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A major challenge in mathematics education is to develop students’ abilities to 

reason mathematically, that is to make inferences and deductions from a basis of 

mathematical structures, henceforth referred to as structural reasoning, rather than by 

arguing for example from perception, the assertion of authority, or, in particular, from 

empirical cases—henceforth referred to as empirical reasoning (for a comprehensive 

perspective on proof that takes account of all its cognitive, social and well as 

mathematical constraints, see Harel & Sowder, 1998). Lampert (1990) argues that a 

common view of mathematics, in the world at large and in most mathematics classrooms, 

is one “in which doing mathematics means following the rules laid down by the teacher; 

knowing mathematics means remembering and applying the correct rule when the teacher 

asks a question; and mathematical truth is determined when the answer is ratified by the 

teacher” (emphasis in original). Formal proofs and consistent mathematical argument 

both require the ability to reason by appealing to the logical structure of the system, that 

is to engage in structural reasoning. This is a core component of being able to prove 

mathematically and of developing mathematical understanding.

If, therefore, it is the case that most students have “never learned what counts as a 
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mathematical argument” (Dreyfus, 1999), it is perhaps not surprising that a considerable 

body of research has accumulated which indicates that school students tend to argue at an 

empirical level rather than on the basis of mathematical structure (Bell, 1976; Balacheff, 

1988; Coe & Ruthven, 1994; Bills & Rowland, 1999; Healy & Hoyles, 2000). 

This chapter describes patterns in high-attaining students’ mathematical reasoning 

in the domain of number/algebra and traces development over time in their use of 

structural reasoning. The analysis presented forms part of The Longitudinal Proof Project 

(Hoyles & Küchemann: http://www.ioe.ac.uk/proof), which analysed the development of 

students’ mathematical reasoning over three years.  Before describing the research and its 

findings we briefly summarise the approach to mathematical reasoning adopted in 

England, which is rather different from that of other countries.

Learning To Prove: A Perspective From The English Curriculum 

In the 1950s and 60s, academic students, i.e., the 20-30% of secondary school 

students who were in selective (grammar) schools, met proof mainly in the context of 

classic Euclidean geometry. However this systematic treatment of proof more or less 

disappeared from mathematics curricula for 11-16 year olds during the 1970s and 80s. 

Thus, for example, Pythagoras’ Theorem became known as Pythagoras’ Rule, which 

students were no longer required to prove but only to apply, perhaps after verifying it 

through examples drawn on squared paper. In this century, proof has started to make a 

comeback. Thus, for example, the current National Curriculum for students in English 

schools requires that most Year 8 students (12+ year olds) should:
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Understand a proof that the sum of the angles of a triangle is 180˚ and of a 

quadrilateral is 360˚, and that the exterior angle of a triangle equals the sum of the 

two interior opposite angles (DfEE, 2001, p183).

Here the suggested approach is exploratory, and the proof-construction informal. 

Thus, for Angle sum of a triangle, it is suggested that students “Consider relationships 

between three lines meeting at a point and a fourth line parallel to one of them,” and that 

they “explain using diagrams.” There is no requirement that the components of a proof be 

made explicit or that the argument is set out in a formal way, although more recent 

government-sponsored (but non-statutory) support material is encouraging teachers to do 

so. Despite the increasing emphasis on proof in the English national curriculum for 11-16 

year olds, it is still likely to remain very different from tightly regulated activities in high 

school geometry in the USA, as described in Chapter 12 (McCrone & Martin) of this 

volume. Reference for example the kind of formal proof shown in “Linda’s answer” in 

Appendix A of that chapter. It is inconceivable that English 11-16 year olds will be 

required to construct or even consider proofs with statements as formal as “All right 

angles are congruent” and “By the reflexive property, XY = YX.”

As well as being less formal, proving in England tends first to be encountered in 

the number/algebra domain, rather than in geometry as in most other countries (Hoyles, 

1997). In fact even after a systematic treatment of proof had virtually disappeared from 

the English school curriculum, students did have the opportunity (potentially at least) to 

engage in explanation and (informal) proof through extended ‘investigations,’ usually in 

number/algebra. During the 1990s investigational work was incorporated into the 
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national mathematics examination at age 16.  Marking schemes were devised to describe 

the characteristics of a ‘good investigation’ and as a consequence, the task of ‘doing’ 

investigations became increasingly procedural and routinised, with an emphasis on 

generating data and looking for number patterns, even at the upper end of secondary 

school (Morgan, 1997). Of course, inductive reasoning based on specific cases can be 

important and fruitful in mathematics (Polya, 1954). It can help students develop a feel 

for a mathematical situation and to form conjectures. It also provides a test for the 

validity of a general proof, especially where students are uncertain about the scope and 

logic of their argument (Jahnke, 2005), which is an issue we return to later in this chapter. 

Cuoco, et al. (1996), in their discussion of mathematical ‘habits of mind,’ suggest that 

students should learn to become ‘pattern sniffers,’ ‘experimenters’ and ‘describers,’ 

amongst other things. However, they make the point that the most important habit is to 

understand “when to use what.” We suggest that a crucial habit is to look for 

mathematical structure, or, as Dreyfus (ibid) puts it, to move “from a computational view 

of mathematics to a view that conceives of mathematics as a field of intricately related 

structures.” This shift would seem to be particularly important in England where, as we 

have argued above, the curriculum tends to emphasise data and computation and teaching 

does not emphasise the importance of structural reasoning (see Healy & Hoyles, 2000). 

This chapter seeks to throw light on this shift and how it is exemplified in any changing 

patterns of student response to our proof items. 

The Longitudinal Proof Project

The analysis presented here forms part of The Longitudinal Proof Project (Hoyles 
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& Küchemann: http://www.ioe.ac.uk/proof), which analysed the development of 

students’ mathematical reasoning over three years. Data were collected through annual 

administration of a proof test completed by classes of high-attaining students1 in 

randomly selected schools within nine geographically diverse English regions. The items 

in all three proof tests were devised after reviews of the literature and of the curriculum, 

followed by extensive discussions with teachers. They ranged over the following proof 

‘categories’ (although after piloting some categories were dropped as the items turned out 

to be unsatisfactory). 

Making conjectures; turning conjectures into conditional statements; making and 

expressing generalisations by engaging in structural reasoning; using generic 

examples; crucial experiment; general cases which are then limited; given a 

statement, find (deduce) the value of an unknown, or derive another statement; 

logical implication; using definitions and structures; transformational reasoning; 

specialisation after a proof; scrambled proof; reasoning from perception.

Items were piloted with up to about 200 students and overall, 1512 students from 

54 schools completed all three tests. The tests comprised items in number/algebra and in 

geometry, some in open response format and some multiple choice.  Each new proof test 

included some items that were identical or very similar to items from the previous test 

(core items), together with new items. The project used a combination of quantitative and 

qualitative methods. The quantitative methods included the identification of trends in 

1 Students in England are setted (or tracked) and we targeted students who would be in top sets in Year 10 (age 14+ years).
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hierarchically-ordered categorical data obtained by coding students’ responses to each 

item in each proof test, and multilevel analyses of student scores in geometry and in 

algebra to identify significant predictors of progress. The qualitative methods included 

analyses of interviews with selected students in schools identified from the multilevel 

modeling as those in which students performed significantly better than predicted (see 

Hoyles, et al., 2005, for a detailed description of the methodology adopted). 

Overall in the area of number/algebra, we found an improvement in the use of 

algebra, though many in our sample of high attaining students were quite strongly 

attracted to pattern spotting and computation (as we shall see in this chapter). Also, we 

found a large gulf between success in a numerical and an equivalent algebraic task. Thus 

in Yr 10, 88% of students could solve a problem of calculating angles but only 21% were 

able to re-express the calculation as an algebraic relationship.

In this chapter we focus on two questions in number/algebra, A1 (see Figure 1) 

and A4 (see Figure 3), that both sought to assess whether students engaged in structural 

reasoning as opposed to appealing to computation or empirical data. As stated earlier, we 

regard structural reasoning as a core component of mathematical proof. Both items 

featured in more than one proof test so it was possible to identify changes in patterns of 

response between annual surveys. 

Question A1 (Figure 1) presents a pattern of white tiles and grey tiles that has to 

be generalised. It is a familiar type of question in the English school curriculum - apart 

from the fact that it immediately asks students to make a ‘far generalisation’ (Stacey, 

1989), rather than making a series of ‘near generalisations’ (ibid) first. It was devised to 
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see whether students could make the generalisation on the basis of the pattern’s structure 

or whether, on the basis of spurious number patterns, they would resort to a ‘function’ or 

‘whole-object scaling’ strategy (ibid) that was inappropriate. 

Brown, et al. (2002), in their work with student teachers, found that the students 

quite often chose to “perform computations when reasoning about computations would 

suffice.” Question A4 (Figure 3), was based on a suggestion made by Ruthven (1995), 

and explores this tendency to perform calculations, in a less familiar setting. It uses 

factorials (a notation that would not be known by students of this age) and concerns 

divisibility. The first part of the question can be solved by simple computation while in 

the final part the dividend is too large for this to be a viable strategy, thus (we hoped) 

forcing a different, more structural approach. 

As well as presenting cross-sectional quantitative analyses of responses to both 

questions, we have gathered together for this chapter a selection of extracts from the 

interviews with Yr 10 students that involved discussion of A1 or A4, and during which 

we probed the reasons behind their responses by asking them to compare and evaluate the 

responses they had made to the same question on different occasions. Unfortunately these 

interviews could not be systematic, as students were not necessarily selected for their 

performance on A1 or A4, but analysis of the relevant extracts does throw light on 

students’ thinking on the items and why progress may or may not have been made. 

Generalising A Number Pattern

Question A1 is a standard number/algebra task involving a tile pattern that was 

familiar to English students. It was designed to test whether students could discern, use 
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and describe a structural relationship between a number of white and grey tiles. A 

question of this type was included in all the proof tests but took two forms, with the same 

question used in the proof tests in Yr 8 and Yr 10 (with an additional part in Yr 10), and a 

different but parallel question used in Yr 9 (not shown here). The Yr 10 version is shown 

in Figure 1 and consisted of two parts, A1a and A1b. The students were given one 

example of the relationship (showing 6 grey tiles and 18 white tiles), and in part a asked 

to generalise this to another number (60) of white tiles and to explain their numerical 

calculation. In part b, the students were asked to write a general relationship involving n 

white tiles. The Yr 8 version was identical to part a but consisted only of this part, as 

most students of that age would not yet have had much experience of algebraic 

symbolisation. We deliberately built numerical distracters into the item, in the form of 

simple, but irrelevant, relationships between the numbers of white tiles mentioned in the 

item (namely, 6 × 10 = 60) and between the number of white and grey tiles in the given 

configuration (6 × 3 = 18).

<<INSERT FIGURE 1>>

We recall that an aim of the project was to map out the different kinds of 

responses to the proof items and to capture progress in reasoning by an analysis of how 

the frequencies of the different codes changed over time. To achieve this aim, we coded 

the responses to A1a into 5 broad categories that were based on an a priori analysis of 

possible response-types (using prior research and our own pilot study with over 150 

students). Code 1 was given to responses that were incorrect and based solely on spotting 

number patterns. Code 2 responses showed some recognition of structure but were 
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incomplete or incorrect. Code 3 responses were correct showing a recognition of the 

structure of the numerical calculation performed. (When we developing the coding 

scheme, we observed that most students who correctly structured the tile pattern saw the 

pattern, implicitly or explicitly, as of the form ‘double and add 6’. There are of course 

other equivalent forms, such as ‘add one at each end, double, add one at each end,’ but 

these seemed to be rare and so we did not differentiate between them in our coding 

scheme.) Code 4 was given to responses that included some explicit description of a 

general relationship between the different coloured tiles and Code 5 was used if this 

general rule was expressed correctly with variables. Finally, a miscellaneous code was 

used where students gave no response or responses that did not fit the other codes. Codes 

1 to 5 are summarised below. 

Code 1: Spotting number patterns (6× 10 = 60, so there are 18× 10 = 180 

grey tiles; or 6×3 = 18 so there are 60×3 = 180 grey tiles), no 

structure 

Code 2: Some recognition of structure (incomplete or draws & counts) 

Code 3: Recognition and use of structure: specific (correct answer, e.g., 

showing 60+60+3+3) 

Code 4: Recognition and use of structure: general (correct answer and 

general rule, e.g., × 2, +6) 

Code 5: Recognition and use of structure: general, with use of variables 
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(correct answer and general rule, with naming of variables in 

words or letters, e.g., multiply the number of white tiles by 2 and 

add 6, or 2n + 6). 

We judged that responses according to these codes were hierarchically ordered in 

terms of mathematical ‘quality,’ and thus were of the view that, broadly speaking, as 

students developed mathematically, i.e., became mathematically more capable and aware, 

they would tend to give higher quality responses. At the same time, a Code 3 response is 

sufficient to answer the item successfully and thus students who were capable of giving 

higher quality responses than Code 3 might not have felt the need to do so.

Pattern Spotting And Structural Reasoning

Our first attempt to capture changes in response patterns over time was to record 

the frequencies of response to A1a classified according to the codes. These frequencies 

are shown in Table 1. 

<<INSERT TABLE 1>>

Table 1 shows that, despite some improvement between Years 8 and 9, a 

substantial minority of students continued to use ‘number pattern spotting’ strategies 

giving an incorrect solution of 180 grey tiles. Altogether 35% of the total sample gave 

such responses in Yr 8. This fell to 21% in Yr 9 but stayed at 21% in Yr 10. Thus the 

cross-sectional analyses indicated modest improvement followed by plateau. Of course, 

the fact that the proportions of students giving number pattern responses were the same in 

Yrs 9 and 10, does not mean these proportions consisted of exactly the same students. We 
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discuss this further below, when we look at the data longitudinally.

Complementing the changes in frequency of pattern spotting responses, the 

frequency of correct responses (Codes 3, 4 and 5) went up from 48% in Yr 8 to 68% in 

Yr 9 but only to 70% in Yr 10. However, this small increase from Yr 9 to Yr 10 masks a 

substantial rise in the appropriate use of variables (expressed in words or with letters) in 

students’ explanations (Code 5 responses), from 16% in Yr 9 to 26% in Yr 10 (and 

starting from just 9% in Yr 8).

We now turn to our longitudinal analyses of these data. We focus on changes in 

patterns of response, according to the codes, between Yr 8 and Yr 10 only, since the first 

part of A1 was identical in those years but not in Yr 9 (the complete longitudinal analyses 

for item A1 are available in the Year 10 Technical Report of the project—see 

Küchemann & Hoyles, 2003, pp 10 - 18). Table 2a shows the code frequencies for A1a 

longitudinally, in that it cross-tabulates individual students’ responses in Yr 8 with their 

responses in Yr 10. However, as our purpose here is to consider ‘progress’ and as a Code 

3 response is sufficient to answer the item successfully, we have grouped the Code 3, 4 

and 5 responses. Table 2b is derived from Table 3b and assumes the validity of the 

hierarchical ordering of Codes 1, 2 and 3-4-5 combined. Based on this assumption, it 

shows the percentage of students who ‘progressed’ or ‘regressed’ in their responses from 

Yr 8 to Yr 10 (we have ignored all students who gave a miscellaneous non-correct 

response in either or both years).

<<INSERT TABLE 2.a>> 

<<INSERT TABLE 2.b>> 
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As can be seen from Tables 2a and 2b, the improvement in students’ responses 

from Yr 8 to Yr 10 was not entirely smooth, with 25% of the sample progressing on A1a 

but 7% regressing, giving a ‘net progress’ of 18%. (This is comparable to most of our 

other core items, where net progressed ranged from 2% to 32.) Focussing on the pattern 

spotting responses (Code 1) in particular, Table 3b show that over the two-year period 

from Yr 8 to Yr 10, well over one-half of those who gave a number pattern response 

(Code 1) in Yr 8 progressed to a correct (Code 3, 4 or 5) or partially correct (Code 2) 

structural response in Y10, but that one-quarter of those who gave a number pattern 

response in Yr 10 had given a higher quality response in Yr 8.  

Expressing Structure In Algebra

The Yr 9 and 10 versions of question A1 had an added part, A1b, where students 

were asked to write an expression for the number of grey tiles needed for n white tiles 

(see Figure 1 for the Yr 10 version). We were interested in whether students were able to 

express any relationship they discerned in the tiling pattern in algebra, and indeed 

whether this was consistent with their explanations of structure given in words or 

numbers. We have noted in a previous study (Healy & Hoyles, 2000) that Yr 10 students 

in England rarely used algebraic symbolisation as a language with which to described 

mathematical structure, even though they had been taught to do this and indeed they 

accorded high status to algebraic ‘proofs’. 

A1b asks students to map the number of white tiles onto grey, i.e. it requires a 

function approach (n → 2n + 6 for the Yr 10 item). Thus we were curious to see whether 

this would provoke a rethink from some of the students who had used a number pattern 
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approach, namely those whose approach involved scaling (18 grey tiles × 10 = 180 grey 

tiles in Yr 10). In the event, in Yr 10 more than half of this subgroup of students (N = 

197) switched to a function response, although most stuck to a number pattern approach 

in part b, with 43%  giving a response of the form n → 3n (which gives 180 when n = 

60); however, 13% produced a correct algebraic expression, of the form n → 2n + 6 (with 

a further 6% producing a partially correct algebraic expression). (Not surprisingly, of the 

92 students who in Yr 10 had given a function number pattern response to A1a, ie 60 

white tiles × 3 = 180 grey tiles, the vast majority, 87%, gave a response of the form n → 

3n to part b, with only 1% producing a correct algebraic expression.) 

It is also worth noting, that of the 615 students who gave a code 3 response to 

A1a in Yr 10 (i.e., a correct, but specific and non-algebraic response), 93% gave a correct 

algebraic response to part b. Thus part b was effective in prompting students to use 

algebra where they had not felt compelled to do so in part a, and, as discussed above, it 

provoked a substantial proportion of students to switch from a scalar to a function 

approach, even if in most cases, probably, this did not lead to a correct restructuring of 

their answers.

Some Illustrative Interview Extracts

Our analyses of the quantitative data suggests that, for some students at least, 

there is an element of chance about their responses: rather than being wedded to a 

particular way of construing such tile patterns (with some going for structural reasoning 

and some for number pattern spotting) they seemed to hit upon one way on one occasion 

and another way on another occasion; furthermore there is not necessarily any 
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consistency between their non-algebraic and algebraic expressions of the relationship. An 

examination of individual scripts also shows that some students flipped between 

approaches on a given occasion.

We now turn to student interviews to help us understand the students’ 

interpretation of the question. The interview extracts used here were all with Yr 10 

students who were asked to compare the responses they had made to A1 in Yr 8 and in Yr 

10 and to explain any inconsistencies and changes. It is worth recalling that all these 

interviews were with students whose schools were singled out as exceptionally ‘good’ in 

developing mathematical reasoning. We have selected to report written responses and 

interview extracts for three students with different response patterns. First, student MS 

who persisted in making pattern spotting approaches in both Yr 8 and Yr 10, and then 

students EC and JG who both used pattern spotting in Yr 8 and showed awareness of 

structure in Yr 10 and had thus apparently made progress, but who differed in their 

responses to being asked to explain their reasoning. We were not able to interview any 

student who clearly appeared to regress. 

Student MS gave a pattern spotting response in Yr 8 and Yr 10 (and also in Yr 9). 

However in Yr 8 he used a ‘×10’ scalar strategy while in Yr 10 he used a ‘×3’ function 

strategy (together with a function response, ‘3n’, that was consistent with this in part b).  

MS was interviewed a few days after taking the Yr 10 test and was asked about 

his Yr 8 and Yr 10 responses which were placed on the desk in front of him. At first he 

seemed to feel the responses were essentially the same and, as this extract indicates, he 

remained unperturbed when the interviewer read through the responses again and 
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suggested that they were different: 

I: ...Here (Yr 10) you do something quite different by saying…I’ve got 6 

white tiles and if I multiply by 3 I get 18 grey tiles.

MS: ...there’s 6 there and 18…altogether times it by 3, then I thought it would 

be the same if you wanted to find out how many grey tiles would be in 60 so I 

timesed by 3…

I: Did you, did you think about checking it in any way?  Or…

M: I was quite confident on this stuff…I went onto the next question.

Thus MS seemed confident that the numerical relationships he had found were 

right, perhaps because of their simplicity, and seemed content to ignore the suggestion 

that they might be different.

We now turn to student EC who gave a ‘×10’ pattern spotting response in Yr 8 

(and Yr 9). Initially, he seems to have embarked on a similar response in Yr 10, in that he 

has written ‘6 × 10 = 60’. However this is crossed through and replaced by ‘60 × 2 = 120’ 

and ‘+3 +3 = 126’, indicating a correct answer based on the geometric structure. EC was 

interviewed about a week after taking the Yr 10 test and asked to compare his Yr 8 and 

Yr 10 responses. We were surprised that he chose his incorrect Yr 8 response as the one 

he now believed was correct:

I: Which one do you think is the right one?
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EC: I think this one is [pointing to his Yr 8 response].

I: The Yr 8 one?

EC: Yeah, kind of the first instinct I had.

I: You go by instinct.

EC: Yeah, I think, sort of, in the majority of the time the first instinct is right, 

so, I think maybe that one looks right.

The interviewer then attempted to probe further and asked EC to explain his Yr 10 

response in more detail. EC seemed able to do this but still did not change his mind about 

the relative merits of his Yr 8 and Yr 10 responses:

I: ...So, you ended up here in Year 10 with this double thing and then add 6.

EC: Yeah.

I: So, how did that come to you, I mean, why would you have done that?

EC: I think, because we needed 60 and there was 6 along each row, each of the 

white things, so that means 12, so I just thought that doubling it, and then there’s 

3 left over, so I just plussed 3 on one, so, I’m not really sure.

I: Okay. I mean, that sounds sensible enough, so, the trouble is, we’ve still 

got these two different answers. So are you going to stick with your instinct, your 

Yr 8 instinct?



In Stylianou, D.A,  Blanton, M. L. &  Knuth, E.J. (Eds) Teaching and Learning Proof  
Across the Grades K-16 Perspective Lawrence Erlbaum Associates pp171- 191

EC: I think so, yes.

It seems surprising that EC was so ready to abandon his correct structural 

approach in Yr 10 for the simplicity of his ‘×10’ approach in Yr 8, especially when one 

notes that his Yr 10 (and Yr 9) response to A1b was also correct. Perhaps at this stage, 

through lack of experience or guidance, EC does not have the meta knowledge needed to 

classify his different responses in an appropriate way and to recognise their positive or 

negative qualities. 

We look finally at student JG had a similar set of responses to EC, in that she 

gave a ‘×10’ number pattern response in Yr 8 and a structural response in Yr 10: ‘60 × 2 

= 120, 3 × 2 = 6, 120 + 6 = 126’ (see Figures 2a and 2b). JG was interviewed about a 

week after taking the Yr 10 test. At first she could make no sense of her Yr 8 response (“I 

have no idea why I wrote that in Yr 8”), though she comes up with an interpretation 

eventually:

I: I mean, say someone else had done it, not you…could you sort of try and 

figure out why on earth they did it?

JG: (Long pause) No.

I: No, you can’t see any logic in it?

JG: Well…yeah.  I can now.  It’s because there’s 6 there so, I figured 6 times 

10 would be the 60 that they were talking about in the question, and so I just had 

to times the amount around the outside by the same number. Oh yeah.
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However, unlike EC, she prefers her structural Yr 10 response, which she feels 

makes more sense:

I: Can you say a bit more why it makes more sense?

JG: I don’t know…just a couple more years’ practice of finding patterns and 

stuff.  

I: So how does this answer sort of fit the pattern, the Yr 10 answer fit the 

pattern better?

JG: Well because, I didn’t just times the ones round the outside…by the same 

number as the ones on the inside…I worked out sort of a rule for it, rather than 

just a rule for that, that number.

I: Right. How did you get the rule for the Yr 10 answer?

JG: Well, the three at each end won’t change, it’s a single row of tiles say…

you just use the top…the grey tiles above and below the white…

I: Right, okay…

<<INSERT FIGURE 2a & 2b >> 

JG’s replies here are interesting in several respects. First she justifies her 

preference for the structural response with an external reason (“more years’ practice”), 

which, though perfectly plausible, has nothing to do with the quality of the actual 

response and which is certainly no more valid than EC’s quest for simplicity. However, 
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she is able to describe the structure itself very nicely (“three at each end... ...grey tiles 

above and below...”) and she does in fact say something, albeit in a rather cryptic way, 

about the quality of this explanation, namely about it being general: thus she found “sort 

of a rule” in contrast to “just a rule for that ... number.” Notice also her statement that “I 

didn’t just times the ones round the outside,” which potentially provides a compelling 

visual test for this number pattern spotting strategy, since the outcome would be a set of 

grey tiles that no longer fits snugly around the white tiles. Further, she gives a correct 

response to A1b, which shows she is able to express the structure using algebra. All in 

all, we seem here to be witnessing the beginnings of a meta knowledge about structural 

reasoning, even though the concepts and language may not yet be well-formed. 

Unfortunately, we do not know how this knowledge has arisen—although from the 

limited information we managed to gather about JG’s Yr 10 mathematics class, the quest 

for structural explanations was not a strong feature of its socio-mathematical norms.

Although we can not say how representative these three interviewees are, their 

responses do suggest that, for some students at least, the simplicity of number pattern 

responses may have a stronger appeal than the insight that might be gained from taking a 

structural approach. The analysis suggests possible discontinuities between modelling 

with numbers, narrative descriptions of these models and modelling with algebra which 

in turn might lead some students to re-organise their thinking. It also suggests fragility in 

appreciating the power of a structural approach, and rather limited ability to describe the 

characteristics of even correct structural reasoning. This is a phenomenon we have found 

elsewhere and which may well be widespread even amongst the highest of our high 
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attaining students, since they will generally have had little experience of producing 

mathematical explanations and reflecting upon them.

From Calculating To Structural Reasoning 

We found a strong tendency for students to work at an empirical level on our 

proof test items. In the case of A1 discussed above, working at an empirically was largely 

manifested by pattern spotting responses, which were given by just over one-third of our 

high attaining sample in Yr 8 and still by just over one-fifth in Yr 10. This empirical 

tendency was particularly strong, though manifested rather differently in responses to 

another question, A4, which we used in the Yr 8 and Yr 9 proof tests (but not in the Yr 10 

test, for reasons of time and space). A4 had distinctive characteristics in that unlike A1, 

the mathematical content would not have been familiar to students and a solution strategy 

that appealed to structure rather than calculation would not have been taught. The 

question is shown in abbreviated form in Figure 3 (the original question was spread over 

an entire A4-size2 page, with blank space after each part for students to write their 

responses). The question has three parts, but our interest here is in parts a and c. In A4a 

students are asked about the divisibility of 5! by 3 and in A4c about the divisibility of 

100! by 31 (or 50! by 19 in the Yr 9 version).

<<INSERT FIGURE 3>> 

Responses to A4a were coded into three broad categories, to capture whether 

students gave incorrect or irrelevant reasons (Code 1), or determined the divisibility of 5! 

2 A4 is comparable in size to US letter, but with the property that an A4 sheet can be folded in half to produce a rectangular shape that   

is mathematically similar to the original rectangular shape (the edge-lengths are in the ratio 1 to root 2).
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by calculating the value of 5! (Code 3), or gave a correct reason based on the ‘divisibility 

principle’ (Code 4). 

The Codes 1 and 4 were again used in A4c, but there was no Code 3 as students 

did not have the means to calculate the given factorial (100! in Yr 8 or 50! in Yr 9). 

However, some students (albeit very few) used an inductive reason to argue that the 

given factorial was divisible by 31 (Yr 8) or 19 (Yr 9), based usually on the observation 

that in part a 120, i.e., 5!, is divisible by 5, 4, 3, 2 and 1. Such responses were given the 

Code 2. 

As with A1, we again judged that the codes were hierarchically ordered in terms 

of mathematical ‘quality’ and that as students developed mathematically they would give 

higher quality responses. 

The full code frequencies for A4a and A4c can be found in Küchemann and 

Hoyles (2003, pp 23 - 24). Regarding A4a, the Code 3 and 4 frequencies show that most 

students could correctly determine the divisibility of 5! by 3 (76% in Yr 8, 83% in Yr 9) 

but the overwhelming majority gave a Code 3 rather than Code 4 response (74% of the 

total sample in Yr 8, 77% in Yr 9), that is, they did so by calculating 5! and then 

calculating 120 ÷ 3, and thus essentially by multiplying by 3 and dividing by 3 again. 

These students showed that they understood what was meant by the notions of factorial 

and divisibility but it seems they could not put them together to form an explanation. (It 

is of course possible that some did not give such an explanation because they felt that a 

demonstration was good enough; however the responses to part c suggest that this would 

have been rare.) Only 2% of the sample in Yr 8 and only 6% in Yr 9 gave a Code 4 
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response, i.e., based their argument on the fact that 3 was a given factor of 5!.

While the latter (Code 4) kind of argument is not required in part a, it is essential 

for part c, since students were not allowed calculators. However, as mentioned above, 

only a slightly larger proportion used such an argument in part c (3% of the sample in Yr 

8, and 9% in Yr 9). Most students wanted to evaluate the factorial, and had no viable 

alternative strategy. Some students wrote statements like “That would take years to work 

out and if there is some short cut I don’t know it”; some evaluated 100! as being 2400, on 

the basis that 100 = 20 × 5 so 100! = 20 × 5!, and so answered ‘No’; others answered 

‘No’ because 100! is even and 31 is odd or a prime. 

The response below (Figure 4), given by a student in Yr 8, is a typical response to 

A4c. Interestingly this student gave a structural response in Yr 9, answering ‘Yes’ to “Is 

50! divisible by 19?”, because ‘If you times it by a certain number, you will be able to 

divide by it’. However, we found that very few students managed to move from empirical 

to structural reasoning on this unfamiliar question. On A4a only 18 students used the 

divisibility principle in both years, and just 76 students (5% of the sample) shifted from 

calculating (or a lower level response or no response) to using the divisibility principle, 

with 19 of the 37 students who had used the divisibility principle successfully in Yr 8 

reverting to calculating (or to a lower level response) in Yr 9. On A4c, where the 

divisibility principle is needed to answer the item successfully, the picture is not much 

better. Here only 22 students (1% of the sample) used the principle consistently, and 114 

students (7%) progressed to using it in Yr 9 having not done so in Yr 8, with 20 of the 42 

students who answered part c successfully in Yr 8, regressing (or omitting the item) in Yr 
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9. We found this regression, particularly on part c, surprising: surely once a student had 

understood that ‘if you multiply by a number then the product is divisible by that 

number’ then this would not be ‘forgotten’? 

To gain some insight into these issues, we turn again to our interview data. In the 

course of our visits to ‘outlier’ schools, we managed to interview 12 students on their Yr 

8 and Yr 9 responses to A4. It turned out that none of these were students who had 

regressed on part c, which is unfortunate (though perhaps not surprising given that only 

15 students regressed out of our total sample of 1512 students). However several students 

had successfully progressed from calculating in Yr 8 to using the divisibility principle in 

Yr 9 and we consider one of these students here. 

Student AM was interviewed the day after he had taken the Yr 9 test. His written 

responses are summarised in Table 3, below, and are shown fully in Figures 5a and 5b. It 

appears that AM made considerable progress from Yr 8 to Yr 9: he would seem to have a 

clear understanding of the ‘divisibility principle’ by Yr 9.

<<INSERT TABLE 3>> 

<<INSERT FIGURE 5a & 5b>> 

As with the A1 interviews, we asked students to compare their responses in 

different years and to explain why they had written their particular responses.

In AM’s Yr 9 written responses he gives an explanation based on the divisibility 

principle in part a as well as part c, rather than one based on evaluating 5!. Thus, in part a 

he had written “The number has been multiplied by 3, so it must be divisible by 3.” In the 

interview, he is asked how he arrived at this explanation:
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AM: I think I was just thinking about it.  I was thinking 5! would be 

5×4×3×2× 1 so if it’s been timesed by 3 you can almost certainly divide it by 3 

and I was just thinking sort of that was that.  Also I was saying because it’s only 

then been timesed by 2 and by 1, because 1’s obviously not going to change and 

2’s just going to double it.  So you’re just going to be able to divide it by 3.

AM does not talk of calculating 5! but his explanation seems grounded in the 

steps of the potential calculation. AM feels that it is not enough that ×3 is one element in 

a string of terms, and he carefully checks that the subsequent terms, ×2 and ×1, will not 

affect the divisibility by 3. This nicely illustrates the fact that a notion like ‘divisibility’ 

involves a whole nexus of ideas (see Brown, et al., 2002), including some awareness of 

the associative and commutative properties of multiplication, especially when 

considering the divisibility of a long string of terms as in the case of 100! and 50!.

 Later, AM says he is “almost certain” but not entirely that 5! is divisible by 3. 

The interviewer explores this further:

I: You said just now it’s almost certainly divisible by 3, you’re hesitating 

slightly.

AM: I think it is divisible by 3, I think at the time I wasn’t completely certain.

I: What yesterday, but you’re certain today?

AM: Yes, after all that I’m almost certain that’s good.
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I: Why is there still this edge of doubt? You say almost certain.  

AM: Don’t know. The thing is, I am certain, but not quite... I can’t see why, I 

can see slightly why it works but not entirely, I haven’t thought ‘suppose you had 

a bigger number, would it…’

Thus it would seem that for AM, this lack of certainty about the ‘divisibility 

principle’ (the argument that if you multiply by a certain number the result is divisible by 

that number) is not because he does not understand the basic argument or appreciate its 

power, but because of some awareness that other features of the situation (e.g., that in 

100! the term × 31 is followed by a long string of other terms) might render the principle 

invalid. From this (and other interviews) it appears that students who correctly answered 

part c of A4, yet still expressed a need to calculate, may be expressing this need not 

because they reject or do not value their attempts at a structural explanation, but to check 

that the explanation is valid because they are unsure about parts of their argument. This 

insecurity about using number relationships because of the possible influence of ‘other’ 

factors (even when the relationships seem to be understood), might help to explain why 

some students ‘regressed’ in Yr 9. 

Conclusions

We have reported some findings from a longitudinal study of high attaining 

students’ conceptions of mathematical reasoning. In this study, students’ responses to 

specially designed annual written proof tests were coded and the code frequencies 

analysed cross sectionally and longitudinally. Total scores on each proof test were 
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subjected to multilevel analyses, which were used in part to identify schools in which 

students performed significantly better than predicted. Interviews were conducted with 

students from these schools, who were asked to explain their written responses. Although 

not systematic, extracts from these interviews serve to throw light on students’ thinking 

on the items and why progress may or may not have been made.  

In this chapter we have focussed on two number/algebra questions both of which 

were designed to investigate patterns in the use of empirical and structural reasoning. One 

question, A1, involved a familiar task of generalising a tile pattern (although it was 

unusual in involving a ‘far generalisation’ only); the other question, A4, was less familiar 

and concerned factorials and divisibility. We found that the use of structural reasoning 

increased over the years, albeit at a modest rate. This improvement indicates a general 

cognitive shift from reliance on empirical reasoning to more theoretical reasoning based 

on the development of meta knowledge about structures that is doubtless interlinked with 

the effects of teaching for this high attaining group.  However, despite this effect of 

teaching, the use of empirical reasoning was still widespread in the form of inappropriate 

number pattern spotting for A1 and through the desire to perform rather than analyse a 

calculation for A4. 

The quantitative analyses of the longitudinal coded data showed a degree of 

turbulence in student responses, suggesting that for some students at least, there might be 

an element of chance about their responses: for example rather than being wedded to a 

particular way of construing a tile pattern, they seemed to hit upon the underlying 

structure on one occasion and a superficial number pattern on another occasion. the 
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simplicity of number pattern responses appeared to have a continuing appeal often 

stronger than the insight that might be gained from taking a structural approach. We also 

noted inconsistencies in how students construed the tile pattern, most notably when asked 

to write an algebraic expression where their responses did not necessarily match the 

approaches used in their earlier reasoning, and though some students might well have 

been perturbed by this mismatch, there was evidence to suggest that others were not. 

Our student interviews lent support to the view that students on the whole showed 

a lack of confidence in and a fragile grasp of structural reasoning. Initially, we interpreted 

these findings simply as further evidence of students’ lack of appreciation of the power of 

structural reasoning and of the widespread tendency to use empirical methods—

something that is perhaps particularly strong in English schools, because of the 

curriculum and classroom approaches (see for example Morgan, 1997). However, we 

have modified our views, having reflected on the tentative commitment to different 

methods exhibited by students in their written responses and interviews. We therefore 

offer an alternative explanation that distinguishes a more advanced use of empirical 

reasoning, namely to check the validity of a structural argument.

Jahnke (2005) puts forward the metaphor of ‘theoretical physicist’ as a way of 

describing students’ behaviour as they learn to engage in mathematical proof. From this 

viewpoint, students’ recourse to empirical evidence can be seen as a perfectly rational 

and meaningful attempt to test the validity of a proof argument. Indeed, if proof is seen as 

something undertaken by “fallible mathematicians ... as part of a quasi-empirical process” 

(Reid, 2005; see also for example: Lakatos, 1976; Lampert, 1990), then this metaphor 
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might usefully be extended beyond the novice student of mathematics. This throws 

interesting light on an influential study by Fischbein and Kedem (1982), who might be 

said to have held a “traditional” concept of proof, whereby “a formal proof of a 

mathematical statement confers on it the attribute of a priori universal validity” (ibid, 

quoted in Reid, 2005). They found that even where students agreed that a given proof 

was correct, many endorsed the idea that further numerical checks would increase their 

confidence in the theorem. This finding was supported by the study of Healy and Hoyles 

(2000), who similarly used an item where students were presented with different ‘proofs’ 

of a statement. They reported that students simultaneously held two different conceptions 

of proof; those about arguments they considered would receive the best mark and those 

about arguments they would adopt for themselves. In the latter category, students chose 

arguments (usually empirical) that they could evaluate and which they found relatively 

convincing (in the sense that they found them more convincing than did students who 

chose other arguments) even if they recognised that their scope were limited. 

For Fischbein, students who welcomed further numerical checks did not “really 

understand what a mathematical proof means” (Fischbein, 1982, p.16). Our evidence 

suggests that though this may be the case for some students, there is an alternative 

interpretation which may apply to others, namely that they do have some understanding 

of proof (as, say, a logically ordered set of reasons involving mathematical properties) 

but they are acknowledging that there might be flaws in the proof (e.g., in the logic or the 

reasons) which they have not spotted. So in response to our unfamiliar question about 

factorials and divisibility, even some students who had shown a basic understanding of 
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the underlying structure and given structural reasons in their written response, seemed to 

need to calculate to achieve full closure. From the perspective of checking the validity of 

a structural argument, this can be seen as a rational way of coping with a degree of 

uncertainty about the influence of other features of the situation that might render their 

reasoning invalid, rather than as a lack of appreciation of such an argument’s power. 

Thus, we suggest that though recourse to empirical data may in many cases indicate a 

naive understanding of proof, it need not do so. 

We end by summarising our findings and briefly pointing to some implications for  

teaching. High attaining students in our large random sample made progress, albeit  

modest, in the use of structural reasoning over the three years of the project suggesting a  

positive and cumulative outcome of teaching. However progress in reasoning from 

structures was not linear, and was not necessarily retained. Thus despite an overall  

positive trend, there was unpredictable variation due to issues of interpretation of the  

task, to changes in curricular emphasis (such as the introduction of algebra), and to an  

individual student’s confidence in their adoption of structural reasoning. We also found 

that the use of empirical reasoning, in the form of inappropriate number pattern spotting  

or through the desire to perform rather than analyse a calculation, remained widespread  

over the three years of the project although we identify a more advanced use of empirical  

reasoning, namely to check the validity of a structural argument. 

Given the fragility of student responses, as our longitudinal analyses showed, we 

conclude that single snapshots of student understanding can be misleading, as students 

may not have a clear sense of what it means to progress in regard to the quality of a 
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mathematical argument, or they may be trying to express their mathematical ideas in a 

new representational infrastructure (e.g., algebra). Also, though we do not discuss it in 

this chapter, we have observed a seeming u-shaped development, reminiscent of “errors 

of growth” (Bruner, et al., 1966, p199), where students appear to regress through 

applying ideas recently met at school when they are inappropriate, or in ways that are not 

yet effective. 

 Our analyses suggest that switching strategies (even between incorrect strategies) 

might be helpful in catalyzing a new perspective on a problem. This indicates that we can 

change students’ habits of mind (Cuoco, et al., 1996). In our recent work on the Proof 

Materials Project (Küchemann, 2008; see also 

http://www.ioe.ac.uk/proof/PMPintro.html), we collaborated with teachers to see whether 

this change of habit could be put into effect more widely, in particular by helping 

students become more aware of different kinds of proof strategies and explanations. We 

used the student responses to our items as starting points for discussion among teachers, 

leading them to think about how to encourage students to use different representation for 

their ideas (e.g., narrative, algebraic and visual), to make connections between them and 

to justify their reasoning. This helped students focus on structure rather than just on 

outcomes, as well as to distinguish mathematical from non-mathematical reasons. It is 

notable that teaching strategies such as speaking about the relationship, using and 

comparing different representations, and taking a range of particular cases, tend to be 

used by teachers in lower sets in English schools and not in higher sets, given the twin 

fears of not covering the curriculum and of students becoming bored if invited to revisit 
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work from a new perspective. A shift in teaching emphasis in this direction for high 

attainers would seem a useful way forward. 
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