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Remarkable optical and electrical properties of two-dimensional (2D) materials, such as graphene and
transition-metal dichalcogenide (TMDC) monolayers, offer vast technological potential for novel and improved
optoelectronic nanodevices, many of which rely on nonlinear optical effects in these 2D materials. This paper
introduces a highly effective numerical method for efficient and accurate description of linear and nonlinear
optical effects in nanostructured 2D materials embedded in periodic photonic structures containing regular
three-dimensional (3D) optical materials, such as diffraction gratings and periodic metamaterials. The proposed
method builds upon the rigorous coupled-wave analysis and incorporates the nonlinear optical response of 2D
materials by means of modified electromagnetic boundary conditions. This allows one to reduce the mathematical
framework of the numerical method to an inhomogeneous scattering matrix formalism, which makes it more
accurate and efficient than previously used approaches. An overview of linear and nonlinear optical properties
of graphene and TMDC monolayers is given and the various features of the corresponding optical spectra are
explored numerically and discussed. To illustrate the versatility of our numerical method, we use it to investigate
the linear and nonlinear multiresonant optical response of 2D-3D heteromaterials for enhanced and tunable
second- and third-harmonic generation. In particular, by employing a structured 2D material optically coupled to
a patterned slab waveguide, we study the interplay between geometric resonances associated to guiding modes
of periodically patterned slab waveguides and plasmon or exciton resonances of 2D materials.
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I. INTRODUCTION

Since its first isolation, preparation, and theoretical descrip-
tion [1–3], graphene, a monolayer of carbon atoms distributed
in a hexagonal lattice, has attracted a tremendous amount
of interest in science and engineering due primarily to its
outstanding physical properties and potential for novel appli-
cations. Graphene was shown to have remarkable mechanical
strength [4–6] and extremely high thermal conductivity [7],
making it a particularly appealing materials platform for na-
noelectromechanical applications and management of thermal
processes in nanoelectronic circuits [5,8]. In addition, the
high carrier mobility of graphene enhances its potential for
applications to high-frequency electronics [9–11]. These and
other remarkable properties of graphene have spurred new
research into and development of new two-dimensional (2D)
materials, such as hexagonal boron nitride (h-BN), silicene
(a monolayer of silicon), and transition-metal dichalcogenide
(TMDC) monolayers [12–15], each with their own array of
unique physical properties.

One additional compelling aspect of 2D materials (2DMs)
is closely related to their optical properties. Graphene, for ex-
ample, is nearly transparent at optical frequencies, exhibiting
absorption of only about 2.3% [16], which suggests it barely
interacts with light. This optical transparency and the earlier
mentioned electromechanical properties make graphene a
promising new material for flexible optical devices [17]
(e.g., touch screens). Moreover, graphene-based structures
can provide an alternative to conventional metallodielectric
structures to spatially confine and guide light at the nanoscale,
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a research direction actively pursued in the emerging field of
graphene nanoplasmonics [18–27].

In addition to these linear physical properties, the nonlinear
optical properties of graphene and other 2D materials have
attracted increased attention. Graphene, as a centrosym-
metric material, exhibits large third-harmonic generation
(THG) [28,29], strong optical Kerr nonlinearity [30], and
induced second-order nonlinearity [31–33] in a single atomic
layer. This allows one to employ graphene in active photonic
devices with improved functionality, including ultracom-
pact modulators, optical limiters, frequency converters, and
photovoltaic and photoresistive devices [17,28–31,34]. In a
complementary fashion, TMDC monolayers are semicon-
ducting materials, which renders them particularly suitable
to be employed in nanoscale transistors and saturable ab-
sorbers [35,36], and have noncentrosymmetric atomic lat-
tice and hence allow even-order nonlinear optical processes
[37–40]. The implementation of these linear and nonlinear op-
tical properties into applications, however, requires advances
in nanofabrication and experimental techniques [17,41,42],
theoretical models, and numerical methods for modeling of
devices incorporating 2D materials.

There are a multitude of numerical methods for compu-
tational study of optical structures and devices comprising
regular, three-dimensional (3D) materials [43,44], and they
can in principle be used for modeling 2D materials, too. This
is customarily done by defining an effective thickness of the
material and incorporating the 2DM into the computational
algorithm simply as a very thin layer of 3D material [45–47].
This computational approach, albeit simple and easy to
implement, has a serious drawback, namely, it relies on an
obviously ambiguous quantity, the thickness of the monolayer.
Moreover, this thickness is typically orders of magnitude
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smaller than the other characteristic lengths of the photonic
structure and the operating wavelength, leading to a large
length-scale imbalance that is detrimental to the effectiveness
of the spatial discretization. These issues result in potentially
reduced accuracy, increased computational cost, and numerical
artifacts that are difficult to avoid [48,49]. It is hence desirable
to treat the sources of the optical effects pertaining to the 2DM
as confined to a 2D manifold, i.e., as induced by a surface
conductivity [48,50,51].

The numerical method proposed here follows this approach
and implements it in the context of the rigorous coupled-wave
analysis (RCWA) method, a modal frequency domain method
for modeling periodic optical structures [52–54]. However,
in addition to previous work on handling 2DMs by means
of Fourier series expansion methods [49,55], we also model
nonlinear optical effects in 2D materials, in particular second-
harmonic generation (SHG) and THG, and provide the math-
ematical formulation for arbitrary nonlinear optical processes.
In addition, the method introduced in this work allows one
to describe structured 2D materials, which themselves can be
embedded in inhomogeneous 3D optical structures.

The remainder of this paper introduces the general periodic
optical system under consideration in Sec. II and gives a
detailed overview of linear and nonlinear optical properties
of different 2DMs in Sec. III. Section IV provides the
mathematical formulation for higher-harmonic generation in
patterned 2DMs based on the RCWA and introduces the
inhomogeneous scattering matrix formalism for multilayered
3D structures. This is followed by Sec. V, where the validation
and benchmarking of the numerical method is performed,
using as test problems one-dimensional (1D) and 2D periodic
structures. Applications of the proposed numerical method are
presented and discussed in Sec. VI, where we also investigate
different resonant mechanisms to enhance the nonlinear optical
response of 2D and 3D heteromaterials containing TDMC
monolayers and nanostructured graphene. Finally, the main
conclusions are drawn and an outlook towards future work is
given in Sec. VII.

II. PHOTONIC SYSTEM: GEOMETRY AND MATERIALS
PARAMETERS

The computational method introduced in this paper is de-
signed for a very general physical setting, namely, periodically
patterned photonic structures that contain both bulk and 2D
optical materials. Our numerical method accurately describes
the physics of such photonic structures by incorporating in
the numerical algorithm the relevant linear and nonlinear
optical effects pertaining to 2D materials. Equally important,
since the nonlinear optical response of different 2D materials
contained by the photonic structure is described via a generic
nonlinear polarization, this computational method can be used
to investigate a multitude of nonlinear optical effects, including
SHG, sum- and difference-frequency generation, THG, and
four-wave mixing.

The geometric setting and important nomenclature used in
the presentation of our numerical method are introduced in
what follows. Thus, consider the generic multilayer, periodic
structure presented in Fig. 1. The bird’s-eye view in Fig. 1
depicts the unit cell of a 2D periodic structure with periods
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FIG. 1. Schematic of a generic multilayer structure periodic along
the x and y directions under plane-wave incidence, and a closeup of
the unit cell. The distribution of the 2D material (blue) is defined
by the position-dependent sheet conductance σs(x,y,zs) at z = zs .
The bulk part of the periodic structure, which can consist of slanted
(olive green), straight walled (red), or embedded parts (sand brown),
is defined by the permittivity function εr (x,y,z).

�1 and �2, with the corresponding grating vectors �1

and �2 laying in the (x,y) plane. It consists of several
bulky, periodically structured regions with relative electric
permittivity εr (r), which will be called bulk layers, or simply
layers. The periodic structure is sandwiched in-between semi-
infinite homogeneous cover and substrate layers with relative
permittivity εc and εs , respectively. In addition, the structure
can comprise 2DM sheets, or simply sheets, located at z = zs ,
which are assumed to lay in the (x,y) plane between two bulk
layers. Each sheet is made of homogeneous or periodically
patterned 2DMs and is described by its surface conductivity
distribution σs(x,y,zs).

This periodic structure is excited by an incident harmonic
plane wave with the electric field given by

Einc(r,t) = E0(r)e−iωt = E0e
i(kt ·rt−kzz−ωt), (1)

where ω is the angular frequency, rt is the in-plane component
of the position vector, kt = kc(sin θ cos ϕ, sin θ sin ϕ) and kz =
kc cos θ are the in-plane and normal components of the wave
vector of the incident wave in the cover, respectively, with
kc = √

εck0 = √
εcω/c being the wave number in the cover

region and c is the speed of light. The polarization state of
the incoming plane wave is described by the field components
in the transverse electric (TE) and transverse magnetic (TM)
configurations, namely, ETE and ETM, respectively, such that
E0 = cos ψETE + sin ψETM is determined by the polarization
angle ψ .

In the rigorous coupled-wave analysis, the underlying
algorithm on which our computational method is built, oblique
structures or devices consisting of several periodic layers are
approximated in a staircasing manner (see Ref. [56]). To be
more specific, the structure is sliced into thin and z-invariant
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bulk layers, the optical response of each layer is calculated,
and then the combined response of all layers is determined
by properly incorporating the interlayer optical coupling
described in Sec. IV D. Before this algorithm is derived
thoroughly in Sec. IV, the optical properties of 2DMs are
introduced and formalized mathematically in the next section.

III. LINEAR AND NONLINEAR OPTICAL PROPERTIES
OF 2D MATERIALS

Understanding the physics of 2DMs is a rather recent en-
deavor and, as such, a comprehensive characterization of their
linear and nonlinear optical properties is only emerging. In
particular, a complete knowledge of the frequency dependence
of the linear and nonlinear optical constants is a prerequisite for
a rigorous computational description of the optical response
of these materials. Theoretical calculations [29,37,57,58] and
experimental investigations [28,59,60] are beginning to fill in
this gap, a summary of the results of these studies being briefly
outlined in this section.

A. Linear optical properties of 2D materials

Since graphene and other 2DMs are physical systems
consisting of a single atomic layer, their electromagnetic
properties are conveniently characterized by surface quantities.
For example, in the case of graphene, the optical properties are
described by the sheet conductance (sometimes simply called
conductivity), which in the random-phase approximation and
zero-temperature conditions can be expressed as [57,61]

σs(ω)

σ0
= 4εF

π�

τ

1 − iωτ
+ θ (�ω − 2εF ) + i

π
ln

∣∣∣∣�ω − 2εF

�ω + 2εF

∣∣∣∣.
(2)

Here, σ0 = e2/(4�) = 6.0853 × 10−5 A V−1 is the universal
dynamic conductivity of graphene, e denotes the elementary
charge, εF the Fermi level, � the reduced Planck constant, τ the
relaxation time, and θ (. . .) is the Heaviside step function. The
values of the Fermi level and relaxation time used throughout
this study are εF = 0.6 eV and τ = 0.25 ps/2π , respectively.
The dispersion of σs(ω) for graphene is shown in Fig. 2(a).

The sheet conductance contains the intraband (Drude)
contribution, described by the first term in the right-hand side
of Eq. (2), and the interband component given by the next two
terms. A more complete model valid at finite temperature can
be used (see Refs. [57,61,62]); however, the model described
by Eq. (2) already captures the main features of graphene
conductivity, most notable being the possibility of tuning σs (ω)
by changing the Fermi level via chemical doping or applying
a gate voltage.

In many numerical methods pertaining to computational
electromagnetics it is more convenient to work with bulk rather
than surface quantities and therefore one often introduces bulk
equivalents of the surface quantities. In particular, instead of
the sheet conductance σs , one uses a bulk conductivity σb =
σs/heff , where heff is the effective thickness of the 2DM. This
approach can oftentimes create confusion due to the ambiguity
contained in the definition of the thickness of an atomic
monolayer. Moreover, the electromagnetic properties of 2DMs
can alternatively be described by the electric permittivity ε,

1.522.53

0.4 0.6 0.8 1 1.2
-10

-5

0

Im
(

s
)

0

WS2
MoS2

WSe2
MoSe2

10-1100101

10-1 100 101 102
0

10

20

s
/

0

Re( s )
Im( s )

E (eV) 

1.522.53

0.4 0.6 0.8 1 1.2
0

5

10

R
e(

s
) /

0

WS2
MoS2

WSe2
MoSe2

(a)

(b)

(c)

E (eV) 

E (eV) 

( m)

B A

/

( m)

( m)

FIG. 2. (a) Dispersion of the complex sheet conductance σs(ω)
of graphene in interband and intraband wavelength range. (b), (c)
Frequency dependence of the real and imaginary parts of the sheet
conductance of several TMDC monolayer materials, respectively.

which is related to the optical conductivity σb via the following
relation:

ε(ω) = ε0

(
1 + iσb

ε0ω

)
= ε0

(
1 + iσs

ε0ωheff

)
. (3)

In the case of TMDC monolayer materials, we describe
their relative electric permittivity εr (ω) = ε(ω)/ε0, as a super-
position of N Lorentzian functions:

εr (ω) = ε(ω)

ε0
= 1 +

N∑
k=1

fk

ω2
k − ω2 − iωγk

= 1 +
N∑

k=1

f E
k

E2
k − E2 − iEγ E

k

, (4)

where fk , ωk , and γk are the oscillator strength, resonance
frequency, and spectral width of the kth oscillator, respectively.
The values of the model parameters for the four considered
TMDC monolayers were determined by fitting Eq. (4) to the
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TABLE I. Model parameters for the relative permittivity of four TMDC monolayer materials parametrized by the multi-Lorentzian
dispersion relation defined by Eq. (4). The oscillator strength f E

k = �
2fk , the spectral resonance energy Ek = �ωk , and the spectral width

γ E
k = �γk of the kth oscillator are given in eV2, eV, and eV, respectively.

WS2 WSe2 MoS2 MoSe2

heff 6.18 Å 6.49 Å 6.15 Å 6.46 Å

k Ek (eV) f E
k (eV2) γ E

k (eV) Ek (eV) f E
k (eV2) γ E

k (eV) Ek (eV) f E
k (eV2) γ E

k (eV) Ek (eV) f E
k (eV2) γ E

k (eV)

1 2.009 1.928 0.032 1.654 0.557 0.036 1.866 0.752 0.045 1.548 0.648 0.043
2 2.204 0.197 0.250 2.426 5.683 0.243 2.005 1.883 0.097 1.751 1.302 0.097
3 2.198 0.176 0.161 2.062 1.036 0.115 2.862 36.89 0.383 2.151 4.621 0.537
4 2.407 0.142 0.112 2.887 16.11 0.344 2.275 10.00 1.000 2.609 37.40 0.582
5 2.400 2.980 0.167 2.200 1.500 0.300 3.745 100.0 0.533 3.959 121.4 0.896
6 2.595 0.540 0.213 2.600 1.500 0.300
7 2.644 0.050 0.171 3.800 70.00 0.700
8 2.831 12.60 0.266 5.000 80.00 0.700
9 3.056 8.765 0.240
10 3.577 29.99 1.196
11 5.078 49.99 1.900
12 5.594 79.99 2.510

experimental data provided in Ref. [59] and are presented in
Table I in terms of f E

k = �
2fk , Ek = �ωk , and γ E

k = �γk .
Note that the permittivity given by Eq. (4) fulfils the Kramers-
Kronig relation; however, the numerical fitting is less accurate
for E = �ω > 3.1 eV (λ < 0.4 μm) due to the limited range
of the available experimental data.

The spectra of Re[σs(ω)], a physical quantity related to
the optical absorption in the material, and Im[σs(ω)] are
depicted in Figs. 2(b) and 2(c), respectively. For each TMDC,
Re[σs(ω)] exhibits spectral peaks at wavelengths specific to
the particular 2DM: the absorption peaks of Re[σs(ω)] with
highest and second highest wavelength for each material
(shown for MoSe2 as A and B, respectively) correspond to
low-energy interband transitions at the K(K ′) point of the first
Brillouin zone due to splitting of the valence band by spin-orbit
coupling, whereas peaks at lower wavelengths correspond to
higher-energy interband transitions [59].

B. Nonlinear optical properties of 2D materials

The lattices of graphene and TMDC monolayers belong to
different space symmetry groups, which means that each of
these materials requires a separate treatment. The graphene
lattice belongs to the D6h space group, as illustrated in
Fig. 3, which means that graphene is a centrosymmetric
material and thus SHG is a forbidden nonlinear optical
process. On the other hand, THG is an allowed, particularly
strong process in graphene [28,29], which makes it a suitable
material for nonlinear optical applications. By contrast, TMDC
monolayers belong to the D3h space group [63] so that in this
case SHG is the lowest-order nonlinear optical process.

The nonlinear optical response of graphene can be de-
scribed by using the nonlinear optical conductivity tensor σ (3)

s ,
which relates the nonlinear surface current density jnl and the
electric field E at the fundamental frequency (FF). Thus, if we
assume that the graphene sheet lies in the (x,y) plane at z = 0,
the nonlinear current density Jnl can be written as

Jnl(r,t) = jnl(rt ,t)δ(z), (5)

where rt is the position vector lying in the graphene plane.
Then, the nonlinear surface current density can be written as

j nl
α (rt ,t) = σ (3)

s,αEα(rt ,t)|Et (rt ,t)|2, (6)

where Et is the electric field component lying in the plane
of graphene. In this description [29], the nonlinear current
density lies in the plane of graphene and only depends on the
tangential field components. As a result, σ (3)

s,x = σ (3)
s,y = σ (3)

s and
σ (3)

s,z = 0. A formula for σ (3)
s , derived under the assumptions

that electron-electron and electron-phonon scattering as well
as thermal effects can be neglected, has been recently derived
in Ref. [29] and reads as

σ (3)
s (ω) = iσ0(�vF e)2

48π (�ω)4
T

(
�ω

2εF

)
. (7)

In this equation, derived using perturbation theory, T (x) =
17G(x) − 64G(2x) + 45G(3x),

G(x) = ln

∣∣∣∣1 + x

1 − x

∣∣∣∣ + iπθ (|x| − 1),

y

xz
(armchair)

(zig-zag)

Graphene: D6h TMDC: D3h

carbon transition metal chalcogene-pair

FIG. 3. Schematic of the atomic structures of graphene (symme-
try group D6h, left) and TMDC monolayers (symmetry group D3h,
right). The hexagonal lattice of graphene is centrosymmetric and thus
SHG is forbidden. By contrast, the lattice of TMDC monolayers is
noncentrosymmetric and as such SHG is allowed.
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FIG. 4. (a) Real and imaginary parts of the third-order nonlinear
surface conductivity of graphene σ (3)

s . (b) Spectral dependence of
the effective bulk quadratic nonlinear susceptibility |χ (2)

b | of three
TMDC monolayer materials and the value of the dominant component
of χ

(2)
b,xyz for GaAs, given for reference. For WS2, the experimental

noisy data (black line) has been smoothed out (blue line).

and vF = 3a0γ0/(2�) ≈ c/300 is the Fermi velocity, with a0 =
1.42 Å being the nearest-neighbor distance between carbon
atoms in graphene and γ0 = 2.7 eV is the nearest-neighbor
coupling constant. Figure 4(a) depicts σ (3)

s (ω) and additionally
highlights the lowest spectral peak at λ = 1.033 μm in the inset
of the figure.

Similarly to the linear case, one can introduce a “bulk”
nonlinear conductivity σ

(3)
b = σ (3)

s /heff . This nonlinear con-
ductivity is particularly useful in experimental investigations
of nonlinear optics of graphene because it is related to an
effective bulk third-order nonlinear susceptibility χ

(3)
b , the

physical quantity that is usually measured experimentally.
Using the fact that for harmonic fields Jnl(r,t) = −iωPnl(r,t),
where Pnl(r,t) is the nonlinear polarization, one can easily
show that

χ
(3)
b = i

ε0�t

σ
(3)
b = i

ε0�theff
σ (3)

s , (8)

where �t = 3ω1 is the frequency at the third-harmonic (TH),
with ω1 being the fundamental frequency.

In contrast to graphene, TMDC monolayers are non-
centrosymmetric (see Fig. 3) and therefore SHG is al-
lowed [64,65]. Based on the symmetry properties of their
space group D3h, it can be shown that the structure of their
quadratically nonlinear susceptibility tensor χ

(2)
b yields only

one independent, nonvanishing component [37,38,64]:

χ
(2)
b,0 := χ

(2)
b,xxx = −χ

(2)
b,xyy = −χ

(2)
b,yxy = −χ

(2)
b,yyx, (9)

where x is the armchair direction of the monolayer and
y the orthogonal zigzag direction. The nonlinear surface
conductivity tensor σ (2) has the same structure and is related
to the nonlinear susceptibility via a relation similar to Eq. (8):

σ (2)
s = −iε0�sheffχ

(2)
b , (10)

�s = 2ω1 being the second-harmonic (SH) frequency.
Numerical values for the effective thickness of the four

TMDC monolayer materials are taken from Ref. [59] and
are presented in Table I. Although the tensorial structure
expressed in Eq. (9) already qualitatively determines the
nonlinear surface current

jnl
α (rt ,t) =

∑
β,γ=x,y,z

σ
(2)
s,αβγ Eβ(rt ,t)Eγ (rt ,t), (11)

the particular value of χ
(2)
b,0 (and hence that of σ (2)

s ) is of
practical importance. Reliable values over a certain spectral
range exist for WS2 [37], MoS2 [38,39], and WSe2 [40] and
are depicted in Fig. 4(b). Despite these materials consisting
of just a single atomic layer, the largest values of χ

(2)
b =

1140 pm V−1, χ
(2)
b = 132 pm V−1, and χ

(2)
b = 67 pm V−1, re-

spectively, have comparable magnitude to that of GaAs,
χ

(2)
b,xyz = 740 pm V−1, a medium with strong bulk quadratic

susceptibility [65,66].
It is also instructive to compare the strength of the SHG in

TMDC monolayer materials to that in noble metals, as in both
cases the SH is generated largely in a single atomic layer. To
this end, we introduce a surface quadratic nonlinear suscep-
tibility tensor χ (2)

s = heffχ
(2)
b , which we then compare to the

surface quadratic nonlinear susceptibility tensor of Au and Ag.
The highest value of χ (2)

s of WS2 is χ (2)
s = 7 × 10−19 m2 V−1

and is hence comparable to the dominant component χ
(2)
s,⊥⊥⊥

for Ag and Au, i.e., χ
(2)
s,⊥⊥⊥ = 1.59 × 10−18 m2 V−1 and

χ
(2)
s,⊥⊥⊥ = 1.35 × 10−18 m2 V−1 [67], respectively.

IV. HIGHER-HARMONIC GENERATION IN
PERIODICALLY PATTERNED 2D MATERIALS

This section will introduce a numerical method for calcu-
lating the nonlinear optical interaction of light with periodic
structures consisting of 2DMs embedded in dielectric or
metallic patterned media. Nonlinear optical effects in the bulk
part of periodic structures are not considered in this paper, as
there already exist numerical formulations that are compatible
with [68–70] or complementary to [71] the proposed method
to accurately calculate these bulk nonlinear optical effects.

To this end, the undepleted pump approximation will be
used as a means to introduce the nonlinear optical interactions
in the governing Maxwell equations (MEs). Since the basis of
the proposed numerical method is the RCWA, this method will
be briefly revisited and the necessary mathematical formalism
derived. Then, a modified boundary condition for interfaces
incorporating conductive, potentially nonlinear 2DMs is con-
sidered and a numerically stable S-matrix algorithm for
propagation of nonlinear fields generated by the monolayers
of 2DMs in multilayered periodic structures is derived to
complete the proposed algorithm. Importantly, the thickness
of the 2DMs does not enter in our numerical method, thus
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removing an ambiguity present in other numerical methods
currently used to describe these materials [45–47].

A. Optical higher-harmonic generation in the undepleted
pump approximation

This section introduces the physical and mathematical
model for multifrequency, nonlinear optical interaction in
the so-called undepleted pump approximation. For a more
complete description of this theoretical approach, we refer the
reader to Ref. [65]. To this end, let us assume that the real
electric field E(r,t) as a function of position r and time t

is composed of NF + 1 monochromatic waves with pairwise
different optical frequencies ωn, n = 0, . . . ,NF , that is,

E(r,t) = 1

2

NF∑
n=0

E(ωn)(r) exp(−iωnt) + c.c., (12)

where E(ωn)(r) is the amplitude of the wave with frequency
ωn and c.c. denotes the complex-conjugation operation. The
fields with frequencies ωn, n = 1, . . . ,NF , are assumed to be
excitation (pump) fields, whereas the field at � := ω0 is a
higher-harmonic, nonlinearly generated field. This nonlinear
optical field depends on the specific nonlinear optical process
under investigation. Similar expressions are assumed for the
other electromagnetic quantities. In particular, the polarization
P(r,t) is expressed as

P(r,t) = 1

2

NF∑
n=0

P(ωn)(E; r) exp(−iωnt) + c.c., (13)

where P(ωn)(E; r) encodes a, possibly nonlinear, functional
relation between the total, time-dependent field E and the
polarization with ωn-harmonic time dependence at position r.

In most situations of practical interest, depending on partic-
ular physical conditions, only certain nonlinear polarizations
are generated with significant strength. Moreover, in the case
of strong excitation fields or when the induced nonlinear
polarizations are weak, the following assumption can be made:

P(ωn)(E; r) = P(ωn)(E(ωn); r) = ε0χ
(1)(r; ωn)E(ωn)(r).

This means that the polarizations at the frequencies of the
pump fields ωn, n = 1, . . . ,NF , are solely determined by
the corresponding linear optical susceptibility χ (1)(ωn) of the
optical medium and the electric field at frequency ωn. The
polarization at the nonlinear frequency �, however, consists
of both the linear polarization at �, which is proportional
to the nonlinear field E(�)(r) and a nonlinear polarization
P(nl,�)(E(ωn �=0); r), which can incorporate the electric field from
all pump fields with frequencies ωn, n > 0:

P(�)(E; r) = ε0χ
(1)(�)E(�)(r) + P(nl,�)(E(ωn �=0); r).

Under this assumption, the optical fields at the pump
frequencies ω1, . . . ,ωNF

are not altered, or in a narrower sense,
depleted by the nonlinear processes, hence, this assumption
is called the undepleted pump approximation. The particular
form of the nonlinear polarization P(nl,�)(E(ωn �=0); r) depends
on the nonlinear process under consideration, such as sum-
or difference-frequency generation (SFG or DFG), SHG, and

THG. Specific expressions for P(nl,�)(E(ωn �=0); r) for SHG and
THG in 2DMs have been given in the previous section.

The algorithmic appeal of this approximation is the possi-
bility to obtain a general, one-way coupled calculation scheme,
which only requires the solution of NF homogeneous linear
optical problems and one affine linear problem with electrical
sources. In particular, the numerical algorithm consists of the
following three steps: In the step (i) (linear calculations), one
calculates the fields E(ωn) at the pump frequencies ωn, n =
1, . . . ,NF . In the second step (ii) (polarization evaluation),
one evaluates the nonlinear polarization P(nl,�)(E(ωn �=0); r) for
the particular nonlinear process under consideration. Finally,
in the third step (iii) (nonlinear calculation), one calculates the
generated nonlinear electric field E(�).

Given this generic three-step algorithm, in the remaining
part of this section we will describe the numerical imple-
mentation of the computational steps (i) and (iii) for the
particular case of higher-harmonic generation in multilay-
ered periodic structures, which contain periodically patterned
monolayers of 2DMs that can exhibit quadratic or cubic optical
nonlinearity.

B. RCWA: Modal expression for fields in bulk periodic regions

The proposed method aims at describing nonlinear optical
effects in 2D materials, hence, for the sake of simplicity, we
do not consider nonlinear optical effects in the bulky materials
involved, but only in the 2DM sheets. These latter nonlinear
effects can be easily incorporated into our algorithm, as we
have recently shown [71]. Thus, the electromagnetic fields
in the bulk parts of the structure are governed by the time-
harmonic MEs for nonmagnetic media without sources:

∇ · [
ε0ε

(ω)
r (r)E(ω)(r)

] = 0, (14a)

∇ × H(ω)(r) = −iωε0εr (r)E(ω)(r), (14b)

∇ × E(ω)(r) = iωμ0H(ω)(r), (14c)

∇ · H(ω)(r) = 0, (14d)

for ω = ωn, n = 0, . . . ,NF . These equations have to be
completed by boundary conditions, which will be the point
where both linear and nonlinear interface effects are in-
corporated. Before the appropriate boundary conditions are
introduced and discussed in Sec. IV C, the RCWA is used
to describe the solution of Eqs. (14) in each layer. For
now, let us drop the superscript ω, as the description of
the modal form of the electromagnetic fields is independent
on whether a pump or a nonlinearly generated frequency is
considered.

The RCWA method is a mature, widely known algo-
rithm [52,53,72,73], but in order to make the further derivation
mathematically consistent, the notation and framework used
here is described in the Appendix. The main result that is
necessary for the extension of this method to nonlinear 2DMs
is that the solutions in each of the bulk layers are given by
a modal expansion, where each mode profile is given as a
Fourier series.

The electromagnetic fields in each layer, denoted with
superscript “L,” are expressed in a linear combination of
upward- and downward-propagating modes with coefficients
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c(L,±)
m , where superscripts “+” and “−” refer to upward

and downward propagation, respectively. Each mode is fully
described by its complex propagation constant ν(L,±)

m , which
determines the z dependence, and the z-independent Fourier
series coefficients E(L,m,±)

α,n and H (L,m,±)
α,n , for α = x,y,z. These

coefficients determine the transverse profile of mode m via
the Fourier series reconstruction operator R{. . .}, defined in
the Appendix. This reconstruction of the electric field is hence
expressed as

E(L)
α (x,y,z) = R

{[
E(L)

α (z)
]}

(x,y), (15)

with([
E(L)

α (z)
][

H (L)
α (z)

]) =
[

E(L,+)
α E(L,−)

α

H(L,+)
α H(L,−)

α

]

×
[

V(L,+)(z) 0

0 V(L,−)(z)

](
c(L,+)

c(L,−)

)
. (16)

Here, the mth column of E(L,±)
α and H(L,±)

α is the vector of
Fourier coefficients [E(L,m,±)

α ] and [H (L,m,±)
α ], respectively, of

the α component of the mth mode. The propagation matrix
V(L,±)(z) is diagonal with entries V(L,±)

mm (z) = eik0ν
(L,±)
m (z−z(L,∓)),

where z(L,±) is the bottom/top z coordinate of layer L. This
means that the electromagnetic fields in each layer are fully
determined by their coefficients c(L,±).

C. Modeling 2D materials via RCWA by means
of boundary conditions

The optical response of 2DMs can chiefly be described
in two different ways. One direct approach in RCWA and
other numerical methods is to model the monolayer material
as a periodic, very thin film, similar to the layers in which
the periodic bulk components are decomposed. To this
end, a physical effective thickness heff of the 2DM under

consideration has to be chosen as well as its permittivity. This
is a rather questionable and inefficient approach, for three main
reasons. First, the choice of heff is somewhat ambiguous, both
because the thickness of an atomic monolayer does not have
a clear meaning in the classical physics context and due to the
fact that the experimentally measured value of this thickness
varies considerably, for all 2DMs. Second, this approach
suffers from numerical artifacts and slow convergence, as
reported in recent works [49,55]. This is understandable as
the thickness of the monolayer is much smaller than the
optical wavelength heff � λ. Finally, it is computationally
costly to find RCWA modes of the 2DMs since this requires
the numerical solution of an eigenvalue problem (see the
Appendix).

An alternative procedure for describing sheets of structured
2DMs is introduced in this paper and consists of modeling such
2DM sheets by means of a surface conductance, which enters
the algorithm in via electromagnetic boundary conditions
between adjacent bulk layers. Thus, consider the schematic of
the multilayer structure presented in Fig. 5(a). At a horizontal
plane with z = zs , which is located between two adjacent
bulk layers, the following relations of the tangential E and H
fields in the top region (superscript A) and the bottom region
(superscript B) have to be fulfilled [74]:

n̂ × (E(ω,A)(x,y,zs) − E(ω,B)(x,y,zs)) = 0, (17a)

n̂ × (H(ω,A)(x,y,zs) − H(ω,B)(x,y,zs)) = j(ω)(x,y), (17b)

where n̂ = (0,0,1) denotes the unit vector along the z direction,
pointing towards region A. The first of these equations
expresses the continuity of the tangential components of
E at the interface. The second equation warrants further
discussion. Thus, in the presence of a 2DM at z = zs , the
tangential component of H is discontinuous, its variation
across the ith interface being given by the surface current
j(ω)(x,y) = j(ω,lin)(x,y) + j(ω,nl)(x,y). In particular, the total
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…
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(a)
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cover
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(c)
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~
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FIG. 5. Schematic of a multilayer structure located between cover and substrate and containing a 2DM sheet with surface conductance σs ,
the neighboring layers A and B, and the evaluation layer E, in which the electromagnetic field is to be determined. (b) Linear (c±,e±, . . .) and
nonlinear (ã+,b̃±,s̃−) mode coefficients in the respective layers and the S matrices that connect them. (c) Combination of layers B and S yields
the combined S matrix SABS and effective nonlinear coefficients ã+

eff and s̃−
eff . (d) Repeated combination of S matrices allows the calculation

of the field coefficients e from the effective nonlinear mode coefficients ẽ+
eff .
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surface current contains a linear component given by

j(ω,lin)(x,y) = σ (ω)
s (x,y)E(ω,s)(x,y) (18)

and a nonlinear surface current j(ω,nl)(x,y). The linear surface
current depends only on the electric field at the interface
E(ω,s)(x,y,zs) at the same frequency ω and the sheet con-
ductance distribution at the interface. The nonlinear surface
current, on the other hand, is assumed to be different from
zero only at the frequency ω = ω0 and generally depends
on the electric field at all the other frequencies ω = ωn,
n = 1 . . . ,NF .

One can easily see that j(ω)(x,y) is a pseudoperiodic
function of x and y coordinates, hence, it is determined by its
Fourier vector coefficient [j(ω)]. Special attention is, however,
necessary when one calculates the Fourier coefficients of the
linear current [j(ω,lin)], as in the real space it is given by a
product of two periodic functions σ (ω)

s (x,y) and E(ω,s)(x,y).
This issue, known as the fast Fourier factorization problem,
must be properly addressed in order to achieve high accuracy
and fast convergence of methods relying on Fourier series
representation [54,72,73,75].

To find the correct factorization rule for Eq. (18), the
continuity property of the two factors in the right-hand side
of this equation as well as that of the product have to be
investigated. To this end, consider Fig. 6, which depicts the
z = zs plane that comprises a surface conductivity σ (ω)

s (x,y) =
χ2DM(x,y)σs(ω). Hereby, χ2DM(x,y) denotes the characteristic
function of the 2DM distribution and σs(ω) is the sheet
conductance of the 2DM, e.g., Eq. (2) for graphene. At each
point r̃ of the 1D boundary � of the 2DM we introduce a local
coordinate system defined by the orthogonal vectors tn, tt , and
ez, where tn and tt are the in-plane unit vectors normal and

(a)

(b) (c)

r -1/2

2DM=0

2DM=1
z y

x

z

tn

tt

z

tn

tt

tn
s E(i)

tn

sE(i)
tn

r~

r~
s=0

r~

FIG. 6. (a) Cross section of the periodic structure through the
plane z = zs containing the 2DM distribution χ2DM(x,y) with the
boundary contour � showing a unit cell and the local coordinate
system at a generic location r̃. (b) Local coordinate system at r̃.
(c) Qualitative behavior of the surface quantities E

(i)
tn and j

(ω,lin)
tn =

σ (ω)
s E

(ω,s)
tn .

tangent to the contour �, respectively, at the point r̃ and ez

is the unit vector along the z axis. One can assume that the
sheet conductance function is smooth along the tt direction,
yet it is discontinuous along the tn direction, as per Fig. 6(b).
The continuity relation (17a) of the tangential electric field
at z = zs allows one to define a tangential surface electric
field E

(ω,s)
tn (x,y) as the limit of the volumetric electric fields

E
(ω)
tn (x,y,z) from either side of z = zs plane:

E
(ω,s)
tn (x,y) := lim

z→zs

E
(ω)
tn (x,y,z). (19)

The electromagnetic near field in the vicinity of such a
conductive sheet can be calculated analytically [76] and here
we only summarize the main results relevant to our numerical
method: (i) The tn component of the surface current vanishes
at r̃ as

lim
ρ→0+

j
(ω,lin)
tn (r̃ − ρtn) = lim

ρ→0+
C

√
kρeikρ = 0.

Since j
(ω,lin)
tn (r̃ + ρtn) = 0 for ρ > 0, j

(ω,lin)
tn (r̃) is continuous

around r̃. (ii) The tn component of the surface electric field
E

(ω,s)
tn (r̃) is discontinuous at the boundary �. More specifically,

lim
ρ→0+

E
(ω,s)
tn (r̃ − ρtn) = 0,

that is, E
(ω,s)
tn (r̃) inside the 2DM vanishes near the boundary,

whereas it diverges when approaching the interface from
outside the 2DM,

lim
ρ→0+

E
(ω,s)
tn (r̃ + ρtn) = lim

ρ→0+
C(kρ)−1/2 = ∞.

Finally, (iii) the in-plane tangential component E
(ω,s)
tt (r̃) of

the interfacial electric field is continuous and bounded at the
boundary �. Findings (i) and (ii) are schematically depicted in
Fig. 6(c).

These results imply that j
(ω,lin)
tn (x,y) is a continuous

function, but both factors σ (ω)
s (x,y) and E

(ω,s)
tn (x,y) in Eq. (18)

are discontinuous. Therefore, Laurent’s product rule cannot
be applied, as it would result in spurious field oscillations
near the boundary � and slow convergence of the algorithm.
The inverse rule is also not applicable, as the first factor
σ (ω)

s (x,y) vanishes in some regions of the unit cell, outside
of the domains occupied by the 2DM. To overcome this
problem, a small but nonzero surface conductivity σs,add �=
0 is added at the interface regions where there is no
2DM with finite conductivity. As a result, this modified
sheet conductance distribution in the unit cell is defined
as

σ̃ (ω)
s (x,y) := χ2DM(x,y)σs(ω) + [1 − χ2DM(x,y)]σs,add.

(20)

As it has been seen in Sec. III A, σs(ω) is a function of
frequency and can vary by orders of magnitude. Therefore,
it is natural to scale the added conductivity σs,add, relative to
the absolute value of the physical conductivity of the 2DM,
that is, σs,add(ω,η) = −iη|σs(ω)|, where η is a small scaling
constant. This choice ensures in addition that σs,add is a negative
imaginary quantity, so that one does not introduce artificial
losses in the system but only a vanishingly small phase change
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at the interface. However small this effect is, it introduces
an error and hence its quantitative contribution to the optical
response of the photonic structure must be investigated. The
influence of σs,add, and implicitly that of η, on the calculated
near and far fields by the proposed method will be investigated
in Sec. V.

A further justification of our nonzero conductivity model is
provided by the application of Ampere’s law for a loop around
the interface, an approach that has been recently introduced
elsewhere [49,55]. This alternative model also amounts to
using a modified conductivity at the interface similar to that in
Eq. (20).

In order to complete the derivation of the correct Fourier
factorization of the surface current defined by Eq. (18) for
σ̃ (ω)

s (x,y) �= 0, let N(x,y) denote a normal vector field (NVF),
namely, a vector field that is normal to the 1D contour � at
any point of the interface and is analytically continued into the
regions away from �. This can be done analytically for certain
cross sections and ways to automatically generate a NVF for
arbitrary cross sections are readily available [77]. This allows
one to express the factorization of [j(ω,lin)] in terms of the
conductivity distribution coefficients [[σ̃ (ω)

s ]] and [[1/σ̃ (ω)
s ]] and

tangential field coefficients [E(ω,s)] in such a way that the
normal tn component of j(ω,lin)(x,y) is decomposed using the
inverse rule, and its tangential tt component is decomposed
using the regular product rule:

[
j (lin)
α

] =
∑

β=x,y

�Nα,β

[
E

(ω,s)
β

]
, (21)

where the conductivity difference matrix is given by

�Nα,β = δαβ[[σ̃ (ω)]] + 1
2 [[NαNβ]]

([[
1/σ̃ (ω)

s

]]−1 − [[
σ̃ (ω)

s

]])
+ 1

2

([[
1/σ̃ (ω)

s

]]−1 − [[
σ̃ (ω)

s

]])
[[NαNβ]]. (22)

This procedure is similar to the factorization rule for the
displacement field used in the regular RCWA for bulk materials
employing the NVF approach for fast Fourier factorization
given in (A5); see also Refs. [73,78].

The calculation of j(ω0,nl)
tn (x,y) as a function of E requires the

electric near-field distribution at the interface. This near field
is difficult to calculate accurately in the RCWA even when the
correct Fourier factorization rules are employed, as was noted
in Refs. [56,78,79]. A revealing insight into the accuracy of
near-field calculations is that RCWA relies on the accurate
description of continuous quantities, as they can be readily
expanded in Fourier series. This can be exploited to achieve
an accurate interface-field description: knowing that the tt
component of the interface electric field E(ω,s)

tt is continuous,
it is convenient to evaluate this component directly by Fourier
series reconstruction. Since, however, its tn component is
discontinuous (and in fact singular), it can only be poorly
represented by its Fourier series, so that the reconstructed field
E(ω,s) will experience unphysical oscillations and the Gibbs
phenomenon.

A more well-behaved quantity is the surface current, which
is continuous and hence properly described by its Fourier
series. With the definition of the Fourier coefficients of the

vectorial normal surface current and tangential surface fields
as

[
E(ω,s)

tt

] = [[I − NNT ]]
[
E(s)

t

]
, (23a)[

j(ω)
tn

] = 1
2

(
[[NNT ]]

[[
1/σ̃ (ω)

s

]]−1

+[[
1/σ̃ (ω)

s

]]−1[[
NNT

]])[
E(ω,s)

t

]
, (23b)

one obtains the reconstructed field at the interface as

E(ω,s)
t (x,y) = R

{[
E(ω,s)

tt

]}
(x,y) + 1

σs(ω)
R

{[
j(ω)
tn

]}
(x,y).

(24)

Here, all Fourier series represent functions continuous at the
in-plane boundaries of the 2DM. The fact that this approach
only allows a reconstruction of the near field at the 2DM
interface, where χ2DMσs �= 0, is not particularly concerning
since the nonlinear surface current is a priori nonvanishing
there only.

D. Inhomogeneous S-matrix formalism

In the previous section we have introduced the modal
expansion of the electromagnetic fields inside and around
the diffraction grating structure and cast them in a concise
matrix form, as per Eq. (16). It remains now to determine
the coefficients c± in every computational layer in order to
obtain the electromagnetic fields. This is achieved by fulfilling
the boundary conditions given by Eq. (17b) between all
computational layers, the results of these calculations being
cast in a versatile inhomogeneous S-matrix formalism.

To this end, let us consider again the multilayer structure
and the computational variables defining the corresponding
electromagnetic field schematically illustrated in Figs. 5(a)
and 5(b), respectively. The optical structure consists of exactly
one 2DM sheet located at z = zs , defined by its distribution
of conductivity, and an arbitrary number of bulk layers,
defined by their respective electrical permittivity distribution
and identified by their superscript. Three of the layers are
of particular interest, namely, the two computational layers
directly enclosing the 2DM sheet, identified by “A” and “B,”
and the evaluation layer “E,” which can be any computational
bulk layer in the grating structure. In addition, the semi-
infinite layers “C” and “S” identify the cover and substrate,
respectively. These capital letters are used to label the mode
shape matrices E(L,±)

α and H(L,±)
α and the propagation matrix

V(L,±)(z) in each layer L ∈ {A,B,E,C,S}. The vector of mode
coefficients in each layer is denoted by the corresponding bold
lowercase letters a±, b±, e±, c±, and s±.

At each of the pump frequencies, plane-wave incidence is
assumed, i.e., the incoming cover and substrate coefficients
c− and s+, respectively, are given and at least one of their
entries is nonzero. At the generated frequency, no field is
assumed to be incident, hence, s− = c+ = 0. Moreover, the
higher-harmonics optical field is generated due to the nonlinear
surface current j(ω,nl)(x,y). With this setup, the goal of the
remaining derivation is to determine the mode coefficients e±
in the evaluation layer E. Since the layer E was arbitrarily
chosen, this suffices to determine the mode coefficients, and
hence the electromagnetic field, in any layer.
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Since the fields in layers A and B are expressed using their
Fourier series according to Eq. (15), the boundary conditions
given by Eq. (17) can be expressed in terms of the Fourier
vector coefficients of the fields and read as

[
E

(A)
t (zs)

] = [
E

(B)
t (zs)

]
, (25a)[

H
(A)
t (zs)

] − [
H

(B)
t (zs)

] = [
δH

(s)
t

]
. (25b)

Hereby, δH
(s)
t = (jy, − jx)T denotes the variation of the

tangential components of H across the surface z = zs and the
superscript ω is dropped to simplify the notation. The symbol
“T ” means matrix transpose operation.

The vector Fourier coefficients [E(A)
t (zs)] and [H (A)

t (zs)]
can be expressed in terms of their mode coefficients a± and b±,
via Eq. (16). This same procedure is performed with the linear
surface current according to the factorization rule expressed
by Eq. (21), which relies on the tangential field at z = zs . Due
to the continuity of the tangential surface field, in principle,
the field values from either side A or B, or their average, could
be taken, as they are all equal. The latter is chosen in our
approach, thus yielding [E(s)

t ] = {[E(A)
t (zs)] + [E(B)

t (zs)]}/2.
Using the factorization rule given in Eq. (21), one obtains

for the α component of the linear surface current

[
j (lin)
α

] = 1

2

∑
β=x,y

�Nαβ

×
{[

E(A,+)
β E(B,−)

β

][V(A,+)(zs) 0
0 V(B,−)(zs)

](
a+
b−

)

+[
E(A,−)

β E(B,+)
β

][V(A,−)(zs) 0
0 V(B,+)(zs)

](
a−
b+

)}
.

(26)

Defining the block matrix G(L,±)
t for layers A and B as

G(L,±)
t = 1

2

[
�NyxE(L,±)

x + �NyyE(L,±)
y

−�NxxE(L,±)
x − �NxyE(L,±)

y

]
, (27)

the surface variation [δH (s)
t ] is found to be

[
δH

(s)
t

] = [
δH

(s,nl)
t

] + [
G(A,+)

t G(B,−)
t

]
×

[
V(A,+)(zs) 0

0 V(B,−)(zs)

](
a+
b−

)

+ [
G(A,−)

t G(B,+)
t

]
×

[
V(A,−)(zs) 0

0 V(B,+)(zs)

](
a−
b+

)
. (28)

Inserting this equation and Eq. (16) into Eqs. (25), the
following matrix relation is derived:

LAB

(
a+
b−

)
=

(
0

[δH (s,nl)
β ]

)
+ RAB

(
b+
a−

)
, (29)

where

LAB =
[

E(A,+)
t −E(B,−)

t

H(A,+)
t + G(A,+)

t −H(B,−)
t − G(B,−)

t

]

×
[

V(A,+)(zs) 0

0 V(B,−)(zs)

]
,

RAB =
[

E(B,+)
t −E(A,−)

t

H(B,+)
t + G(B,+)

t −H(A,−)
t − G(A,−)

t

]

×
[

V(B,+)(zs) 0

0 V(A,−)(zs)

]
.

Here, E(L,±)
t = [E(L,±)

x ; E(L,±)
y ] denotes the 2N0 × 2N0 matrix

of all tangential Fourier components of the modes in layer L.
Note that the vectors of Fourier coefficients have already been
arranged in a way suitable for the S-matrix formalism, which
is explained in what follows.

By multiplying from the left both sides of Eq. (29) with the
inverse of matrix LAB , the Fourier coefficients of the outgoing
modes a+ and b− can be determined in terms of the coefficients
of the incoming modes a− and b+ and the nonlinear surface
current:(

a+
b−

)
= (LAB)−1

{(
0

[δH (s,nl)
t ]

)
+ RAB

(
b+
a−

)}

=
(

ã+

b̃−

)
+ SAB

(
b+
a−

)
=

(
ã+

b̃−

)
+

(
a+

b
−
)

, (30)

where SAB = (LAB)
−1

RAB is the scattering matrix (S matrix)
of the interface system. This equation shows that the outgoing
coefficients are comprised of two parts: a+ and b

−
are the

contributions to the total coefficients a+ and b−, respectively,
given by linear scattering at the interface of the incident modes
described by the coefficients a− and b+, whereas ã+ and b̃−
are the contributions of the nonlinear surface current to the
total coefficients a+ and b−, respectively, and only enter if the
generated frequency ω = ω0 is considered.

If the considered structure only consists of cover, substrate,
and one periodically patterned 2DM sheet, Eq. (30) is sufficient
to fully describe its optical response. In multilayer structures,
however, the contributions of S matrices of different layers
and interfaces have to be properly incorporated. To this end,
consider three layers A, B, and S, with coefficients a±, b±,
and s±, respectively, depicted in Fig. 5(b). We assume that the
S matrix, which connects the mode coefficients in layers B

and S, is known and fulfills the relation(
b+
s−

)
= SBS

(
b−
s+

)
+

(
b̃+
s̃−

)
. (31)

Combining this equation and Eq. (30), one determines the
scattering matrix relation between the coefficients associated
to the top and bottom layers a± and s±, respectively, by
eliminating the coefficients b±:(

a+
s−

)
= SABS

(
s+
a−

)
+ TABS

(
b̃+

b̃−

)
+

(
ã+
s̃−

)
, (32)
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where the four N0 × N0 subblocks of the combined S matrix
SABS are given by

SABS
11 = SAB

11 + SAB
12

(
I − SBS

11 SAB
22

)−1
SBS

11 SAB
21 , (33a)

SABS
12 = SAB

12

(
I − SBS

11 SAB
22

)−1
SBS

12 , (33b)

SABS
21 = SBS

21

(
I − SAB

22 SBS
11

)−1
SAB

21 , (33c)

SABS
22 = SBS

22 + SBS
21

(
I − SAB

22 SBS
11

)−1
SAB

22 SBS
12 , (33d)

and the four subblocks of the combined matrix TABS are
expressed as

TABS
11 = SAB

12

(
I − SBC

11 SAB
22

)−1
, (34a)

TABS
12 = SAB

12

(
I − SBS

11 SAB
22

)−1
SBS

11 , (34b)

TABS
21 = SBS

21

(
I − SAB

22 SBS
11

)−1
SAB

22 , (34c)

TABS
22 = SBS

21

(
I − SAB

22 SBS
11

)−1
. (34d)

These relations are found by straightforward matrix cal-
culations, where one of the intermediate steps yields the
coefficients of the middle layer B:

b− = (
I − SAB

22 SBS
11

)−1

×[
SAB

21 a− + SAB
22 SBS

12 s+ + b̃− + SAB
22 b̃+]

, (35a)

b+ = (
I − SBS

11 SAB
22

)−1

×[
SBS

11 SAB
21 a− + SBS

12 s+ + SBS
11 b̃− + b̃+]

, (35b)

expressed solely in terms of incoming and known coefficients
a−, s+, and b̃±.

The matrix operation SABS = SAB ⊗ SBS is known as the
Redheffer star product [80]. It is associative, noncommutative,
and has the neutral element I⊗ = [0,I; I,0]. It can be applied
repeatedly and hence at all pump frequencies, where all
nonlinear coefficients (c̃±, ẽ±, . . .) vanish, it enables the
calculation of the outgoing mode coefficients c+ and s− from
the incident mode coefficients c− and s+.

Note that the term

TABS

(
b̃+

b̃−

)
+

(
ã+
s̃−

)
=:

(
ã+

eff
s̃−

eff

)
(36)

in Eq. (32) can be viewed as the effective coefficients of
the modes that are radiated by the combined multilayer-
interface system ABS. More specifically, this term accounts
for the linear propagation of the internally radiated modes at
the generated frequency, with coefficients b̃± in bulk layer
B, and it accounts for linear optical interaction (reflection,
transmission, and absorption) with the 2DM located at the
AB-interface or the BS-layer-interface system.

Equipped with these matrix-vector relations, the calculation
of all solution coefficients at the generated frequency can now
be completed. In order to evaluate the mode coefficients e± in
the evaluation layer E, one calculates the combined S matrix
SC of all layers and interfaces above the evaluation layer E, and
the combined S matrix SM of all interfaces and layers between
the evaluation layer E and up to but excluding the 2DM sheet.
This is depicted in Fig. 5(c). Note that this procedure allows for
SC , SM , or SBS to be equal to I⊗, i.e. the evaluation layer can

be any layer above the nonlinear 2DM sheet, which itself can
be located at any interface, including just above the substrate.

Under these circumstances, the governing S-matrix rela-
tions read as follows:(

c+
e−

)
= SC

(
c−
e+

)
, (37a)

(
e+
a−

)
= SM

(
e−
a+

)
, (37b)

(
a+
s−

)
= SABS

(
a−
s+

)
+

(
ã+

eff
s̃−

eff

)
. (37c)

By applying Eq. (32) to the matrix relations for SM and
SABS , one obtains SMABS = SM ⊗ SABS and effective affine
coefficients, ẽ+

eff := TMABS
11 ã+

eff and s̃−
eff := TMABS

21 ã+
eff + s̃−

eff , as
per Eq. (36).

The final constellation of the remaining two S matrices
SC and SMABS and corresponding coefficients is depicted in
Fig. 5(d). This configuration is similar to the initial system
of S matrices SAB in Eq. (30) and SBS in Eq. (31). Hence,
it allows the calculation of the evaluation coefficients e± by
means of Eq. (35), with the following replacements b± → e±,
SAB → SC , SBS → SMABS , a− → 0, s+ → 0, b̃− → 0, and
ã+ → ẽ+

eff , yielding

e− = (
I − SC

22S
MABS
11

)−1
SC

22ẽ+
eff,

e+ = (
I − SMABS

11 SC
22

)−1
ẽ+

eff .

The treatment of an evaluation layer below the nonlinear
layer can be performed in a similar manner. Moreover, if the
structure contains more than one nonlinear 2DM sheet, the
algorithm we just described can be repeated independently
for each interface where nonlinear 2DM is located and then
sum the individually obtained solution coefficients. It should
be noted that in addition to the nonlinear optical response of
2DMs, the linear scattering effects at interfaces are naturally
incorporated in our algorithm. This overall approach to linear
and nonlinear light scattering in layered photonic structures
containing 2DMs is possible because of the affine linearity of
the total system.

V. VALIDATION OF THE NUMERICAL METHOD
AND CONVERGENCE ANALYSIS

In this section, aiming to validate our numerical method,
we consider a series of generic test cases of diffraction gratings
containing 2DMs and analyze the corresponding convergence
characteristics of the numerical method. We consider both
1D- and 2D-periodic structures made of graphene, which
has cubic nonlinearity. No additional test cases for the
TMDC monolayers are shown here because they are far less
challenging than graphene from a computational point of view:
TMDC monolayers are poorly conductive materials and thus
do not affect the optical field as strongly as graphene does.

In our analysis, we investigate physical quantities describ-
ing the near and far field, so as to fully assess the stability and
convergence properties of our modal method, as was discussed
in Ref. [78]. To characterize the far field, we used the optical
absorption A at the FF, which is given by A = 1 − R − T ,
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FIG. 7. Generic structures for numerical convergence analysis.
(a) 1D periodic array of graphene ribbons with period � and width
w. (b) 2D array of circular graphene disks with radius r and periods
�1 = �2 = �.

where R and T denote the fraction of the intensity of the
incident light that is reflected and transmitted, respectively.
At the TH, the total radiation R′ + T ′ is chosen as a far-field
quantity suitable to validate our method, where R′ and T ′
denote the intensity at the TH radiated in the direction of
reflection and transmission, respectively.

A. One-dimensional binary graphene gratings

As a first example of a periodic diffraction grating con-
taining nonlinear 2DMs, consider the 1D periodic array of
graphene ribbons depicted in Fig. 7(a), sandwiched in-between
homogeneous cover and substrate materials with electric
permittivity, εc = 3 and εs = 4, respectively. The period of the
grating is � = 8 μm and the spacing between adjacent ribbons
is w = �/2 = 4 μm. The incident light is normally impinging
onto this binary graphene grating and is TM polarized.

In order to illustrate the effectiveness and benefits of our
algorithm with added conductivity, Eq. (20) with σs,add =
−iη|σs(ω)|, and correct Fourier factorization, Eq. (21), we
compare it with two other versions of the proposed method.
The first of these two algorithms employs a zero conductivity
σs,add = 0 in the regions without graphene and only uses
the product factorization rule for Eq. (18), i.e., an incorrect
factorization rule. In the second algorithm we assume that
graphene has a finite thickness heff = 0.33 nm, i.e., we model
the array of graphene ribbons as a periodic bulk layer
with relative permittivity εr = 1 + iσs/(ε0ωheff). This can
be done using a standard RCWA implementation. We stress,
however, that this is computationally more costly as it involves
the determination of the RCWA modes in this bulk layer
representing the array of graphene ribbons. In addition, for the
sake of completeness, computational results from Ref. [49] are
included, too.

The linear absorption spectra calculated using a moderate
number of harmonics N = 100 are shown in Fig. 8(a). The
device absorption presents a broad resonance peak with
maximum of about 18.5% at the wavelength, λ = 80 μm, with
negligible absorption being observed at both shorter and longer
wavelengths. The results obtained using the algorithm with
added conductivity with η = 10−5 show very good agreement
with those found using conventional bulk RCWA calculations
and with the results taken from Ref. [49]. The model without
added conductivity slightly overestimates the absorption, in
the region λ � 70 μm.

Keeping in mind that the sheet conductance of graphene
σs,add(η) = −iη|σ s(ω)| has been introduced somewhat artifi-
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FIG. 8. (a) Linear absorption spectra obtained by setting the
added conductivity to zero σs,add = 0 (solid line), by using σs,add =
σs,add(10−5) (dashed line), using a standard RCWA with heff =
0.33 nm (dashed-dotted line) and results from [49] (green circles).
(b) Top panel shows the dispersion map of the absorption vs N and η,
determined using the algorithm with added conductivity, whereas the
bottom panel shows the dependence of absorption on N , calculated
using a standard RCWA (dashed-dotted line), the algorithm with
σs,add = 0 (solid line), and the algorithm with added conductivity
σs,add = σs,add(10−5) (dashed line).

cially to facilitate the use of the correct (inverse) factorization
rule, the influence of σs,add(η) on the accuracy of the computed
results needs to be carefully investigated. The asymptotic
behaviors of both near- and far-field physical quantities are
suitable tools for performing this analysis. To this end, we have
determined the dependence of the absorption at λ = 80 μm
on N and η, as depicted in Fig. 8(b). Among other things,
this figure shows that the convergence with respect to N

is faster for larger η. This dependence is not surprising
because the interface containing the structured graphene sheet
becomes more optically homogeneous as η increases, i.e., the
description of 1/σ̃s(x,y) as a Fourier series becomes more
accurate. However, this does not prove the accuracy of the
method just yet: σs,add was introduced at a purely mathematical
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level and as such it should vanish in physical diffraction
gratings. The accuracy of the method is demonstrated by the
fact that as η → 0, convergence of the absorption is reached;
for example, as η → 0 the maximum absorption converges to
A = 18.63% for increasing value of N .

In the bottom panel of Fig. 8(b) we contrast the convergence
characteristics of the three algorithms we just described. As
it can be seen in this figure, all three approaches converge
to the same value but, importantly, the convergence speed in
the case of finite added conductivity is the fastest among the
three cases. It is also instructive to remark that the slowest
convergence is observed in the case of zero conductivity, an
added drawback in this case being the oscillatory dependence
of the absorption on N , which confirms that this formulation
is incorrect as was theoretically argued in Sec. IV C.

The spatial profile of the electric near field deserves special
attention as well because it reveals new important features
pertaining to the convergence of the numerical method. To
illustrate this idea, the x component of the electric field for
the cases in which σs,add = 0 and when the conductivity is
finite, σs,add = σs,add(10−5), are shown in Figs. 9(a) and 9(c),
respectively. The operating wavelength is λ = 33 μm and N =
100 in both cases. In these plots, the boundary of the graphene
ribbon in the unit cell is located at x = −2 μm. It can be seen
from these plots that without the added conductivity, the field
exhibits very strong, unphysical oscillations near the boundary
of the graphene ribbons, i.e., at z = zs = 0, which spread over
the whole unit cell along the x direction. The spatial frequency
of these oscillations is equal to the highest spatial discretization
frequency, namely, to 2πN/�. In the case of finite σs,add, on
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FIG. 9. (a), (b) Electric field component Ex around the graphene
ribbon calculated for N = 100 and the fields at the surface of the
graphene ribbon corresponding to the improper (colored lines) and
correct (black lines) field evaluation, respectively. In both cases,
σs,add = 0. (c), (d) The same quantities as in (a) and (b), respectively,
but determined for σs,add = σs,add(10−5). Only a part of the left half
of the unit cell, defined by x ∈ [−4 μm,0], is shown, as the results
are symmetric in x and rather featureless far away from the graphene
ribbon located at |x| < 2 μm.

the other hand, there are no such spurious field oscillations
outside graphene regions and only weak oscillations are seen
inside the graphene ribbon, as per Fig. 9(c). In both cases, these
field oscillations only occur very close to the interface where
the graphene sheet is located and can merely be observed at
distances |z − zs | � 5 nm. These oscillations are due to the
fact that the Fourier series decomposition does not resolve the
singularity of the electric field at the edges of the graphene
ribbons, as we discussed in Sec. IV C.

One of the aims of the accurate near-field formulation
introduced by Eqs. (23) is to overcome this shortcoming
of Fourier series decompositions and thus to allow the
accurate field evaluation exactly at the location of the 2DM
monolayers, i.e., at z = zs . To illustrate how our method
achieves this, we depict in Figs. 9(b) and 9(d) the interface field
E(i)

x (x,y,z = zs), for the cases in which σs,add = 0 and when
the conductivity is finite, σs,add = σs,add(10−5), respectively.
Without using an added conductivity, the improper field
evaluation R{[E(i)

x ]}(x,y) of the surface field leads to a
strongly oscillatory spatial dependence, which in addition
changes significantly with N , as shown by the blue and
red lines in Fig. 9(b) for N = 25 and 100, respectively. By
contrast, the interface field obtained by using Eqs. (23) with
[[1/σ̃s]]−1 replaced by [[σ̃s]] displays hardly any oscillations,
as per the black lines in this figure, yet it does not vanish at
the edge of the graphene ribbon as required by the theoretical
analysis presented in Sec. IV C. These remaining oscillations
are merely due to the fact that the incorrect factorization rule
was used and not because of the unresolved singularity of the
field.

This description changes significantly if one uses a small,
finite value for σs,add [see Fig. 9(d)]. The improper evaluation
using a finite value for σs,add yields a smooth field outside
the graphene region |x| > 2 μm, but still displays unphysical
oscillations inside the graphene region |x| � 2 μm, and does
not vanish at the graphene boundary |x| = 2 μm, as required.
On the other hand, by employing the correct evaluation of
the surface field and surface current given by Eqs. (23), one
obtains a surface field that vanishes at |x| = 2 μm, is free of
spurious oscillations, and converges rapidly with N .

We stress that since the nonlinear polarization generated
in our photonic structures is determined by the optical near
field at the location of 2DMs, an accurate evaluation of these
near fields is a paramount prerequisite to a rigorous description
of the nonlinear optical response of these nonlinear photonic
devices. To this end, as we just showed, this can be readily
achieved by using the correct Fourier factorization expressed
as Eq. (21) in the model with finite sheet conductance, the
correct field evaluation given by Eqs. (23), and a properly
chosen number of harmonics.

The total intensity of radiated TH is considered as the first
quantity characterizing the nonlinear optical response of our
graphene gratings, the corresponding computational results
being summarized in Fig. 10. Thus, Fig. 10(a) depicts the
total radiated power at the TH, determined for the case of
finite added conductivity σs,add = σs,add(10−5), and number
of harmonics N = 50 and 200. The nonlinear source current
given by Eq. (6) was calculated using both the improperly
evaluated interface field E(i) and the correctly calculated
interface field Ẽ(i). Interestingly, in the wavelength range
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FIG. 10. (a) Nonlinear radiation spectrum for N = 50 (dashed
lines) and N = 200 (solid lines) calculated using the improper field
evaluation (blue lines) and correct field evaluation (black lines) at the
FF. (b) Intensity of TH radiation at λTH = 22 μm vs N determined for
different values of added conductivity σs,add. (c), (d) Intensity of TH
radiation at λTH = 11 and 22 μm, respectively, vs N determined using
improper field evaluation (blue lines) and correct field evaluation
(black lines) at the FF. In both cases σs,add = σs,add(10−5).

λTH � 15 μm, both calculation methods yield qualitatively
similar spectra. For longer wavelengths, however, results differ
considerably and in fact only the results obtained using Ẽ(i)

field converge.
Before investigating in more detail this behavior, we

consider first the convergence characteristics of the far field
at the TH with respect to the value of the added conductivity
σs,add. The main features of this dependence, illustrated by
the data plotted in Fig. 10(b), which correspond to λTH =
22 μm, are similar to those observed in the case of linear
calculations. More specifically, the larger σs,add is, the faster
self-convergence with respect to N is observed and the
computational results converge for vanishingly small σs,add.

The difference in convergence behavior for increasing N

of the two approaches used to evaluate the surface field is
illustrated in Figs. 10(c) and 10(d), for two representative
wavelengths λTH = 11 and 22 μm, respectively. These figures
show that the correct field evaluation leads to rapid conver-
gence at both wavelengths, whereas the improper approach
yields slow and oscillatory convergence at λTH = 11 μm and
completely fails to converge at λTH = 22 μm.

The electromagnetic near field E(�) at the TH wavelength
λTH = 11 μm, determined using the two algorithmic choices
and N = 100 spatial harmonics, is plotted in Fig. 11. Thus,
the TH Ex field derived from the nonlinear source polarization
Pnl(E(i)) comprising the incorrectly evaluated field at the
FF, E(i), is completely swamped by unphysical oscillations,
i.e., numerical artifacts, at the interface where the graphene
ribbon is located, as per Fig. 11(a). On the other hand, the
x component of the TH electric field E(�)

x , which has the
nonlinear polarization Pnl(Ẽ(i)) as its source, shows almost no
oscillatory behavior and thus has the expected spatial profile,
as shown in Fig. 11(b). Only further away from the interface,
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FIG. 11. (a) Third-harmonic near field around a graphene ribbon
determined using the improperly evaluated interface field at the FF,
E(i)

x , to calculate the nonlinear polarization Pnl. (b) The same as in (a)
but using the correctly evaluated field at the FF, Ẽ(i)

x , to compute Pnl.

some agreement between the data in Figs. 11(a) and 11(b) can
be observed.

The faster convergence, the more physically correct near
fields at both FF and TH, combined with the expected electric
field behavior at graphene boundaries allow us to conclude that
the properly evaluated field Ẽ(i) at the FF yields the correct
results at the TH, whereas the TH optical response obtained
using the improperly evaluated field E(i) at the FF is plagued
by numerical artifacts and unphysical behavior.

B. Two-dimensional graphene diffraction gratings

Let us now consider 2D diffraction gratings that contain
2DMs, namely, the periodically arranged graphene disks
depicted in Fig. 7(b). We assume that the two periods are
the same, �1 = �2 = � = 250 nm and the diameter of the
graphene disks is D = 2r = 175 nm = 0.7�. For the sake of
simplicity, we consider that the incoming light is normally
impinging onto the grating, the cover and substrate media
being air (εc = 1) and glass (εs = 2.0852), respectively.

The absorption spectrum for x-polarized incoming light,
calculated for N = 10, 15, 20, and 25 harmonics, is presented
in Fig. 12(a). All results are obtained using the finite con-
ductivity model defined by Eq. (20), the scaling parameter
being η = 10−3. The zero-conductivity model or the improper
interface field evaluation yield highly oscillatory near-field
profiles at FF and TH and fail to deliver converging TH far-field
results. Thus, it can be seen that the spectra calculated using
different values of N agree well and exhibit similar features.
In particular, all spectra show a series of resonances whose
amplitude and spectral width increase with the wavelength.
Figure 12(b) depicts the dependence of the intensity of the
total radiated TH from the array of graphene disks R′

N on
the number of harmonics N . The nonlinear radiation spectra
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FIG. 12. (a), (b) Linear absorption and intensity of TH radia-
tion spectra calculated using a finite added conductivity σs,add =
σs,add(10−3), and number of harmonics N = 10, 15, 20, and 25.

corresponding to the largest values N = 25 and 20 already
show good agreement, which suggests that convergence has
been achieved.

We now investigate in more detail the self-convergence
characteristics of linear calculations, the main conclusions of
this analysis being summarized in Fig. 13(a). We considered
the wavelengths of the first three absorption resonances seen
in Fig. 12(a), that is, λ = 11.09, 5.081, and 3.925 μm. Setting
as converged values the results obtained by using a large
number of harmonics N = 40, specifically Ā = A40, the
relative self-error corresponding to a number of harmonics
N is then defined as

eN (A) = AN − Ā

Ā
. (38)

This self-error function can be used as a reliable measure of the
convergence of the method as long as the value of N for which
the reference absorption is defined is chosen to be sufficiently
large.

At all three resonance wavelengths, relative errors of
eN (A) ≈ 1% are achieved for N � 35. It should be noted
that in terms of computational effort, using N2D = 35 in
2D simulations is comparable to using N1D = 2520 in 1D
simulations. Moreover, the accuracy of the 2D simulation with
N2D = 35 is still correlated to and limited by the highest spatial
frequency 2πN2D/�.

To assess the convergence of the TH simulations more
rigorously, the relative error eN (R′) of the TH radiation
intensity R′

N for a given number of harmonics N , which
is defined similarly to eN (A) in Eq. (38) with R̄′ = R′

40, is
depicted in Fig. 13(b). A relative self-error of eN (R′) ≈ 2%
can be achieved at N = 35 for all three resonance wavelengths.
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FIG. 13. (a), (b) Relative self-error for linear absorption and
intensity of TH radiation, respectively, determined at the plasmon
resonance wavelengths λ = 11.09 μm (dots), 5.081 μm (crosses),
and 3.925 μm (circles).

Note also that the intensity of the TH radiation varies over six
orders of magnitude and has maxima at the locations of the
spectral resonances of the linear absorption, as per Fig. 12(a).

Graphene is a lossy conductor in the spectral range
considered and therefore allows the excitation of surface
waves [45,47,62]. This is the case with each of the ab-
sorption maxima seen in the linear spectrum, as illustrated
by Figs. 14(a)–14(c). Thus, we show in these figures the
dominant field component |Ex | of the linear electric field
at the first three resonance wavelengths λ = 11.09 μm in
Fig. 14(a), λ = 5.081 μm in Fig. 14(b), and λ = 3.925 μm
in Fig. 14(c). These field profiles exhibit distinct mode shapes
with one, three, and five maxima, which demonstrates that
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FIG. 14. Dominant electric field component |Ex | at the FF (top
panels) and TH (bottom panels) at the surface of a graphene disk for
the resonance wavelengths, from left to right, λFF = 11.09, 5.081,
and 3.925 μm. The number of harmonics used in the simulations was
N = 40 at the FF and N = 30 at the TH.
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the corresponding resonances represent the first three plasmon
modes of the graphene disks.

Strongly enhanced and largely confined optical field re-
sulting from the excitation of localized plasmon modes gives
rise to enhanced THG. This fact is supported by the field
profiles plotted in the bottom panels of Fig. 14, where the
dominant electric field component at the TH, |Ex |, is shown.
Indeed, regions of strong field enhancement can be seen,
with field profiles with 3, 7, and 11 maxima being observed
at λTH = 11.09 μm/3 in Fig. 14(d), λTH = 5.081 μm/3 in
Fig. 14(e), and λTH = 3.925 μm/3 in Fig. 14(f), respectively.

VI. DIFFRACTION IN NONLINEAR GRATINGS
CONTAINING 2D MATERIALS

In this section, the linear and nonlinear optical response
of diffraction gratings incorporating TMDC monolayer ma-
terials or graphene is investigated and the application of the
inhomogeneous S-matrix formulation introduced in Sec. IV D
is illustrated in several specific cases.

Throughout this section, the intensity of the incident beam
is chosen to be I0 = 1012 W m−2, which is a moderately
high peak intensity generated by a pulsed laser. Changing
the incident intensity in the undepleted pump approximation
does not alter the numerical results at any of the incident
frequencies, n = 1, . . . ,NF , but it substantially changes the
magnitude of the electromagnetic field at the generated
frequency n = 0. More specifically, for SHG and THG the
intensity of the generated waves behaves as ISH ∝ I 2

0 and
ITH ∝ I 3

0 , respectively, and as such they can increase to signifi-
cant values. A problem that might arise in the undepleted pump
approximation is that if the intensity of the generated waves
becomes comparable to the intensity of the incident wave, the
use of this approximation would become questionable. This is
not the case in most practical situations and certainly not the
case here, as can be seen by the intensity of generated optical
fields in the examples hereafter.

A. SHG from TMDC monolayer ribbons

To begin with, we consider a 1D binary TMDC grating
placed on top of a glass substrate with εs = 1.44. Its period is
� = 100 nm and the filling factor is 0.9. An x-polarized plane
wave is normally incident onto the grating and a spectral range
of 0.4–4 μm for the incident wavelength λ is considered. The
computations were performed using N = 200 harmonics and
an added sheet conductance of σs,add = −i10−5|σs(ω)|, the
results being presented in Fig. 15. The convergence of these
calculations has been assured as diligently as for the binary
graphene diffraction gratings discussed in Sec. V A.

The plots presented in Fig. 15(a) reveal that the linear
absorption spectra are primarily determined by the linear
material properties σs(ω) of the TMDC materials. The absence
of any additional resonant features in the spectra has two main
reasons: the dielectric nature of the TMDCs does not allow the
formation of plasmons, as in the case of graphene, whereas
the vanishingly small thickness of the TMDC monolayers
precludes the existence of geometric, Mie-type resonances.
These explanations are supported also by the fact that linear
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FIG. 15. (a) The FF absorption spectra for ribbons made of WS2,
MoS2, WSe2, and MoSe2. (b) The SH radiation spectra for ribbons
made of WS2, MoS2, and WSe2.

and nonlinear spectra are qualitatively similar if one varies the
grating period and the feature size of the TMDC ribbons.

In order to obtain the SH radiation of the 2DM grating, we
used the nonlinear conductivity σ (2), discussed in Sec. III B.
Since no values of σ (2) for MoSe2 were available, we
determined the nonlinear optical response of the grating only
in the case of three TMDC materials WS2, MoS2, and WSe2.
As our calculations showed that there is no resonant field
enhancement at the TMDC ribbons at the FF, no strong
enhancement of generated SH is expected. The nonlinear SH
radiation spectra presented in Fig. 15(b) suggest that indeed
the intensity of radiated SH closely follows the magnitude of
σ (2), as can be found by comparison with the plots in Fig. 4(b).
The maximal intensity of generated SH is ISH = 2 × 10−9I0,
rendering valid the undepleted pump approximation.

B. Nonlinear efficiency enhancement for TMDC
monolayers on a slab waveguide

Since TMDC monolayers themselves do not possess optical
modes, we use a different approach to achieve enhanced
nonlinear optical interactions in these 2D materials. Thus,
we combine a TMDC monolayer with a bulk structure that
possesses waveguide modes whose excitation leads to strong
local field enhancement. A very effective structure for this
purpose is a periodically patterned slab waveguide, covered by
a TMDC monolayer, as depicted in Fig. 16(a). Dielectric slab
waveguides exhibit very narrow spectral resonances, due to the
resonant excitation of guiding slab modes, a phenomenon that
can be used to enhance linear and nonlinear optical response
of certain devices [71,81–83].

The waveguide structure under consideration consists of a
slab of height h placed between a monolayer WS2 and substrate
with relative permittivity εs = 1.462 (index of refraction,
ns = 1.46). The 2DM monolayer is adjacent to the cover
region, which is assumed to be air, εc = 1. The slab itself is
periodically patterned, that is, it consists of alternating regions
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FIG. 16. Waveguide structures comprising a periodically pat-
terned slab waveguide with permittivities εr and ε ′

r < εr covered by
air and placed on a dielectric substrate with

√
εs = 1.46. On top of the

slab waveguide different 2DMs are placed: (a) a uniform monolayer of
WS2 or graphene, (b), (c) graphene ribbons with width w distributed
over the slab material with lower and higher permittivity, respectively.
(d) Graphene ribbons with width w distributed over both regions of
the slab waveguide.

with permittivity εr = 4 (n = 2) and ε′
r = 3.24 (n′ = 1.8) with

a period � = 400 nm. This particular choice of parameters was
inspired by Ref. [81].

For now, consider the unperturbed waveguide consisting of
a material with relative permittivity ε̄r = (εr + ε′

r )/2. A slab
waveguide supports optical guided modes and their excitation
strongly affects its reflective and transmissive characteristics.
A mode of order ν with in-plane propagation constant βν can
be excited, when the in-plane wave number k‖ of an incident
wave coincides with βν . This is not possible for a homogeneous
waveguide due to the particular dispersion properties of k‖
and βν , but can be achieved if the waveguide permittivity is
periodically modulated, as illustrated in Fig. 16(a). This pe-
riodic perturbation effectively folds the propagation constant
βν into the first Brillouin zone of the k space of the modes of
the periodic waveguide and enables phase matching between
k‖ and βν , i.e., the excitation of the mode ν. It should be
stressed that, albeit less effectively, free-space photons couple
to waveguide modes even if the periodic slab waveguide is
covered by a thin, optically homogeneous layer, such as a
2DM, because the effective refractive index of the combined
structure is periodic in this case, too.

In what follows, we demonstrate the resonant excitation of
modes in the TMDC waveguide structure for a fixed height
of h = 0.18 μm. Subsequently, we optimize the height of
the slab waveguide to obtain maximal generated SH and
investigate the interplay between various resonant mechanisms
in the combined waveguide-2DM device that lead to enhanced
nonlinear optical response. Only monolayer WS2 is considered
as covering 2DM in this example because for this TMDC
monolayer the dispersion of the nonlinear conductivity σ (2) is
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FIG. 17. (a) Linear reflection, absorption, and transmission for
waveguide height h = 0.18 μm demonstrate the effect of the intrinsic
material absorption at λ ≈ 0.645 μm and the Fano resonance due
to a waveguide resonance at λ = 0.6215 μm. (b) Electric near
field in and around the waveguide for λ = 0.6215 μm exhibits the
spatial profile of the TM0 mode, with strong field enhancement
at waveguide interfaces. (c) Nonlinear radiation intensity spectra
near the fundamental frequency corresponding to the TM0 mode,
determined for three values of the waveguide height h. (d) Electric
near field at SH wavelength λSH = 0.311 μm for h = 180 nm.

known over the broadest spectral domain. The WS2 monolayer
is oriented such that the armchair direction of the atomic
lattice is aligned with the x axis of the structure. Due to the
particular tensorial structure of σ (2), this configuration only
yields TM-polarized SH for a TM-polarized fundamental field.

In order to illustrate the excitation of a waveguide mode, we
considered a TM-polarized, normally incident plane wave in a
wavelength range at FF of 0.6 to 0.67 μm. The corresponding
reflection, transmission, and absorption spectra are depicted
in Fig. 17(a). A steep increase of the absorption is observed,
from less than 10% to a maximum of 45% at λ = 0.6215 μm.
Moreover, the transmission and reflection have their minimum
and maximum at this wavelength, respectively. This is due to
the excitation of the TM0 waveguide mode, as can be confirmed
by the inspection of the electric near-field profile in Fig. 17(b):
|Ex | has maxima at the top and bottom facets of the waveguide,
which also implies a maximum of |Hy | at its center, as one
expects for a TM0 waveguide mode. Another local maximum
of the absorption can be seen at λ = 0.645 μm and is due
to one of the exciton absorption peaks of monolayer WS2

[cf. Fig. 2(b)].
The enhancement of the fundamental field at the top

of the waveguide, where the WS2 monolayer is located,
yields a strongly increased intensity of SH radiation with a
maximal value of ISH = 4 × 10−6I0, as shown in Fig. 17(c).
Comparison of the radiation spectra for different waveguide
heights, h = 165, 180, and 195 nm, already shows the large
sensitivity of the spectral location of waveguide modes to
changing height. This is the basis for the parameter study in the
remainder of this section. Before that, let us inspect the electric
near field at the SH wavelength λSH = 0.3107 μm, presented
in Fig. 17(d). This profile is markedly different from that of the
linear near field, namely, it is spatially more inhomogeneous
and has a different distribution of local minima and maxima.
Finally, we point out that the absorption peak at λ = 0.645 μm
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FIG. 18. (a) Map of linear reflection spectra vs waveguide
height h exhibits Fabry-Perot resonances, resonances due to exciton
generation (↓) and resonances due to excitation of waveguide modes
(↘). Interaction between the TM0 waveguide mode and excitons of
WS2 monolayer as well as Fano resonances can be observed. (b) Map
of nonlinear radiation spectra determined for different waveguide
height h.

does not translate to a notable increase of SH radiation, which
is similar to the findings reported in Sec. VI A.

In the rest of this section, we explore the interplay among
different resonant mechanisms in the combined waveguide-
2DM structure that lead to enhanced nonlinear optical response
and investigate how one can exploit them to increase the
intensity of SH generated from this optical device. To this
end, TM-polarized incident light in a wavelength range at
the FF of 0.2 to 0.7 μm is considered and simulations for
waveguide height ranging from 50–300 nm, using N = 25
harmonics, are performed. The results of these calculations,
corresponding to the FF, are shown in Fig. 18(a) in terms of
the reflection spectra maps, and will be discussed now. The
nonlinear part of the device study is summarized in Fig. 18(b)
in terms of maps of its outgoing radiation at the SH and will
be investigated subsequently.

The linear optical characteristics of the TMDC-covered
waveguide determined for different heights are depicted as
a 2D map of reflectivity values. This 2D map of reflection
spectra exhibits a smooth dependence on λ and h with
minimal and maximal values of R = 4.9 × 10−6 and 0.5428,
respectively, except when one of several mechanisms leads to
resonant enhancement of the reflectivity. (i) The most evident
and spectrally broadest features are due to the Fabry-Perot
interference mechanism, which yields maximal (minimal)
reflectivity if the multiple reflections inside the slab waveguide

are in (out of) phase [84]. These Fabry-Perot resonances appear
in the reflectivity map as spectrally broad variations from
reflection minima to maxima. (ii) The second kind of spectral
feature is due to the resonant increase of intrinsic optical
absorption of WS2, which occurs at wavelengths at which
excitons are generated in the WS2 monolayer. The strongest
of these absorption peaks is at λ = 0.645 μm. Their spectral
location is determined by the dispersion of Re[σs(ω)], given
in Fig. 2(b), and is largely independent of the electromagnetic
environment and hence does not depend on h. The intrinsic
optical absorption mostly increases the absorption in the
combined waveguide-2DM device, but also leads to increasing
reflection and decreasing transmission, as was already shown
for h = 180 nm around λ = 0.65 μm in Fig. 17(a). (iii) The
third kind of resonance is due to the excitation of TMν

waveguide modes and manifests itself as a spectrally narrow,
asymmetric, and steep variation of the reflectivity of the device.
A detailed analysis of the resonant excitation of the TM0 mode
for h = 180 nm and λ = 0.6215 μm was already presented
in relation to Fig. 17. By varying the waveguide height and
wavelength, the excitation of the TM1 and TM2 modes was
found, too.

As the map in Fig. 18(a) suggests, there is a mutual inter-
action among resonances of the TMDC-covered waveguide,
giving rise to several interesting phenomena. First, one can
observe the generation of Fano resonances, which generally
result from the interference between a discrete state and a
broad continuum and are characterized by an asymmetric
spectral profile [85–87]. Fano resonances arise via different
scenarios in the considered structure, most notably due to
the interference of the TM0 waveguide mode (the discrete
state) and the Fabry-Perot resonance (the broad continuum).
For example, for a device height of h = 180 nm and for
increasing wavelengths around λ = 0.62 μm, the reflection
decreases to a minimum value of R = 0.01, then steeply
increases to R = 0.33, as shown in Fig. 17(a). Similar behavior
can be observed when TM1 and TM2 waveguide modes
are excited. The absorption and transmission spectra exhibit
similar features, but the spectral asymmetry, a characteristic
feature of Fano resonances, is not as well pronounced in these
cases. Hence, only the reflection is shown here. The second
phenomenon revealed by Fig. 17(a) is the crossing of the TM0

waveguide mode with the spectrally highest exciton absorption
peak of monolayer WS2. In particular, the two resonances
exhibit an anticrossing behavior at the wavelength of their
strongest interaction, which is a well-known phenomenon in
photonics and other physical systems [88–90].

Having understood the key features of the linear response
of the combined waveguide-2DM optical system, we now
explore its nonlinear optical properties. To this end, consider
Fig. 18(b), which depicts the map of the intensity of the total
generated SH at wavelengths λSH ranging from 0.1 to 0.35 μm
and for the same values of the waveguide height as in Fig. 18(a).
This intensity varies over almost six orders of magnitude,
from a minimum of ISH = 9 W m−2 at h = 300 nm and
λSH = 0.228 μm to a maximum of ISH = 6.3 × 106 W m−2 ≈
6 × 10−6I0 for h = 161.5 nm and λSH = 0.306 μm. It exhibits
a smooth dependence on the system parameters, except for the
excitation of certain resonances via mechanisms similar to
those examined in the linear case.
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In general, the nonlinear radiation is affected by two factors,
which we call inherited and intrinsic effects. Inherited effects
are due to the enhancement via certain mechanisms of the
optical field at the FF, at the location of the WS2 monolayer,
which increases the nonlinear source current and consequently
the intensity of the generated SH. Intrinsic effects, on the other
hand, are resonant effects at the SH wavelength, which can also
influence the intensity of radiated waves at the SH.

The most important inherited effects leading to resonant
enhancement of nonlinear radiation, seen in the map plotted
in Fig. 18(b), are as follows: (i) The inherited Fabry-Perot
reflection minima lead to a moderate increase of the SH over
broad wavelength ranges. (ii) The excitation of waveguide
modes at the FF leads to particularly strong enhancement
of the fundamental field and yields the highest intensity of
SH radiation, most notably when the TM0 mode is excited.
In particular, SH radiation with intensity ISH > 10−6I0 is
consistently achieved when this mode is excited, except
for fundamental wavelengths near the exciton absorption
maximum at λ = 0.645 μm. (iii) Finally, the interaction of
the fundamental TM0 mode and the WS2 exciton leads to a
reduced enhancement of the fundamental field, as compared
to the case of the sole excitation of the TM0 mode, and results
in a decrease of the SH intensity to ISH = 8.1 × 10−8I0.

Among the intrinsic effects, two important mechanisms
that lead to enhancement of SH intensity were identified:
(i) The generated electric field at the SH wavelength acts as
excitation wave for the TMDC monolayer-waveguide system
and resonantly excites waveguide modes existing at the SH,
namely, the TM0 and TM1 modes. This leads to a relatively
small increase in the SH intensity. (ii) The frequency dispersion
of the nonlinear optical conductivity of monolayer WS2 is
apparent in the SH spectra: maxima of σ (2)

s , which are naturally
independent of the waveguide height h, correspond to maxima
in the SH radiation spectrum. Moreover, the SHG due to the
combined inherited TM0 mode and the intrinsic maximum of
σ (2)

s for three values of h is presented in Fig. 17(c) and shows
that the two effects constructively add to increase the intensity
of the SHG.

Note that the reflection, transmission, and absorption spec-
tra, the nonlinear radiation spectra, as well as the resonance
wavelengths of the slab waveguide were accurately calculated
even for the moderate number of N = 25 harmonics, as was
ensured with a convergence check for fixed height h and
with the rigorous procedures described in Sec. V A. A total
of 385 297 simulations for pairs of (h,λ) were performed,
where a higher spectral resolution was used near the resonance
wavelengths of the device in order to accurately resolve the
spectrally narrow effect of the waveguide resonances.

C. Nonlinear interaction between waveguide modes
and graphene plasmons

In the preceding section, we combined a 2D material,
WS2, which does not support localized optical modes, with
an optical device consisting of a periodic slab waveguide, and
achieved a strong enhancement of the nonlinear efficiency
of the combined device. In this section, we follow a similar
approach and combine a similar slab waveguide with graphene
structures, which we have already shown that support localized

surface plasmon modes, in order to achieve a multiresonant,
highly nonlinear optical device. Thus, the structure under
consideration is schematically depicted in Fig. 16(d). It
consists of a periodically patterned slab waveguide with the
same optical parameters as the one in the preceding section,
which now is covered by graphene ribbons with width w =
230 nm. We will call the three graphene ribbons centered on top
of the material with permittivity ε′

r and εr the inner and outer
ribbons, respectively, which is natural given the definition
of the unit cell in Fig. 16(d). The center-to-center distance
of the inner ribbons (and outer ribbons) is 3w = 0.69 μm
and the center-to-center distance between an inner ribbon
to a neighboring outer ribbon is 1.37 μm. In this case, the
height of the slab waveguide is h = 1.5 μm and the period is
� = 5.5 μm.

The small feature size of the graphene ribbons w =
0.0418� is required to excite graphene plasmons at moderately
small wavelengths, at which waveguide modes exist, too. This
is not a conceptual drawback of this particular structure, but
it is computationally costly to accurately resolve graphene
ribbons with very small width. Thus, N = 251 harmonics
were used throughout this computational analysis and an added
conductivity of σs,add(10−3) was introduced.

To fully understand the linear and nonlinear optical
properties of the graphene-waveguide structure, let us first
investigate two less complex, complementary structures where
the graphene ribbons are located on the waveguide sections
with either low or high index of refraction, as per Figs. 16(b)
and 16(c), respectively, and also the waveguide covered with
an unstructured, uniform graphene sheet, as per Fig. 16(a).

The linear absorption spectra for these three variations
of the device, determined for values of the fundamental
wavelength ranging from 1 to 20 μm are depicted in Fig. 19(a),
where normal incidence and TM polarization is assumed.
The absorption of the waveguide with the covering graphene
sheet follows a monotonously increasing trend, upon which
alternating, broad local minima and maxima are superimposed.
These maxima are due to the Fabry-Perot interference and
primarily reveal themselves as maxima and minima of the
device reflectivity, also shown in Fig. 19(a). The absorption
spectra for the waveguide with graphene ribbons on top of
the inner and outer parts of the waveguide exhibit relatively
broad spectral peaks due to the excitation of surface plasmons
in the graphene ribbons. Their excitation wavelength chiefly
depends on the width of the ribbon and the permittivity of
the underlying dielectric: the lower refractive index material
(n′ = 1.8) underneath the inner ribbons leads to excitation
of plasmons at smaller wavelength than the wavelength
corresponding to the plasmons in the outer ribbons, placed
on top of waveguide sections with higher refractive index
(n = 4). In all three devices, the absorption exhibits additional,
spectrally narrow peaks with up to 30% absorption due to the
excitation of optical modes in the slab waveguide grating.

The nonlinear radiation spectra in Fig. 19(b) complement
these findings. Thus, the intensity of the TH radiation
generated by the unstructured graphene sheet increases with
wavelength, and overlayed on it one can observe the effect
of Fabry-Perot resonances. Moreover, the local field enhance-
ment due to the excitation of localized surface plasmons in
the inner and outer graphene ribbons leads to increased THG
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waveguide, as per Fig. 16(d).

at lower and higher wavelengths, respectively. The inherited
waveguide modes maximize the amount of generated TH
radiation, which reaches values of up to ITH = 2 × 10−3I0.

The interplay of these resonant effects in the combined
graphene-waveguide structure with ribbons distributed over
the whole area of the waveguide is revealed by the results
presented in Fig. 19(c). Note that the abscissa of this figure
gives the values of the incoming wavelength λ for the linear
reflection, transmission, and absorption spectra and the TH
wavelength λTH = λ/3 for the intensity of THG. The ab-
sorption at the FF displays an increasing trend in the range
of 2 to 20 μm; however, there are several spectrally broad
and narrow absorption peaks, which are the manifestation of
different phenomena. Thus, the narrow resonances are due to
the excitation of the TM0 mode of the slab waveguide, e.g.,
those at λ = 8.05, 4.4, and 3.14 μm. The electric field EFF

x at
the FF, λ = 8.05 μm, shows a strong enhancement at the top
of the waveguide region, as per Fig. 20(a, top). Similarly to
the TM0 mode shown in Fig. 17(b), this field profile has two
maxima over the x extent of one unit cell of the grating and
two maxima along the z extent of the waveguide, where the
maximum near the top of the waveguide is much larger than the
one at the bottom. This strong fundamental field enhancement
increases the absorption to 33% and leads to a strong nonlinear
source current, which in turn generates a strong electric field at
the TH, the near field of which is depicted in Fig. 20(a, bottom).
This TH field is mostly localized around the graphene ribbons
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FIG. 20. Dominant component of the electric field Ex at the FF
(top parts) and the TH (bottom parts) for selected fundamental wave-
lengths λ and TH wavelengths λTH = λ/3: (a) Field enhancement
due to excitation of the TM0 waveguide mode for λ = 8.05 μm.
(b) Near-field profile of the TM0 mode at the TH wavelength
λTH = 4.4 μm. (c), (d) Plasmonic field enhancement in the inner
and outer ribbons for λ = 13.82 and 15.17 μm, respectively. (e), (f)
Excitation of surface plasmons in graphene ribbons located on top
of waveguide sections with ε ′

r (inner ribbons, λ = 7.1 μm) and εr

(outer ribbons, λ = 7.6 μm), respectively. The labels of the panels
correspond to the labels of the peaks in Fig. 19(c).

and has an evanescent nature. The total intensity of TH radiated
into the cover and substrate amounts to ITH = 1.3 × 10−3I0.

The excitation of the TM0 mode at λ = 4.4 μm is equally
interesting. It appears both as a sharp local maximum in the
linear absorption spectrum at λ = 4.4 μm and as an increase of
TH intensity at the TH wavelength λTH = 4.4 μm in Fig. 19(c).
The nonlinear electric near-field profile in Fig. 20(b, bottom)
confirms the excitation of this intrinsic nonlinear TM0 mode
for λTH = 4.4 μm.

Another reason for increased absorption is the excitation
of localized surface plasmons on the graphene ribbons. In
order to illustrate this, let us consider the two absorption
peaks with largest wavelengths, around λ ≈ 14 and 7.3 μm.
The absorption maximum with the largest wavelength appears
in the linear spectrum as a very broad resonance around
λ ≈ 14 μm, but the electric near-field profiles in the two top
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panels of Figs. 20(c) and 20(d) reveal that the actual surface
plasmons are excited on the inner and outer graphene ribbons
at slightly different wavelengths λ = 13.82 and 15.17 μm,
respectively, which is explained by the difference in the
electromagnetic environment probed by the corresponding
plasmons. The excitation of these surface plasmons can also
be seen in Fig. 19(c), as the local maxima labeled by “c” and
“d.” Moreover, they can be viewed directly in the nonlinear
far-field radiation spectrum, too, as spectrally separated peaks.
As a consequence of excitation of localized surface plasmons,
the TH near field shows its highest values near the inner
and outer ribbons at the TH wavelengths λTH = 13.82/3 and
15.17/3 μm, as illustrated in the bottom panels of Figs. 20(c)
and 20(d), respectively.

Similar physics describe the lower-order plasmon corre-
sponding to λ ≈ 7.3 μm. Thus, by inspecting the profiles of
the fundamental near-field in the top panels of Figs. 20(e)
and 20(f), one can see that, correspondingly, a plasmon with
three peaks in the field profile is excited on the inner ribbons
at λ = 7.1 μm whereas this same type of plasmon is excited
on the outer ribbons at λ = 7.6 μm. This near-field pattern is
in accordance to the surface plasmon field profiles that were
found in Sec. V B, Fig. 14(b). Moreover, no optical coupling
between the plasmonic fields near adjacent ribbons could be
observed. The spectra of the TH radiation at the wavelengths
λTH = 7.1 μm/3 and λTH = 7.6 μm/3 also exhibit two local
maxima, due to the enhancement of the fundamental field.
The number of electric field maxima near the inner and outer
graphene ribbons in the bottom of Figs. 20(e) and 20(f),
respectively, agrees with the five field maxima in Fig. 14(d).

The two physical mechanisms that lead to the reso-
nant enhancement of the optical response of the graphene-
waveguide structure can partly be observed in the reflection
and transmission spectra at the fundamental wavelength, which
mainly exhibit a variation between minima and maxima due
to the Fabry-Perot interference. This pattern is complemented
by spectrally very narrow regions of increased reflection and
decreased transmission due to the excitation of waveguide
modes. The influence of surface plasmons on the reflection and
transmission is only apparent at the largest excitation wave-
lengths around λ ≈ 14 μm, where reflection and transmission
are notably increased and decreased, respectively.

An effective way of tuning the characteristics of the light
radiated by our nonlinear diffraction grating is by varying
the angle of incidence of the incoming light. Not only will
this showcase the effectiveness of the proposed numerical
method in the oblique-incidence configuration, but it will
also demonstrate the influence of the angle of incidence
on the optical response of the grating. For example, the
interaction of the spectrally narrow TM0 waveguide mode
at λ = 8.05 μm with the two broad continua corresponding
to the excitation of graphene plasmons at λ = 7.1 and
7.6 μm provides a convenient optical setting for studying
a tunable Fano resonance resulting from the interaction
between a discrete state and multiple continua, a phenomenon
that has recently been explored in a different plasmonic
structure [91].

To investigate the interaction between a waveguide mode
and the two absorption peaks, 105 747 simulations with
N = 251 harmonics have been performed for increasing
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FIG. 21. (a) Map of absorption spectra vs angles of incidence
θ determined in the wavelength range of the second-order surface
plasmon of graphene ribbons. (b) The map of nonlinear radiation
spectra shows the inherited (red labels) and intrinsic, nonlinear (green
labels) modes of the slab waveguide. The left and right branches
of intrinsic modes of the same order exhibit anticrossing mode
interaction, which leads to the formation of spectral band gaps.

angle of incidence θ ranging from 0◦ to 20◦ (and constant
azimuthal angle ϕ = 0◦) in the fundamental wavelength range
of the second-order plasmon peak, namely, from 6 to 9 μm.
Higher spectral resolution was employed near the waveguide
resonance wavelengths of the slab waveguide.

The resulting absorption map is shown in Fig. 21(a). The
spectrum for θ = 0◦ is the same as in Fig. 19(c) and shows
two broad maxima of A ≈ 6 × 10−3, due to the excitation of
surface plasmons, and a sharp maximum of A = 0.33 due to
the excitation of the TM0 waveguide mode at λTM0 = 8.05 μm.
Increasing the angle of incidence θ leaves the spectral location
of the plasmon excitation unchanged; however, the spectral
location of the waveguide mode resonance varies. For θ > 0,
the TM0 mode is excited at two wavelengths, λTMl

0 (θ ) < λTM0

and λTMr
0 (θ ) > λTM0 . Their separation from λTM0 increases

with θ and a more effective excitation on the left branch
of the TM0 mode can be seen as compared to the right
branch. For θ = 4.96◦ and 10.71◦ the wavelengths of the mode,
λTMl

0 (10.71◦) = 7.1 μm and λTMl
0 (4.96◦) = 7.6 μm, coincide

with the central wavelength of the plasmon absorption peaks of
the inner and outer ribbons, yielding absorption of A = 0.331
and 0.238, respectively.

Along the TM0 band, i.e., the path of excitation of the TM0

mode in the (λ,θ ) space, strong enhancement of conversion
efficiency due to inherited effect of this mode can be observed
in Fig. 21(b). The simultaneous excitation of waveguide modes
and graphene plasmons yields strong THG, with intensities
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of ITH = 5.85 × 10−5I0 at λTH = 2.37 μm and θ = 10.71◦
and ITH = 3.89 × 10−4I0 at λTH = 2.53 μm and θ = 4.96◦.
However, the strongest TH intensity of ITH = 0.0537I0 is
generated at λTH = 2.42 μm and θ = 9◦, namely, where the
intrinsic TM1 band crosses the inherited TM0 band. The
increase of the conversion efficiency due to sole excitation
of the intrinsic nonlinear modes is notable, but orders of
magnitude lower than in the case of inherited effects, e.g.,
the same intrinsic TM1 mode away from the simultaneous
resonance, at λTH = 2.16 μm and θ = 20◦, yields TH radiation
of intensity ITH = 7.13 × 10−9I0.

Inspection of the bands of the intrinsic modes reveals an
additional interesting feature. Specifically, intrinsic modes
of the same order show anticrossing behavior, e.g., TM0 at
λTH = 2.75 μm and θ = 14.42◦ or TM1 at λTH = 2.33 μm
and θ = 12.25◦, whereas bands of different intrinsic modes
pass through each other, i.e., TM0 and TM1 at λTH = 2.26 μm
and θ = 8.375◦. This crossing of modes of same order occurs
when the transverse component of the incident k vector, k‖,
reaches the edge of the first Brillouin zone.

VII. CONCLUDING REMARKS

In conclusion, we have derived an improved and accurate
formulation of the rigorous coupled-wave analysis (RCWA)
method to describe linear and nonlinear optical interactions
between light and periodically patterned 2D materials, such as
graphene and transition-metal dichalcogenide (TMDC) mono-
layers. Unlike previous approaches, our numerical formalism
does not depend on the height of the 2D material, a poorly
defined physical quantity, and as such is applicable to any 2D
material, as long as their linear and nonlinear optical surface
conductivities are known. A key ingredient that markedly
improves the accuracy and convergence of this numerical
method is a vanishingly small, added conductivity, which
allows for correctly solving the Fourier factorization problem
and consequently a reliable computational investigation of
2D materials. In particular, this small value of the added
conductivity yields accurate results when convergence with
respect to the number of harmonics has been achieved. The
proposed numerical method also allows one to describe the
nonlinear optical response of generic periodically patterned 2D
materials. In this context, we have found that correct nonlinear
optical physics in these structures can only be captured
when using the accurate near-field formulation of RCWA
introduced in [78]. Importantly, our approach employing
boundary conditions for the linear and nonlinear fields can
be readily extended to other methods [92–94] used to describe
nonlinear optical effects at interfaces, as in the case of graphene
and TMDC monolayer materials the optical higher harmonics
are generated in a single atomic layer.

Our numerical method has been comprehensively validated
by comparing its predictions to results obtained using an
alternative method. Upon successful validation, we have used it
to investigate the characteristics of various kinds of diffraction
gratings comprising graphene and TMDC monolayers. We
found that these materials interact differently with light, which
is explained by their metallic or semiconductor nature. Thus,
graphene exhibits THG as the lowest-order nonlinear optical
interaction, due to the inversion symmetry properties of its

atomic lattice, and supports surface plasmons. We found that
the excitation of surface plasmons leads to increased linear
absorption and enhanced THG, which points to significant
potential for tunable THG in graphene. The TMDC monolayer
materials, on the other hand, are semiconductors and non-
centrosymmetric. As a result, their linear optical absorption
spectra show a series of exciton resonances, whereas in this
case the SHG is the lowest-order nonlinear optical process.

As an application of our numerical method, we have
demonstrated that by coupling a TMDC monolayer with a
photonic structure that possesses optical resonances, namely,
a periodically patterned slab waveguide, one can achieve
strong, frequency selective field enhancement and conse-
quently increased nonlinear optical response of the TMDC
monolayer. In addition, we have shown that by coupling
graphene with a similar waveguiding device, the interplay
between plasmon resonances in graphene and leaky waveguide
resonances of the slab waveguide leads to rich physics
explained by intriguing phenomena, such as multicontinua
Fano resonances and enhanced SHG via simultaneous exci-
tation and efficient coupling of optical modes at the FF and
SH.

The formulation of our method is general enough to
describe most nonlinear optical processes of practical interest
in the undepleted pump approximation, which is valid in
essentially all experimental settings. In order to tackle those
cases where this approximation might be less accurate, such
as the optical Kerr effect, one can easily extend our method
beyond the undepleted pump approximation by employing
an iterative, self-consistent solution process, similar to the
approach introduced in [95–97] for describing optical Kerr
effects in periodic bulk media. Equally important, it is
also possible to investigate important carriers related optical
effects in 2D materials with the proposed method, namely,
the influence of charge doping on the optical properties
of photonic structures containing 2D materials. Whereas a
rigorous description of transient effects in such systems would
require the incorporation of charge dynamics in our numerical
algorithm, a nontrivial but tractable task, the optical response
in the steady state can be determined by simply modifying
the electric permittivity of the 2D materials so as to take
into account the dependence of the permittivity on the charge
density.

ACKNOWLEDGMENTS

This work was supported by the European Research Coun-
cil, Grant Agreement No. ERC-2014-CoG-648328. The work
of M.W. was partly supported through a UCL Impact Award
graduate studentship funded by UCL and Photon Design, Ltd.
The authors thank Y. S. Kivshar and D. F. G. Gallagher
for many insightful discussions and wish to acknowledge
support from the Royal Society’s International Exchanges
Scheme and the hospitality of the Nonlinear Physics Centre of
the Australian National University. The authors acknowledge
the use of the UCL Legion High Performance Computing
Facility (Legion@UCL) and associated support services in
the completion of this work.

035435-22



THEORETICAL AND COMPUTATIONAL ANALYSIS OF . . . PHYSICAL REVIEW B 94, 035435 (2016)

APPENDIX: OUTLINE OF THE RIGOROUS
COUPLED-WAVE ANALYSIS

For the sake of completeness, we outline in this appendix the
mathematical description of the RCWA based approach used to
find the layer-wise solution of the diffraction grating problem.
For now, let us drop the superscript ω, as the description of
the modal form of the electromagnetic field is independent on
whether a pump or generated frequency is considered.

Known as the Bloch theorem, the solution of MEs for a
periodic structure is pseudoperiodic, i.e., periodic with an
additional transverse phase shift. Therefore, the permittivity
εr (x,y,z) of the structure in the (x,y) plane can be expressed
as a 2D Fourier series:

εr (x,y,z) =
∞∑

n=−∞
εr,n(z)e2πi( n1

�1
x+ n2

�2
y)

, (A1)

with z-dependent coefficients εr,n(z). The sum over n =
(n1,n2) is to be understood as the double infinite sum over
the integers ni ∈ Z, i = 1,2. Similarly, the electromagnetic
field quantities f = E,H, . . . can be expressed as a Fourier
series with phase shift

f (x,y,z) =
∞∑

n=−∞
fn(z)ei(knxx+knyy) := R{[f (z)]}(x,y),

(A2)

where knx/y = k0x/y + 2πn1/2/�1/2 is the x/y component of
the nth diffraction order. The intrinsic phase shift is determined
by the transverse component of the k vector of the incident
plane wave k0x/y = kx/y . The sequence of Fourier coefficients
shall be denoted by [f (z)], and the evaluation of a Fourier by
means of the sum in Eq. (A2) is denoted by the reconstruction
operator R{[f (z)]}.

In actual calculations, the infinite sums in Eqs. (A1)
and (A2) have to be truncated. A rectangular trun-
cation approach, namely, n = (n1,n2) ∈ {−N1, . . . ,N1} ×
{−N2, . . . ,N2}, will be used throughout this derivation,
yielding a total of N0 = (2N1 + 1)(2N2 + 1) Fourier series
coefficients (or harmonics).

In the remaining part of this appendix we will provide the
general mathematical formulation of the modal field expansion
of the electromagnetic field. Thus, the underlying assumption
of the modal field expansion in a periodic bulk layer of the
grating is that the permittivity function εr (x,y) in layer z ∈
[z+,z−] is z invariant, where z+ and z− denote the bottom and
the top of the periodic bulk layer. This implies that the Fourier
coefficients εr,n of εr (x,y) are z independent, too.

Since the field solution is periodic according to Bloch
theorem, the electromagnetic fields inside this periodic bulk
layer are pseudoperiodic, i.e., they can be expressed as Fourier
series with phase shift using the reconstruction operator
R:

E(r) = R{[Ex(z)]ex + [Ey(z)]ey + [Ez(z)]ez}, (A3a)

H(r) = R{[Hx(z)]ex + [Hy(z)]ey + [Hz(z)]ez}. (A3b)

Before using these ansatz functions to determine the
electromagnetic fields, the correct Fourier factorization
rules [54,72,73,75] have to be used in order to factorize the

product

D(x,y,z) = ε0εr (x,y)E(x,y,z), (A4)

as they ensure accuracy and convergence of the RCWA modal
expansion even for low number of harmonics.

In this work, the normal vector field approach [73,78] in
bulk layers is used to accurately solve the Fourier factorization
problem in 2D. To this end, let N = (Nx,Ny,Nz)T be a
continuation of the surface normal vectors of the grating
structure, i.e., a normal vector field. The Fourier series
factorization of the constitutive relation (A4) then reads
as

[Dα(z)] = ε0

3∑
β=1

(δα,β[[εr ]] − �Nαβ)[Eβ(z)], (A5)

where δαβ is the Kronecker delta. Here, [[g]] denotes
the Toeplitz matrix of Fourier coefficients of a func-
tion g, and the matrix �Nαβ is given by �Nαβ =
1
2 (�[[NαNβ]] + [[NαNβ]]�), with � = [[εr ]] − [[1/εr ]]−1 and
Nα being the α component of the normal vector field N at the
material boundary.

Inserting Eq. (A3), the permittivity given by Eq. (A1), and
the correct factorization provided by Eq. (A5) into the MEs one
obtains a linear system of ordinary differential equations for
the z-dependent amplitudes of the modal fields. This system is
solved assuming exponential dependency for modal Fourier
coefficients [Eα(z)] = [Eα]eik0νz and [Hα(z)] = [Hα]eik0νz,
with the complex propagation constant ν. Then, the system of
ordinary differential equations can be rewritten as an algebraic
eigenvalue problem for [Exy],

M1M2

(
[Ex]

[Ey]

)
= ν2

(
[Ex]

[Ey]

)
, (A6)

and an additional relation for [Hxy],

√
ν2

(
[Hx]

[Hy]

)
= M1

(
[Ex]

[Ey]

)
. (A7)

In these relations, M1,2 are 2N0 × 2N0 matrices of block-
matrix form:

M1 =
(

Kx[[εr ]]−1Ky I − Kx[[εr ]]−1Kx

Ky[[εr ]]−1Ky − I −Ky[[εr ]]−1Kx

)
,

M2 =
(

�Nyx − KxKy KxKx − Cy

Cx − KyKy KyKx − �Nxy

)
.

Here, Cα = [[εr ]] − �Nαα , the matrices Kα = diag (kαn), α =
x,y, are diagonal matrices of the in-plane propagation con-
stants kαn of the diffraction orders, and I is the identity matrix
of size N0 × N0.

The eigenvalue problem defined by Eq. (A6) has 2N0

solutions consisting of the eigenvalues ν2
m and eigenvec-

tors ([Em
x ],[Em

y ]), m = 1, . . . ,2N0. Defining the positive and
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negative roots of ν2
m as

ν+
m

2 := ν2
m, if Re[ν+

m ] + Im[ν+
m ] > 0,

ν−
m

2 := ν2
m, if Re[ν−

m ] + Im[ν−
m ] � 0,

respectively, one obtains a total of 2N0 upward and 2N0

downward propagating modes of the grating. The upward
(downward) mode with index m is defined by its propagation
constant ν+

m (ν−
m ), and its transverse mode profile given by

the Fourier vector coefficients [E(m,+)
x/y ] and [H (m,+)

x/y ] ([E(m,−)
x/y ]

and [H (m,−)
x/y ]), where [H (m,+)

x/y ] ([H (m,−)
x/y ]) are obtained from

Eq. (A7) by setting ν = ν+
m (ν = ν−

m ).
Since the bulk grating layer is considered to be made of

linear optical materials, the linear superposition of modes is a
solution to the MEs, too. Therefore, the total electric field in
the grating is given by

Eα(r) =
2N0∑
m=1

c+
mR

{[
E(m,+)

α

]}
(x,y)eik0ν

+
m (z−z−)

+ c−
mR

{[
E(m,−)

α

]}
(x,y)eik0ν

−
m (z−z+), (A8)

where the complex mode coefficient c+
m (c−

m) determines the
contribution of each upward (downward) propagating mode to
the total grating field and z+ (z−) denotes the z coordinate of
the bottom (top) of the considered grating layer. The compo-
nents of the magnetic field Hα(r) can be found from a similar
equation. Given this structure of the modes, the electromag-
netic fields in the grating are hence fully determined by 4N0

mode coefficients c±
m. Their values are obtained by means of the

electromagnetic boundary conditions described in Sec. IV D.
For reasons related to the practical implementation of

RCWA, it is useful to rewrite Eq. (A8) in terms of z-dependent
Fourier coefficients, similar to Eqs. (A3), but interchanging
the order of summation of modes and Fourier components in
Eq. (A8):

Eα(r) = R{[E+
α (z)]}(x,y) + R{[E−

α (z)]}(x,y), (A9a)

Hα(r) = R{[H+
α (z)]}(x,y) + R{[H−

α (z)]}(x,y), (A9b)

where [E±(z)] and [H±(z)] are given by

[E±
α (z)] =

2N0∑
m=1

[E(m,±)
α (z)] =

2N0∑
m=1

[E(m,±)
α ]eik0ν

∓
m (z−z∓)c±

m

= E±
α V±(z)c±, (A10a)

[H±
α (z)] = H±

α V±(z)c±. (A10b)

Here, the 2N0 × 2N0 mode-shape matrix E±
α (H±

α ) contains
the vector of Fourier coefficients [E(m,±)

α ] ([H (m,±)
α ]) in its

mth column. Moreover, the propagation matrix V±(z) is a
diagonal matrix containing the z dependence of each mode on
its diagonal V±

mm(z) = eik0ν
±
m (z−z∓), with m ∈ {1, . . . ,2N0}, and

c± denotes the vector of upward (“+”) and downward (“−”)
propagating mode coefficients.

Using Eqs. (A9) and (A10), one can determine the
electromagnetic field everywhere in and around the grating,
namely, in the periodic or homogeneous bulk layers forming
the grating as well as in the cover and substrate. However,
for homogeneous layers a Rayleigh expansion [72] with
the diffraction orders as modes is preferable to the solution
of the RCWA eigenproblem defined by Eq. (A6) as it is
computationally less demanding to calculate E±

α , V±, and c±
for the Rayleigh expansion.

As a concluding remark, we note that the importance of
Eqs. (A10) resides in that it translates the electromagnetic
field from its modal representation to its direct representation
as Fourier series. The modal representation in terms of E±

α ,
V±, and c± in the right-hand side of Eqs. (A10) is restricted
to a computational layer, but very advantageous therein,
as it separates mode-shape quantities [E(m,±)

α ], propagation
and decay constants ν±

m , and excitation strength coefficients
c±
m. On the other hand, the direct field representation as a

Fourier series with coefficients [E±
α (z)] in the left-hand side of

Eqs. (A10) has the same complex exponentials eiknxx+iknyy as
basis functions everywhere in the grating, and hence it facil-
itates the comparison of quantities in different computational
layers.
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