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Key Points 
1. Reduced energy intake, as a result of altered eating behavior, is the main driver for weight 

loss in humans following RYGB and SG. 
2. The biological mediators underlying altered eating behavior post-surgery remain incompletely 

understood but changed gut-derived signals as a consequence of altered nutrient and/or 
biliary flow are key candidates. 

3. Understanding the interplay between gut hormones, bile acids and the microbiome and their 
relative roles will enable the development of non-surgical treatment options for obesity. 

Synopsis 
Bariatric surgery is the only effective treatment for severe obesity. Roux-en-Y gastric bypass (RYGB) 
and sleeve gastrectomy (SG), the most commonly performed procedures, lead to sustained weight loss, 
improvements in obesity-related co-morbidities and reduced mortality. In humans the main driver for 
weight loss following RYGB and SG is reduced energy intake. Reduced appetite, changes in subjective 
taste and food preference and altered neural response to food cues are thought to drive altered eating 
behavior. The biological mediators underlying these changes remain incompletely understood but 
changes in gut-derived signals, as a consequence of altered nutrient and/or biliary flow, are key 
candidates.  
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Introduction 

Bariatric surgery is currently the only effective treatment for severe obesity, which is defined by 

a body mass index (BMI) equal to or greater than 40 kg/m2, or greater than 35 kg/m2 in the presence of 

obesity-related complications (1). Bariatric surgery involves surgical manipulation of the 

gastrointestinal (GI) tract, which alters nutrient flow and impacts upon GI biology. These changes 

engender beneficial effects upon energy and glucose homeostasis (2-4).  

Gaining an understanding of the mechanisms underlying the sustained weight loss and 

metabolic benefits produced by bariatric surgery may hold the key to developing novel non-surgical 

treatments for obesity and type 2 diabetes (T2D). In particular, it is now clear that altered eating 

behavior plays a key role in mediating the weight loss following SG and RYGB in humans (5, 6). This 

has led to intense research efforts focused on delineating how SG and RYGB impact upon the drive to 

eat. 

 

Historical perspectives 

The concept of bariatric surgery emerged in the 1950s from the observation that small intestine 

resection resulted in weight loss (7). The first procedure aimed specifically at inducing weight loss, a 

jejunoileal bypass (JIB), where the majority of the small intestine was bypassed, was performed in 

1953 (8). The theoretical basis driving the development of the JIB was that weight loss would be 

achieved through malabsorption. This indeed was the case, however weight loss was coupled with 

electrolyte imbalances, nutritional deficiencies, diarrhea and liver failure, necessitating the 

development of less malabsorptive surgical procedures (8). In addition, patients with peptic ulcer 

disease who underwent gastric resection and/or bypass were also observed to lose weight. In these 

patients reduced stomach capacity (restriction) and decreased digestion were suggested to drive 

weight loss (8). This led Mason et al. to perform the first gastric bypass procedure for weight loss in 

1967 (8). These two different approaches formed the basis for subsequent “malabsorptive” and 

“restrictive” procedures or “hybrid” procedures, combining these two mechanisms, for example the 

RYGB, that have evolved over the ensuing 60 years (7, 8). However, it is now recognized that the 

majority of bariatric procedures engender weight loss and metabolic improvements by mechanisms 

other than restriction and/or malabsorption. 

 



 3 

Over the last decade the beneficial effects of bariatric surgery upon weight and obesity-

associated co-morbidities have resulted in a marked increase in the number of bariatric procedures 

undertaken with approximately 460,000 operations performed in 2013 (9). The choice of surgical 

procedure has, and still is, evolving guided by technical advances, the beneficial clinical outcomes 

achieved, short and long-term complication rates as well as by the evidence regarding the physiology 

underpinning their success. Currently, the most common procedures undertaken globally are RYGB, 

SG, adjustable gastric banding (ABG) and biliopancreatic duodenal switch (9). Purely restrictive 

procedures such as AGB and vertical banded gastroplasty are now less commonly performed. RYGB 

and SG represent the vast majority of procedures undertaken and will form the focus of this review. 

Figure 1 near here  

 

RYGB 

In RYGB, a small gastric pouch of approximately 20mls is created through dividing the 

stomach. This is anastomosed with the mid-jejunum, creating the Roux limb, allowing ingested 

nutrients to bypass the majority of the stomach, duodenum and proximal jejunum (10). Anastomosis of 

the biliopancreatic limb with the jejunum allows drainage of bile acids and pancreatic secretions, which 

mix with the ingested nutrients in the jejunum (10). RYGB is established as an efficient treatment for 

severe obesity, with the long-term (>20 years) outcome data demonstrating sustained weight loss and 

favorable metabolic outcomes, particularly relating to T2D (11, 12). 

 

SG 

SG, intended as a purely restrictive procedure, was initially performed as a first-stage procedure 

to reduce weight in patients with BMI>50 kg/m2. Following weight loss, this was then transformed into 

a hybrid procedure such as RYGB. However, SG alone resulted in significant sustained weight loss 

and metabolic benefits, leading to the adoption of SG as a standalone procedure (9, 13, 14). SG 

involves transection along the greater curvature of the stomach and removing 80-90% of the total 

stomach volume, including the fundus and body, without intervention to the small intestine (15). 

Gastric contents pass rapidly into the duodenum.  

SG is technically easier than RYGB, associated with fewer complications, peri-operative and 

nutritional complications and produces similar short-term weight-loss and clinical outcomes compared 
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to RYGB (13, 16, 17). Consequently the proportion of SG has increased from 0 to 37% from 2003-

2013 and is anticipated to become the most common bariatric procedure undertaken (9). Randomized 

control trials are currently underway, comparing outcomes post-RYBG against SG in severely obese 

individuals and comparing the efficacy of the two procedures with regards to resolution of T2D (18, 

19). 

FIGURE 2 near here 
 
Table 1 near here 
 
 

Body weight regulation and the impact of obesity 

The mechanisms regulating body weight are complex and involve neural circuits controlling 

energy homeostasis as well as reward-related pathways. Regulatory brain centers continually 

integrate peripheral signals relating to energy stores and nutrient availability to determine feeding 

behavior (4). Leptin, insulin and gut-derived factors are established as key regulators of energy 

homeostasis (20). Peripheral long-term signals, providing information regarding availability of energy 

stores via insulin and leptin secretion in response to adiposity, and short-term signals regarding 

nutrient and meal-derived energy availability modulate hunger and satiety perception (21). 

Gut hormones are secreted from the GI enteroendocrine cells in response to nutrient ingestion 

and act as autocrine, paracrine and endocrine regulators of energy and glucose homeostasis (4, 22). 

The anorectic hormone peptide YY3-36 (PYY) and glucagon-like peptide-1 (GLP-1), an incretin 

hormone, are both secreted in response to nutrient ingestion from enteroendocrine L-cells present 

throughout the GI tract (5, 22). PYY has potent anorectic effects, with exogenous administration 

shown to reduce food intake (23). Evidence from experimental imaging and translational studies 

indicate that PYY mediates its anorectic effects predominantly by acting upon central appetite-

regulating circuits and brain regions involved in food reward (24). There is also evidence that 

circulating GLP-1 has appetite-suppressing effects by modulating neural activity within homeostatic 

and reward brain centers, in a manner additive to PYY (25). The orexigenic hormone ghrelin, 

produced by P/D1 cells in oxyntic glands in the gastric fundus, also acts on homeostatic and reward 

centers involved in appetite regulation to control energy intake (26). Circulating ghrelin levels increase 

in the fasted state and decrease post-prandially (22, 26). Elevations in ghrelin levels have been 

shown to enhance the hedonic responses to eating (27).  
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Bile acids, in addition to their role in lipid metabolism, influence glucose and energy 

homeostasis, through signaling and nutrient sensing in the hepatoportal circulation (28). Furthermore, 

bile acids directly affect the intestinal microbiome through local effects on the intestinal milieu (29). 

The microbiome, which has recently been implicated in the pathophysiology of several disease 

processes, also contributes toward energy homeostasis (28, 30). A dysbiotic relationship between 

host and micriobiome could contribute to the development of obesity through increasing intestinal 

permeability and energy absorption (28). 

Taste and olfactory signals influence food selection and, consequently, energy intake (31) . 

Interestingly, there is emerging evidence for an interplay between signals of energy homeostasis and 

taste and smell. Insulin leptin, GLP-1, PYY and ghrelin have been found in saliva and their cognate 

receptors identified on taste buds and olfactory neurons (31). It is now also clear that rewarding food-

related sensory stimuli can override satiety signals leading to excess energy intake. Chronic excess 

energy intake leads to deregulation of the homeostatic mechanisms that normally control body weight, 

which will predispose an obese individual to further weight gain. (27). Physiological changes in 

obesity include: resistance to the effects of both leptin and insulin, blunted circulating gut hormone 

responses to nutrient ingestion, with reduced plasma PYY and GLP-1 levels, dysregulation of 

circulating ghrelin, reduced circulating bile acids levels, altered gut microbiome and decreased vagal 

signal transmission (32).  

Obese individuals perceive foods high in sugar and fat content more pleasurable compared to 

lean individuals (33). Furthermore, brain imaging studies have shown increased stimulation of central 

reward pathways in response to eating or food cues in obese compared to normal weight individuals 

(33-35). Consequently, eating behavior in obesity becomes dissociated form perceptions of satiety 

and hunger (36).  

 

Why is weight loss maintenance through non-surgical means so difficult? 

Weight loss through intentional caloric restriction results in compensatory changes that aim to 

defend the higher body weight (35). These include decreased energy expenditure, due to reduced of 

lean muscle mass and reduced sympathetic activity (37), reduced circulating leptin, GLP-1 and PYY 

levels with increased ghrelin levels (35), altered brain neural response to food cues. Moreover, these 
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changes are sustained in the long term (35). Table 2 compares physiological responses to weight loss 

though dieting with bariatric surgery. 

Table 2 near here 

 
Sustained weight loss following bariatric surgery 

In contrast to weight loss though calorie-restricted dieting, bariatric surgery poses an effective 

treatment for severe obesity with significant weight loss, sustained in the long-term. Data from the 

Swedish Obese Subjects (SOS) study shows that after 20 years of follow up, patients who received 

bariatric surgery had achieved a mean body weight reduction of 18% compared to a 1% mean body 

weight reduction seen in patients who received standard medical treatment through their local health 

centres. (11). However, it is important to note that the weight loss achieved post-surgery follows a 

wide and normal distribution and studying the extreme responders may provide key insights into the 

mechanisms involved (Figure 3) (38). 

FIGURE 3 near here 

 

Mechanisms other than restriction and malabsorption are at play 

The multi-factorial mechanisms promoting weight loss and improvements in obesity-related co-

morbidities following RYGB/SG are incompletely understood. However, it is now clear that the 

beneficial effects of bariatric surgery are not achieved through restriction and malabsorption alone (39, 

40). Reduced energy intake, as a result of altered eating behavior, is the main driver for weight loss in 

humans (5, 22, 41). Here we review the key eating behavior changes that occur following RYGB and 

SG together with the potential mechanisms by which RYGB and SG impact upon central appetite-

regulating circuits.  

 

Eating behavior changes following RYGB and SG 

Changes in eating behavior following bariatric surgery were first suggested by Bray et al (42) in 

1980, who observed a reduction in food intake following intestinal bypass. They proposed that ‘oral’ 

(taste or smell), ‘gastrointestinal’ (mechanical distension or nutrient composition) and ‘post-

ingestional’ (nutrient or hormonal satiety mediators) factors as possible mediators (42). Following 

RYGB and SG patients report appetite changes with reduced hunger and increased satiety (43-45). 

Post-surgery altered subjective taste and smell together with the food aversions are common and are 
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thought to drive a change in food preferences away from sweet and high-fat foods (6, 46, 47). 

Moreover, the reward value of food-related stimuli is decreased post-surgery (6, 48). A study using 

progressive ratio tasks to assess reward values of food pre- and post-RYGB, revealed a significant 

reduction in the reward value of sweet and high-fat foods after surgery, compared to a control group 

(49). Studies using functional MRI scanning have shown lower brain-hedonic responses to food 

following RYGB compared to AGB, associated with lower palatability of high-fat and energy-dense 

foods (48, 50, 51). Consequently, a change in the way food is perceived is considered a key 

contributor toward the altered food preference leading to a lower energy intake post-surgery. 

 

Potential mechanisms underlying eating behavior changes post-surgery in humans 

Altered eating behavior following RYGB and SG results in a lower energy intake, which is the 

main driver for weight loss in humans (22, 52). The biological mediators underlying these changes 

remain incompletely understood but gut-derived signals as a consequence of altered nutrient and/or 

biliary flow are key candidates. Interestingly, although RYGB and SG differentially alter Gl anatomy, 

they lead to comparable outcomes in terms of weight loss and metabolic benefits (17, 53).  

 

Gut hormones  

A landmark publication by Cummings et al. in 2002, showed that circulating ghrelin levels rose 

with calorie-restricted diets but reduced markedly post-RYGB (54). These findings acted as the 

catalyst for investigating the role of gut hormones as mediators of the beneficial effects of surgery. 

Subsequently, there has been some controversy regarding post-RYGB circulating ghrelin levels. 

However, these differences reflect methodological variability in terms of duration post-surgery and 

sample processing techniques as the active from of ghrelin, acyl-ghrelin is highly labile and requires 

specific processing in order to accurately measure circulating levels (55, 56). SG, which involves 

removing the majority of ghrelin-producing cells, leads to sustained and greater reduction in 

circulating acyl-ghrelin levels than RYGB (53). Both RYGB and SG are associated with marked 

increase in nutrient-stimulated circulating levels of PYY and GLP-1 (53, 57). These changes occur 

prior to and independent of weight loss, pointing towards a procedure-related mechanism. 

Comparative studies suggest that RYGB leads to greater post-meal PYY and GLP-1 levels compared 

to SG (53).  
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Cross-sectional studies have shown that patients with poor weight loss exhibit higher subjective 

hunger, lower subjective satiety, higher ghrelin and lower PYY and GLP-1 compared to patients with 

good weight loss (58, 59). Furthermore, inhibition of PYY and GLP-1 with somatostatin analogue, 

octreotide, leads to return of appetite and increased energy intake and weight gain (60).  

Gut hormone receptors for PYY, GLP-1 and ghrelin are expressed on taste buds and there is 

emerging evidence that these hormones modulate taste (61, 62). Given that the post-operative 

changes in eating behavior and taste perception overlap with the known effects of changes in gut 

hormones, it is biologically plausible that these changes can be attributed to increased gut hormone 

secretion and signaling through gut hormones receptors. Favorable gut hormone responses post-

surgery, with increased meal-stimulated PYY and GLP-1 levels, combined with lower ghrelin levels, 

are clearly associated with higher weight loss. However, the causative factor of this effect is not yet 

established.  

RYGB and SG have been undertaken in transgenic rodents in order to provide mechanistic 

insights into the role of altered gut hormones. Somewhat surprisingly, global GLP-1 receptor knockout 

mice exhibit similar weight loss and glycemic improvement following SG and RYGB to their wild-type 

littermates (63, 64). Similarly, global ghrelin knockout mice respond in a similar manner following SG 

to their wild-type control mice (65). However, PYY knockout mice exhibit reduced early post-operative 

weight loss and glycemic improvement compared to wild-type mice (4, 65). These observations 

suggest that weight loss and metabolic improvements are at least partially mediated by post-operative 

modulation of PYY.  

Other gut hormones with effects on feeding behavior have also been studied. Oxyntomodulin, a 

pro-glucagon derived peptide with parallel actions to GLP-1 and anorectic effects, has been shown to 

increase post-RYGB (22). The anorexigenic hormone cholecystokinin has been suggested to act 

synergistically with leptin and amylin, a pancreatic hormone co-secreted with insulin, may also exhibit 

anorectic effects (20). However, the extent of their role in mediating the effects of post-bariatric 

surgery has not been established.  

 

Bile acids and microbiome 
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Both RYGB and SG induce changes in the interaction between ingested nutrients and bile 

acids. Despite their anatomical differences, they exert similar effects on bile acids, altering both their 

composition and secretion (29). RYGB and SG both lead to increased bile acid secretion, which has 

been linked to improved lipid and glucose metabolism (28). 

The metabolic effects of bile acids are mediated through signaling via two receptors; the cell 

surface G protein-coupled receptor 5 (TGR5) and farsenoid X receptor (FXR) (29). TGR5 is 

expressed on L-cells and activation of the receptor leads to GLP-1 release. Increased TGR5 

activation is a proposed mechanism contributing to higher GLP-1 levels following bariatric surgery 

(28). The FXR pathways have several functions, including regulating bile acid synthesis, secretion, 

conjugation and regulation of the intestinal microbiome (28, 29, 66, 67). The latter influences energy 

absorption, through altering intestinal mucosal permeability, and energy expenditure by intracellular 

thyroid hormone activation via FXR signalling (28, 68). Following RYGB and SG the intestinal 

microbiome is altered. Moreover, the finding that transplant of feces from RYGB-treated to germ-free 

mice resulted in significant greater weight loss compared to mice receiving feces from sham-surgery 

treated mice suggests that the altered microbiome per se contributes to weight loss (69). However, 

significant differences exist between the rodent and the human microbiome, as well as in the 

physiological processes driving weight loss. Thus, the relationship between post-operative weight loss 

and bile acids, FXR signaling and intestinal bacteria in humans remains to be clarified. 

 

Enteroplasticity 

Enteroplasticity refers to the post-surgical adaptations, including remodeling of the intestinal 

mucosa, morphological changes and alterations in innervation (29). Increased post-operative nutrient 

exposure of intestinal L-cells is thought to lead to enhanced secretion of PYY, GLP-1 and 

oxyntomodulin (28, 29). There is also evidence that L-cells proliferate and exhibit increased nutrient 

sensitivity, exhibiting higher responsiveness to the exposed nutrient with resulting higher nutrient-

stimulated PYY and GLP-1 secretion (29). Neurophysiological studies suggest that vagus nerve 

signaling also increases post-RYGB (32). These intestinal adaptations may contribute to the 

sustained metabolic effects of bariatric surgery. 

The future: knife-less surgery? 
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Bariatric surgery is a safe and highly effective treatment for obesity and T2D. Nevertheless, it 

requires long-term follow-up and monitoring for complications, nutritional deficiencies and 

development or relapse of T2D. Despite the increasing numbers of procedures performed, there is 

high geographic variability in accessibility to surgery. In addition, although bariatric surgery is highly 

effective, at the individual level clinical response is highly variable. Therefore, developing novel 

therapies that mimic the post-bariatric surgery internal milieu poses an appealing therapeutic aim. 

Understanding the interplay between gut hormones, bile acids and the microbiome will be key in order 

to both fully elucidate both the success of bariatric surgery as well as the reasons behind the 

variability in response. Such findings would enable the development of non-surgical treatment options 

for obesity, leading to sustainable weight loss and reduction in obesity-related morbidity and mortality. 
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Figure legends 

Figure 1: Left: Number of bariatric procedures performed by published surveys. Right: Numbers of 

procedures performed worldwide. Adapted from Angrisani et al (9) 

 

Figure 2: Illustrations of (A) normal GI tract, (B) RYGB and (C) SG.  

(A) Multiple hormones are secreted from the GI tract. Ghrelin is secreted from the P/D1 cells of the 

gastric fundus, whereas GLP-1 and PYY are secreted from L-cells located predominantly in the ileum 

and colon. (B) RYGB; nutrients bypass the majority of the stomach and flow directly into the mid-

jejunum. Anastomosis of the biliopancreatic limb with the jejunum allows drainage of bile acids into the 

common limb, where ingested nutrients and bile acids mix. (C) SG; Nutrients pass rapidly from the 

gastric sleeve into the duodenum with unaltered flow of bile acids. Following RYGB and SG, 

circulating ghrelin levels are reduced, meal-stimulated PYY and GLP-1 are increased. Bile acid 

secretion is enhanced and the microbiome is altered. These changes in gut-derived factors are 

thought to drive reduced appetite and altered food reward value, leading to a decreased energy intake 

and weight loss. 

 

Figure 3: Histogram illustrating maximal percent weight loss in patients following RYGB and SG. 

Adapted from Manning et al (38) 
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Tables 

 

Table 1: Weight loss, type 2 diabetes remission and complications following RYGB and SG 

 RYGB SG 

   

Weight loss (%WL)  
STAMPEDE (3 years)(70) 
 
 
BOLD data 6 months (13) 
 
BOLD data 12 months(13) 

 
24.5+/-9.1 % 

 
 

26.8% 
 

34.2% 

 
21.1+/-8.9% 

 
 

24% 
 

29.5% 

Type 2 diabetes remission at 3 years 

STAMPEDE(70) 

 
 

38% 

 
 

24% 

Complications (BOLD data) (13) 
All complications 
Serious complications 

 
10% 
2.5% 

 
6.3% (P<0.001) 
2.4% (P = 0.736) 

The Surgical TreAtment and Medications Potentially Eradicate Diabetes Efficiently (70) trial, investigated 3-year 

weight loss and remission of type 2 diabetes in patients with type 2 diabetes, randomised to medical therapy or 

medical therapy plus either RYGB or SG (16). The Bariatric Outcomes Longitudinal Database (BOLD)  compared 

weight loss and complications following SG and RYGB (13). 
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Table 2: Comparison of the effects of weight loss due to ‘dieting’ or following bariatric surgery on 
signals of energy balance and appetite. 
 

 Weight loss through dieting Weight loss through 
bariatric surgery 

 
Ghrelin 

 
 

 
 

PYY 
 

GLP-1 
 
Leptin 

 
Levels increase with dieting (35, 
54) 

 
 
 
Reduced levels (28, 35) 
 
Reduced levels(28, 35) 
 
 Reduced levels(71) 

 
Reduction with SG, possible 
reduction with RYGB in the 
immediate post-operative 
period(53) 
 
Increased levels (17, 53, 72) 
 
Increased levels(17, 22, 53) 
 
Reduced levels.(71) 
Suggestion that leptin 
sensitivity may improve (20) 

 
Bile acids 

 
Unclear.  
Blunted bile acid response in 
obesity with no significant 
difference following AGB (73) 

 
Increased secretion 

 
Intestinal microbiome 

 
Improvement with weight loss (74) 

 
Altered (‘leaner’) microbiome 
(29, 74) 

 
Perceived hunger  
 
Perceived satiety 
 
Food aversions 

 
Increased hunger (35) 
 
Lower satiety (35) 

 
Reduced hunger (43) 
 
Increased satiety (6) 
 
Altered food preference (47) 

 
Long-term 
sustainability 

 
Average 80% weight regain in 5 
years (75) 

 
Average weight loss of 25% 
at 10 and 18% at 20 years 
post RYGB (3, 11) 

 
Body weight 
regulation 

 
Homeostatic mechanisms defend 
higher body weight (35, 75) 

 
Resets body weight ‘set 
point’ to lower weight (5) 
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