for deterministic algorithms that respect
the CPS structure.

Other deterministic algorithms for optimising CPS have
been reported in Refs. [6,29], and a comparison with our
approach is warranted. In this work, reference states with
convenient properties are chosen so that a large cancellation of
plaquettes occurs and the problem of contracting the boundary
is avoided. The approximate ground state is then found by
sweeping the system with sequential updates of the plaquettes.
Although good results were reported, this does introduce
greater potential for error, which damages convergence by
altering the direction of evolution in the variational manifold,
and furthermore it is no longer guaranteed that each update
will lower the expected energy of the state. Our method avoids
the problems associated with repeated sweeps of the system,
by updating the plaquettes simultaneously using a method that
ensures that the energy of the variational state is monotonically
decreasing. However, the contraction of the boundary in more
than one spatial dimension cannot be performed exactly, and it
remains to be investigated precisely how the generalisation of
our methods to higher dimensions compares with the results
of Refs. [6,29].

However, the efficiency with which a uCPS represents a
state to a given degree of accuracy is not as great as one might
naively anticipate. As discussed in Sec. III, we have considered
a restricted set of CPS that are equivalent to MPS with bond and
local Hilbert space dimension equal. One might expect then
that uCPS with an optimally chosen basis are of comparable
accuracy to uMPS of this bond order. This is not the case. Both
deep in the gapped phase and also at criticality, quantities of
interest, such as the ground-state energy, converge with size
of the uCPS overlap n in roughly the same manner as they
converge with bond dimensions for uMPS. The implication is
that, as far as physical observables are concerned, uCPS scaling
is exponentially worse than uMPS, since DuCPS = sn, where s

is the dimension of the spin of a single site. For critical systems,
one can make a particularly precise statement: while for uMPS
the correlation length μ increases with bond dimension D as
μ ∝ Dκ , in the limit D → ∞, for uCPS the correlation length
scales instead as μ ∝ nκ̃ , where κ and κ̃ are constants. It is
not possible to determine, from the accessible range of uCPS
overlap sizes, whether or not κ̃ is basis dependent, and thus,
whether or not it encodes universal behavior. Interestingly, for
the quantum Ising model in the z basis, κ̃ seems to be one
to good accuracy, and so the correlation length is precisely
proportional to the uCPS overlap.

Surprisingly, while the memory cost is exponentially worse
for uCPS than for uMPS, the computer time needed to fully
converge to the optimal uCPS ground-state approximation,
using imaginary-time TDVP initiated from a random state,
scales in the same way for uCPS with respect to overlap, as
it does for uMPS with respect to bond dimension. Combined
with the above result, that uCPS achieves roughly the same
accuracy as uMPS for overlap equal to uMPS bond dimension,
this observation implies that uCPS in the optimal basis matches
uMPS accuracy with the same computer time cost, but an
exponentially worse memory cost. This does not contradict
the statement that the cost of a single step in the imaginary-
time TDVP is exponentially worse for uCPS, both in time and
memory cost (since at each step exponentially larger matrices
need to be multiplied). The speedup observed with uCPS, over
the course of the whole imaginary-time TDVP run, reflects
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the fact that for uCPS much larger time steps can be taken
than for uMPS before instability sets in. In addition, while for
imaginary-time TDVP integration errors due to excessively
large time steps can conspire to actually aid convergence, both
for uCPS and uMPS—and of course as long as these time steps
are not too large—this effect aids convergence more efficiently
in the case of uCPS. The net result is that the the exponentially
higher cost of a single step for uCPS in the TDVP algorithm is
counteracted by these two effects to bring the computer time
cost of the whole TDVP run down, so that it actually scales
exponentially better than would be expected when considering
the costs of a single step of the algorithm; clearly, none of this
improves the memory requirements.

The computational costs are observed to have the same
properties in the context of real-time TDVP, which has been
used to simulate quantum quenches in Sec. VI. The only caveat
is that in the analysis, in place of considering the time necessary
for imaginary-time TDVP to converge, one must compare
the uCPS versus uMPS cost of simulating the evolution of a
quench over some reasonably long time. Given that integration
errors are not of great concern for imaginary-time TDVP,
only a simple Euler-step integrator was used to generate
the ground-state approximations, and one may object that
some of the conclusions made above regarding the cost of
imaginary-time TDVP are merely artifacts of the particularly
simple type of integration scheme. This is not the case, as
can be checked by employing a more sophisticated integration
algorithm. Moreover, our real-time uCPS quench simulations
were computed using the adaptive step Runge-Kutta-Fehlberg
4(5) method, with the same conclusions regarding uCPS versus
uMPS computational costs.

Finally, let us note that a detailed comparison of TDVP
with Monte Carlo methods, as applied to uCPS, remains to be
done. The results of Ref. [29], which compares a (non-TDVP)
deterministic approach with Monte Carlo method, indicate that
the accuracy of ground-state energy estimates is comparable
for these two approaches. Thus we also expect that the accuracy
of results should be comparable when TDVP and Monte Carlo
methods are applied to the same uCPS.

B. Basis dependence

In addition to the above, basis dependence has a major
impact on the behavior of the uCPS TDVP algorithm. In
Sec. VI, it was demonstrated that with a suboptimal choice
of basis important physics can be missed, as demonstrated by
the fact that both dynamical and static phase transitions in the
quantum Ising model are not observed if one chooses to work
in the x basis. Clearly, this is a cautionary lesson when working
with higher-dimensional CPS/string bond states.

In the imaginary-time context, it is observed that the uCPS
TDVP algorithm converges to the global minimum irrespective
of the choice of the initial random state in general only when
the ground state is not degenerate. For degenerate vacua, the
algorithm converges to the global minimum only for a certain
fraction of runs initiated from a random state, except possibly
for very special choices of basis for which convergence is
unique. If there is a finite number of degenerate vacua, the num-
ber of possible minima is in general equal to the degeneracy
and does not increase with bond dimension. For a continuous

symmetry group, uCPS TDVP seems to converge—as far
as our numerical analysis is capable of ascertaining—to a
number of local minima that increases without bound with
uCPS overlap. The statements concerning the scaling and
cost of obtaining a ground state made above still hold, but
when convergence is not unique the algorithm acquires a
probabilistic ingredient, and for continuous symmetries the
scaling of the computational cost can increase by more than a
constant factor.

In reference to models examined in Sec. V, for the quantum
Ising Hamiltonian, entanglement is generated by the single
term σ̂ z ⊗ σ̂ z, and a number of suitable basis choices exist
that yield unique convergence; for the XY model with γ = 0,
which has U(1) symmetry, no such choice exists. At the other
extreme, convergence is observed to be unique, irrespective
of basis choice, for the Heisenberg model, which is described
by a rotation invariant Hamiltonian. Here, all basis choices
are clearly equivalent, and imaginary-time TDVP always
converges to a unique minimum. However, energy converges
extremely slowly compared to the other models studied (see
Fig. 6), which demonstrates that uCPS is best suited to the
study of Hamiltonians maximally aligned with the uCPS
basis.

In conclusion, a good basis choice is one for which the
entanglement generating terms are “optimally aligned,” in
some sense, with the uCPS basis. The problem of what pre-
cisely is meant by “optimal” is encountered for all CPS/string
bond state approaches, and is a difficult one to tackle with
any generality—not only due to technical challenges, but also
because the answer depends upon what precisely one wishes
to achieve. We have illustrated how this pans out in detail
in the context of uCPS in Sec. V. In this case, convergence
properties, probabilistic aspects of the algorithm, and the
accuracy of estimates for physical observables are all basis
dependent, yet can not in general be optimized simultaneously;
the choice depends upon which of these properties one wishes
to prioritize.

VIII. CONCLUSIONS

Although quantum states in dimensions higher than one can
be represented efficiently by tensor networks, physical proper-
ties may not in general be calculated efficiently without further
approximations. One way around this is to place additional
restrictions upon the tensor network so that its properties are
easier to calculate. Such restrictions inevitably involve com-
promises and a balance between efficiency gains and accuracy.
We have investigated this balance in the controlled context
of a restricted class of uniform one-dimensional correlator
product states that may also be considered a restriction upon
uniform matrix product states. Similar restrictions may be
applied in higher dimensions—correlator product states with
small, double overlaps can be mapped to small bond order
PEPS.

Our main results are the following. (1) The application
of the time dependent variational principle to uCPS. Usually
CPS—as well as the more general class of string bond
states—are optimized using a stochastic Monte Carlo type
approach. They are well-suited to this because of their efficient
sampleability. By considering the mapping of uCPS into
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uMPS, one naively expects a single uCPS TDVP step to
scale as O(D4). Utilizing the special structure uCPS, we
have shown that the cost of a single uCPS TDVP step
can be reduced to O(D3). Since this is based upon the
properties of the copier tensor whose properties generalize
to higher dimensional CPS → PEPS mappings, our analysis
indicates that a similar reduction should be possible for
higher-dimensional deterministic algorithms that respect the
CPS structure.

(2) The capacity of uCPS to capture physical informa-
tion about a system scales exponentially worse with bond
dimension than uMPS. In order to capture the ground-state
energy, or a quantum quench, to the same accuracy as a
D dimensional uMPS, one has to work with uCPS with
overlap size of the order n ≈ D, which is exponentially more
expensive since DuCPS = sn, where s is the dimension of a
single spin. This is, surprisingly, only reflected in computer
memory usage, not in the computer time needed to obtain
the ground state via imaginary-time TDVP, or to run quantum
quenches, which for a uCPS with overlap of size n is of the
same order as for uMPS with D = n. Finally, let us note that
the exponential memory bottleneck strongly suggests that not
all the information contained in the C tensors is needed. It is
likely that the exponential memory costs might be avoided by,
for example, allowing generalisations of our Ansatz in which
the correlators are represented by n-site matrix product states
(as suggested in Sec. III), or by utilizing Laughling like states
with long-range two- or three-site correlators.

(3) The choice of uCPS basis has a strong effect upon
the behavior of the TDVP algorithm, on the capacity of
uCPS to accurately approximate the physical system under
consideration, as well as on the behavior of uCPS under
scaling. A good basis choice, generally speaking, has the
property that it is closely aligned with the entanglement
generating terms in the Hamiltonian. With an optimal choice of
basis uCPS will generally capture the physics as well as uMPS,
for uCPS overlap equal to the uMPS bond dimension. On the
other hand, with a suboptimal choice uCPS can completely
fail to capture important physics such as equilibrium or
dynamical phase transitions. We also observe that, being
an Ansatz that is not rotation invariant, except for special
basis choices uCPS will in general break any degeneracy
present in the exact ground state (or in the related uMPS
approximation): depending on details of the random initial
state, imaginary-time TDVP will converge to local minima
associated with this separation of otherwise degenerate energy
levels.

(4) Having fixed a basis, the scaling of a physical quantity
with bond dimension is much smoother for uCPS than
for uMPS. In particular, the scaling of quantities such as
entanglement entropy or the correlation length often has strong
oscillations at lower bond dimensions in the case of uMPS, and
these almost entirely disappear for uCPS in a fixed basis.

(5) Some properties of uMPS exhibit a combination of
features that can be isolated by making judicious choices of
uCPS basis. For example, the oscillations seen in the scaling
behavior of uMPS seem to be bounded by the smooth behavior
of uCPS scalings, at one end by the uCPS in the optimal basis
and the other by the least optimal choice of basis (see Fig. 10).
Similarly the behavior of uMPS at large times for the quench

exhibiting dynamical phase transitions is a combination of the
recurring nonanalyticities seen for the optimal uCPS choice
of basis, and the chaotic but analytic behavior observed in the
least optimal basis (see Figs. 13 and 14).

The analysis in this paper has mostly been geared towards
bettering our theoretical understanding uCPS compared to
standard uMPS, with a view to identifying characteristic
properties of the uCPS variational manifold that may be of
use when studying CPS/string bond states in general, and in
particular in higher dimensions. It should be stressed that uCPS
has potential practical advantages already in one dimension. A
general observation made at various points in this paper is that
the uCPS TDVP algorithm, applied to a suitable Hamiltonian
and in an optimal basis, is very robust—both in its imaginary-
and real-time variants (see, e.g., Figs. 7 and 14)—under the
right circumstances more so than a comparably costly uMPS
TDVP run. A further advantage of uCPS is described at the end
of Sec. V, where it is shown that one can utilize the superior
scaling properties of uCPS compared to uMPS in order to
generate estimates of universal quantities in critical theories,
with accuracies not achievable with comparable computational
time cost using uMPS. Finally, an aspect of our analysis
that has not been emphasized in the course of this paper
is that, while uCPS yields similarly accurate estimates of
physical quantities for overlap sizes equal to uMPS bond
dimension, the actual bond dimensions accessed by uCPS
are exponentially larger than what is accessible with uMPS
at comparable computational time cost. For example, for the
critical quantum Ising model the bond dimension 210 = 1024
uCPS ground-state estimate in the x basis is reached with
roughly the same computer time cost needed to generate the
uMPS D = 10 ground-state approximation (see Fig. 4). One
interesting question is, for example, whether the uCPS →
uMPS mapping described in Sec. III could provide a more
efficient way of initialising a D = 1024 iDMRG run, than,
e.g., by building it up from a D = 10 uMPS state?
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APPENDIX A: REVIEW OF MATRIX PRODUCT STATES
AND THE TIME-DEPENDENT VARIATIONAL

PRINCIPLE

A matrix product state (MPS) takes the form

|�[A]〉 =
d∑

i1,i2,...,iN

v
†
LA

i1
1 A

i2
2 · · · AiN

N vR|i1,i2, . . . ,iN 〉,

(A1)

where d is the number of physical (spin) degrees of freedom,
and Aia is a DA−1 × DA matrix, while vL and vR are vectors
of dimensionality D0 and DN , respectively. The dimension
of these internal/virtual indices is referred to as the bond
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dimension. The open boundary condition Ansatz is presented
here for the sake of concreteness—the periodic boundary
condition MPS Ansatz corresponds to taking a trace in place
of contraction by v

†
L and vR . Graphically, the state (A1) can be

represented as

vL A1 A2 AN vR… ,

where the thick lines represent the internal bond dimension
indices, while the physical spins are denoted by the thin lines
with “uncontracted” ends. Here and in what follows, we will
not graphically depict any variation in the dimensionality of
physical or bond indices.

Transformations of the MPS matrices of the form

Ain → Gn−1A
inG−1

n , (A2)

where Gn,Gn−1 ∈ GL(D,C), leave the state invariant, and are
referred to as gauge transformations. The gauge transforma-
tions of the boundary (co)-vectors are given by v

†
L → v

†
LG−1

0 ,
and vR → GNvR .

Applying the time-dependent variational principle (TDVP;
see introduction to Sec. IV) to the MPS variational class
[30,32] yields

Ȧ∗(t) = arg min
Ȧ(t)

‖|�(Ȧ,A)〉 + iĤ (t)|�(A(t))〉‖, (A3)

where the object |�(dA,A)〉 is given by

|�(dA,A)〉 =
∑

i1,...,iN

v
†
LdA

i1
1 A

i2
2 · · · AiN

N vR|i1,i2, . . . ,iN 〉

+
d∑

i1,i2,...,iN

v
†
LA

i1
1 dA

i2
2 · · · AiN

N vR|i1,i2, . . . ,iN 〉

+ · · ·

+
d∑

i1,i2,...,iN

v
†
LA

i1
1 A

i2
2 · · · dA

iN
N vR|i1,i2, . . . ,iN 〉

:=
∑

α

dAα ∂

∂Aα
|�(A)〉 ≡

∑
α

dAα|∂α�(A)〉.
(A4)

The α index on the last line combines physical, virtual, and site
indices. Unlike elements in the variational class of MPS, the
objects |�(dA,A)〉 form a vector space and are, in fact, tangent
vectors to the MPS manifold [30,45]. The gauge invariance of
MPS (A2) can be shown to imply the invariance of tangent
states under

dAin → dAin + Xn−1A
in − AinXn, (A5)

where the matrices X live in the Lie algebra of the gauge group.
In this paper, we will study MPS directly in the thermo-

dynamic limit (N → ∞) and will use a translation invariant
Ansatz, taking the MPS tensors to be position independent
(which clearly requires a constant bond dimension D). We
refer to the class of such states as uniform MPS (uMPS).

Graphically a uMPS is represented as

…… A A .

The largest eigenvalue of the uMPS transfer matrix E,

E :=
∑

i

Ai ⊗ A
i
, (A6)

needs to be fixed to unity in order to ensure finite normaliza-
tion. The state norm is given by (l|r), where (l| and |r) are,
respectively, the left and right eigenvectors of E corresponding
to eigenvalue 1, and since the eigenvectors can be rescaled
freely the state can always be normalized to one.

The expectation value of a local operator acting on n sites
can now be written as

〈�[A]|Ô|�[A]〉 =
d∑

i1 ,i2 ,...,in,

j1 ,j2 ,...,jn

(l|Oj1...jn

i1...in

(
Ai1 · · · Ain

)

⊗ (
Aj1 · · · Ajn

)|r). (A7)

The cost of computing this object, using the optimal sequence
of contractions, can be seen to scale as O(ndD3).

The uMPS parametrisation is invariant under gauge trans-
formations:

Ai → GAiG−1, (A8)

and these can be used to set either ρl = 1 or ρr = 1 (but in
general not both), where ρl is the D2 dimensional co-vector
(l| reshaped to a D × D matrix, and similarly for ρr . The
corresponding gauge transformations in the tangent plane [see
(A5)] are given by dAi → dAi + XAi − AiX, and this gauge
freedom can be used to set either:

(l|
∑

i

dAi ⊗ A
i = 0 or

∑
i

dAi ⊗ A
i |r) = 0, (A9)

but again in general not both. These are referred to as,
respectively, the left and right tangent space gauge conditions.

The Gram matrix, given by

Gαβ := 〈∂α�(A)|∂β�(A)〉, (A10)

defines a natural metric on the uMPS manifold [45]. The TDVP
equations can be formally expressed as

∑
β

GαβȦβ = − i〈∂α�(A)|Ĥ (t)|�(A(t))〉. (A11)

Imposing either the left or right tangent gauge condition (A9)
simplifies the equations significantly, and is, in fact, necessary
to eliminate infinities in (A11) stemming from transformations
along the uMPS state itself. The expression for the overlap of
two tangent vectors takes the simple form

∑
α,β

A
′α

GαβdAβ = |Z|(l|dA ⊗ dA
′|r), (A12)

since the left (or right) gauge condition implies that all terms
for which the dA and dA

′
tensors are not at the same site are
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zero. The Gram matrix then takes the simple form

G = ρl ⊗ ρr . (A13)

The nature of the right-hand side of (A11) is elucidated by
contracting it with dA

′α
:

∑
α

dA
′α〈∂α�(A)|Ĥ (t)|�(A(t))〉

= |Z|
[
(l|HAA

dA
′
A
|r) + (l|HAA

AdA
′ |r)

+ (l|HAA

AA
(1 − E)PI (A ⊗ dA

′
)‖r)

]
. (A14)

Here, HAA

AdA
′ , for example, stands for the contraction of the

two “ket” indices of a local term in the Hamiltonian, which is
assumed to be translation invariant, with two A uMPS tensors,
and the contraction of its “bra” indices with A and dA

′
tensors.

PI indicates a pseudoinverse on the subspace of D2 × D2

matrices defined by the projector 1D2×D2 − |r)(l|. This term
stems form a summation over all contributions with the dA

′

tensor to the right of the local Hamiltonian terms (the terms
when dA

′
is on the left are zero due to the left tangent gauge

condition, which is assumed here).

APPENDIX B: CONTRACTING uCPS WITH
COMPUTATIONAL COST O(D3)

Let us first consider the following term
appearing on the right-hand side of (16) (i.e., in
−i〈∂α̃β�(C(t))|Ĥ (t)|�(C(t))〉):

−i

C

dC

VL h(1)

C C

VRh(2)

C C

,

where a two-site Hamiltonian has been assumed. Symbolically
this corresponds to

(Cjm) T α̃β := −iV(L)iCij

(
h

(1)
jk h(2)

mn

)
CmaV(R)a, (B1)

dC
α̃β

ik (Ckn)Cna

where a summation over all repeated indices is implied, h(1)

and h(2) constitute a contribution to a two-site term of the
Hamiltonian, and

dC
α̃β

ik = V α̃
(R)iV

β

(L)k(.∗)(1(./)Cik). (B2)

The following contraction ordering (which starts from the
right):

(1) T (1)
mn := CmaCnaV(R)a is obtained at cost O(D3),

(2) T (2)
mn := h(2)

mn(.∗)T (1)
mn is obtained at cost O(D2),

(3) T
(3)
jk := CjmCknT

(2)
mn is obtained at cost O(D3),

(4) T
(4)
jk := h

(1)
jk (.∗)T (3)

jk is obtained at cost O(D2),

(5) T
(5)
ik := [V(L)(.∗)C]ij T

(4)
jk is obtained at cost O(D3),

(6) T
(6)
ij := T

(5)
ik (.∗)(1(./)Cik) is obtained at cost O(D2),

(7) T α̃β = −iT
(6)
ik V α̃

(R)iV
β

(L)k is obtained at cost O(D3),

can be seen to yield maximal cost O(D3) at any internal step.
It is easy to find other contraction orderings that yield the same
cost.

There are two more contributions to the right-hand side of
(16) that are similar to the above. One of these is obtained by

substituting dC
α̃β

kn in place of Ckn in (B1), and the other by
making the same substitution in place of Cna . A contraction
ordering with O(D3) efficiency can be obtained for these
in a very similar manner as what has been demonstrated
above.

The remaining contribution to (16) corresponds to a sum

over all terms with dC
α̃β

not coinciding with the Hamiltonian,
and is given by

C

VL h(1)

C

VRh(2)

C

VL VR

1

1

1 − λ
dCCC

.

The uMPS expression corresponding to this is given by the
term on the last line of (A14); as with uMPS, the terms with dC

to the left of the Hamiltonian are zero due to the left tangent
gauge condition, which has been assumed here. It is worth
noting that while the computation of the pseudo-inverse acting
on a vector in the uMPS expression can only be achieved at
cost O(dD3), by recourse to an iterative procedure such as the
biconjugate gradient algorithm, the uCPS term above can be
computed explicitly at cost O(D3) using a contraction ordering
similar to that described for (B1).

APPENDIX C: uCPS GRAM MATRIX INVERSE
PRECONDITIONING

The uCPS Gram matrix is given by

Gγ̃δ|α̃β =
∑
ij

λijT
γ̃ δ|α̃β

ij , (C1)

where

T
γ̃ δ|α̃β

ij = (
V

γ̃

(R)iV
δ

(L)j

)
(.∗)

(
V α̃

(R)iV
β

(L)j

)
. (C2)

The convention is that the nontilde indices run over the whole
range, 1 to D, while the tilde-indices correspond to a truncation
and run from 2 to D, and V 1

(L) ≡ V(L) and V 1
(R) ≡ V(R) are the

left and right eigenvectors corresponding to eigenvalue one.
Let us first consider the matrix

G̃γ̃ δ|α̃β =
∑
ij

(1(./)λij )T̃ γ̃ δ|α̃β

ij , (C3)

where

T̃
γ̃ δ|α̃β

ij = (
V

γ̃

(L)iV
δ

(R)j

)
(.∗)

(
V α̃

(L)iV
β

(R)j

)
. (C4)

The obstruction to G̃ being the inverse of G can be understood
as originating in the truncation of the eigenvalue one eigenvec-
tor in our implementation of the left tangent gauge condition
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(14). Namely, the eigenvector matrices obey

V δ
(L)iV

ε
(R)i = δδε, V

ε

(R)jV
ε

(L)m = δjm,

V δ̃
(R)iV

ε̃
(L)i = δδ̃ε̃ , V

ε

(L)j V
ε

(R)m = δjm,
(C5)

V
γ̃

(L)jV
γ̃

(R)m = δjm − V(L)jV(R)m,

V
γ̃

(R)jV
γ̃

(L)m = δjm − V(R)jV (L)m,

where summation over repeated indices is understood. The
presence of projectors in the last two lines expresses the
deformation of the exact orthogonality relations due to the
α → α̃ truncation, which prevents (C3) from being the Gram
matrix inverse.

In order to explicitly compute the action of the inverse of
G on a vector with computational cost scaling as O(D3), it
is necessary to be able to express G−1 in the general form
(C3), or at least as a sum of a constant number of terms of
this form. We have not managed to find any suitable solution
that would bypass the obstruction described above (but have
also not proved that doing so is impossible). However, in
order to achieve O(D3) scaling, one can instead make use
of an iterative algorithm, the biconjugate gradient (stabilized)
method. This algorithm provides a solution for �x in the
equation A�x = �b, where A is some invertible matrix; as input
only the action of the matrix A on a vector needs to be
supplied. For the present problem, this can be achieved with

cost O(D3), using a contraction scheme along the lines of
Appendix B.

Achieving O(D3) scaling assumes that, in the limit of large
bond dimension D, the number of iterations needed for the
biconjugate gradient algorithm to converge to some desired
accuracy scales as roughly a constant. In practice, this may
not always be the case. Using the biconjugate algorithm as
described above, O(D3) scaling is indeed spoiled for a general
uCPS TDVP computation. This is ultimately related to the fact
that uCPS, viewed as a restriction of uMPS, fixes nearly all the
gauge freedom, which in general causes G to become badly
conditioned in the course of a TDVP run—even when Schmidt
values of the uCPS state itself are much larger than machine
precision. One solution to this problem is to make a judicious
choice of a preconditioner matrix. In general, this refers to
a matrix M−1, in M−1A�x = M−1 �b, which can be employed
in the iterative algorithm in order to make the problem better
conditioned. For the present case, taking M−1 = G̃ in fact
seems to be the optimal choice [again, the iterative algorithm
only needs to be supplied with the action of G̃ on a vector,
which can be achieved with cost O(D3)]. It should be noted
that without the pre-conditioning step, for most of the examples
in this paper, it would only have been practically feasible to
compute quenches and ground-state approximations with very
small overlap sizes, and many of the computations performed
in this paper would not have been accessible.
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