
Submitted to INFORMS Journal on Computing
manuscript (Please, provide the mansucript number!)

A Horizon Decomposition approach for the Capacitated
Lot-Sizing Problem with Setup Times

Fragkos Ioannis
Rotterdam School of Management, Erasmus University Rotterdam, 3062 PA Rotterdam, Netherlands, fragkos@rsm.nl,

Zeger Degraeve
Melbourne Business School, University of Melbourne, z.degraeve@mbs.edu,

Bert De Reyck
UCL School of Management, University College London, London WC1E 6BT, United Kingdom, b.dereyck@ucl.ac.uk

We introduce Horizon Decomposition in the context of Dantzig-Wolfe Decomposition, and apply it to the

Capacitated Lot-Sizing Problem with Setup Times. We partition the problem horizon in contiguous over-

lapping intervals and create subproblems identical to the original problem, but of smaller size. The user has

the flexibility to regulate the size of the master problem and the subproblem via two scalar parameters. We

investigate empirically which parameter configurations are efficient, and assess their robustness at different

problem classes. Our branch-and-price algorithm outperforms state-of-the-art branch-and-cut solvers when

tested to a new dataset of challenging instances that we generated. Our methodology can be generalized to

mathematical programs with a generic constraint structure.

Key words : Algorithms; lot-sizing; Branch-and-Price

History : Submitted August 2014; Revised August 2015; Accepted December 2015

1. Introduction

Since the seminal work of Dantzig and Wolfe (1960), Dantzig–Wolfe Decomposition has

been applied successfully to solving Linear, Integer and Mixed Integer Linear Programming

problems and a variety of applications of increasing complexity (Lüebbecke and Desrosiers

2005). The implementation of the Dantzig–Wolfe Decomposition principle involves the

recognition of a part of the constraint matrix that has block diagonal structure, where

each block is associated with a subset of variables. The variables that appear in each block

should not appear in other blocks, and if so, the corresponding constraints are treated as

“complicating”. This explains why most research and practical applications are usually

problem-specific. In addition, although for certain large-scale problems branch-and-price

algorithms may have superior performance against branch-and-cut software, the range

of applications is limited by the block diagonal structure that is in place, and by how

1

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
2 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

exploitable this structure is. The competitive advantage of Dantzig–Wolfe reformulations

stems from exploiting these substructures to obtain an improved dual bound. This occurs

in cases where the subproblem does not have the integrality property Geoffrion (1974),

which means that its linear relaxation does not have all integral extreme points. The

backbone of the most successful applications is usually a specialized algorithm that solves

the subproblem efficiently.

In this paper we introduce a novel Dantzig–Wolfe Decomposition scheme that, contrary

to the existing ones, does not rely on any exploitable subproblem structure. The method-

ology and subsequent computational study are in the context of capacitated lot-sizing,

but the developed approach is applicable to any Mixed Integer Linear Program (MIP). A

distinct characteristic of our method is that it regulates the size of the master problem and

the subproblem independently, by introducing two scalar parameters. This flexibility sug-

gests that one can experiment with alternative decompositions and address the trade-off

between subproblem difficulty and dual bound strength directly. Extensive computational

experiments that analyze the efficiency of the horizon decomposition approach indicate

that certain decomposition configurations can tackle some particularly hard instances far

more efficiently than modern branch-and-cut solvers.

We introduce the main idea in the context of the Capacitated Lot-Sizing Problem with

Setup Times (CLST) as it constitutes one of the simplest but yet most computationally

challenging problem structures. Trigeiro et al. (1989) introduced the problem and con-

structed a dataset of 540 instances, the hardest of which remained unsolvable until the last

decade. Although today all instances can be solved within a few seconds, several researchers

(Süral et al. 2009, Müller et al. 2012, de Araujo et al. 2015) have constructed instances with

long horizons, tight capacity constraints or without setup costs which remain intractable.

Further, the multi-period nature of lot-sizing problems and the complicating structure of

the capacity constraints provide an excellent ground to demonstrate the horizon decom-

position principle. Based upon this setting, the generalization of our approach comes nat-

urally. Finally, CLST is well-studied in the literature and therefore we can benchmark the

efficiency of our approach against other techniques, such as valid inequalities, extended

formulations and alternative decomposition schemes. In addition, in some special cases it is

possible to establish which approach gives the best bound or draw correspondences across

different methodologies.

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 3

The principal aim of this work is to illustrate that the application of horizon decomposi-

tion to the CLST has at least two important benefits. First, one can exploit the technology

of modern solvers in solving subproblems of manipulable size and strength. Since the sub-

problem size is controlled independently from the size of the master problem, it is possible

to find a balance between dual bound quality and subproblem tractability. Second, our

computational experiments show that in practice the method shows excellent behavior in

perhaps the most challenging class of problems, namely, instances with low ratio of items

over periods and tight capacity constraints.

The remainder of this paper is organized as follows. Section 2 gives a brief literature

review on column generation methodologies and on CLST-specific research. Section 3 intro-

duces the problem formulation. Section 4 applies horizon decomposition. A comparison and

correspondences with other lower bounds are demonstrated. Section 5 describes a branch-

and-price algorithm that uses horizon decomposition. Section 6 presents computational

experiments and section 7 presents two ways the horizon decomposition principle can be

generalized to generic MIPs. Finally, section 8 concludes the paper with suggestions for

future work.

2. Literature Review

Since the early days of column generation, many authors have used it either as a stand-

alone technique to solve large linear programs (Elhallaoui et al. 2005), or as a bounding

technique within branch-and-bound algorithms (Degraeve and Jans 2007), a scheme also

known as branch-and-price. On the theoretical side, there are works that examine the effi-

cient convergence of column generation and the branching rules used in branch-and-price.

Ben Amor et al. (2006) show that reducing the feasible dual space of the master program

leads to faster convergence. Degraeve and Jans (2007) demonstrate how the Dantzig-Wolfe

decomposition principle is applied to MIPs with an application to the CLST and Vander-

beck and Savelsbergh (2006) develop a theoretical framework. Vanderbeck (2011) explores

the issue of branching in branch-and-price when the subproblems are identical, while Vil-

leneuve et al. (2005) construct a compact formulation and use the corresponding variables

for branching. The reviews of Lüebbecke and Desrosiers (2005) and Barnhart et al. (1996)

describe plenty of applications and discuss in detail technical issues of column generation

and branch-and-price respectively.

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
4 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Lagrange relaxation is a related reformulation that, in theory, gives the same dual bound

as column generation. Fisher (2004) gives an overview of Lagrange relaxation and describes

early applications. The strong dual bound and the relative speed of Lagrange relaxation

have led to the development of efficient exact and heuristic methods. Lagrangian decompo-

sition is a generalization of Lagrange relaxation that yields stronger lower bounds. Guig-

nard and Kim (1987) were the first to introduce it in the context of MIPs that have two

sets of constraints. The main idea is to introduce “copy” constraints for the original vari-

ables and dualize them in the objective function. Our implementation can be seen as a

case of Lagrange decomposition since we also introduce copies of variables and explore

the convex hull of the corresponding subproblems. It is more versatile however in that it

can be tailored to each instance, it avoids unnecessary variable copying and performs a

systematic reformulation that creates a decomposable structure.

The literature in capacitated lot-sizing problems is vast. In their seminal paper, Wagner

and Whitin (1958) introduced the single-item uncapacitated version of the problem and

solved it using a dynamic programming recursion. Trigeiro et al. (1989) were the first to

examine a multi-item problem with capacity constraints and setup times. They showed

experimentally that setup times make the problem harder and developed a Lagrange-based

smoothing heuristic whose performance remains competitive up to date. An earlier result by

Kleindorfer and Newson (1975) proves that the problem is strongly NP-hard. To obtain an

improved lower bound, Eppen and Martin (1987) reformulated the problem with shortest-

path variables that describe the convex hull of the single-item uncapacitated polyhedron.

Similarly, Bárány et al. (1984) describe the same polyhedron using valid inequalities. In

more recent advancements, Degraeve and Jans (2007) develop an exact branch-and-price

algorithm using a per-item decomposition and Jans and Degraeve (2004) describe a decom-

position of the shortest path formulation that leads to an improved lower bound. The

most recent work that applies Dantzig-Wolfe decomposition to the CLST is Pimentel et al.

(2010). They develop three alternative decompositions and branch-and-price algorithms

and compare their performance. Finally, another stream of research focuses on finding

good feasible solutions with heuristics. Süral et al. (2009) develop a Lagrange-based heuris-

tic for a variant of the CLST without setup costs. They used the subproblem solutions

to construct incumbents during the subgradient optimization process and obtained small

integrality gaps over a set of hard instances. Similarly, Müller et al. (2012) use large-scale

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 5

neighborhood search combined with strong formulations and report results on new hard

instances. Finally, Akartunal and Miller (2012) give insights on which lot-sizing substruc-

tures are computationally challenging, and Akartunali et al. (2014) use column generation

to generate cuts from a 2-period relaxation of CLST. In the latter work, the authors use

several distance functions, by which they are able to generate valid inequalities that cut-off

the linear programming relaxation solution, when this solution has a positive distance from

a predefined 2-period lot-sizing set.

Our work has contributions in both the Dantzig-Wolfe decomposition and lot-sizing

research streams. First, we show how Dantzig-Wolfe decomposition can be applied in a

novel way, such that MIPs can be decomposed in subproblems that preserve the structure

of the original problem, but are of smaller size. Second, we demonstrate the applicability

of this idea in lot-sizing and investigate under which conditions it is advantageous against

competitive methodologies. Third, we show experimentally that a class of CLST instances,

namely those with tight capacity constraints and small ratio of items over periods, are

time consuming to solve with modern branch-and-cut software. We develop a branch-

and-price approach based on horizon decomposition and demonstrate its efficiency against

competitive approaches. Finally, we demonstrate the extension of our idea to generic MIPs.

3. Problem Description and Formulation
3.1. Original Formulation

The capacitated lot-sizing problem with setup times generalizes the basic single-item unca-

pacitated lot-sizing problem studied by Wagner and Whitin (1958). Specifically, it models

a multi-item setting with one capacity constraint per period and item-specific setup times

and production times. It can be used in production planning for determining the produc-

tion and setup decisions of an MRP system by taking into consideration one bottleneck

resource (Pochet and Wolsey 2006). We formulate the problem using the following notation:

Sets

I = {1, ..., n}: Set of items, indexed by i.

T = {1, ...,m}: Set of periods, indexed by t.

Parameters

dit: demand of item i in period t, ∀i∈ I,∀t∈ T .

sditk: sum of demand of item i from period t till period k, ∀i∈ I,∀t, k ∈ T : t≤ k.

hcit: cost of holding inventory for item i from period t− 1 to period t, ∀i∈ I,∀t∈ T .

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
6 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

scit: setup cost of item i in period t, ∀i∈ I,∀t∈ T .

vcit: production cost of item i in period t, ∀i∈ I,∀t∈ T .

stit: setup time of item i in period t, ∀i∈ I,∀t∈ T .

vtit: variable production time of item i in period t, ∀i∈ I,∀t∈ T .

capt: time capacity in period t, ∀t∈ T .

Mit: big-M quantity, defined as Mit =min{sditm, capt−stitvtit
},∀i∈ I,∀t∈ T .

Decision Variables

xit: production quantity of item i in period t, ∀i∈ I,∀t∈ T .

sit: inventory quantity of item i at the beginning of period t, ∀i∈ I,∀t∈ T ∪{m+1}.

yit: equals 1 if a setup occurs for item i in period t, 0 otherwise, ∀i∈ I,∀t∈ T .

The mathematical formulation of CLST is then as follows:

min
∑
i∈I

∑
t∈T

scityit +
∑
i∈I

∑
t∈T

vcitxit +
∑
i∈I

∑
t∈T

hcitsit (1)

s.t. sit +xit = dit + si,t+1 ∀i∈ I,∀t∈ T (2)

xit ≤Mityit ∀i∈ I,∀t∈ T (3)∑
i∈I

stityit +
∑
i∈I

vtitxit ≤ capt ∀t∈ T (4)

xit, sit ≥ 0, si,m+1 = 0, yit ∈ {0,1} ∀i∈ I,∀t∈ T (5)

The objective function (1) minimizes the total cost, which consists of the setup cost, the

production cost and the inventory holding cost. To model problems that are infeasible

without initial inventory, we allow for initial inventory at a high cost (Vanderbeck 1998).

Constraints (2) indicate that demand in each period is covered by initial inventory and

by production, and that the remaining quantity is transferred to the next period. Con-

straints (3) link the setup and production decisions and (4) describe the per-period capac-

ity constraints. Finally, constraints (5) pose non-negativity and integrality restrictions to

the problem variables. We use vCLST to denote the optimal objective value of (1) over

constraints(2)–(5) and vCLST to denote optimal objective value of its LP relaxation. The

next paragraph describes a family of reformulations that allow a generic decomposition

scheme for the CLST.

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 7

3.2. Horizon Reformulation

The fundamental idea of horizon decomposition is to reformulate the problem so that it

decomposes in subproblems of identical structure but of shorter horizons. Modern MIP

solvers can solve small subproblems efficiently, and the fact that small problems do not

have the integrality property (Geoffrion 1974) implies that column generation can lead to

an improved lower bound. A question that arises naturally in this context is whether defin-

ing subproblems over overlapping or non-overlapping horizons has an impact on the lower

bound quality. In our formulation, two consecutive subproblems with non-overlapping hori-

zons share common inventory variables. Specifically, the ending inventory of the earlier

subproblem and the starting inventory of the later subproblem have costs that are adjusted

jointly by the dual prices of some master problem constraints. As a result, from a qual-

itative perspective, subproblems defined over non-overlapping horizons share information

only by the cost of their initial and ending inventory variables; the production and setup

variables of each subproblem are disjoint, and this can have a negative impact on the lower

bound quality. One way of increasing communication among subproblems is by introducing

horizon overlaps, which lead to some setup and production costs to be adjusted jointly;

this, in turn, can give an improved lower bound. However, horizon overlaps also introduce

additional linking constraints in the master problem, which can cause degeneracy and poor

convergence of column generation. Therefore, depending on the size of each instance, zero

overlaps might be beneficial because the column generation inhibits better convergence,

but might also lead to poor lower bounds, because limited information is shared across

subproblems. An important contribution of our computational study is to gain insights

on when overlapping horizons can lead to improved performance. We next provide some

technical definitions that facilitate the exposition of the horizon reformulation.

We define a horizon cover P as a set whose elements are horizons H of the form

H = {m0,m0+1, . . . ,m1} ⊆ T , with m1 >m0. Therefore, each horizon consists of a certain

number of consecutive periods, starting at m0 and ending at m1, and the horizon cover

is the union of possibly overlapping horizons. To characterize the horizon cover set, we

introduce the following notation (see also Figure 1):

Index set of the horizon cover P: U := {1, . . . , |P|}.

u−th Horizon: Hu := {m0(u), . . . ,m1(u)} where m0(u),m1(u)∈ T,∀u∈U.

u−th core Horizon: Hu :=Hu\{m1(u)},∀u∈U .

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
8 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Horizon intersection: Lu :=Hu ∩Hu+1,∀u∈U

Core horizon intersection: Lu :=Lu\{m1(u)},∀u∈U .

Boundary conditions: m1(|P|) =m+1, and H0 =H|P|+1 = ∅.

Figure 1 Notation used in horizon covering. Each black bullet indicates a discrete time period t∈ T .

For convenience, we assume throughout the paper that whenever a set that defines a

constraint is empty, then the constraint is not defined. Note that some periods can be

common in two or more horizons. The case where a period is common in more than two

horizons is not of practical interest in our context. Therefore, we impose the condition

Hu−1 ∩Hu+1 = ∅ for each u ∈ U . Finally, we assume that two contiguous horizons Hu and

Hu+1 have at least one common period, which implies that m1(u)∈Hu+1, for all u∈U .

Next, we define production, setup and inventory variables for each u−horizon. Note that

the last period of each horizon is used to define the inventory variable only:

xuit: production quantity of item i in period t in horizon Hu, ∀i∈ I,∀t∈Hu,∀u∈U .

suit: starting inventory quantity of item i in period t in horizon Hu, ∀i∈ I,∀t∈Hu,∀u∈U .

yuit: equals 1 if a setup occurs for item i in period t in horizon Hu, 0 otherwise, ∀i∈ I,∀t∈

Hu,∀u∈U .

In addition, let αtu = 1, if t ∈Hu\Lu−1, αtu = 0 otherwise, for all t ∈Hu, u ∈ U . Using the

above notation, problem (1)–(5) can be reformulated as follows:

min
∑
i∈I

∑
u∈U

∑
t∈Hu

αtu(scity
u
it + vcitx

u
it)+

∑
i∈I

∑
u∈U

∑
t∈Hu

αtuhcits
u
it (6)

s.t. suit +xuit = dit + sui,t+1 ∀i∈ I,∀t∈Hu,∀u∈U (7)

xuit ≤Mity
u
it ∀i∈ I,∀t∈Hu,∀u∈U (8)

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 9∑

i∈I

stity
u
it +

∑
i∈I

vtitx
u
it ≤ capt ∀t∈Hu,∀u∈U (9)

suit = su+1
it ∀i∈ I,∀t∈Lu,∀u∈U (10)

xuit = xu+1
it ∀i∈ I,∀t∈Lu,∀u∈U (11)

yuit = yu+1
it ∀i∈ I,∀t∈Lu,∀u∈U (12)

xuit ≥ 0, yuit ∈ {0,1} ∀i∈ I,∀t∈Hu,∀u∈U (13)

suit ≥ 0 ∀i∈ I,∀t∈Hu,∀u∈U (14)

Constraints (7)− (9) and (13− 14) define a CLST over the u−th core horizon, Hu. This

implies that the corresponding inventory variables suit are defined over the u− th horizon,

Hu = Hu ∪ {m1(u)}. Therefore, period m1(u) is used to associate the ending inventory

variables of each CLST defined over a u−th core horizon, Hu, exactly as period m+1 is

used to set the ending inventories to zero in formulation (1)–(5). Constraints (10)− (12)

impose that variables indexing the same period in two horizons should attain the same

values. Finally, objective function (6) considers the setup, inventory and production costs

of all horizons. Parameter αtu is an indicator used for the appropriate allocation of costs: if

a variable is defined in two horizons, then its cost is allocated to the earliest horizon. Like

in Lagrange decomposition (Guignard and Kim 1987), it is straightforward to see that the

variables indexed within horizon overlaps can be allocated any fraction of the original cost,

without loss of generality.

Note that a benefit of the above reformulation is its flexibility. By selecting the param-

eters m0(u) and m1(u) for each u ∈ U , one can regulate the number of subproblems, sub-

problem length and periods of overlap. Moreover, the formulation remains valid when no

overlap between horizons exists, i.e., when Hu∩Hu+1 = ∅. In this case Lu = ∅, and there are

no linking constraints for the production and setup variables. Finally, the original formula-

tion (1)− (5) can be considered as a special case of (6)− (14) where the horizon cover is a

singleton with m0 = 1 and m1 =m+1. The next section describes how the above structure

can be used in Dantzig-Wolfe reformulation.

4. Horizon Decomposition
4.1. Initial Formulation

Formulation (6)–(14) decomposes per horizon, with the exclusion of constraints (10–12).

Let us note with (fu) the subset of a block of constraints (f) that refer to a specific

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
10 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

horizon Hu, u ∈ U . Also let (x, y, s)u = ((xuit, y
u
it) : i∈ I, t∈Hu, s

u
it : i ∈ I, t ∈ Hu). We then

define the single horizon polyhedron as Wu := {(x, y, s)u|(7)u − (9)u, (13)u − (14)u, s
u
im1(u)

≤

sdim1(u),m,∀i∈ I} and let Eu be the set of extreme points of conv(Wu), for each u∈U . Note

that we bound the ending inventory variables with the remaining item demand in order to

avoid the use of extreme rays, and to tighten the subproblem formulation. Each extreme

point e= (x, y, s)ue ∈ Eu is associated with the following elements:

cue: total cost of production, setup and inventory of horizon Hu according to production

plan e, i.e.,∑
i∈I

∑
t∈Hu

αtu(scity
u
ite+ vcitx

u
ite)+

∑
i∈I

∑
t∈Hs

αtuhcits
u
ite

zue: fraction of production plan e that is used for actual production.

The Dantzig-Wolfe reformulation is then as follows.

[D̃W] min
∑
u∈U

∑
e∈Eu

cuezue (15)

s.t.
∑
e∈Eu

suitezue =
∑

e∈Eu+1

su+1
ite zu+1,e ∀i∈ I,∀t∈Lu,∀u∈U\{|P|} (16)

∑
e∈Eu

xuitezue =
∑

e∈Eu+1

xu+1
ite zu+1,e ∀i∈ I,∀t∈Lu,∀u∈U\{|P|} (17)

∑
e∈Eu

yuitezue =
∑

e∈Eu+1

yu+1
ite zu+1,e ∀i∈ I,∀t∈Lu,∀u∈U\{|P|} (18)

∑
e∈Eu

zue = 1 ∀u∈U (19)

sit =
∑
e∈Eu

suitezue ∀i∈ I,∀(t, u)∈Hu×U : αtu = 1 (20)

xit =
∑
e∈Eu

xuitezue ∀i∈ I,∀(t, u)∈Hu×U : αtu = 1 (21)

yit =
∑
e∈Eu

yuitezue ∀i∈ I,∀(t, u)∈Hu×U : αtu = 1 (22)

zue ≥ 0 ∀e∈ Eu,∀u∈U (23)

sit ≥ 0 ∀i∈ I, t∈ T (24)

yit ∈ {0,1}, xit ≥ 0 ∀i∈ I, t∈ T (25)

Formulation [D̃W] is equivalent to the original formulation, in the sense that they both

attain the same optimal solution. However, the optimal linear programming relaxation

objective of [D̃W] is always at least as large as that of the original formulation, because

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 11

the subproblems do not have the integrality property (Geoffrion 1974). Constraints (16)–

(18) correspond to (10)–(12) and denote that in any period common to two horizons, the

production, setup and inventory quantities should attain the same value in both horizons.

Constraints (19) together with the non-negativity constraints (23) impose that each deci-

sion variable is a fraction of an extreme production plan. Equations (20)–(22) define the

variables of the original formulation as convex combinations of extreme production plans.

Although the number of variables and constraints is large, there are certain reductions

that can be performed, which are described in the next section.

4.2. Model Reductions

[D̃W] is a valid reformulation of the CLST. Without loss of generality, constraints (17)

and (20) − (21) can be eliminated. The elimination of the latter is straightforward as

they only map the solution to the original variable space. To see that (17) is redundant,

note that xuite = dit + sui,t+1,e − suite for each e ∈ Eu. This implies that
∑

e∈Eu x
u
itezue = dit +∑

e∈Eu s
u
i,t+1,ezue−

∑
e∈Es s

u
itezue = dit+

∑
e∈Eu+1

(su+1
i,t+1,e−su+1

ite)zu+1,e =
∑

e∈Eu+1
xu+1
ite zu+1,e. We

have shown the following result.

Corollary 1. Constraints
∑

e∈Eu+1
xu+1
ite zu+1,e =

∑
e∈Eu x

u
itezue,∀i ∈ I,∀t ∈ Lu,∀u ∈

U\{|P|} are redundant.

We denote [DW] the model resulting from (15)–(25) with the exclusion of redundant

constraints.

Note that one cannot eliminate the setup definition constraints and impose the inte-

grality restrictions on the extreme production plan variables zse (Degraeve and Jans 2007,

Vanderbeck and Savelsbergh 2006). A correct reformulation would define, for each extreme

point, a binary variable that describes the setup configurations and a continuous variable

with the associated production decisions. However, the usability of this reformulation is

restricted, because the resulting branch-and-bound tree is unbalanced (Vanderbeck 2011).

In our implementation we branch on the original setup variables by fixing them at the sub-

problems and by removing the generated columns that do not adhere to the node branching

decisions, therefore using (22) only implicitly.

4.3. Strength of the Lower Bound

In this part we investigate the strength of the lower bound obtained by horizon decom-

position. Since an explicit description of the convex hull of CLST is not known, we can

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
12 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

compare the lower bound strength with lower bounds obtained by other approaches. The

fact that the subproblems do not have the integrality property implies that the lower bound

obtained by the LP relaxation of (1)–(5), vCLST , cannot be better than that obtained by

[DW], vDW (Geoffrion 1974). More interesting is the comparison with the bound obtained

when the (l, S) inequalities (Bárány et al. 1984, Miller et al. 2000) are appended to the

original formulation (1)–(5). If we denote this bound by vlS, we can state the following

proposition.

Proposition 1. The lower bound vDW does not dominate vlS or vice versa.

Proof. Consider an instance with capt ≥
∑

i∈I(sditm+stit) for each t∈ T . This condition

makes the capacity constraints redundant and the problem decomposes in a series of single–

item uncapacitated problems. Since the (l, S) inequalities describe the convex hull of the

single–item uncapacitated problems, vlS ≥ vDW . Moreover, this inequality can be strict.

To see this, consider without loss of generality an instance for which the inequality sik +∑
t∈{k,...,l}\S xit+

∑
t∈S sditlyit ≥ sdikl is binding for some fixed i, k and l such that k < l, and

the associated part of the optimal solution is xik = sdikl;yik = 1, with all other variables

in {k, . . . , l} being zero. We can then construct a horizon cover with two subproblems,

i.e., S = {1,2} and let L be the index set of overlapping periods such that k ∈ H1\L,

and l ∈ H2\L. Then it follows that vlS > vDW because the production quantity xik in

subproblem S1 will never be sdikl, as xik = sdikl does not have the Wagner-Whitin property

of optimality (Wagner and Whitin 1958), and therefore is not an extreme point of S1. Next,

consider a single–item instance with binding capacity constraints, and sk = 0 for some

period k at an optimal solution. A horizon decomposition with H1 = {1, . . . , k − 1} and

H2 = {k, . . . ,m} will deliver an optimal solution of the original problem, so vDW = vCLST .

However, vlS ≤ vCLST because the (l, S) inequalities do not suffice to describe the convex

hull of the capacitated problem. �.

We can use similar arguments to show that there is no strict dominance between hori-

zon decomposition and the decomposition considered by Jans and Degraeve (2004) and

de Araujo et al. (2015). Note that the lower bound of the latter is at least as strong at vlS,

since they apply decomposition to the network reformulation of Eppen and Martin (1987),

which describes the same convex polyhedron as the (l, S) inequalities. Finally, vDW is at

least as strong as the lower bound obtained by the per period decomposition of Pimentel

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 13

et al. (2010), since their per period decomposition formulation is a special case of a horizon

decomposition, where each horizon defines a single-period subproblem for each period.

5. A Branch-and-Price Algorithm

Although the relaxation of [DW] can give a strong lower bound in most problems, the setup

variables, defined by (22), can be fractional, and therefore a branch-and-price approach is

necessary. We first employ a simple heuristic that constructs good quality feasible solutions.

Then, we do column generation to find a lower bound for the MIP optimal solution.

Finally, we embed column generation in a branch-and-bound scheme, thereby developing

a branch-and-price algorithm. This section describes the most important components of

our algorithm and outlines the most crucial implementation decisions.

5.1. Initialization

The column generation procedure has finite convergence and gives a lower bound only if

the restricted master problem is initialized so that it has a feasible solution (Lüebbecke

and Desrosiers 2005). The most common approach to initialize the master problem is to

introduce columns with high cost that render it feasible. However, this might result in a

large number of iterations, thereby reducing computational efficiency (Vanderbeck 2005).

To tackle this issue, we employ the lot elimination heuristic (LEH) utilized by Degraeve

and Jans (2007) on top of introducing high cost columns. LEH starts by fixing all setup

variables to 1 and progressively eliminates them using some priority rules. LEH terminates

when all setup variables are considered for elimination. Every time LEH finds an improved

solution, we add it as columns to the restricted master problem. These columns, in general,

do not correspond to subproblem extreme points, but provide a good family of points

to warm-start the column generation process. In addition, LEH outputs an initial upper

bound which is used in later stages of column generation. Algorithm 1 shows the design of

the LEH procedure.

5.2. Hybrid Column Generation and Stabilization

Subproblem Formulation. After initializing the restricted master program, we start generat-

ing columns. Specifically, from each subproblem we add the column that has the minimum

reduced cost. The problem of finding the minimum reduced cost can be formulated as a

CLST defined over each subproblem horizon. We denote by usitu, uyitu and dcu the dual

values of (16), (18) and (19) respectively, and define the indicator variable

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
14 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Algorithm 1 Lot Elimination Heuristic

Input: Problem Data

Output: Feasible solution [vUB;yfit ∈ {0,1}, x
f
it ≥ 0,∀i∈ I, t∈ T]

1: v←{Optimal solution of (1)− (5) : yit = 1,∀i∈ i, t∈ T};yfit← 1,∀i∈ I, t∈ T

2: for t∗ ∈ {m, . . . ,1} do . Start from last period, try to eliminate expensive setups

3: Is←{i1, . . . , in} : sci1,t∗ ≥ sci2,t∗ , . . . ,≥ scin,t∗ . Sort items in descending setup costs

4: for i∗ ∈ Is do

5: yfi∗t∗← 0

6: v,x←{Optimal solution of (1)− (5) : yit = yfit,∀i∈ I, t∈ T}

7: if v < vUB then

8: vUB← v;xfit← xit,∀i∈ i, t∈ T . Store improved solution

9: AppendToMaster(yfit, x
f
it)

10: else

11: yfi∗t∗← 1 . No improvement, keep setup open

12: end if

13: end for

14: end for

15: return vUB;yfit, x
f
it,∀i∈ I, t∈ T

δtu =


1 if t∈Lu−1

−1 if t∈Lu

0 else

The subproblem is then formulated as follows:

[SPu] minvu =
∑
i∈I

∑
t∈Hu

(αtuscit + δtuuyitu)y
u
it+

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 15∑

i∈I

∑
t∈Hu

αtuvcitx
u
it +

∑
i∈I

∑
t∈Hu

(αtuhcit + δtuusitu)s
u
it− dcu (26)

s.t. suit +xuit = dit + sui,t+1 ∀i∈ I,∀t∈Hu (27)

xuit ≤Mity
u
it ∀i∈ I,∀t∈Hu (28)∑

i∈I

stity
u
it +

∑
i∈I

vtitx
u
it ≤ capt ∀t∈Hu (29)

xuit, s
u
it ≥ 0, yuit ∈ {0,1} ∀i∈ I,∀t∈Hu (30)

0≤ sui,m1(u)
≤ sdim1(u),m ∀i∈ I (31)

Although [SPu] is a CLST itself, it has smaller dimension than the original CLST (1)–

(5) and it is usually easier to solve efficiently. Despite the fact that a smaller problem

dimension does not necessarily imply increased efficiency, there are two arguments that

justify this claim in the present context. First, given that the problem structure is the

same, instances of small dimension will, on average, be solved to optimality faster than

larger ones. Second, an early result by Manne (1958) implies that when the number of

items is large compared to the number of periods, the single–item uncapacitated lot-sizing

convex hull relaxation of CLST gives an optimal solution that is a good approximation

of the problem with integrality constraints, in the sense that the number of fractional

variables that should be binary is limited. The latter convex hull is described by the (l, S)

inequalities of Bárány et al. (1984). Since most modern solvers are able to add the violated

(l, S) inequalities as cutting planes (Belvaux and Wolsey 2000), problems of short periods

have tight LP relaxations and can be solved efficiently. These observations are confirmed

by our computational experiments, where subproblems were solved efficiently by a modern

MIP solver.

Column Generation. When the optimal objective function value vu is negative, we append

the corresponding optimal solution vector as a column to the restricted master prob-

lem [DW]. Next, we resolve [DW] and use the resulting set of optimal dual values to

resolve subproblems [SPu]. This procedure terminates when no columns price out, i.e.

when
∑

u∈U min(vu,0) = 0. It is worth noticing that a valid lower bound on the original

problem objective value is at hand throughout column generation. If vrRMP is the optimal

objective value of the restricted master problem at iteration r, then a valid lower bound

is vrLB = vrRMP −
∑

u∈U min(vu,0).

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
16 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Stabilization and Algorithmic Refinements. It has been observed by many researchers that

the primal solutions of the restricted master problem are usually degenerate (Vanderbeck

2005, Lüebbecke and Desrosiers 2005, du Merle et al. 1999). This degeneracy harms the

efficiency of column generation: it implies that the dual restricted master problem has

multiple optimal solutions and therefore the dual optimal solution at hand might not be

an accurate representation of the optimal dual space. If a dual optimal solution of bad

quality is used to price out columns in the subproblems, then the generated columns may

not be used in the optimal solution of the subsequent restricted master problem. In this

case, column generation takes a degenerate step. This phenomenon has severe impact on

the algorithmic performance, and it is usually magnified as the final optimal solution is

approached, thereby called the tailing-off effect (Vanderbeck 2005).

We employ several techniques to stabilize column generation. During early iterations, we

use a hybrid column generation–Lagrange relaxation scheme, similar to those described in

Degraeve and Peeters (2003). More specifically, after using the dual values of the restricted

master to price out new columns, we do not add the new columns to the master imme-

diately but generate a new set of dual values via subgradient optimization (Fisher 2004).

This updating process is deemed to lead to better quality dual prices, and it has the added

benefit that no LP solution is required. It is called whenever column generation takes a

degenerate step, i.e., when the optimal master objective remains the same in two consec-

utive iterations. We also adopt a two-phase approach, using both approximate and exact

solutions. During phase I, we restrict the dual space of the restricted master program

[DW] by introducing artificial variables on the primal space, as described in du Merle

et al. (1999). This technique reduces the number of degenerate iterations via reducing the

feasible dual space. In addition, during the early stages of column generation the aim is

to generate columns that describe progressively more accurate inner representations of the

primal space of [DW]. Towards this end, we solve the subproblems to feasibility, and we

also append all feasible solutions that price out. Throughout phase I, valid lower bounds

are calculated using the subproblem lower bounds: vrLB = vrRMP +
∑

u∈U min(vu,0) at itera-

tion r, where vu is a lower bound of [SPu]. When |vrRMP −vrLB| ≤ ε for some given ε > 0, we

switch to phase II, where we apply standard column generation. In our implementation,

ε= 0.05% was found to strike a good balance of time allocated to fast approximate pric-

ing and to exact pricing. Algorithm 2 outlines the steps of the hybrid column generation

algorithm.

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 17

Algorithm 2 Hybrid Column Generation

Input: Problem Data, feasible solution [vUB;yfit ∈ {0,1}, x
f
it ≥ 0,∀i∈ I, t∈ T]

Output: If vLB < vUB: Node relaxation [vLB;y
r
it ∈ [0,1], xrit ≥ 0,∀i∈ I, t∈ T], otherwise vLB

1: InitializeMaster . Adds stabilization variables and feasible solutions from LEH

2: v0M ← vUB; c← 1; solutionMode= Feasiblity

3: loop

4: (vcM , duals) ← SolveMaster . Store the objective value and the dual prices

5: if |vc−1M − vcM |> ε then . If step is not degenerate, solve subproblems

6: (pricedOut, vLB, columns) ← SolveSubproblems(duals, solutionMode)

7: else . Otherwise, solve Lagrange relaxation, store multiple columns

8: (pricedOut, vLB, columns) ← LagrangeRelaxation(duals, solutionMode)

9: end if

10: if vLB > vUB then . Exit, the node will be pruned

11: return vLB

12: end if

13: if pricedOut or |vcM −vLB|< ε then . Because of stabilization, vLB > vcM is possible

14: if solutionMode=Optimality then

15: return vLB;y
r
it, x

r
it calculated from (21),(22)

16: else

17: RemoveStabilizationFromMaster . After this step vcM > vc−1M is likely

18: solutionMode=Optimality

19: end if

20: end if

21: UpdateMaster(columns) . Add new columns to the master problem

22: c← c+1

23: end loop

5.3. Branching

We branch on the original setup variables using (18) implicitly. Specifically, we impose the

branching restrictions at the subproblem level, and remove existing columns that do not

adhere to the branching configuration of each node. We branch on the earliest fractional

variable, which is an efficient selection rule for most lot-sizing problems (Van Vyve and

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
18 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Wolsey 2006). Branching occurs only when the node lower bound is lower than the incum-

bent value, otherwise we terminate column generation prematurely and prune the node.

Finally, we adopt a best-first approach, i.e., we explore the node with the weakest lower

bound first. This strategy is beneficial when the time spent at each node is large, because

it minimizes the number of nodes explored in the branch-and-bound tree. In our computa-

tional experiments, we select horizon decompositions that deliver very strong lower bounds

but the solution time of each node is rather large. Therefore, the combination of best-first

search and tight lower bounds constitutes an efficient enumeration procedure.

The algorithm consists of three main parts: branching, column generation and pruning.

Whenever a node lower bound is lower than the incumbent upper bound, vUB, we branch

and apply column generation to its children. If during column generation we calculate a

lower bound greater than vUB, we prune the node and delete the generated columns. This

is in contrast with columns that do not adhere to branching decisions: we keep the latter

in a pool and add them back when solving nodes in which they are feasible.

5.4. Heuristic Solutions

After employing the LEH procedure that gives a set of progressively better feasible solu-

tions, we exploit the root node optimal solution to construct heuristic solutions using the

concept of relaxation induced neighborhoods (RINS) of Danna et al. (2005). RINS is a

versatile procedure that can be embedded easily in our scheme, and when the lower bound

is strong, it tends to provide good quality feasible solutions. Specifically, we formulate the

problem on the original space (1)–(5), select some 0.5 < l < 1 and set yit = 1 if yit > l,

yit = 0 if yit < 1− l and yit ∈ {0,1} if 1− l≤ yit ≤ l, where (yit)i∈I,t∈T are the fractional setup

variables obtained by column generation. We search aggressively for a feasible solution for

100 nodes and if we find one we update the incumbent. This is an efficient strategy, but

it can be time-consuming if it is applied at every node. To account for this, we use it

every 10 nodes, and employ a simple rounding heuristic at every other node. The latter

rounds the fractional setup variables to the closest integer value and solves the resulting

extended network flow problem in the continuous variables. It was observed that a strong

lower bound at the root node usually leads to a high quality incumbent solution. This

is in line with the theory developed in Larsson and Patriksson (2006) that argues that

heuristic solutions constructed by near-optimal Lagrange relaxations are also near-optimal.

Algorithm 3 outlines the details of the RINS procedure.

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 19

Algorithm 3 Relaxation-Induced Neighbourhood Heuristic (Danna et al. 2005)

Input: Problem Data, feasible solution [vUB;yfit ∈ {0,1}, x
f
it ≥ 0,∀i ∈ I, t ∈ T], fractional

solution [vr;yrit ∈ [0,1], xrit ≥ 0,∀i∈ I, t∈ T]

Output: Feasible solution [vUB;yfit ∈ {0,1}, x
f
it ≥ 0,∀i∈ I, t∈ T]

1: for (t, i)∈ T × I do

2: if yrit ∈ [0, l] and yfit = 0 then

3: yit← 0

4: else if yrit ∈ [1− l,1] and yfit = 1 then

5: yit← 1

6: else

7: yit ∈ {0,1}

8: end if

9: end for

10: vUB, yf , xf ←{Incumbent solution of (1)− (5) : yit = yit,∀i ∈ I, t ∈ T ;objective value≥

vr}

11: return vUB;yfit, x
f
it,∀i∈ I, t∈ T

6. Computational Experiments

In this section, we aim to shed light on four aspects. First, we investigate the trade-off

between solution quality and CPU time by exploring the efficiency of various combina-

tions of subproblem sizes and horizon overlaps. To this end, we perform a full factorial

experiment that delivers empirical insights on which configurations are efficient for which

classes of problems. Second, we compare the strength of the lower bound obtained by a

horizon decomposition to that of other approaches. Third, we devise a heuristic implemen-

tation based upon a horizon decomposition and show that it achieves competitive upper

and lower bounds when compared to the best heuristic approaches found in the literature.

Finally, we benchmark a branch-and-price algorithm that implements horizon decompo-

sition against a recent branch-and-price algorithm and a state-of-the-art branch-and-cut

solver. All formulations were coded in C++ and the mixed integer and linear programs

were solved with CPLEX v12.6. We use a common subproblem size and horizon overlap,

i.e., Hu =H and Lu = L for all u ∈ U with only possible exception the last subproblem,

which consists of the remaining periods till the end of the horizon. Experiments were run

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
20 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

on a Linux workstation running a single processor Intel(R) Xeon(R) X5675 @ 3.07GHz

with 96GB Memory. To devise a fairer comparison with alternative implementations, we

report the relative speed of our machine, according to SPEC (www.spec.org). Summary

tables, detailed computational results, and all data instances can be found in the online

supplement that accompanies this paper.

6.1. Subproblem Length and Overlap

The usefulness of a horizon decomposition depends heavily on the subproblem size and on

the horizon overlap. Long-horizon subproblems have the potential to lead to an improved

lower bound, but it may be time consuming to solve these to optimality. Likewise, large

horizon overlaps can also lead to improved lower bounds, but render the master programs

degenerate and amplify the tailing-off effect (Vanderbeck 2005). We assess which configu-

rations of horizon decompositions are efficient in solving challenging CLST problems. The

criterion used to assess efficiency is the integrality gap, while time efficiency is measured

by average CPU time.

Data Instances. Tuning and testing the algorithm in separate datasets is necessary to

avoid any favorable bias during testing. Since the main focus of the paper is problems with

few items and long horizons, we generated instances with 2, 6 and 10 items and 15, 30

and 60 periods, respectively, based on problems G30 and G30b from Trigeiro et al. (1989),

which have 6 items and 15 periods. First, we created instances with 30 and 60 periods by

replicating the demand of each item, and made the capacity constraints harder, so that

the average lot-for-lot capacity utilization was about 120%. Problems with high capacity

utilization are usually challenging to solve in practice, and therefore constitute a good test-

bed for our approach. Using this utilization level we generated new instances with 2, 6 and

10 items, and 15, 30 and 60 periods. Two new instances were generated for problems with

15 periods and 6 items, a total of four, together with G30 and G30b, and four instances

for problems with 30 and 60 periods and two or 10 items. In total, 36 instances, four for

each of the nine (item, period) combinations, were utilized and 684 runs were performed.

We imposed a time limit of 20,000 seconds after which we kept the best lower bound if

column generation was not completed.

Subproblem Length and Overlap. The first round of experiments aimed at identifying the

influence of subproblem length and horizon overlap on the integrality gap and on CPU

time. To this end, figures 2(a) and 2(b) show the average integrality gap, calculated using

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 21

3 5 7 9 11
1

2

3

4

5

6

7

8

9

In
te

g
ra

li
ty

 G
ap

 (
%

)

Subproblem size (periods)

0 Overlap
1 Overlap
2 Overlap
3 Overlap

(a) Subproblem Length vs Integrality Gap

3 5 7 9 11
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

C
P

U
 T

im
e

(s
)

Subproblem size (periods)

0 Overlap
1 Overlap
2 Overlap
3 Overlap

(b) Subproblem Length vs CPU Time

Figure 2 Sensitivity analysis for subproblem size and overlap length. Each point denotes the average measure

obtained from 90 instances.

the best upper bound found and the root node lower bound in all trials for each instance,

and the average CPU time, respectively.

Some useful preliminary insights can be drawn from these figures. With respect to the

integrality gaps, both large subproblems and more periods of overlap improve the solution

quality. However, the three-period overlap configurations deliver larger gaps when com-

pared to configurations with one or two periods of overlap. This happens because using

a three-period overlap renders the restricted master programs degenerate, and therefore

more simplex pivots are necessary to solve them to optimality, and also a larger number of

column generation iterations. As a result, column generation may fail to terminate before

the imposed time limit and the intermediate lower bound can be weaker than that obtained

with fewer periods of overlap. The impact of subproblem size seems higher when no over-

lap exists, and is smaller with two or three periods of overlap. Interestingly, one period of

overlap leads to drastic reduction of integrality gaps, whereas a second period of overlap

offers a significant improvement only when the subproblem size is small (3 periods). In

other cases, the gap improvement obtained by a second period of overlap is marginal. This

leads to the conclusion that one period of overlap with a medium subproblem size, such as

seven periods, constitutes a good configuration. Considering CPU times, there is an evident

interaction between subproblem size and overlap length, which is revealed in configurations

with two or three periods of overlap. Specifically, larger overlaps and subproblems lead

to higher CPU times in general, but there are cases where small subproblems combined

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
22 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

with large overlaps lead to poor column generation convergence and thereby high CPU

times. This is the case for five period subproblems combined with two or three periods of

overlap. On the one hand, larger subproblems imply fewer linking constraints for a given

overlap and therefore better convergence, but on the other hand it may be time consuming

to solve them optimally. This evidence, combined with the marginal gap increase from the

inclusion of a third period of overlap, suggests that a third overlapping period may not

lead to an efficient computation scheme.

We also investigated which horizon configuration achieves the best performance in which

instances. To this end, figure 3 and table A.1 display a breakdown of the configurations

that deliver the best performance in each instance category, characterized by the number

of items and the number of periods.

Table A.1 shows that non-overlapping horizons induce better convergence behavior of

column generation and therefore lead to faster termination. In order to perform a more

refined analysis, we consider the trade-off between the integrality gap and CPU Time for

various combinations of items and periods. We call a point Pareto-optimal if there exist

no other point, or convex combination of points that has both a smaller gap and smaller

CPU Time. Figure 3 graphs the integrality gap and CPU time of each (length, overlap)

configuration for various instance families, categorized upon their number of items and time

periods. Moreover, it displays the (length, overlap) configurations that are Pareto-optimal

for each family of instances. In terms of integrality gaps it is evident that large subproblem

horizons achieve the best performance in all cases, with only exception the bottom right

graph, that refers to instances with 10 items and 60 periods, and a medium-size subproblem

delivered the best average gap. We also observe that the Pareto-optimal configurations of

Figure 3 are relatively insensitive to the number of items or the number of periods. For all

instance families, the leftmost part of the lower envelop is very steep, which means that

there are certain configurations that yield significant gains in gaps, with a minor increase

of CPU time. This is the case when one overlapping period is introduced, as for example

in families (|I| = 2, |T | = 15) and (|I| = 6, |T | = 30), or a larger subpbroblem is selected,

as in families (|I|= 10, |T |= 15) or (|I|= 10, |T |= 60). In addition, the rightmost part of

most graphs is very also steep, implying that improving the integrality gap after a certain

threshold requires a lot more CPU time. This is an important observation, especially for

instances with 10 items, in which the CPU time of configurations with large overlaps or

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 23

(3,0)

(7,0)

(11,0)
(11,1) (11,2)

(11,3)

G
ap

CPU Time

(3,0)

(5,0)

(7,0)

(7,1) (9,1) (11,1)

G
ap

CPU Time

(3,0)

(5,0)

(7,0)

(7,1) (7,2)

G
ap

CPU Time

(3,0)

(7,0)

(7,2) (11,2)

(11,3)

G
ap

CPU Time

(3,0)

(7,0)
(3,1)

(7,1)
(7,2)

(11,1)
(11,2) (11,3)

G
ap

CPU Time

(3,0)

(7,0)
(11,0)
(7,1)

(11,1)
(7,2) (11,2)

(9,3)

G
ap

CPU Time

(7,0)

(11,1) (11,3)

G
ap

CPU Time

(3,0)

(11,0)

(11,1)
G

ap

CPU Time

(11,0)

(11,1)

(9,2)
(9,3)

G
ap

CPU Time

Figure 3 Pareto-optimal subproblem size and overlap configurations for various item-period combinations. The

horizontal axis denotes the CPU time and the vertical axis the integrality gap.

large subproblems becomes disproportionately large, and the gap improvement is often

marginal.

An interesting question is to which extent our findings generalize to instances with a

larger number of items and periods. To shed light on this, we note that configurations

with three periods of overlap are not pareto-optimal for families with 10 items and 30 or

60 periods. In addition, many configurations with three-period overlaps took as much as

20,000 seconds of CPU time to converge when applied to instances with ten items, and

some did not converge even then, regardless of the selected subproblem size. This is because

of the large number of linking constraints that are introduced in the master problem,

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
24 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

and degrade the convergence of column generation. Therefore, a computationally efficient

approach would not employ three or more periods of overlap to instances with 10 or more

items. In fact, figure 2 (a) shows that a three-period overlap does not generate the best

integrality gaps, exactly because column generation was not able to terminate, even after

20,000 seconds of CPU time, and returned the best lower bound at hand. With respect to

the subproblem size, we found that subproblems of 10 items and 20 or more periods could

be time-consuming to solve to optimality repeatedly within column generation. Thus, in

our computational experiments we select subproblems of at most 20 periods. We should

note that, instances with very long horizons and a small number of items could have

other efficient configurations that were not revealed by our computational experiments.

For example, an instance with 300 periods and four items could be solved efficiently with

a subproblem size of 40 periods, if the MIP solver is able to solve these large subproblems

efficiently. Finally, other factors beyond the number of items and periods contribute to

whether a specific decomposition configuration delivers strong or weak lower bounds. For

example, an instance in which all items have zero starting inventory in periods t1, t2, . . . , tk

in an optimal solution, can be solved optimally if we select subproblems with horizons

{1, . . . , t1− 1},{t1, . . . , t2− 1}, . . .{tk, . . . ,m}, because extreme points of these subproblems

can reconstruct the optimal solution.

Despite the aforementioned limitations, the computational study validates the impor-

tance of overlapping horizons and of large size subproblems. We use qualitative insights

from this experiment to select appropriate horizon configurations in our subsequent exper-

iments. Specifically, it is desirable to select Pareto-optimal configurations that lie on the

lower left part of the efficient frontier, because they strike a good balance between CPU

time and integrality gap. In practice, for hard problems we might want to sacrifice CPU

time in order to improve the lower bound quality. Thus, when the number of items is small,

we utilize horizon covers with large subproblems and overlaps. For a medium number of

items, such as six items, it is preferable to select large subproblems and one or two periods

of overlap. For problems with a larger number of items, medium subproblems and one

period of overlap seem to constitute a good choice, unless the problem horizon is short,

in which case it might also be efficient to select large subproblems. Finally, we note that

for problems with more than 15 items, introducing one period of overlap can improve the

integrality gap, but it also increases the CPU time dis-proportionally. For such problems,

we select configurations without any overlap.

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 25

6.2. Lower Bounds

In this section, we compare the lower bounds obtained by horizon decomposition to that

obtained by other approaches.

Trigeiro Instances. We use the 7 instances of Trigeiro et al. (1989) that have been used

by several other authors to demonstrate the strength of the lower bounds generated by

horizon decomposition. In order to select a horizon configuration that delivers competitive

lower bounds, we devise selection rules based on the conclusions of section 6.1. To this end,

we utilize single-period overlaps for instances with six and 12 items, as figure 3 suggests

they are efficient, and no overlaps for instances with 24 items, since overlaps would intro-

duce a large number of linking constraints that might lead to slow convergence. Since these

problems have relatively short horizons, and instances with up to 15 periods are easy to

solve, we select |H|= dT/2e as subproblem horizons. Alternatively, one could select from

the configurations displayed in figure 3. However, even simple selection policies have the

potential to lead to competitive lower bounds. It is worth noting that |H|= dT/2e might

not be a good selection policy for instances with longer horizons because the resulting sub-

problems might be hard to solve. Table A.2 compares the lower bound obtained by horizon

(HD), item (DJ) (Degraeve and Jans 2007) and period decompositions (PD) (de Araujo

et al. 2015, Jans and Degraeve 2004), and the approximate extended formulation (AEF)

approach of Van Vyve and Wolsey (2006).

The comparison of lower bounds confirms the conclusions of our previous experiments.

Specifically, horizon decomposition gives excellent lower bounds for problems with a rela-

tively small number of items. For instance G30 in particular we are able to close the gap

and obtain an integral solution using horizon decomposition. To the best of our knowledge,

the lower bounds for 5 out of 7 instances are the best known in the literature, while for the

remaining 2 instances AEF obtains a better bound. However, any conclusions based on 7

instances might be of limited validity. Therefore, the next paragraph considers a larger set

of instances, namely the challenging dataset of Süral et al. (2009).

Süral. Süral et al. (2009) constructed a new set of challenging CLST instances by mod-

ifying the Trigeiro et al. (1989) test problems. Specifically, they used 20 problems with 12

and 24 items and 15 and 30 periods, and constructed new instances with 10 and 15 periods

by truncating the horizons of the original problems. Further, they set the setup costs to

zero for all problems, and created two versions of each instance: a homogeneous version,

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
26 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

in which holding costs are equal to 1, and a heterogeneous version, that uses the original

holding costs. In total, 50 homogeneous and 50 heterogeneous instances were created. Süral

et al. (2009) observed that, perhaps surprisingly, problems without setup costs but with

setup times seem to be a lot more challenging to solve compared to their counterparts with

positive setup costs. Specifically, they show that the algorithm of Trigeiro et al. (1989)

delivers an average gap of 0.97% for problems with both setup times and setup costs, and a

gap of 33.86% on problems with setup times but without setup costs. Further, they explain

that much of this gap is due to poor lower bounds, and no so much due to bad feasible

solutions. In their paper, Süral et al. (2009) obtain a lower bound by applying Lagrange

relaxation to an extended formulation of the problem. The study of Müller et al. (2012) also

uses these instances to investigate the performance of a large-scale neighborhood search

heuristic. Although their focus is on upper bounds, they are able to obtain good quality

lower bounds by iteratively feeding incumbent solutions to CPLEX (v12.1) and letting it

solve the root node, exploiting that improved incumbents may lead to an improved lower

bound during presolve. This is possible because some reduced cost fixing operations of the

presolve phase make use of the structure of the incumbent. Table A.3 shows the CPU time

and integrality gap for the horizon decomposition (HD), the neighborhood search heuristic

of Müller et al. (2012) (ALNS) and the Lagrange-relaxation based heuristic of Süral et al.

(2009) (SDW). The integrality gap is measured using the best upper bound found by all

approaches, and therefore constitutes a measure of the lower bound quality.

A first conclusion is that although HD requires more CPU time, the lower bound quality

it delivers is superior to that obtained by SDW and ALNS. In particular, the average gap

of HD is 33% and 50% less than that of SDW and ALNS respectively, while this difference

is amplified for problems with 10 or 15 periods. As our implementation uses 150 seconds of

CPU time, we need to strike a fine balance between the obtained lower bound quality and

the CPU time used. To this end, Figure 3 shows that increasing the subproblem size while

maintaining a zero overlap leads to improved lower bounds without consuming too much

CPU time, for instances with 10 items. This is contrary to introducing a single period

of overlap, in which case the CPU time increases considerably. For this reason, we have

decided to select configurations with zero overlap and relatively large subproblems, with

|H|= T/2.

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 27

Müller. The study by Müller et al. (2012) extends the instances of Süral et al. (2009) to

problems with longer horizons. In particular, the authors replicate the horizon of each of

the original instances that Süral et al. (2009) used, and construct (i) instances of 30 and 45

periods, by replicating the demand of the original 15 period instances, and (ii) instances

of 60 and 90 periods, by replicating the demand of the original 30 period instances, for

both homogeneous and heterogeneous cases. In total, they construct 80 more instances.

Table A.4 reports the average integrality gap calculated by taking into account the best

upper bound found by both approaches when the time limit for horizon decomposition is

300 (HD300) and 600 (HD600) seconds respectively.

Table A.4 shows that HD attains systematically lower bounds of better quality, even

when the number of periods is large, the only exception being heterogeneous instances

with 24 items and 30, 60 or 90 periods. A more general conclusion from the study of

lower bounds is that some horizon decompositions are able to obtain very competitive

lower bounds, even if the selection of subproblem size and overlap is made based on simple

qualitative rules.

6.3. A Heuristic Implementation

In some production planning environments it is useful to employ heuristics that find solu-

tions of guaranteed quality in a short amount of time. In this section, we implement a

heuristic version of our approach and compare it to the results of Müller et al. (2012),

whose approach is the most competitive in the CLST literature. In our implementation,

we stop the column generation after 300 or 600 seconds and apply the relaxation induced

neighborhood heuristic, which then runs for at most 50 seconds. When column generation

is not complete at the root node, we use the best lower bound obtained by Lagrange relax-

ation. As our objective is to generate good lower and upper bounds within a tight time

limit, we do not use overlapping horizons in our heuristic implementation. We also report

results on instances with 30 or more periods, since on problems with smaller horizons

both approaches produce results of similar quality. For instances with 30 periods, we use

two subproblems of size 20 and 10 periods respectively. For all other instances, we use a

subproblem length of 30 periods, with only possible exception the last subproblem which

accommodates the remaining periods. Table A.5 shows the integrality gaps obtained by

ALNS and horizon decomposition after 300 (HD300) and 600 (HD600) seconds respec-

tively. The integrality gap reported for each method is calculated using the best upper and

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
28 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

lower bound which that method returned, and is used as a measure of overall performance.

In order to indicate clearly the upper bound quality, table A.6 reports the integrality gap

calculated when the best lower bound is used, thereby providing a measure that assesses

the upper bound quality directly.

The comparison suggests that HD delivers overall better integrality gaps, both for homo-

geneous and heterogeneous instances. Table A.5 shows that HD300 gives significantly better

gaps than ALNS for all 12 item instances, whereas it also gives better gaps for some of

the 24-item instances. HD600 gives always the best gaps, with the heterogeneous 24 item

- 60 period instances being the sole exception, in which ALNS is only marginally better.

On the upper bound quality, table A.6 shows that both HD approaches compare very

favorably with ALNS, with HD300 being marginally worse and HD600 marginally better

than ALNS. This result seems striking at first, because ALNS is a sophisticated heuristic

designed specifically to obtain good quality upper bounds. However, it is in line with a

result of Larsson and Patriksson (2006), that incremental heuristics which start from a

near-optimal lower bound provide solutions of good quality.

6.4. Comparison with an alternative branch-and-price implementation

Pimentel et al. (2010) employ formulation (1)-(5) to formulate and compare three differ-

ent decomposition schemes for capacitated lot-sizing: (i) the item decomposition, where

the capacity constraints (4) are considered as linking constraints and each subproblem is

a singe-item uncapacitated lot-sizing problem, (ii) the period decomposition, where the

demand balance constraints (2) are considered as linking constraints, and each subprob-

lem is defined over a single-period and (iii) a multiple decomposition, in which they apply

both (i) and (ii) simultaneously. In their computational experiments, the period decom-

position was the most competitive branch-and-price implementation, despite the fact that

the multiple decomposition gives a better lower bound. Table A.7 compares the results

of their product decomposition with a horizon decomposition implementation that uses

zero overlap and 10-period subproblems. Pimentel et al. (2010) run their algorithms with

a 3,600 CPU time limit, and used a Pentium IV to perform their experiments. According

to SPEC (www.spec.org) our machine is about 70% faster, and we therefore pose a time

limit of 1,000 seconds, to ensure that our results are comparable.

Table A.7 shows that horizon decomposition achieves a better performance in most

cases, even when the selected configuration does not contain any overlaps, which could

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 29

improve the lower bound. Specifically, the product decomposition delivers integrality gaps

of better quality in eight out of 36 instances, the horizon decomposition in 26 out of

36 instances, while both implementations solve all instances of x11117 and x11127 to

optimality. Pimentel et al. (2010) do not report individual lower and upper bounds for each

instance, and therefore separate comparisons of upper and lower bounds are not possible.

It should be noted that alternative configurations could possibly deliver better integrality

gaps in the same amount of time. However, a zero overlap with a large subproblem size

strikes a good balance between obtaining a good quality lower bound, and directing the

heuristics to obtain a good quality upper bound.

6.5. Comparison with branch-and-cut

We also compared horizon decomposition against CPLEX v12.6. The purpose of this com-

parison is to investigate whether a horizon decomposition approach delivers competitive

results against a state-of-the-art commercial solver for certain classes of problems. Since

our algorithm uses CPLEX to solve the subproblems, the interpretation of our results

should be that in some classes of hard problems, it is more efficient to use branch-and-cut

technology within a carefully selected branch-and-price horizon decomposition rather than

as a stand-alone solver. Since the suggested methodology delivers a lower bound, the main

focus on our experiments is the strength of the lower bound obtained by each approach.

However, we also assess the final integrality gap by taking into account the best feasible

solution that each method finds.

Data. We focus on problems with small items to periods ratios, since they seem to be

the most challenging ones (see also Müller et al. (2012)). Specifically, we generated sets of

10 problem instances, each with 2, 4, 6, 8 and 10 items and 100 periods. In total, 50 new

problems were constructed. The average capacity utilization was 120%, with some instances

that need initial inventory for feasibility. To the best of our knowledge, this is the first

dataset that includes instances that need initial inventory. While it is well-known that high

capacity utilizations characterize hard problems, it is usually the case that the resulting

dataset is infeasible without initial inventory. Trigeiro et al. (1989), who constructed the

most widely used CLST dataset write: “Rather than solve the NP complete feasibility test

for each problem, we simply threw out problems for which no feasible solution was found

by the heuristic. (...) This results in an unavoidable and unmeasurable bias in problem

generation. It occurs mostly for tightly constrained problems”. Since then, the assessment

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
30 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

of this class of problems has been neglected. Figure 4 graphs the average root gap of

CPLEX v12.6 and the number of nodes explored in 3,600 seconds against the number of

items, |I|.

 3,677,604

 1,154,168

 277,598
 157,920

 615,530

31

39

32 32

25

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

0

5

10

15

20

25

30

35

40

45

2 4 6 8 10

Number of Items

CPX Nodes CPX Root Gap (%)

Figure 4 Average root integrality gap and number of nodes explored by CPLEX. Time limit is 3,600 seconds.

Two useful conclusions can be drawn. First, the root node integrality gaps are between

25% and 39%, suggesting that solving these instances to within an acceptable tolerance

may be challenging. To put these numbers in perspective, for the seven instances from

Trigeiro’s G dataset that are supposed to be among the hardest (Van Vyve and Wolsey

2006), CPLEX v12.6 has an average root gap of 2.54% and needs an average 60,000 nodes

and 200 seconds to solve them to optimality. Moreover, for the instances examined in

Müller et al. (2012) and Süral et al. (2009) the average gaps vary between 14% and 20%.

Second, the average number of nodes explored generally decreases as the number of items

increases, since the linear programs at each node become larger. This is not the case

for ten-item instances, possibly because CPLEX might adopt a different branch selection

strategy. With these conclusions at hand, it is useful to explore the performance of a

horizon decomposition approach.

Selection of a horizon configuration. In order to devise a good horizon configuration, we

use insights from the computational experiment of section 6.1. Our intention is to utilize

configurations that achieve a good lower bound at the root node of the branch-and-bound

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 31

tree. We utilize simple qualitative rules to determine a well-performing configuration, sug-

gesting that horizon decompositions can achieve competitive performance without sophis-

ticated selection rules. From our computational experiments, we observe that two-period

overlaps achieve the smallest, overall, integrality gaps. To this end, for instances with a

small number of items, namely 2 or 4 items, we devise two-period overlaps, combined with

a large subproblem size, namely 12 periods. We choose 12 periods instead of 10 so that

all subproblems have equal length. For problems with 6, 8 and 10 items, we select smaller

subproblems and ovelaps. In particular, we use medium-sized subproblems, with 6 periods,

and a single period of overlap.

Horizon Decomposition and branch-and-cut. Table A.8 reports the relative performance

of CPLEX and Horizon Decomposition at the aforementioned problems. In particular,

the small integrality gaps indicate that horizon decomposition constitutes a promising

approach, particularly for problems with a small number of items. It is worth noticing that

although CPLEX explores more nodes and therefore it is more likely to find good heuristic

solutions, the final average gaps are in favor of horizon decomposition, due to the stronger

lower bounds that it obtains. Finally, the maximum benefit of horizon decomposition is

demonstrated in instances with two items. Specifically, we were able to solve to optimality

7 out of 10 instances, 3 of which at the root node. The average CPU time for these 10

instances is 89 seconds. For the same instances, CPLEX obtained an average gap of 3.7 %

after one hour of CPU time.

7. Generalizations

In this section we demonstrate potential generalizations of the horizon decomposition

approach. First, we present an extension that stems naturally from our work in the CLST

that fits well to problems with sparse constraint matrices. Then, we consider an alternative

approach that is deemed more appropriate for problems with dense constraint matrices.

Both methods are applicable to generic mixed integer linear programs, which we consider

in the form below.

[P] min cTx (32)

s.t. Ax= b (33)

x∈X (34)

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
32 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

The set X describes trivial restrictions such as integrality constraints and range bounds

on single variables. We let I := {1, . . . , c} be the variable index set and R := {1, . . . , r} be

the row index set. For notational simplicity, we interpret indexing of a vector or matrix

over a set as a reference to the quantities defined over this set. We show that each of the

following generalizations takes advantage of different structural characteristics in order to

decompose the problem efficiently.

7.1. Extension of the Horizon Decomposition Principle: Row Partitioning

The essence of horizon decomposition is about replicating variables that are in multiple

constraints in such a way that the problem matrix is decomposed. We partition the row

index set R into two mutually exclusive and exhaustive sets R1 and R2, i.e. R=R1 ∪R2

and R1 ∩ R2 = ∅. The extension to more sets, and also the case with R1 ∩ R2 6= ∅ are

straightforward and are omitted to ease the exposition. It is of interest to identify which

variable indexes are common in sets R1 and R2. To this end, we define V s = {i ∈ I : ∃j ∈

Rs with aij 6= 0} for s ∈ {1,2}, the index set of variables that appear in Rs, V = V 1 ∩ V 2,

the index set of variables that appear both in R1 and R2, and Vs = V s\V for s ∈ {1,2},

the index set of variables that appear exclusively in Vs. Using this notation and selecting

a λ∈ (0,1), we can recast problem [P] as follows:

[P1] min cTV1
xV1 + cTV2

xV2 +λcTV x
1
V +(1−λ)cTV x2V (35)

s.t. AR1V1
xV1 +AR1V x

1
V = bR1 (36)

AR2V2
xV2 +AR2V x

2
V = bR2 (37)

x1V − x2V = 0V (38)

xV 1 ∈XV 1 xV 2 ∈XV 2 x1V , x
2
V ∈XV (39)

[P] has structure that is amenable to Dantzig-Wolfe decomposition, and it constitutes a

generalization of the lot-sizing formulation (6−14) presented in section 3.2. Specifically, in

our application sets R1 and R2 capture rows indexed over periods {1, . . . , k} and {l, . . . ,m}

respectively for some k, l ∈ T with l≤ k+1. Set V1 captures the indexes of variables found

exclusively in the first subproblem, i.e., (xi1, yi1, si1, . . . , xil−1, yil−1, sil−1) for each item i∈ I,

and similarly set V2 those found only in the second subproblem. Set V models the indexes of

variables defined over the overlap, i.e., (xil, yil, sil, . . . , xik, yik, sik, sik+1) for each item i∈ I.

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 33

In classes of problems where the constraint matrix has an obvious block diagonal sub-

structure, implementing a row partition is relatively straightforward: one has to regulate

the subproblem size and horizon overlap based on empirical data. For problems with sparse

matrices but no obvious structure, an issue that arises naturally in formulating [P1] is

that of row partition selection. There is a stream of literature that considers the prob-

lem of rearranging the constraint matrix in such a way that it exhibits a block-triangular

substructure. To the best of our knowledge, Martin (1999) was the first to formulate the

problem of rearranging a matrix to decomposable format as a MIP. Specifically, he intro-

duced the matrix decomposition problem as that of decomposing a matrix in bordered

diagonal form, given the number of blocks and the size of each block. The recent work of

Martin et al. (2011) formulates the same problem as a hypergraph partitioning problem.

Moreover, they use the resulting solution within an automatic Dantzig-Wolfe reformulation

approach and show experimentally that their approach delivers high quality dual bounds

for some challenging MIPLIB 2003 and MIPLIB 2010 instances. A key difference with our

approach is that the algorithm they devise tries to identify hidden structures and come

up with one decomposition, whereas the horizon decomposition approach utilizes a family

of reformulations, from which the user can select the most suitable one for any particular

instance. Although our formulation of [P1] does not require any structure, one can use the

two aforementioned approaches to construct decomposable index sets and decide on the

size of the overlaps accordingly.

7.2. An Alternative Generalization: Column Partitioning

The partitioning approach developed in the previous section is well-suited to problems with

sparse constraint matrices. This is because the number of linking constraints is small and

the column generation process exhibits better numerical properties (Martin et al. (2011)).

This section aims to present an alternative formulation that is well-suited to problems

with dense constraint matrices, such as set-partitioning problems. Again, we let I be the

variable index set, and consider variable index sets H1,H2 and L such that H1 ∪H2 = I

and H1∩H2 =L. The extension to more partitions is straightforward. For ease of notation,

let xi, ci,Ai and Xi denote the components of each entity that refer to indexes in set Hi,

and xl, cl,Al the components of each entity that refer to indexes in set L. Then [P] can be

reformulated such that it is amenable to Dantzig-Wolfe decomposition as follows.

[P2] min cT1 x1+ cT2 x2 (40)

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
34 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

s.t. A1x1−λAlx
1
l + s1 = b/2 (41)

A2x2− (1−λ)Alx
2
l − s2 = b/2 (42)

x1l = x2l (43)

s1 = s2 (44)

x1 ∈X1, x2 ∈X2, x
1
l , x

2
l ∈Xl, s1, s2 ∈Rr (45)

The variables s1 and s2 are continuous and their dimension equals the number of rows

of matrix A. Also, λ is a fixed scalar and c2i = 0 if i ∈ L, and c2i = c2i otherwise. By

dualizing constraints (43) and (44) [P2] decomposes in two subproblems, defined over the

index sets H1 and H2 respectively. This decomposition can be beneficial for problems with

large number of variables and relatively few constraints, or problems that exhibit structure

over index sets of variables. The issue of selecting a suitable partition is relevant in this

formulation as well. One needs to partition the variables in such a way that those with

similar row coefficients belong to the same index set H. To the best of our knowledge, this

problem has not been tackled in the literature, but variants of the methods of Martin (1999)

and Martin et al. (2011) can also be applied for column partitioning. The effectiveness of

such methods remains to be explored and benchmarked against alternative approaches.

8. Conclusions and Future Research

We present a horizon decomposition implementation to the multi-item capacitated lot-

sizing problem with setup times. The problem is decomposed in contiguous horizons of

smaller size, and the subproblems are of the same type as the original, but have smaller

dimension. The developed methodology suggests a family of reformulations, which offer

flexibility to regulate the master problem and subproblem size almost independently. A

computational study gives empirical evidence on which configurations lead to efficient

reformulations. Computational experiments show that the approach delivers strong lower

bounds, while it outperforms one of the best heuristics in the literature, and another state-

of-the-art branch-and-price algorithm. Further experiments on generated datasets show

its competitive performance against the branch-and-cut solver CPLEX v12.6. Moreover,

the horizon decomposition methodology is generalizable and applicable to other classes of

mixed-integer linear programs.

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 35

It is only recently that some researchers have started exploring horizon-like decompo-

sitions, and there exist many directions for future research. The study of Caprara et al.

(2013) applies a similar form of horizon decomposition to the temporal knapsack problem,

while Bergner et al. (2014) attempt to devise an automatic reformulation method that

identifies hidden structures in the constraint matrix of each instance and uses the to per-

form a Dantzig-Wolfe decomposition, with striking results for certain problem classes. The

identification of classes of problems where horizon decomposition can be a viable alterna-

tive to branch-and-cut remains an open question. Moreover, an automatic procedure that

selects the member of a family of decompositions that strikes the best balance between

bound quality and CPU time performance is an area that has not been explored yet on its

entirety. Finally, an alternative scheme that generates cutting planes from problem sub-

structures, such as the one devised by Akartunali et al. (2014) is a promising direction that

generates cuts from lower dimensional projections of the initial formulation and yet does

not require an inner approximation of the feasible region, which is the case for column

generation based approaches.

References

Akartunali, K., I. Fragkos, A. Miller, T. Wu. 2014. Local cuts and two-period convex hull closures for

big-bucket lot-sizing problems. Tech. rep., University of Strathclyde.

Akartunal, Kerem, AndrewJ. Miller. 2012. A computational analysis of lower bounds for big bucket produc-

tion planning problems. Computational Optimization and Applications 53 729–753.

Bárány, I., T. Van Roy, L. A. Wolsey. 1984. Uncapacitated lot-sizing: the convex hull of solutions. Mathe-

matical Programming Study 32–43.

Barnhart, C., E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, P. H. Vance. 1996. Branch-and-price:

Column generation for solving huge integer programs. Operations Research 46 316–329.

Belvaux, G., L.A. Wolsey. 2000. bc – prod: A specialized branch-and-cut system for lot-sizing problems.

Management Science 46 724–738.

Ben Amor, H., J. Desrosiers, V.J.M. de Carvalho. 2006. Dual-optimal inequalities for stabilized column

generation. Operations Research 54 454–463.

Bergner, M., A. Caprara, C. Alberto, F. Furini, M.E. Lüebbecke, and E. Traversi E. Malaguti. 2014. Auto-

matic dantzig-wolfe reformulation of mixed integer programs. Mathematical Programming 1–34.

Caprara, A., F. Furini, E. Malaguti. 2013. Uncommon dantzig-wolfe reformulation for the temporal knapsack

problem. INFORMS J. on Computing 25 560–571.

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
36 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Danna, E., E. Rothberg, C. Le Pape. 2005. Exploring relaxation induced neighborhoods to improve mip

solutions. Mathematical Programming 102 71–90.

Dantzig, G.B., P. Wolfe. 1960. Decomposition principle for linear programs. Operations Research 8 101–111.

de Araujo, S.A., B. De Reyck, Z. Degraeve, I. Fragkos, R. Jans. 2015. Period decompositions for the

capacitated lot sizing problem with setup times. INFORMS Journal on Computing 27 431–448.

Degraeve, Z., R. Jans. 2007. A new dantzig-wolfe reformulation and branch-and-price algorithm for the

capacitated lot-sizing problem with setup times. Operations Research 55 909–920.

Degraeve, Z., M. Peeters. 2003. Optimal integer solutions to industrial cutting-stock problems: Part 2,

benchmark results. INFORMS Journal on Computing 15 58–81.

du Merle, O., D. Villeneuve, J. Desrosiers, P. Hansen. 1999. Stabilized column generation. Discrete Mathe-

matics 194 229 – 237.

Elhallaoui, I., D. Villeneuve, F. Soumis, G. Desaulniers. 2005. Dynamic aggregation of set-partitioning

constraints in column generation. Operations Research 53 632–645.

Eppen, G.D., R.K. Martin. 1987. Solving multi-item capacitated lot-sizing problems using variable redefini-

tion. Oper. Res. 35 832–848.

Fisher, M.L. 2004. The lagrangian relaxation method for solving integer programming problems. Management

Science 50 1861–1871.

Geoffrion, A.M. 1974. Lagrangean relaxation for integer programming. M.L. Balinski, ed., Approaches to

Integer Programming , Mathematical Programming Studies, vol. 2. Springer Berlin Heidelberg, 82–114.

Guignard, M., S. Kim. 1987. Lagrangean decomposition: A model yielding stronger lagrangean bounds.

Mathematical Programming 39 215–228.

Jans, R., Z. Degraeve. 2004. Improved lower bounds for the capacitated lot sizing problem with setup times.

Operations Research Letters 32 185 – 195.

Kleindorfer, P. R., E. F. P. Newson. 1975. A lower bounding structure for lot-size scheduling problems.

Operations Research 23 299–311.

Larsson, T., M. Patriksson. 2006. Global optimality conditions for discrete and nonconvex optimizationwith

applications to lagrangian heuristics and column generation. Operations Research 54 436–453.

Lüebbecke, M.E., J. Desrosiers. 2005. Selected topics in column generation. Operations Research 53 1007–

1023.

Manne, A.S. 1958. Programming of economic lot sizes. Management Science 4 115–135.

Martin, A. 1999. Integer programs with block angular structure. Ph.D. thesis, Konrad-Zuse-Zentrum für

Informationstechnik Berlin.

Martin, B., M E. Lüebbecke, E. Malaguti, E. Traversi. 2011. Partial convexification of general mips by

dantzig-wolfe reformulation. Integer Programming and Combinatorial Optimization, volume 6655 of

Lect. Notes Comput. Sci . Springer, 39–51.

Fragkos, Degraeve, and De Reyck: Horizon Decomposition for the CLST
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 37

Miller, A., G. L. Nemhauser, M.W. Savelsbergh. 2000. Solving multi-item capacitated lot-sizing problems

with setup times by branch-and-cut. CORE Discussion Papers 2000039, Universit catholique de Lou-

vain, Center for Operations Research and Econometrics (CORE).

Müller, L.F., S. Spoorendonk, D. Pisinger. 2012. A hybrid adaptive large neighborhood search heuristic for

lot-sizing with setup times. European Journal of Operational Research 218 614 – 623.

Pimentel, C. M. O., A. Filipe Pereira, V.J.M de Carvalho. 2010. Comparing dantzig-wolfe decompositions and

branch-and-price algorithms for the multi-item capacitated lotsizing problem. Optimization Methods

and Software 25 299–319.

Pochet, Yves, Laurence A. Wolsey. 2006. Production Planning by Mixed Integer Programming (Springer

Series in Operations Research and Financial Engineering). Springer-Verlag New York, Inc., Secaucus,

NJ, USA.

Süral, H., M. Denizel, L. N. Van Wassenhove. 2009. Lagrangean relaxation based heuristics for lot sizing

with setup times. European Journal of Operational Research 194 51 – 63.

Trigeiro, W. W., L.J. Thomas, J.O. McClain. 1989. Capacitated lot sizing with setup times. Management

Science 35 353–366.

Van Vyve, M., L.A. Wolsey. 2006. Approximate extended formulations. Mathematical Programming 105

501–522.

Vanderbeck, F. 1998. Lot-sizing with start-up times. Management Science 44 1409–1425.

Vanderbeck, F. 2005. Implementing mixed integer column generation. Guy Desaulniers, Jacques Desrosiers,

MariusM. Solomon, eds., Column Generation. Springer US, 331–358.

Vanderbeck, F. 2011. Branching in branch-and-price: A generic scheme. Math. Program. 130 249–294.

Vanderbeck, F., M.W.P. Savelsbergh. 2006. A generic view of dantzig–wolfe decomposition in mixed integer

programming. Operations Research Letters 34 296 – 306.

Villeneuve, D., J. Desrosiers, M.E. Lüebbecke, F. Soumis. 2005. On compact formulations for integer pro-

grams solved by column generation. Annals of Operations Research 139 375–388.

Wagner, H.M., T.M. Whitin. 1958. Dynamic version of the economic lot size model. Management Science

5 89–96.

	Introduction
	Literature Review
	Problem Description and Formulation
	Original Formulation
	Horizon Reformulation

	Horizon Decomposition
	Initial Formulation
	Model Reductions
	Strength of the Lower Bound

	A Branch-and-Price Algorithm
	Initialization
	Hybrid Column Generation and Stabilization
	Branching
	Heuristic Solutions

	Computational Experiments
	Subproblem Length and Overlap
	Lower Bounds
	A Heuristic Implementation
	Comparison with an alternative branch-and-price implementation
	Comparison with branch-and-cut

	Generalizations
	Extension of the Horizon Decomposition Principle: Row Partitioning
	An Alternative Generalization: Column Partitioning

	Conclusions and Future Research

