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Abstract 

We explore some key constructs and research themes initiated by Jim Kaput, 

and attempt to illuminate them further with reference to our own research. 

These 'design principles' focus on the evolution of digital representations since 

the early nineties, and we attempt to take forward our collective understanding 

of the cognitive and cultural affordances they offer. There are two main 

organising ideas for the paper. The first centres around Kaput's notion of 

outsourcing of processing power, and explores the implications of this for 

mathematical learning. We argue that a key component for design is to create 

visible, transparent views of outsourcing, a transparency without which there 

may be as many pitfalls as opportunities for mathematical learning. The second 

organising idea is that of communication, a key notion for Kaput, and the 

importance of designing for communication in ways that recognise the mutual 

influence of tools for communication and for mathematical expression.  

 

Introduction 

In an extraordinarily comprehensive and challenging review of technology and 

mathematics education, Jim Kaput (1992) mapped out a framework for understanding 

the roles of technology in the field, with a particular focus on the theme that would 

occupy his attention for the rest of his life – the evolution of notational systems for 

expressing mathematics. In this paper, we have used several of Kaput‘s major papers 

as ‗data‘ from which to draw out a set of related ideas that can justifiably be called 

'Kaput‘s principles'. These principles are grounded in Kaput‘s research; we aim to 

rehearse the arguments and extend them where we can in order to contribute to a 
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coordinated research agenda that will situate Kaput's work in the broader field, and 

seek to take it forward. 

 

Background  

It is now 40 years since the first email. In that time, communication between 

individuals has been transformed, not only in terms of how we communicate, but what 

might be said and to whom. It has created (difficult, in English at least, to avoid the 

technocentric formulation that suggests that the technology is the primary agent) new 

forms of technical infrastructure – like threading and smart mailboxes – and these, in 

turn, have helped to transform the technology into an invisible part of the culture – 

most of us routinely leave the e off email.  

 

Yet email has had no proximal effect on our major concern, that is mathematical 

learning. Why should it? Would we expect any technological change to have an effect 

(however defined) on a particular aspect of learning? Surely not: it would be strange 

indeed if each piece of a technology itself had a specific and measurable outcome on 

some educationally relevant practice.  Of course, it has had a distal effect: teachers 

communicate with each other via email – they, like everyone else, have come to think 

of communication as instantaneous, global. In the sense that the social and 

professional lives of teachers and researchers have been transformed, email has had 

its effect. But this is not a proximal effect – there is, to the best of our knowledge, no 

attempt to research the possibilities of email for the mathematics classroom. (Maybe 

there should be: we do, after all, have evidence that communicating mathematical 

ideas to a distant and invisible peer can encourage a formal mode of discourse 

between students: Noss et al., 2002).  

 

One issue that naturally arises, therefore, is to ask what are the necessary conditions 

for a technology radically to shape transformational change in the learning and 

teaching of mathematics (it is, of course, clear that finding sufficient conditions, 

though desirable, is unachievable)? This is an important problem for mathematics 

education, as it encourages us to look not only at what is special about technologies, 

but what is special about mathematics to be learned. It is a structural, epistemological 
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problem, concerning knowledge transformation, as well as what might be functionally 

possible to learn. It is a problem that was at the heart of so much of Jim Kaput‘s 

research work. In his seminal paper, Kaput (1992) argued:  

 

Anyone who presumes to describe the roles of technology in mathematics education 

faces challenges akin to describing a newly active volcano - the mathematical mountain 

is changing before our eyes, with myriad forces on it and within it simultaneously. 

Many of these forces have a technological component ... the same technological forces 

that shape the mathematics also deeply affect the teachability and learnability of 

mathematics, both old and new‘ (p. 515).    

 

Trying to understand how technology can shape (and be shaped by) mathematical 

knowledge and its expression has kept us occupied for much of this time, a 

preoccupation about the interrelationship between technology and epistemology that 

we shared with Kaput. A major concern for us both has been to describe how 

mathematical abstraction is scaffolded within computational media, and to seek 

legitimacy for alternative representational systems that harness them. Our way of 

thinking about this problem has centred around understanding how mathematical 

expression can at once appear as decontextualised and yet – notably in the context of 

suitably-crafted technology – remain connected to and situated in the linguistic and 

conceptual web of resources afforded by the medium and the activity system (see 

Noss & Hoyles, 1996; Hoyles, Noss and Kent, 2004, for a discussion of situated 

abstraction and ongoing theoretical work by, for example, Lobato (2005) who brings 

the notion of agency into the theoretical discussion).  

 

When we recently undertook a review of technology and mathematics over a decade 

after Kaput's 1992 paper, we were again faced with the enormity of the volcano, and 

its extreme level of activity. Like Kaput, we noted that the incorporation of 

technologies into mathematical learning almost inevitably brings to the fore a range of 

key questions – particularly those concerned with transformation of the what  of 

mathematics rather than merely the how – precisely because digital technologies 

disrupt many taken-for-granted aspects of what it means to think, explain and prove  

mathematically and to express relationships in different ways (Hoyles & Noss, 2003).  

In the remainder of this paper, therefore, we will seek to elaborate some of these ideas 
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by focusing on what we distinguish as four design principles generated by Kaput‘s 

work.  

First principle: attend to representational 

infrastructure 

In his 1992 paper, Kaput starts with a comparison between our current relationship 

with computers and that of owners of the Model T Ford, a car for which a rather 

intimate knowledge of its functioning was necessary before it could be driven. Kaput 

points out that in 1992 we were computationally at the point of the 'latter days' of the 

Model A., in which necessary intelligence needed to operate the car had 'migrated' 

from person to machine, standardisation had emerged, and previous modes of 

transport were beginning to fade: 

 

We have progressed beyond the Model T, where one needed to be an expert to start and 

run the vehicle, where standards for automobile operation were not yet established, and 

where competition with older modes of transportation were important factors. (p. 516).  

 

Perhaps so, although struggling with the idiosyncrasies of the word processor we are 

using, it sometimes doesn't feel quite like that, even now! In any case, it is important 

to appreciate that the evolution of the technology of the car – how it came to be that 

expertise for driving a car became straightforward and non-expert – is not only a story 

of technology enhancement. It is a story of infrastructural transformation as well. As 

Kaput put it: 

 

... rules of the road gradually came to be standardized and codified as experience 

dictated needs and redefined solutions. ... one needed a protocol to deal with frightened 

and startled horses, for example. .. And, of course, the roads themselves, reasonably 

well suited for earlier modes of transportation, needed rebuilding to accommodate the 

requirements of automobiles , which could not approach their real potential on roads not 

designed for them. (p. 517). 

It is worth exploring Kaput's point a little more. We would not ask, now at least, 

whether a car would arrive at its destination sooner than a horse drawn vehicle – but 

we could have asked once. What has changed? Partly the possible speed of the car. 

But without suitable roads and rules by which we drive on them, no amount of 
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technological enhancement would improve journey time – in some conditions, a horse 

drawn vehicle would certainly arrive faster. The key design principle we derive from 

Kaput's analogy is that the car, the necessary infrastructure, and rules of discourse that 

governed their interaction co-evolved simultaneously, forming a triad that creates 

what he described as a representational infrastructure
1
. Once defined,  Kaput pointed 

to the need for mathematics educators to attend to this infrastructure because of its 

influence not only on how mathematics is learned but what is learned.  We noted 

(Kaput, Hoyles & Noss, 2002) that although general questions of representational 

infrastructures may seem somewhat remote from the task of learning mathematics, it 

raises to the fore the central challenge of designing learnable systems. Such systems 

depend on the representional forms with which they are expressed, shaping and 

sometimes defining what can be considered as learnable. The difficulty of a 

mathematical idea often inheres in the system with which it is expressed – imagine 

just how difficult it would be to remember the various procedural rules of calculus 

(like the chain rule) without Leibniz's elegant notation. 

A similar argument is proposed by Papert (2006), who invites us to join him in a 

thought experiment at the time when Roman numerals were in use:  

 

Imagine that the small number of people capable of doing multiplication was an 

obstacle to economic progress and that the learning scientists were funded to mobilize 

all the great ideas in How People Learn to remedy the situation. Undoubtedly better 

teaching would increase the number of people capable of performing the complex art of 

multiplication. But something else did this far more effectively: the invention of Arabic 

arithmetic turned an esoteric skill into one of "the basics".  (p. 582).  

 

This observation is by no means trivial, not least because of the invisible – or at least 

taken-for-granted – character of the mathematical infrastructure, a point to which we 

shall return later. The point is that some infrastructural changes are so powerful, so 

transformative in, not just the possibilities of new pedagogy, but of epistemology – 

they redefine what counts as possible, what is expressible. The principle is clear: the 

                                                 
1
 As a thought experiment, it is interesting to imagine what could have developed as a standard car if 

the job of transforming the terrain proved simply too intractable: A very different kind of vehicle 

would have evolved, and very different kinds of social relations to maintain its function. 
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infrastructure, and in particular the relations between its constitutive elements, are 

legitimate objects of study, crucial to understanding what mathematics might be 

expressed and how, and who is capable of success. We only remark here that our own 

work on this issue has taken two distinct forms: first, the possibilities, in designing 

new kinds of representational infrastructures, of opening new trajectories for learners 

who cannot adequately deal with conventional representational forms; and second, in 

studying the roles of the invisible mathematics of workplaces, and how these can be 

explicitly addressed. We elaborate both of these issues below.   

 

Second principle: work for infrastructural change 

We now turn to consider the second principle, perhaps more aptly seen as a corollary 

of the first: the potential of new representational infrastructures to facilitate change in 

what is learned and who can learn it, to explore how far we have progressed from the 

model T.  In  a paper we prepared together (Kaput, Hoyles & Noss, 2002), we noted 

how little impact digital technologies had been made on mathematics teaching and 

learning:  

 

The appearances of new computational forms and literacies are pervading the social and 

economic lives of individuals and nations alike. Yet nowhere is this upheaval 

correspondingly represented in educational systems, in classrooms, or in school 

curricula. As far as mathematics is concerned, the massive changes to mathematics that 

characterize the late twentieth century—in terms of the way it is done, and what counts 

as mathematics—are almost invisible in the classrooms of our schools and, to only a 

slightly lesser extent, our universities. (pp. 51). 

 

We suspect that the situation remains rather similar even in these early years of the 

twenty-first century. Kaput's abiding focus was on the hegemonic role of algebraic 

expression as a means to express mathematical structure in pedagogical settings. 

Indeed, it is clear how algebra often serves as a barrier to students being able to 

articulate generality (see Küchemann and Hoyles, in press) even though the need to 

express and justify generality is "the heart, root and purpose of algebra" (Mason, 

2005, p. 2). This difficulty – essentially with the pedagogic appropriateness of the 

representational infrastructure as a means for novices to express mathematical ideas – 

has been well documented and theorised (see, for example, Bednarz et al. 1996, Healy 
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& Hoyles, 2000, Stacey et al, 2004). Moreover, Küchemann and Hoyles (in press), 

also showed that although the use of structural reasoning increases with age among 

high-attaining students aged 13-15 years  (that is, reasoning by reference to 

infrastructure in whatever mode of expression) it does so only at a very modest rate 

alongside widespread and largely inappropriate pattern spotting or calculation. 

 

In a forthcoming edited volume, Algebra in the Early Grades, Kaput and colleagues 

(Kaput, Carraher & Blanton, in press) brought a new dimension to our understanding 

of these results by locating the problem in the historical roots of the "elitist" 

mathematics curriculum, taking account of whom, and for what purpose, 

mathematical expression was historically considered appropriate (interestingly, this 

theme is echoed in Papert, 2006, who uses this argument to refute the Chomskian 

claim that human evolution has occurred in ways that are incompatible to algebraic 

thinking). Kaput et al. identified a range of representational innovations, all of which 

required a computational medium for their realization but did not require algebraic 

infrastructure for their use and comprehension, thus gaining increased accessibility for 

more learners. But of course, not every computational medium would fit this agenda; 

a key property Kaput identified was that phenomena were at the centre of the 

representation experience, so learners could see the results of their actions on 

representations of the phenomenon, and vice versa.  

 

While mathematisation of phenomena is undoubtedly a powerful criterion for 

classifying transformative potential, the mechanism for achieving mathematisation is 

no less important. We argued recently, in a review of research concerning 

mathematics and digital technologies, (Hoyles & Noss, 2003), that we should seek to 

consider not only the ways in which digital technology shape mathematical learning 

through novel infrastructures, but also how it is shaped by its incorporation into 

mathematical learning and teaching contexts. Furthermore, apart from its unsurprising 

dependence on tasks, pedagogical interventions and activity structures, our review of 

research suggested that learning using potentially transformative digital technologies 

was highly sensitive to small changes in the technologies, and the micro-structures of 

infrastructure. So we would include an addendum to this second principle: the 

necessity to include detailed activities and their design criteria alongside any agenda 

of infrastructural change. To return to the driving metaphor, we must attend to the 
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quality of the car, the road and the need for rules and regulations to fit with the goals 

of car users: where people want to go and how. 

 

In seeking to characterise key components of new representational infrastructures, 

Kaput (1992) focused on the potential of dynamic media to link actions, noting that 

'cognitions that also monitor connections between representations are quite unlikely – 

cognitive resources are exhausted in carrying out the translations'. (p. 530). He also 

suggested that it might not be 'linked representations' that are the crucial means to 

effect these translations, but rather the affordance of the representational 

infrastructure to point, link or trigger another system. This is, of course, a critical 

capacity of mathematical thought: mathematical objects acquire their conceptual 

power from the ability of the thinker to conjure up properties, internal and external 

relationships, theorems and – last, and in meaning-generation terms, least – 

definitions. One possible design corollary (there are many) is to design environments 

in which a common representational infrastructure links diverse representational 

forms, by, for example, a programming language (see, for example, diSessa 2000).  

 

Of course, this last strategy begs several questions, not least about the status of such a 

representation, whether it somewhow stands above the representations to which it is 

linked, or is better considered as an instance of a class of representations none of 

which have privileged semiotic (or epistemological) significance. Neither should we 

underestimate just how problematic is the conceptual linkage of disparate 

representations for the student (see for example, Duval, 2000). Nontheless, in a paper 

some ten years ago, we worked on just this problem of common representational 

infrastructure that we briefly revist below (Noss, Healy & Hoyles, 1997).  

 

In a microworld Mathsticks, we linked direct manipulation of computational objects 

with the description of their arrangement in sequences as Logo programs. Our 

intention was to help students build links between seeing, doing and expressing 

through the common representational infrastructure of Logo, to investigate how 

mathematical meanings were structured by the tools available for expressing the 

relationships under study and to trace how far this mediational process assists in the 

construction of the mathematical meanings intended by their teachers or curriculum 

designers.  
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Mathsticks is an instance of a class software that we termed autoexpressive:  that is, a 

virtual world in which action within the environment entails and depends upon 

linguistic expression of the mathematical objects
2
. The key idea is that fuzzy 

intuitions concerning relationships are simultaneously expressed through and 

elaborated within a linguistic framework. Our attempt was to construct a language 

that was simultaneously rigorous and expressive, mathematically precise and 

learnable (see, for example, Sherin, 2001). 

 

Neither the details of the Mathsticks environment, nor the degree of success we 

achieved are especially pertinent. The idea of autoexpression tried to capture 

something special about digital technologies, or rather something special about the 

design of software that might encourage the development of mathematical meaning. 

By privileging the role of language, we aimed to express our conviction that linguistic 

representation, in the form of textual – and in this case, programmable – code, 

leverages a kind of expressive power, that could act as a replacement – in learning – 

for traditional algebraic expression (see Sacristán & Noss, in preparation, for a more 

recent example on the same theme).  

 

With hindsight, while maintaining the view that expressing relationships and coming 

to see the implications and limitations of one's expression, is a crucial role for 

microworlds we now recognise that textual expression is an instance of a more 

general class in which explicit representation – with or without text – is the key 

element. It is explicitness that is key, as it directly addresses the problem of the 

invisibility of infrastructure we referred to earlier. Our research with several non-

textual representational systems (see e.g. Hoyles & Noss, 2003; Simpson, Noss & 

Hoyles 2005) has nevertheless raised difficult questions, not least an appreciation 

both of the potential of dynamic graphical, animated infrastructures but the 

unparalleled opportunity afforded by text as an object on which to reflect – either by 

individual learners or groups.   

 

                                                 
2
 We are grateful to David Shaffer for helping us to elaborate this idea of autoexpression (personal 

communication: see also, Shaffer, 2005). 
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Additionally, we were confronted with the issue of how non-textual representations 

can be aligned with standard mathematical notation and more fundamentally the 

problem that,  as Kaput noted, school mathematics is all too often only about  these 

notations: 

 

Virtually every historically received formal system in the school mathematics 

curriculum evolved as a representation system ... They were thus primarily aimed at 

developing student competence in the syntax of some formal system. pp. 545-6. 

 

Here is, in our view, the key reason why alternative infrastructural solutions (Logo, 

Boxer, etc.) have yet to impact fundamentally on learning in mathematics. Put 

bluntly, attempts to replace  one representational system with another strike at the 

very heart of what the mathematics educational enterprise believes it is about: the 

notation system  is the territory not just the map
3
  so that replacing it with another – 

however well-tuned it may be epistemologically, and however learnable it may be –  

remains problematic.  

 

Third principle: outsource processing to the 

computer but attend to the implications 

Kaput's basic argument, elaborated in many papers since 1992, is that human history 

is entering a fifth phase, a virtual culture based on the externalisation of symbolic 

processing. The outsourcing of processing power from the human mind to the 

machine is the critical contribution that technology will potentially make, not least 

because of the opportunity to create "democratizing infrastructures which will 

redefine school knowledge" (Kaput, Hoyles & Noss, 2002). 

 

Perhaps the most straightforward research issue, in the sense of symbols coming alive 

to be processed externally, is to ask what kinds of roles external symbolic processing 

play in the generation of mathematical meaning. Obvious exemplars of external 

processing are computer algebra systems, such as Mathematica. The potential of such 

                                                 
3
 Wikipedia helpfully reveals that Alfred Korzybski's most famous saying means that "an abstraction 

derived from something, or a reaction to it, is not the thing itself". 

http://en.wikipedia.org/wiki/Alfred_Korzybski
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systems, as Kaput puts it, is that students can come to see mathematics as a 

'fundamental way of making sense of the world, reserving most exact computation 

and formal proof for those who will need those specialized skills' (Shaffer & Kaput, 

1999). Extraordinary possibilities emerge, including – to coin a phrase – a New Kind 

of Science (Wolfram 2002), a science that would be simply impossible with pre-

digital technologies. 

 

Given the remarkable potential for epistemological and pedagogical innovation that 

such systems embody, it is not surprising that attention has recently focused on the 

implications of this outsourcing trend for what new knowledge might be acquired and 

by whom (Noss & Hoyles, 2006). This work has centred on illustrating how 

mathematical learning is crucially linked, not only to the actions and attitudes of the 

teacher but on how far the students master what the French school of researchers term 

'the process of instrumentation': the extent to which the learner is aware of the system, 

and is able to look through it as well as look at it  (Artigue 2002).  This strand of 

work entails a more sensitive realisation that there is a fine balance between the 

'pragmatic' and 'theoretical' (or 'epistemic') roles of calculation. 

 

We have argued elsewhere (Hoyles, Noss and Kent, 2004), that the instrumental 

genetic analysis of students' evolving mathematical knowledge leaves relatively 

unexplored the texture of situated abstractions of mathematical ideas that are being 

developed and expressed, and how these abstractions are webbed by the available 

tools and shaped by the interactions with these tools and with the community. This is 

a critical point, since although schemes of instrumented action supply a powerful tool 

for conceptualising the process of tool-learner interaction, there is considerably more 

that needs to be done in terms of the kinds of mathematical knowledge that develop in 

such interactions. Primarily, this knowledge, or rather the ways in which it is 

expressed, may not look or sound like standard mathematical discourse: indeed, if the 

representational system underpinning the tool is non-standard, it follows that the 

knowledge will be similarly non-standard. This is what the notion of situated 

abstraction seeks to address: it allows us to recognise and legitimate mathematical 

expression even when it is remote from (or not represented by) standard mathematical 

discourse. The notion is particularly salient in computational environments, since it is 

the nature of interactive, dynamic representations that they encourage expression (and 
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therefore, initially at least, conceptualisation) that diverges from standard 

mathematics. Unless this is recognised, the genuinely transformative potential of 

digital technology representations will remain unacknowledged (see Noss & Hoyles, 

1996).  

 

Returning to the problem of outsourcing, the possibility of simply leaving to the 

machine the tedious and fragile business of arithmetic or algebraic calculation is, from 

a mathematical perspective truly momentous, and from a pedagogical perspective, 

clearly advantageous – but not unambiguously so. If the role of the calculation is 

merely to achieve an answer, then outsourcing it to a machine is unproblematic. But 

if, as the French workers have shown, there are aspects of calculation that also 

contribute to meaning-making, then the wholesale removal of technical expertise may 

have some unanticipated effects on the perception of mathematics as a coherent whole 

(see also, Goldenberg 2000).  

 

In this paper, we take a further look at the problem of outsourcing in an unusual but 

telling context – that of the workplace. Workplaces are distinguished from classrooms 

in many ways, one of which is particularly salient – there is (mostly) no explicit 

intention either to teach or learn, and especially not to teach or learn mathematics. 

Mathematics is invisible, even in workplaces that are avid consumers of mathematical 

knowledge in the form of computational systems (see, for example, Kent & Noss, 

2000). In such cases, the outsourcing of processing power reaches extreme limits (at 

first sight, it often looks as though no  mathematical knowledge is required by 

operators of computational systems). 

 

We have been studying the construed meanings of symbolic artefacts in workplaces in 

our project Techno-mathematical Literacies (TmL) at work
4
. By techno-mathematics, 

we mean the mathematics embedded in (and invisible within) technological artefacts; 

and by literacies,  we signal our intention to focus on the interpretation and functional 

                                                 
4
 The Techno-mathematical Literacies in the workplace project 

[http://www.ioe.ac.uk/tlrp/technomaths] isfunded by the Teaching and Learning Research 

Programme [http://www.tlrp.org], a programme of the U.K. Economic and Social Research 

Council (Award no. L139-25-0119). 
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use of mathematical relationships rather than any explicit production of mathematical 

relationships (see, for example, Hoyles & Noss, in press; Hoyles, Bakker, Kent & 

Noss, in press; Noss, Bakker Hoyles & Kent, 2007). 

 

Much of our work has focused on studying just what kind of TmL are tacitly or 

explicitly employed in technology-rich workplaces or are needed for more effective 

work. But we have recently turned out attention to systematic attempts to foster TmL, 

and to make transparent, where possible and appropriate, the mathematical 

relationships that underpin the workplace knowledge in use much of which has been 

outsourced to the machine. We take as a starting point symbolic artefacts that are 

familiar in the workplace and are intended to serve as boundary objects for 

communication between sub-communities in the workplace or between employees 

and their customers (Kent et al. in press). 

 

Let us take as an example, our work in the retail financial sector, a company we will 

call "Lifetime Pensions". We encountered a ubiquitous artefact, the "annual pension 

statement". The statement aimed to allow customers to share information held by the 

company on the state of their pension investment. All the calculations embodied in 

the statement were, of course, outsourced to a sophisticated computer system. 

 

We found that typically, customers would contact the company unable to make sense 

of the statement, or querying details within it. This necessitated explanations from the 

"Enquiry Team", often augmented by texts prepared by technical experts, sent (only) 

to the team. However, we found that most of the members of the Enquiry Team 

perceived the workings of all the underlying models as equally opaque, while in fact 

some were rather trivial (lump sum calculations), while others were extremely 

technical (annuity calculations). To summarise, we concluded that the accumulation 

of automated systems over time, had resulted in knowledge impoverishment of 

employees in two distinct but related ways.  First, the systems separated employees 

from any appreciation of the relevant simple models and calculations, and rendered 

them unable to communicate their structure and implications to colleagues and 

customers. An evocative example is that in a group of eight employees in Lifetime 

pensions, we found none who had ever considered that there existed any relationship 

between monthly and annual interest rates – other than company convention!  Second, 



In Educational Studies in Mathematics, 68. 2, 85-94   Page 14 of 21 

the system had rendered almost all the employees unable to distinguish information 

derived from simple models from those that could be answered only by adapting an 

existing solution by reference to technical experts.  

 

Our response to this challenge was to identify symbolic artefacts in the workplace as 

potential boundary objects to co-design with employees, computer tools that allowed 

reconstructions of  these artefacts in a layered way: that is so that some of their 

underlying mechanisms could be made progressively accessible, either by offering 

access to engage with the structure of the financial instrument or by providing 

visually intuitive feedback of the effects of different input variables on the model 

(Bakker et al.  2006) . In essence, our approach was to take the pension statement and 

recast it so that the shaping of the mathematical relationships were foregrounded. We 

used two different technological infrastructures, one utlising spreadsheets where 

employees were invited to express their understandings of the statement in terms of 

the 'language' of the spreadsheet and to generalise this over several time periods or 

across different instruments using compound interest. Second, we designed a 

standalone web-based tool with which employees could explore the interactions 

between time, interest rate, and  frequency of payments.  We also designed activities, 

often based on scenarios we has observed and found a readiness – even enthusiasm – 

on the part of many employees and trainers to work with us. We encountered first 

surprise that any relationships existed, let alone mathematical relationships that could 

actually be expressed by employees, some of whom had limited mathematical 

background, but later a growing confidence (one employee noted that "it was not as 

difficult as I thought!).  

 

What insights did we gather in relation to outsourcing? The assumption that all 

processing and calculation of mathematics can be embedded in a computer system, 

and thus be of concern only to technical specialists, clearly leads to huge difficulties 

in communication between different groups. We propose that the superficial similarity 

of mathematical knowledge at school and at work, (take, for example, the idea of 

compound interest) masks a significant distinction. The 'effect' of workplace context 

is to introduce a significant degree of complexity to even the simplest mathematics. 

Any mathematical procedure is not an isolated exercise but is part of a set of decisions 
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and judgements that have to be made about what is a complex process or product. In 

Lifetime Pensions, the actuarial assistant phrased it thus: 

―The maths involved is not hard, but it is applied in a very complicated way – there are 

the company rules and Inland Revenue [tax] rules‖. It is this complexity that is 

generally invisible and needs to be articulated so that in some cases at least, the 

calculations will become less problematic‖.   

The mathematics buried in this complexity is – due to the outsourcing of processing 

to the system – invisible; indeed, it often appears not to be mathematics at all. And so 

an unexpected result of devolving processing to computers, at least in the workplace, 

is that mathematical meaning becomes harder – not easier – to construct. The removal 

of the need to calculate does not – as we might have expected – provide the chance to 

focus on the structures, but rather removes from sight the structures themselves.  

 

It is this challenge that arises, albeit in a different form, in schools too. Our well-

intentioned attempts to outsource processing to computational systems – results in 

parts of the mathematical system being obscured, even as others are revealed. We 

have shown the potential of a layered approach.  It is here that we might gain some 

leverage by exploiting the idea of autoexpression, as a means to reconnect epistemic 

knowledge with pragmatic: there is, after all, a substantial difference between using a 

machine in which calculation has been outsourced, and expressing the means by 

which – say, in the form of an algorithm – the outsourcing should occur. Exploring 

the theoretical implications of this should, we argue, form part of any future research 

agenda. 

Fourth principle: exploit connectivity to encourage 

sharing and discussion   

We now turn to a fourth and final principle enunciated by Kaput, and one to which we 

can only give cursory attention. In his most recent work, Kaput argued that the 

connectivity made possible by computational media constituted a profoundly 

important set of affordances, ranking alongside the 'representational-simulation 

affordances' of computational media. He argued that the advent of broadband and 

low-cost (especially handheld) technology in classrooms offered considerable 

potential although he noted that, like any other technology, it could only reach fruition 

if it was integrated into classroom practice. Kaput was realistic about the research 
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challenges involved, noting that ―present uses of such technology are either 

representationally sophisticated but connectivity-limited (e.g. our prior SimCalc 

work) or connectivity sophisticated but representationally impoverished (e.g. 

commercially available ClassTalk systems).‖ (Roschelle & Kaput, 2005; p. 6). 

 

Our own response to this challenge has been to connect representational innovation in 

the WebLabs
5
 project, seeking to provide an autoexpressive medium with which to 

explore mathematical problems and to model solutions again without text and algebra 

(Noss & Hoyles, 2006; Simpson et al., 2005, 2006) and also to devise means by 

which students could share and critique each others' models across the internet. We 

achieved this by building sets of open tools that could be combined to construct more 

complex functionalities; these were built in ToonTalk (Kahn 1996), a state-of-the-art 

programming system where abstract computational concepts are represented by 

concrete animated analogues.  Alongside this, we devised a web-based system, 

WebReports, that allowed students to post their ideas – and their working models – 

and to interpret and reflect upon them in collaboration with their peers, some of whom 

might be working in other classrooms. (see http://www.lkl.ac.uk/kscope/weblabs).  

 

In practice, however, this last step proved to be much more difficult than we 

imagined. Many of the difficulties were pragmatic but more fundamentally, the tools 

for communication and the tools for the construction of the models were to some 

extent not sufficiently aligned. We did not manage sufficiently to develop the 

students‘ sense of ownership of inter-site group reports, and a common understanding 

of their purpose. In fact, we came to recognise the critical role for an inter-site 

"motivator" and are currently investigating the possibilities for automating this role, 

which might be the first step in introducing some intelligent support using the latest 

innovations in technology and connectivity to fostering collaboration. (ref)  

 

We did however, achieve remarkable success in encouraging discussion through our 

WebReports of  mathematical ideas in which the interchange was based around 

                                                 
5
 Grant IST 2001-3220 of the Information Society Technologies Programme of the European 

Commission. We acknowledge the contribution of all the WebLabs team, and notably the UK 

researchers, Y. Mor and G. Simpson. See http://www.weblabs.eu.com. 

 

http://www.toontalk.com/
http://www.weblabs.eu.com/
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students challenging each other‘s models competitively rather than building a joint 

outcome. For example, one challenge was to find the rule underlying a sequence 

followed by the quest for more elegant solutions (Mor, Noss, Hoyles & Simpson, 

2004), another to guess the movement of a moving car represented by a particular 

velocity-time graph.  These interchanges were sustained over several weeks with 

increasingly sophisticated explanations invoked. In short, we found that the tools and 

activities, and the new representational and communicative infrastructure – each of 

which had been iteratively designed by us for more than two years – were far from 

sufficient. Our most successful activities stemmed from the emergence of a cultural  

infrastructure, that arose alongside the technical and pedagogic  It is much too soon to 

predict how the infrastructural relationships will play themselves out in the presence 

of highly connected technologies: some very promising technical approaches are 

already mature (see e.g. Wilensky, 1999). But it is not unlikely that the outsourcing of 

connection – i.e. designing the technology to construct some of the cultural norms of 

the classroom in place of human interaction, will bring with it similar problems to 

those already experienced by the outsourcing of calculation. 

 

Concluding remarks  

Kaput's vision has begun to bear fruit, with more attention being directed at 

alternative representational systems, and a more explicit focus on the design of 

communication-rich settings. At the same time, as the outsourcing of calculations, 

processing and now connectivity to machines becomes the norm, the strengths and 

limitations of outsourcing are becoming clarified, and a viable research programme to 

assess learning potential is becoming defined. 

 

Our interest, like Kaput's, has been to understand what makes digital media 

qualitatively different  from other technologies that have promised so much, and yet 

have delivered so little (Shaffer and Kaput, 1999), at least in the classroom. Thanks to 

Kaput, the common over-optimistic trajectory for research in the use of digital 

technologies for innovative mathematical change has been curtailed: there has been 

early recognition of the cycle of over-enthusiasm and disillusion and a more ready 

appreciation of the need for a more nuanced documentation of potentials and 
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obstacles, appreciation of tool mediation, tasks and activities, and the 

acknowledgment of the teacher's role. Key challenges remain: above all, we have 

argued, to introduce transparency into the outsourcing of processing power and to find 

ways to support this process and learning more generally, through innovative 

development of learning communities undertaken by  teachers and - perhaps the time 

is finally here –  by machines.  
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