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Abstract— In this paper, a variable structure observer design
approach is proposed for a class of nonlinear, large-scale inter-
connected systems in the presence of unstructured uncertainty.
The modern geometric approach is exploited to explore the
system structure and a transformation is developed to facilitate
observer design. Using the Lyapunov direct method, a robust
asymptotic observer is presented which exploits the internal
dynamic structure of the system as well as the structure of the
uncertainties. The bounds on the uncertainties are nonlinear
and are employed in the observer design to reject the effect of
the uncertainties. A numerical example is presented to illustrate
the approach and the simulation results show that the proposed
approach is effective.

I. INTRODUCTION

The development of advanced technologies has produced
corresponding growth in physical systems. Such systems are
frequently called system of systems or large-scale systems
and can frequently be expressed by sets of lower-order
ordinary differential equations which are linked through
interconnections. Such models are typically called large scale
interconnected systems (see, e.g. [2], [9], [18]). Large-scale
interconnected systems have been studied since the 1970s
[11]. Early work focussed on linear systems. Subsequent
results used decentralised control frameworks for nonlinear
large scale interconnected systems. In much of these work,
it is assumed that all the system state variables are available
for use by the controller [2], [9], [14]. However, this may be
limiting in practice as only a subset of state variables may
be available/measureable. It becomes of interest to establish
observers to estimate the system states and then use the
estimated states to replace the true system states in order
to implement state feedback decentralised controllers. It is
also the case that observer design has been heavily applied
for fault detection and isolation [10], [16]. This further
motivates the study of observer design for nonlinear large
scale interconnected systems.

Sliding mode techniques have been used to design ob-
servers for nonlinear interconnected power systems in [1].
An adaptive observer is designed for a class of intercon-
nected systems in [15] in which it is required that the
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isolated nominal subsystems are linear. Observer schemes
for interconnected systems are proposed in [7], [10], [12],
[16] where the obtained results are unavoidably conservative
as it is required that the designed observer can be used
for certain fault detection and isolation problems. Robust
observer design is considered in [8] for a class of linear
large scale dynamical systems where it is required that the
interconnections satisfy quadratic constraints. In [13] a new
decentralized control scheme which uses estimated states
from a decentralised observer within a feedback controller
is proposed. This uses a design framework based on linear
matrix inequalities and is thus applicable for linear systems.
A robust observer for nonlinear interconnected systems based
on a constrained Lyapunov equation has been developed
[17]. A PI observer is utilized for nonlinear interconnected
systems for disturbance attenuation in [5] and interconnected
nonlinear dynamical systems are considered in [3] where the
authors combine the advantages of input-to-state dynamical
stability and use reduced order observers to obtain quantita-
tive information about the state estimation error. This work
does not, however, consider uncertainties. It should be noted
that in all the existing work relating to observer design for
large scale interconnected systems, it is required that either
the isolated subsystems are linear or the interconnections are
linear. Moreover, most of the designed observers are used for
special purposes such as fault detection and thus they impose
specific requirements on the class of interconnected systems
considered.

In this paper, a class of nonlinear interconnected systems
with disturbances are considered. Fundamentally the work
in [4] is extended for large scale systems. A robust variable
structure observer is established based on a simplified system
structure by using Lyapunov analysis. The structure of the
internal dynamics and the uncertainty bounds are fully used
in the observer design. These bounds are allowed to have a
general nonlinear form. The difference between the output
of the actual plant and the output of the observer is zero,
and the observer states converge to the system states even if
the system is not stable. A simulation example shows that
the proposed approach is effective.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

Consider the nonlinear interconnected systems

ẋi(t) = fi(xi) + gi(xi)ui + ∆fi(xi) +

N∑
j=1

j 6=i

Dij(xj) (1)

yi(t) = hi(xi), i = 1, 2, · · · , N (2)



where xi ∈ Ωi ⊂ Rni (Ωi is a neighbourhood of the origin),
yi ∈ R and ui ∈ Ui ⊂ R (Ui is an admissible control
set) are the state, output and input of the i-th subsystem
respectively, fi(xi) ∈ Rni and gi(xi) ∈ Rni are smooth
vector fields defined in the domain Ωi, and hi(xi) ∈ R
are smooth in the domain Ωi for i = 1, 2, · · · , N . The
term ∆fi(xi) includes all the uncertainties experienced by
the i-th subsystem. The term

∑N
j=1

j 6=i
Dij(xj) is the nonlinear

interconnection of the i-th subsystem.
Definition 2 The systems

ẋi(t) = fi(xi) + gi(xi)ui + ∆fi(xi) (3)
yi(t) = hi(xi) (4)

for i = 1, 2, · · · , N are called the isolated subsystems of the
systems (1)− (2).

ẋi(t) = fi(xi) + gi(xi)ui (5)
yi(t) = hi(xi), i = 1, 2, · · · , N (6)

are called the nominal isolated subsytems of the systems
(1)− (2).

In this paper, under the assumption that the isolated
subsystems (5)− (6) have uniform relative degree ri in the
considered domain Ωi, the interconnected systems (1)− (2)
are to be analysed. The objective is to explore the system
structure based on a geometric transformation to design a
robust asymptotic observer for the interconnected system
(1)− (2).

III. SYSTEM ANALYSIS AND ASSUMPTIONS

In this section, some assumptions are introduced to facil-
itate the observer design.
Assumption 1. The nominal isolated subsystem (5) − (6)
has uniform relative degree ri in domain xi ∈ Ωi for i =
1, 2, · · · , N .

Under Assumption 1, it follows from [6] that there exists
a coordinate transformation

Ti : xi → col(ζi, ηi) (7)

where

ζi =


ζi1
ζi2
...
ζiri

 =


hi(xi)
Lfhi(xi)

...
Lri−1
f hi(xi)

 ∈ Rri (8)

for , i = 1, 2, · · · , N , and ηi ∈ Rni−ri is defined by

ηi =


ηi1
ηi2
...

ηni−ri

 =


φi(ri+1)(xi)
φi(ri+2)(xi)

...
φini

(xi)

 , (9)

for i=1, 2, · · · , N . The functions φi(ri+1)(xi), φi(ri+2)(xi),
· · · , φini(xi) can be obtained by solving the following partial
differential equations:

Lgiφi(xi) = 0, xi ∈ Ωi, i = 1, 2, · · · , N. (10)

From [6], it follows that in the new coordinate system
(ζi, ηi), the nominal isolated subsystem (5)− (6) is equiva-
lent to following form

ζ̇i = Aiζi + βi(ζi, ηi, ui) (11)
η̇i = qi(ζi, ηi) (12)
yi = Ciζi (13)

where

Ai =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 0 0 · · · 0

 ∈ Rri×ri(14)

Ci =
[

1 0 · · · 0
]
∈ R1×ri (15)

βi(ζi, ηi, ui) =


0
...
0

β̄i(ζi, ηi, ui)

 (16)

where
β̄i(ζi, ηi, ui) =

Lrifihi(T
−1
i (ζi, ηi)) + LgiL

ri−1
fi

hi(T
−1
i (ζi, ηi))ui

It is clear to see that the pair (Ai, Ci) is observable. Thus,
there exists a matrix Li such that Ai − LiCi is Hurwitz
stable. This implies that, for any positive-definite matrix
Qi ∈ Rri×ri , the Lyapunov equation

(Ai − LiCi)TPi + Pi(Ai − LiCi) = −Qi (17)

has a unique positive-definite solution Pi ∈ Rri×ri for
i = 1, 2, · · · , N .
Assumption 2. The uncertainty ∆fi(xi) in (1) satisfies

∂Ti
∂xi

∆fi(xi) =

[
Ei∆Ψ(xi)

0

]
(18)

where Ti(·) is given in (7), Ei ∈ Rri×ri is a constant matrix
satisfying

ETi Pi = HiCi (19)

with Pi satisfying (17), and ‖∆Ψi(xi)‖ ≤ κi(xi), where
κi(xi) is continuous and Lipschitz about xi in the domain
Ωi for i = 1, 2, · · · , N .
Remark 1. Denote the nonlinear uncertain term ∆Ψi(xi) in
(18) in the new coordinate frame (ζi, ηi) by ∆Φi(ζi, ηi) i.e.

∆Φi(ζi, ηi) = [∆Ψi(ζi, ηi)]xi=T
−1
i

(ζi,ηi)
(20)

From Assumption 2, there exists a function ρi(ζi, ηi) such
that

‖∆Φi(ζi, ηi)‖ ≤ ρi(ζi, ηi) (21)

and ρi(ζi, ηi) satisfies the Lipschitz condition in Ti(Ωi).
Thus for any (ζi, ηi) and (ζ̂i, η̂i) ∈ Ti(Ωi),

‖ρi(ζi, ηi)− ρi(ζ̂i, η̂i)‖ ≤ lai ‖ζi − ζ̂i‖+ lbi‖ηi − η̂i‖ (22)



where both lai and lbi are positive constants. Consider the
interconnections Dij(xj) in system (1). Then partition the
term ∂Ti

∂xi
Dij(xj) as follows

∂Ti
∂xi

Dij(xj)
∣∣
xj=T−1

j
(ζj ,ηj)

=

[
Γaij(ζj , ηj)
Γbij(ζj , ηj)

]
(23)

where Γaij(ζj , ηj) ∈ Rri , Γbij(ζj , ηj) ∈ Rni−ri for i =
1, 2, · · · , N and i 6= j.
Assumption 3. The nonlinear terms Γaij(ζj , ηj) ∈ Rri ,
Γbij(ζj , ηj) ∈ Rni−ri satisfy the Lipschitz condition in
Ti(Ωi).
Assumption 3 implies that there exist positive constants
αaij , αbij , µaij and µbij such that

‖Γaij(ζi, ηi)− Γaij(ζ̂i, η̂i)‖ ≤ αaij‖ζj − ζ̂j‖
+ αbij ‖ ηj − η̂j‖ (24)

‖Γbij(ζi, ηi)− Γbij(ζ̂i, η̂i)‖ ≤ µaij‖ζj − ζ̂j‖
+ µbij ‖ ηj − η̂j‖ (25)

for i = 1, 2, · · · , N and i 6= j. From (11) − (13) and the
analysis above, it follows that under Assumption 2, in the
new coordinate system (ζi, ηi) the system (1)− (2) can be
described by

ζ̇i = Aiζi + βi(ζi, ηi, ui) + Ei∆Ψi(ζi, ηi)

+

N∑
j=1

j 6=i

Γaij(ζj , ηj) (26)

η̇i = qi(ζi, ηi) +

N∑
j=1

j 6=i

Γbij(ζj , ηj) (27)

yi = Ciζi (28)

where Ai and Ci are given in (14) and (15) respectively,
βi(·) is defined in (16) and Γaij(·) and Γbij(·) are defined in
(23).
Remark 2. Since βi(·) is continuous in the domain Ti(Ωi),
it is straightforward to see that there exists a subset in a
domain Ti(Ωi) such that the function βi(·) is Lipschitz in
the subset

‖ βi(ζi, ηi, ui)− βi(ζ̂i, η̂i, ui) ‖ ≤
vai (ui) ‖ ζi − ζ̂i ‖ + vbi (ui) ‖ ηi − η̂i ‖ (29)

where vai (ui) and vbi (ui) are function of ui for i =
1, 2, · · · , N .
Assumption 4. The function qi(ζi, ηi) in equation (27) has
the following decomposition

qi(ζi, ηi) = Miηi + θi(ζi, ηi) (30)

where Mi ∈ R(ni−ri)×(ni−ri) is a Hurwitz matrix and
θi(ζi, ηi) are Lipschitz in domain Ti(Ωi).
Under Assumption 4, there exist constants τai and τ bi such
that.

‖ θi(ζi, ηi)− θi(ζ̂i, η̂i) ‖≤ τai ‖ ζi − ζ̂i ‖
+τ bi ‖ ηi − η̂i ‖ (31)

where i = 1, 2, · · · , N. Further, from the fact that Mi is
Hurwitz stable for Λi > 0, the following Lyapunov equation
has a unique solution Πi > 0

MT
i Πi + ΠiMi = −Λi (32)

IV. NONLINEAR OBSERVER SYNTHESIS

In this section an observer is designed for the transformed
systems (26) − (28) and then an observer for the inter-
connected systems (26) − (28) is synthesised. For system
(26)− (28), construct dynamical systems

˙̂
ζi = Aiζ̂i + Li(yi − Ciζ̂i) + βi(ζ̂i, η̂i, ui)

+Ki(y, ζ̂i, η̂i) +

N∑
j=1

j 6=i

Γaij(ζ̂j , η̂j) (33)

˙̂ηi = Miη̂i + θi(ζ̂i, η̂i) +

N∑
j=1

j 6=i

Γbij(ζ̂j , η̂j) (34)

where the term Ki(yi, ζ̂i, η̂i) is defined by

Ki(yi, ζ̂i, η̂i) ={ P−1
i
CT

i (yi−Ciζ̂i)

‖yi−Ciζ̂i‖
‖ Hi ‖ ρi(ζ̂i, η̂i), yi − Ciζ̂i 6= 0

0, yi − Ciζ̂i = 0
(35)

where Pi and Hi satisfy (17) and (19) respectively. It should
be pointed out that the structure of the proposed observer
in (33) − (34) is variable due to the term defined in (35).
Therefore, it is called variable structure observer throughout
this paper. The following results are ready to be presented.

Theorem 1. Suppose Assumptions 1− 4 hold. Then, the
dynamical system (33)−(34) is a robust asymptotic observer
of system (26)−(28), if the function matrix WT (·)+W (·) is
positive definite in the domain Ω, where the matrix W (·) =
[wij(·)]2N×2N , and its entries wij(·) are defined by

wij=



λmin(Qi)− 2λmax(Pi)v
a
i − 2lai ‖Ci‖‖Hi‖,
i = j, 1 ≤ i ≤ N,

−2λmax(Pi)α
a
ij ,

i 6= j, 1 ≤ i ≤ N, 1 ≤ j ≤ N

λmin(Λi−N )− 2λmax(Πi−N )τ bi−N ,
i = j,N + 1 ≤ i ≤ 2N,

−2λmax(Π(i−N))µ
b
(i−N)(j−N),

i 6= j,N + 1 ≤ i ≤ 2N,N + 1 ≤ j ≤ 2N

−2[λmax(Pi)v
b
i + lbi‖Ci‖‖Hi‖+ λmax(Πi)τ

a
i ],

j − i = N, 1 ≤ i ≤ N,N + 1 ≤ j ≤ 2N

−2λmax(Pi)α
b
i(j−N),

j − i 6= N, 1 ≤ i ≤ N,N + 1 ≤ j ≤ 2N

0, i− j = N,N + 1 ≤ i ≤ 2N, 1 ≤ j ≤ N

−2λmax(Πi−N )µa(i−N)j ,

i− j 6= N,N + 1 ≤ i ≤ 2N, 1 ≤ j ≤ N



Proof. Let eζi = ζi−ζ̂i and eηi = ηi−η̂i for i = 1, 2, · · · , N .
Compare systems (26)−(28) and (33)−(34). It follows that
the error dynamical systems are described by

ėζi = (Ai − LiCi)eζi + βi(ζi, ηi, ui)− βi(ζ̂i, η̂i, ui)
+Ei∆Ψi(ζi, ηi)−Ki(yi, ζ̂i, η̂i)

+

N∑
j=1

j 6=i

Γaij(ζj , ηj)−
N∑
j=1

j 6=i

Γaij(ζ̂j , η̂j) (36)

ėηi = Mieηi + θi(ζi, ηi)− θi(ζ̂i, η̂i)

+

N∑
j=1

j 6=i

Γbij(ζj , ηj)−
N∑
j=1

j 6=i

Γbij(ζ̂j , η̂j) (37)

Now, for the system (36) and (37) consider the following
candidate Lyapunov function

V =

N∑
i=1

eTζiPieζi +

N∑
i=1

eTηiΠieηi (38)

Then, the time derivative of the candidate Lyapunov function
can be described by

V̇ =

N∑
i=1

[(ėTζiPieζi + eTζiPi ˙eζi)

+(ėTηiΠieηi + eTηiΠiėηi)] (39)

Substituting both ėζi in (36) and ėηi in (37) into equation
(39), it follows by direct computation that the time derivative
of the function V in (38) can be described by

V̇ =

N∑
i=1

{
eTζi [(Ai − LiCi)

TPi + Pi(Ai − LiCi)]

+2eTζiPi[βi(ζi, ηi, ui)− βi(ζ̂i, η̂i, ui)]
+2[eTζiPiEi∆Ψi(ζi, ηi)− eTζiPiKi(yi, ζ̂i, η̂i)]

+2eTζiPi

N∑
j=1

j 6=i

[Γaij(ζj , ηj)− Γaij(ζ̂j , η̂j)]

+eTηi(M
T
i Πi + ΠiMi)ηi + 2eTηiΠi

×[θi(ζi, ηi)− θi(ζ̂i, η̂i)]

+2eTηiΠi

N∑
j=1

j 6=i

[Γbij(ζj , ηj)− Γbij(ζ̂j , η̂j)]
}

(40)

From (19),(21),(22) and (35)
(i) If yi − Ciζ̂i = 0, then

eTζiPiEi∆Φi(ζi, ηi)− eTζiPiKi(yi, ζ̂i, η̂i)

= eTζiC
T
i H

T
i ∆Φi(ζi, ηi)

= [Hi(yi − Ciζ̂)∆Φi(ζi, ηi)] = 0

(ii) If yi − Ciζ̂i 6= 0, then

eTζiPiEi∆Φi(ζi, ηi)− eTζiPiKi(yi, ζ̂i, η̂i)

= eTζiC
T
i H

T
i ∆Φi(ζi, ηi)− eTζiPi

P−1
i CTi (yi − Ciζ̂i)
‖yi − Ciζ̂i‖

· ‖ H ‖ ρi(ζ̂i, η̂i)

= ‖eTζiC
T
i ‖‖Hi‖ρi(ζi, ηi)−

eTζiC
T
i Cieζi

‖Cieζi‖
‖Hi‖ρi(ζ̂i, η̂i)

= ‖eTζiC
T
i ‖‖Hi‖

{
ρi(ζi, ηi)− ρi(ζ̂i, η̂i)

}
≤ ‖eTζiC

T
i ‖‖Hi‖

{
lai ‖ζi − ζ̂i‖+ lbi‖ηi − η̂i‖

}
Then, from (i) and (ii), it follows that

eTζiPiEi∆Φi(ζi, ηi)− eTζiPiKi(yi, ζ̂i, η̂i)

≤ ‖eζiCi‖‖Hi‖
{
lai ‖eζi‖+ lbi‖eηi‖

}
(41)

Substituting (24), (25), (29), (31), and (41) into (40) yields

V̇ ≤ −
N∑
i=1

{[
λmin(Qi)− 2λmax(Pi)v

a
i − 2lai ‖Ci‖‖Hi‖

]
·‖eζi‖2 −

[ N∑
j=1

j 6=i

2λmax(Pi)α
a
ij ]

·‖eζi‖‖eζj‖ −
[
2λmax(Pi)v

b
i + 2lbi‖Ci‖‖Hi‖

+2λmax(Πi)τ
a
i ]‖eζi‖‖eηi‖

]
− 2

N∑
j=1

j 6=i

λmax(Pi)α
b
ij

·‖eζi‖‖eηj‖]−
N∑
j=1

j 6=i

2λmax(Πi)µ
a
ij‖eζj‖‖eηi‖

+
[
λmin(Λi)− 2λmax(Πi)τ

b
i ]‖eηi‖2

−
[ N∑

j=1

j 6=i

2λmax(Πi)µ
b
ij

]
‖eηi‖‖eηj‖

}
Then, from the definition of the matrix W (·) and the in-
equality above, it follows that

V̇ ≤ −1

2
XT [WT (·) +W (·)]X

where X = [‖eζ1‖, ‖eζ2‖, · · · , ‖eζN ‖, ‖eη1‖, ‖eη2‖, · · · ,
‖eηN ‖]T . Since WT (·) + W (·) is positive definite in the
domain T (Ω1)×U1 × T (Ω2)×U2 × · · · × T (ΩN )×UN , it
is clear that V̇ |(33)−(34) is negative definite. Therefore

lim
t→∞

‖ζi(t)−ζ̂i(t)‖ = 0 and lim
t→∞

‖ηi(t)−η̂i(t)‖ = 0 (42)

Hence, the conclusion follows. 4
Assume that ∂Ti(ζi,ηi)

∂(ζi,ηi)
is bounded in Ti(Ωi) for i =

1, 2, · · · , N . There exists a positive constant γi such that∥∥∥∥∂Ti(ζi, ηi)∂(ζi, ηi)

∥∥∥∥ ≤ γi, (ζi, ηi) ∈ Ti(Ωi), i = 1, 2, · · · , N

Define x̂i = T−1
i (ζ̂i, η̂i), i = 1, 2, · · · , N Then,

‖xi − x̂i‖ = ‖T−1
i (ζi, ηi)− T−1

i (ζ̂i, η̂i)‖
≤ γi(‖ζi − ζ̂i‖+ ‖ηi − η̂i‖) (43)



Then, from (42) and (43), it follows that

lim
t→∞

‖xi(t)− x̂i(t)‖ = 0

This implies that x̂i is an estimate of xi for i = 1, 2, · · · , N .
Remark 3 From the analysis above, it is clear to see that,
in this paper, it is not required that either the nominal
isolated subsystems or the interconnections are linearisable.
The uncertainties are bounded by nonlinear functions and
are fully used in the observer design in order to reject the
effects of the uncertainties, and thus robustness is enhanced.
The designed observer is an asymptotic observer and the
developed results can be extended to the global case if the
associated conditions hold globally.

V. NUMERICAL EXAMPLE

Consider the nonlinear interconnected systems:

ẋ1 =

 x12

−0.1 sinx12

−3x2
11 − 3.25x13 − 2x12


︸ ︷︷ ︸

f1(x1)

+

 0
1
0


︸ ︷︷ ︸
g1(x1)

u1

+

 ∆σ1

0.5∆σ1

−2∆σ1


︸ ︷︷ ︸

∆f1(x1)

+

 0.2(x2
21 + x22)

0
0.1 sinx21


︸ ︷︷ ︸

D12

(44)

y1 = x11︸︷︷︸
h1(x1)

(45)

ẋ2 =

 −x21

−x2
21 − 3x22 + cos(x2

21 + x22)− 1
−2x23 + 0.2x2

21


︸ ︷︷ ︸

f2(x2)

+

 1
−2x21

0


︸ ︷︷ ︸

g2(x2)

u2 +

 −∆σ2

2x21∆σ2

0


︸ ︷︷ ︸

∆f2(x2)

+

 0
0.1 sin(x13 + 2x11)

0


︸ ︷︷ ︸

D21

(46)

y2 = x21︸︷︷︸
h2(x2)

(47)

where x1 = col(x11, x12, x13) and x2 = col(x21, x22, x23),
h(x) = (h1(x1), h2(x2))T and u(t) = (u1(t), u2(t))T are
the system state, output and input respectively, D12 and D21

are interconnected systems, and ∆f1(x1),∆f2(x2) are the
uncertainties experienced by the system which satisfy

||∆f1(x1)|| = 0.1|x13 + 2x11| sin2 t (48)
||∆f2(x2)|| = 0.1x2

21| cos t| (49)

The domain considered is

Ω =
{

(x11, x12, x13, x21, x22, x23),
∣∣∣ |x11| < 3,

|x21| ≤ 1.3, x11, x12, x13, x21, x22, x23 ∈ R
}

(50)

By direct computation, it follows that the first subsystem has
a uniform relative degree 2, and the second subsystem has a
uniform relative degree 1.
The corresponding transformations are obtained as follows:

T1 :

 ζ11 = x11

ζ12 = x12

η1 = x13 + 2x11

T2 :

 ζ2 = x21

η21 = x2
21 + x22

η22 = x23

In the new coordinates, the system (44) − (47) can be
described by:

ζ̇1 =

[
0 1
0 0

]
︸ ︷︷ ︸

A1

[
ζ11

ζ12

]
+

[
0

−0.1 sin ζ11 + u1

]
︸ ︷︷ ︸

β1

+

[
∆σ1(ζ1, η1)

0.5∆σ1(ζ1, η1)

]
︸ ︷︷ ︸

E1∆Ψ(ζ1,η1)

+

[
0.2η21

0

]
︸ ︷︷ ︸

Γa
12

(51)

η̇1 = −3.25η1 + 0.25ζ2
11︸ ︷︷ ︸

q1(ζ1,η1)

+ 0.4η21 + 0.1 sin ζ2︸ ︷︷ ︸
Γb
12

(52)

y1 =
[

1 0
] [ ζ11

ζ12

]
(53)

ζ̇2 = −︸︷︷︸
A2

ζ2 + u2︸︷︷︸
β2

−∆σ2(ζ2, η2)︸ ︷︷ ︸
E2∆Ψ(ζ2,η2)

(54)

η̇2 =

[
−3 0
0 −2

] [
η21

η22

]
+

[
cos η21 − 1

0.2ζ2
2

]
︸ ︷︷ ︸

q2(ζ2,η2)

+

[
0.1 sin η1

0

]
︸ ︷︷ ︸

Γb
21

(55)

y2 = ζ2

where ζ1 = (ζ11, ζ12)T , η1 ∈ R, ζ2 ∈ R, and η2 =
(η21, η22)T .
From (48)− (49)

‖∆Ψ1(ζ1, η1)‖ ≤ ||∆σ1(ζ1, η1)||
‖∆Ψ2(ζ2, η2)‖ ≤ ||∆σ2(ζ2, η2)||
‖∆σ1(ζ1, η1)|| ≤ 0.1|η1| sin2 t︸ ︷︷ ︸

ρ1(·)
‖∆σ2(ζ2, η2)|| ≤ 0.1ζ2

2 | cos t|︸ ︷︷ ︸
ρ2(·)

Then, for the first subsystem, choose

L1 =
[

3 2
]T
, Q = I

It follows that the Lyapunov equation (17) has a unique
solution:

P1 =

[
0.5 −0.5
−0.5 1

]
and the solution to equation (19) is H1 = 0.25. As M1 =
−3.25, let Λ1 = 3.25. Thus the solution of equation (32) is
Π1 = 0.5. Now, for the second subsystem, choose

L2 = 0, Q2 = 2



It follows that the Lyapunov equation (17) has a unique
solution P2 = 1 and the solution to equation(19) is H2 =
−1. As

M2 =

[
−3 0
0 −2

]
let

Λ2 =

[
1 0
0 1

]
. (56)

Then,

Π2 =

[
0.1667 0

0 0.25

]
By direct computation, it follows that the matrix WT + W
is positive definite in the domain Ω defined in (50).
Thus, all the conditions of Theorem 1 are satisfied which
implies that (33) − (34) is an observer. Based on the
parameters provided above, the observer (33)−(34) has been
well defined.
For simulation purposes, the controllers are chosen as:

u1 = −ζ11 − 2ζ12 and u2 = cos ζ2 + 5

The simulation results in Figure 1 shows that the designed
observer estimates the states of the interconnected system
x1 = col(x11, x12, x13) and x2 = col (x21, x22, x23) in
(44) − (57) even though the system is not asymptotically
stable.
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Fig. 1. The time response of both 1st and 2nd subsystems, the states
x1 = col (x11, x12, x13) and their estimation x̂1 = col (x̂11, x̂12, x̂13),
the states x2 = col (x21, x22, x23) and their estimation x̂2 =
col (x̂21, x̂22, x̂23)

VI. CONCLUSIONS

In this paper, a class of nonlinear large scale intercon-
nected systems with uniform relative degree have been
considered. An asymptotic observer is developed for an
uncertain system representation using a Lyapunov approach
together with a geometric transformation which has been
employed to exploit the system structure. It is not required
that either the isolated nominal subsystems or the inter-
connections are linearizable. Robustness to uncertainties is
enhanced by using the system structure and the structure of
the uncertainties within the design framework.
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