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Abstract: This paper investigates integral sliding mode control problems for Markovian jump
T-S fuzzy descriptor systems via the super-twisting algorithm. A new integral sliding surface
which is continuous is constructed and an integral sliding mode control scheme based on a variable
gain super-twisting algorithm is presented to guarantee the well-posedness of the state trajectories
between two consecutive switchings. The stability of the sliding motion is analyzed by considering
the descriptor redundancy and the properties of fuzzy membership functions. It is shown that the
proposed variable gain super-twisting algorithm is an extension of the classical single-input case to
the multi-input case. Finally, a bio-economic system is numerically simulated to verify the merits
of the method proposed.

1. Introduction

Sliding mode control originated from the former Soviet Union in the mid-1950s. It is an effective
robust control method that tailors the dynamics of the system by an appropriate choice of switched
control [1, 2, 3]. Since its inception, it has found wide practical application due to its attractive
features including ease of implementation, fast response and insensitivity to matched uncertainties
and disturbances. In general the design of a sliding mode control scheme involves two steps:
the first step is to construct a sliding surface such that the dynamics when the state trajectories
of the system are confined to the custom-defined sliding surface are stable and exhibit desirable
performance (sliding phase); the second step is to design a control law to drive the state trajectories
to the custom-defined sliding surface in finite time and and ensure they remain there subsequently
(reaching phase). As the insensitivity to matched uncertainties only holds in the sliding phase, it
is important to shorten or even eliminate the reaching phase. To this end, integral sliding mode
control has been proposed to compensate exactly the matched uncertainties from the initial time
instant. With increasing understanding of the real-world model informing model development,
significant interest has been paid to the development of sliding mode control for diverse complex
systems [4, 5, 6, 7, 8, 9]. Among this work, T-S fuzzy systems and Markovian jump systems are
two representative classes of dynamical systems. Over the past decades, many meaningful results
have been published on the sliding mode control of either T-S fuzzy systems [10, 11, 12, 13] or
Markovian jump systems [14, 15, 16, 17, 18, 19, 20]. However, relatively little attention has been
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focused on research into sliding mode control for composite systems comprising the two classes
of systems, namely Markovian jump T-S fuzzy systems [21, 22], despite their wide application
[23, 24, 25, 26].

A descriptor system is a more compact and integrated description of a real-world model than
the normal system (E = I) representation and its redundancy is widely exploited to improve the
performance of dynamical systems [27, 28, 29]. Recently, sliding mode control has been studied
for either T-S fuzzy descriptor systems [30] or Markovian jump descriptor systems [31, 32, 33].
There are, however, interesting issues outstanding. For example, neither Non-PDC sliding mode
controller design for T-S fuzzy systems nor the analysis of the continuity of the switching function
at the switching instants for Markovian jump descriptor systems have been mentioned. It is point-
ed out in [34] that the states of the Markovian jump descriptor systems will jump at the switching
instants due to inconsistency of the initial conditions [35], which is a distinguishing feature of
Markovian jump normal systems. The authors in [36] construct a continuous switching function
for Markovian jump normal systems. But for Markovian jump descriptor systems, whether the
states jump will affect the switching function and this phenomenon has not been considered. As
shown in [37, 38, 39], Markovian jump T-S fuzzy descriptor systems have been widely used to
model mechanical systems, biological systems, circuit systems and so on, where representative ex-
amples are the inverted pendulum controlled by a DC motor and constrained mechanical systems.
Therefore, the first motivation is to construct an appropriate switching function for Markovian
jump T-S fuzzy descriptor systems such that the sliding mode controller has a similar structure
to the Non-PDC controller [40] and the effect of state jumps on the switching function can be
explicitly analyzed.

Since the dynamical order of descriptor systems is usually less than the system dimension, the
states will contain high-order derivatives of the control inputs. The states will therefore be impul-
sive unless each control input is continuously differentiable. Besides, a discontinuous control input
may excite the inherent high-frequency chattering of the system, where especially for mechanical
and biological systems, such chattering may be detrimental to the system performance and may
even destroy the system. To circumvent this difficulty, [41] presents a high-order sliding mode con-
trol method for descriptor systems by artificially introducing integrators. It is noted that only linear
descriptor systems with uncertainties are treated. Moreover, the high-order sliding mode controller
developed is for single-input systems and the derivative of the switching function is required. It is
well known that the super-twisting algorithm is the only second order sliding mode controller [42]
which does not need the derivative of switching function. Since its introduction in [43], geometric,
homogeneity and Lyapunov methods have been proposed to derive finite-time convergence and
demonstrate robustness of the super-twisting algorithm. Among these, the Lyapunov method is
popular because Lyapunov stability theory for linear systems can be recalled, and the finite-time
convergence and robustness can also be achieved even when the super-twisting algorithm is not
homogeneous [44]. Recently, a multivariable super-twisting algorithm has been presented [45] to
extend the classical case [46] where the control gains are constant. In practice, if the disturbances
are also bounded by functions of the states, then the constant gain super-twisting algorithm is not
applicable. Furthermore, when the system is driven by multiple inputs, the variable gain super-
twisting algorithm [44] cannot also be applied. As a result, the second motivation is to construct a
variable gain super-twisting algorithm to guarantee that the state trajectories of descriptor systems
with multiple inputs are well defined.

This paper is concerned with super-twisting controller design for Markovian jump T-S fuzzy
descriptor systems via integral sliding modes. A new integral sliding surface is first defined to in-
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duce the Non-PDC sliding mode controller. Then the stability of the sliding motion is analyzed by
making use of the descriptor redundancy and the properties of fuzzy membership functions. Fur-
thermore, a variable gain super-twisting algorithm is developed for multi-input systems to ensure
the well-posedness of the state trajectories of Markovian jump T-S fuzzy descriptor systems. Fi-
nally, a bio-economic system is provided to verify the results obtained. The main contributions are
threefold: 1) a new continuous switching function is constructed which will result in a Non-PDC
sliding mode controller; 2) a variable gain super-twisting algorithm is proposed for multi-input
systems; 3) a method based on the equivalence of two sets is presented to remove the nonstrict
matrix inequality often encountered in the stability analysis of descriptor systems.

The rest of this paper is organized as follows: Section 2 states the problem under consideration
and presents some useful lemmas; in Section 3, the integral sliding mode control scheme is devel-
oped for Markovian jump T-S fuzzy descriptor systems based on the super-twisting algorithm; a
bio-economic system is provided in Section 4 and Section 5 concludes the paper.

1.1. Notations

The notations used throughout this paper are quite standard. Rn represents the n-dimensional
Euclidean space, and Rm×n represents the set of all m × n real matrices. N+ denotes the set of
positive integers. The symbol (Ω,F, {Ft},P) is a complete probability space with a filtration {Ft}
satisfying the usual conditions (i.e. it is right continuous and contains all P-null sets) and E{·}
is the expectation operator. The superscripts T and −1 denote matrix transposition and matrix
inverse respectively. | · | represents the absolute value of a scalar and ∥ · ∥ denotes the Euclidean
norm of a vector or the induced norm of a matrix. The notation P > 0 (P ≥ 0) implies that
P is a real symmetric and positive definite (semi-positive definite) matrix. For any square matrix
A, HeA stands for A + AT , furthermore, when A is symmetric, λmin(A) and λmax(A) denote
the minimum and maximum eigenvalue of A respectively. diag{A1, A2, · · · , An} denotes a block
diagonal matrix with A1, A2, · · · , An in its diagonal position. The star ⋆ in a matrix block implies
that it can be induced by symmetric position. Matrices, if their dimensions are not explicitly stated,
are assumed to be compatible for algebraic operations.

2. Preliminaries and Problem Formulation

Fix a probability space (Ω,F,P) and consider a Markovian jump nonlinear descriptor system which
can be represented by the following Markovian jump T-S fuzzy descriptor system

Plant Rule i: IF z1(t) is Fi1 and z2(t) is Fi2 and · · · and zs(t) is Fis THEN

Eẋ(t) = Ai(r(t))x(t) +Br(t)(u(t) + fr(t)(x(t))) (1)

where i = 1, 2, · · · , r, z1(t), z2(t), · · · , zs(t) are the premise variables, Fi1, Fi2, · · · , Fis are the
fuzzy sets. x(t) ∈ Rn is the states, u(t) ∈ Rm is the inputs and fr(t)(x(t)) is a unknown continu-
ously differential vector function satisfying∥∥∥∥dfr(t)(x(t))dt

∥∥∥∥ ≤ ρr(t)(x(t)) (2)

where ρr(t)(x(t)) is a known continuous positive scalar function. r(t) is a continuous-time Markov
process whose states belong to a finite set ℓ = {1, 2, · · · , N} with N ∈ N+. The transition
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probability between two consecutive switchings of r(t) is defined by

P {r(t+ δ) = q|r(t) = p} =

{
λpqδ + o(δ), when r(t) jumps from p to q,
1 + λppδ + o(δ), otherwise. (3)

where λpq ≥ 0, p ̸= q, λpp = −
∑

q∈ℓ,q ̸=p λpq and o(δ) is an infinitesimal such that limδ→0
o(δ)
δ

= 0.
The generator matrix is defined by Λ = [λpq]N×N . Assume that the jumping instant sequence is
{τk, k = 0, 1, · · · } with 0 = τ0 < τ1 < · · · < τk < · · · , then the mode r(t) is a constant in each
interval [tk, tk+1). To simply the notation, for a fixed r(t) = p ∈ ℓ, matrices Ai(r(t)), Bi(r(t)) and
function fr(t)(x(t)) are respectively denoted as Ap

i , Bp, and fp(x(t)), throughout this paper, and
the remaining notation follows this symbolism. E, Ap

i and Bp are known matrices of compatible
dimensions with rankE = re ≤ n and Bp of full column rank. It is assumed that the Markov
process r(t) is recurrent, irreducible and aperiodic, then the solution of the differential equation
π̇(t) = ΛTπ will asymptotically tend to a constant vector π = [π1 π2 · · · πN ]T , where the initial
probability distribution is π0 = [π01 π02 · · · π0N ]T and π0i = P{r(0) = i}.

By fuzzy blending, the overall Markovian jump T-S fuzzy system is inferred as follows

Eẋ(t) =
r∑

i=1

hi(z(t))(A
p
ix(t) + Bp(u(t) + fp(x(t)))) (4)

where hi(z(t)) is the membership function which satisfies hi(z(t)) ≥ 0 and
∑r

i=1 hi(z(t)) = 1. In
the sequel, unless it is indicated clearly, for a series of matrices Ci, i = 1, 2, · · · , r, the notation
C(h) is used to denote

∑r
i=1 hi(z(t))Ci.

Now, the following lemmas are recalled which will be essential to the following development.

Lemma 1. [47] If the following inequalities hold:

∆ii < 0,
1

r − 1
∆ii +

1

2
(∆ij +∆ji) < 0, i, j = 1, 2, · · · , r, i ̸= j

then the following matrix inequalities hold

r∑
i=1

r∑
j=1

αi(t)αj(t)∆ij < 0

where αi(t) ≥ 0 and
∑r

i=1 αi(t) = 1.

Lemma 2. [48] Suppose a piecewise continuous matrix A(t) ∈ Rn×n and a matrix X ∈ Rn×n

satisfy the following inequality

A(t)TX +XTA(t) ≤ −αI

for all t and some positive number α. Then the following statements hold:

1) A(t) is invertible;

2) ∥A−1(t)∥ ≤ a for some a > 0.
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Lemma 3. [49] Let P be symmetric and E = ELE
T
R with EL ∈ Rn×re and ER ∈ Rn×re full

column rank such that ET
RPER > 0 and Φ is nonsingular, UT ∈ Rn×(n−re) and V ∈ Rn×(n−re)

have full column rank and respectively span the null space of ET and E, then PET + VΦU is
nonsingular and its inverse is expressed by(

PET + VΦU
)−1

= QE + UTΨVT (5)

where Q is a symmetric matrix and Ψ is a nonsingular matrix with Ψ =
(
UUT

)−1
Φ−1

(
VTV

)−1,
ET

LQEL =
(
ET

RPER

)−1.

Lemma 4. Let U and V be two orthogonal matrices such that

UEV =

[
Σ 0
0 0

]
(6)

where Σ = diag{σ1, σ2, · · · , σre} with σi > 0, i = 1, 2, · · · , re, U =

[
U1

U2

]
, V =

[
V1 V2

]
.

Define Ū =

[
Σ−1 0
0 In−re

]
U and the following sets

S1 = {P ∈ Rn×n : EP = PTET ≥ 0, rankP = n}

S2 = {P ∈ Rn×n : P = PET + V2ΦU2, P = V

[
P1 P T

2

P2 P3

]
V T > 0, rankΦ = n− re}

S3 = {Q ∈ Rn×n : ETQ = QTE ≥ 0, rankQ = n}

S4 = {Q ∈ Rn×n : Q = QE + UT
2 ΨV

T
2 , Q = ŪT

[
Q1 QT

2

Q2 Q3

]
Ū > 0, rankΨ = n− re}

Then the following statements are satisfied:

1) S1 and S3 are respectively equivalent to S2 and S4;

2) for any P ∈ S1(P ∈ S2), there exists Q ∈ S3(P ∈ S4) such that P−1 = Q, and vice versa.
Furthermore, P−1

1 = Q1 and Φ−1 = Ψ.

Proof. 1) On one hand, if P ∈ S1, it can be calculated that

V TPŪT =

[
P1 0
P2 P4

]
=

[
P1 P T

2

P2 P3

] [
Ire 0
0 0

]
+

[
0

In−re

]
P4

[
0 In−re

]
=

[
P1 P T

2

P2 P3

]
V TET ŪT +

[
0

In−re

]
P4

[
0 In−re

] (7)

Since P1 > 0, P4 is nonsingular and P3 is an arbitrary matrix, then
[
P1 P T

2

P2 P3

]
> 0 holds by

appropriately choosing P3. By setting Φ = P4, thus, P ∈ S2.
On the other hand, when P ∈ S2, from

EP = PTET = EPET ≥ 0
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and

rankP = rankV

[
P1 0
P2 Φ

]
Ū−T = n

it follows that P ∈ S1. The equivalence of sets S3 and S4 can be derived analogously.

2) Based on (6), EL and ER can be selected as EL = Ū−1

[
Ire
0

]
and ER =

[
Ire 0

]
V T .

For P ∈ S1(P ∈ S2), ET
RPER = P1 > 0, then

P−1 = QE + UT
2 Φ

−1V T
2

where
[
Ire 0

]
Ū−TQŪ−1

[
Ire
0

]
= P−1

1 . As a result, there exists a matrix Q ∈ S3(P ∈ S4)

with Q1 = P−1
1 and Ψ = Φ−1 such that P−1 = Q. For any Q ∈ S3, a matrix P ∈ S1 can also be

found such that Q−1 = P by following the similar line above.

Remark 1. The advantages of Lemma 4 are two fold: 1) it is possible to remove the non-strict
linear matrix inequalities EP = PTET ≥ 0 and ETQ = QTE ≥ 0 since P and Q can be
respectively replaced by the corresponding elements in S2 and S4. Furthermore, the inverses of the
elements in S1 (S2) and S3 (S4) are also explicitly described by virtue of orthogonal matrices and
a diagonal matrix, which is numerically reliable; 2) the redundancy of descriptor system and the
property of fuzzy membership functions can be exploited to introduce some extra matrices.

The objectives of this paper are to propose a variable gain super-twisting algorithm for multi-
input systems and design an integral sliding mode control strategy for the Markovian jump T-S
fuzzy descriptor system (4) such that the resultant closed-loop system is asymptotically stable.

3. Sliding Mode Controller Development

In this section, a multiple Lyapunov function method is introduced to analyze the stability of the
sliding motion, and a variable gain super-twisting algorithm for multi-input systems is developed
to generate a continuous control input.

3.1. Construction of Sliding Surface

The sliding surface for the Markovian jump T-S fuzzy descriptor system (4) is defined as

S = {x(t) : s(t) = 0} (8)

where the switching function is constructed in each time interval [τk, τk+1) with mode r(t) = p by

s(t) = SEx(t)− SEx(τk)− S

∫ t

τk

r∑
i=1

hi(z(ψ))(A
p
i +BpKp

i (
r∑

i=1

hi(z(ψ))Y
p
i )

−1)x(ψ)dψ (9)

where S ∈ Rm×n is a known matrix such that SBp is nonsingular. Kp
i and Y p

i are design coeffi-
cients to be determined in the sequel.

Remark 2. Let τ−k be the instant immediately before the switching instant τk, and τ+k denote the
instant immediately after τk. It is known from [34] that at the switching instants τk, x(t) will jump
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to satisfy the consistent initial condition but Ex(t) will satisfy Ex(τk) = Ex(τ−k ) = Ex(τ+k ). It is
assumed that the qth mode is active in the time interval [τk−1, τk) and the pth mode in time interval
[τk, τk+1). When the ideal sliding mode is exhibited, it follows that

s(τ−k ) = SEx(τ−k )− SEx(τk−1)− S

∫ τ−k

τk−1

(Aq(h) +BqKq(h)(Y q(h))−1)x(ψ)dψ

= SEx(τ−k )− SEx(τk−1)− S

∫ τ−k

τk−1

(Aq(h) +BqKq(h)(Y q(h))−1)x(ψ)dψ

− S

∫ τ+k

τk

(Ap(h) +BpKp(h)(Y p(h))−1)x(ψ)dψ

= SEx(τ−k )− SEx(τ−k )− S

∫ τ+k

τk

(Ap(h) +BpKp(h)(Y p(h))−1)x(ψ)dψ

= SEx(τ+k )− SEx(τk)− S

∫ τ+k

τk

(Ap(h) +BpKp(h)(Y p(h))−1)x(ψ)dψ

= s(τ+k )

(10)

which implies that the switching function is continuous at the switching instant τk. Therefore, it
can be concluded that although the switching function is defined in each time interval [τk, τk+1)
respectively, the overall switching function is continuous.

Based on (4) and (9), it follows that

ṡ(t) = SEẋ(t)− S(Ap(h) +BpKp(h)(Y p(h))−1)x(t)

=SBp(u(t)−Kp(h)(Y p(h))−1x(t) + fp(x(t)))
(11)

When the ideal sliding mode occurs, it is necessary that s(t) = 0 and ṡ(t) = 0. It follows that
the equivalent control law can be obtained from (11) as follows

u(t) = Kp(h)(Y p(h))−1x(t)− f p(x(t)) (12)

Therefore, the dynamics of the sliding motion can be obtained as

Eẋ(t) = (Ap(h) + BpKp(h)(Y p(h))−1)x(t) (13)

Remark 3. It is noted that Kp(h)(Y p(h))−1 is introduced in the switching function (9) instead
of Kp(h) in [30] so that the sliding motion behaves as for the system Eẋ(t) = Ap(h)x(t) +
Bpu(t) with the loop closed by the Non-PDC controller u(t) = Kp(h)(Y p(h))−1x(t). It can
be established from [40] that the introduction of Kp(h)(Y p(h))−1 enhances the solvability of the
design coefficients in the switching function.

3.2. Stability of Sliding Motion

In the sequel, descriptor redundancy and properties of fuzzy membership functions are utilized to
derive stability conditions for the sliding motion from a switched system perspective [34, 52].
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Theorem 1. The Markovian jump T-S fuzzy descriptor system (4) has an asymptotically stable
sliding motion (13) if there exist positive definite matrices P p

1 ∈ Rre×re , P p
i3 ∈ R(n−re)×(n−re),

nonsingular matrices Ψp
i ∈ R(n−re)×(n−re), Y p

i ∈ Rn×n, matrices P p
i2 ∈ R(n−re)×re , Kp

i ∈ Rm×n

i = 1, 2, · · · , r, and positive scalars ϵp, α, β, p = 1, 2, · · · , N such that the following matrix
inequalities hold for each i, j = 1, 2, · · · , r, i ̸= j, p = 1, 2, · · · , N[

P p
1 ⋆

P p
i2 P p

i3

]
> 0 (14)

∆p
ii < 0,

1

r − 1
∆p

ii +
1

2

(
∆p

ij +∆p
ji

)
< 0 (15)

P p
1 ≤ βP q

1 (16)
N∑
p=1

((β − 1) (−λpp)− α)πp < 0 (17)

where Pp
i = V

[
P p
1 (P p

2i)
T

P p
i2 P p

i3

]
V TET +V2Φ

p
iU2, and U , V are orthogonal matrices satisfying (6),

∆p
ij =

 He
(
Ap

iY
p
j +BpKp

i

)
⋆ ⋆

Y p
i −Pp

i + ϵp
(
Ap

iY
p
j +BpKp

i

)
−ϵpHePp

i ⋆[
Ire 0

]
V TY p

i 0 − 1
α
P p
1

 .
Proof. Based on Lemma 1 and (15), appropriate matrix manipulation yields He (Ap(h)Y p(h) +BpKp(h)) + α (Y p(h))T V

[
(P p

1 )
−1 0

0 0

]
V TY p(h) ⋆

Y p(h)− Pp(h) + ϵp (A
p(h)Y p(h) + BpKp(h)) −ϵpHePp(h)

 < 0

(18)

Due to Pp(h) = V

[
P p
1 (P p

2 (h))
T

P p
2 (h) P p

3 (h)

]
V TET + V2Φ

p(h)U2 ∈ S2, it follows from Lemma 4

that

(Pp(h))−1 = ŪT

[
(P p

1 )
−1 ∗

∗ ∗

]
ŪE + UT

2 (Φp(h))−1 V T
2 ∈ S3 (19)

where ∗ denotes the term that has no effect on the subsequent derivation.
From (19), it can be computed that

ET (Pp(h))−1 = (Pp(h))−T E ≥ 0 (20)

and

ET (Pp(h))−1 = V

[
(P p

1 )
−1 0

0 0

]
V T (21)

Noting (21), pre- and post-multiplying (18) by diag{(Y p(h))−T , (P p(h))−1} yields[
αET (Pp(h))−1 (Pp(h))−T

(Pp(h))−1 0

]
+He

([
(Y p(h))−T

ϵp (Pp(h))−1

] [
Ap(h) +BpKp(h) (Y p(h))−1 −I

])
< 0

(22)
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By Finsler’s Lemma [51], it can be obtained that

[
yT1 yT2

] [ αET (Pp(h))−1 (Pp(h))−T

(Pp(h))−1 0

] [
y1
y2

]
< 0 (23)

for ∀
[
yT1 y

T
2

]
̸= 0 satisfying

[
Ap(h) +BpKp(h) (Y p(h))−1 −I

] [ y1
y2

]
= 0 (24)

Substituting (24) into (23) yields

He
(
(Pp(h))−T (

Ap(h) + BpKp(h) (Y p(h))−1))+ αET (Pp(h))−1 < 0 (25)

Since U , V are orthogonal matrices satisfying (6), define

Ū =

[
Σ−1 0
0 In−re

]
U, x(t) = V

[
x1(t)
x2(t)

]
,

Ū
(
Ap(h) + BpKp(h) (Y p(h))−1)V =

[
Ap

1 Ap
2

Ap
3 Ap

4

] (26)

Then, (25) can be rewritten in the form of the following block matrix[
∗ ∗
∗ He

(
(Ap

4)
T (Φp(h))−1

) ]
< 0

By Lemma 2, Ap
4 is invertible and there exists a constant 0 < a <∞ satisfying ∥ (Ap

4)
−1 ∥ ≤ a.

Then x2(t) = − (Ap
4)

−1Ap
3x1(t).

On the basis of (20) and (21), the Lyapunov function can be defined as follows

Vr(t)(x1(t)) = xT1 (t)
(
P1(r(t))

)−1
x1(t) = xT (t)ET

(
Pr(t)(h)

)−1
x(t) (27)

When t ∈ [τk, τk+1), then the time derivative of Lyapunov function (27) along with the system
(4) is

V̇r(t)(x1(t)) = ẋT (t)ET
(
Pr(t)(h)

)−1
x(t) + xT (t)ET

(
Pr(t)(h)

)−1
ẋ(t)

+ xT (t)
d

dt

(
ET

(
Pr(t)(h)

)−1
)
x(t)

= ẋT (t)ET
(
Pr(t)(h)

)−1
x(t) + xT (t)

(
Pr(t)(h)

)−T
Eẋ(t)

= xT (t)
(
He

((
Pr(t)(h)

)−T
(
Ar(t)(h) +Br(t)Kr(t)(h)

(
Yr(t)(h)

)−1
)))

x(t)

≤ − αVr(t)(x1(t))

(28)

where (21) and (25) respectively are used in the second equation and the last inequality.
For t ∈ [τk, τk+1), integrating (28) from τk to t implies

Vr(t)(x1(t)) ≤ e−α(t−τk)Vr(t)(x1(τk)) (29)
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When the mode switches at time instant τk, it follows from (16) that

Vr(τk)(x1(τk)) ≤ βVr(τ−k )(x1(τ
−
k )) (30)

Based on (17), (29) and (30), the following can be obtained by following the arguments in [34]

E{∥x1(t)∥2} ≤ maxp∈ℓ λmax((P
p
1 )

−1)

minp∈ℓ λmin((P
p
1 )

−1)
e(

∑N
i=1((β−1)(−λpp)−α)πp)t∥x1(0)∥2 (31)

Due to ∥ (Ap
4)

−1 ∥ ≤ a and x2(t) = − (Ap
4)

−1Ap
3x1(t), the following can be obtained

E{∥x2(t)∥2} ≤ a2 max
p∈ℓ

∥Ap
3∥2

maxp∈ℓ λmax((P
p
1 )

−1)

minp∈ℓ λmin((P
p
1 )

−1)
e(

∑N
i=1((β−1)(−λpp)−α)πp)t∥x1(0)∥2 (32)

As t tends to ∞, by (31) and (32), it follows that limt→∞ E{∥x(t)∥2} = 0. As a consequence, the
sliding motion (13) is asymptotically stable.

Remark 4. Although a switched system method [34, 52] is utilized to deal with the switching of
the sliding motion (13) in Theorem 1, it is straightforward to obtain the corresponding stability
results by tackling the switching with the method from [25, 26].

Remark 5. From the proof of Theorem 1, it can be seen that both descriptor redundancy and prop-
erties of fuzzy membership functions are exploited to derive the asymptotic stability of the sliding
motion (13). Moreover, the utilization of descriptor redundancy and properties of fuzzy member-
ship function can be understood from two perspectives: on the one hand, based on the redundancy
of the matrix E, matrices P p

2 (h), P
p
3 (h), Φ

p(h) can be selected freely and the matrixET (Pp(h))−1

only depends on V and P1; on the other hand, due to the properties of fuzzy membership functions,
P1 is set to be independent of the fuzzy membership function to avoid the derivative of the fuzzy
membership function appearing. Matrices P p

2 (h), P
p
3 (h), Φ

p(h) are selected to involve one sum
of fuzzy membership functions [50] to maintain a trade-off between reducing conservatism and
convenience of calculation. Discussion of the concept of the multiple sum and the reduction in
conservatism can be found in [50], and is omitted since it is not the main concern of this paper.
The merit of the utilization of descriptor redundancy and the properties of fuzzy membership func-
tions is that more slack matrices can be introduced. This will enhance the solvability of the matrix
inequalities in Theorem 1. To be clear, if the methods in [26, 30] are used where the descriptor
redundancy and properties of fuzzy membership functions are not exploited, then the Markovian
jump T-S fuzzy descriptor system (4) has an asymptotically stable sliding motion if there exist pos-
itive definite matrices P̃ p

1 ∈ Rre×re , P̃ p
3 ∈ R(n−re)×(n−re), nonsingular matrix Ψ̃p ∈ R(n−re)×(n−re),

matrices P̃ p
2 ∈ R(n−re)×re , Zp

i ∈ Rm×n i = 1, 2, · · · , r, p = 1, 2, · · · , N and positive scalar α̃, β̃,
such that the following matrix inequalities hold for each i, j = 1, 2, · · · , r, i ̸= j, p = 1, 2, · · · , N

P̃ p =

[
P̃ p
1 ⋆

P̃ p
2 P̃ p

3

]
> 0 (33)

He (Ap
iPp +BpZp

i ) + α(Pp)TET < 0 (34)

P̃ p
1 ≤ βP̃ q

1 (35)
N∑
p=1

((β − 1) (−λpp)− α)πp < 0 (36)
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where Pp = V P pV TET + V2Φ
pU2, and U , V are orthogonal matrices satisfying (6). To show the

benefits of the utilization of descriptor redundancy and properties of fuzzy membership functions,
the following corollary is presented.

Corollary 1. If the matrix inequalities (33)-(36) are solvable with respect to P̃ p, Ψ̃p, Zp
i , α̃, β̃,

then there must exist positive definite matrices P p
1 , P p

i3, nonsingular matrices Ψp
i , Y p

i , matrices P p
i2,

Kp
i i = 1, 2, · · · , r, and positive scalars ϵp, α, β, p = 1, 2, · · · , N satisfying matrix inequalities

(14)-(17).

Proof. If matrix inequalities (33)-(36) have solutions, define P p
i = Y p

i =

[
P̃ p
1

(
P̃ p
2

)T

P̃ p
2 P̃ p

3

]
, Ψp

i =

Ψ̃p,Kp
i = Zp

i , α = α̃, β = β̃. Then there must exist a sufficiently small positive scalar ϵp satisfying
matrix inequalities (14)-(17). Therefore, the utilization of descriptor redundancy and properties of
fuzzy membership functions will benefit the solvability of the matrix inequalities.

Remark 6. When Y p(h) = Pp(h), the conditions in Theorem 1 are also satisfied with ∆ij =
He

(
Ap

iP
p
j +BpKp

i

)
+ αPT

i E
T .

3.3. Design of the Sliding Mode Controller

Based on (26), define ŪBp =

[
Bp

1

Bp
2

]
, for t ∈ [τk, τk+1) and r(t) = p, the system (4) is equivalent

to

ẋ1(t) = Ap
1x1(t) +Ap

2x2(t) +Bp
1

(
v(t) + fp(V [xT1 (t) x

T
2 (t)])

)
0 = Ap

3x1(t) +Ap
4x2(t) +Bp

2

(
v(t) + fp(V [xT1 (t) x

T
2 (t)])

) (37)

where Ap
4 is nonsingular and v(t) is defined in (38).

As shown in the second equation of (37), the term v(t) should be at least continuous in order to
ensure the continuity of the states x2(t) in each time interval [τk, τk+1). To this end, a multivariable
super-twisting algorithm which is absolutely continuous will be proposed.

Theorem 2. For the matrices Kp
i and Y p

i obtained in Theorem 1, a scalar k3 > 0, the following
sliding mode controller

u(t) =
r∑

i=1

hi(z(t))K
p
i (

r∑
i=1

hi(z(t))Y
p
i )

−1x(t) + v(t)

v(t) = − (SBp)−1

(
kp1(x(t))

(
s(t)

∥s(t)∥1/2
+ k3s(t)

)
−ϖ(t)

)
ϖ̇(t) = − kp2(x(t))

(
1

2

s(t)

∥s(t)∥
+

3

2
k3

s(t)

∥s(t)∥1/2
+ k23s(t)

) (38)

can drive the system (4) to the sliding surface (8) and keep a sliding motion for all subsequent time

if
[
q1 q2
q2 1

]
> 0, q2 < 0, kp1(x(t)) > −

∥SBp∥2ρ2p(x(t))
(q2 + θ)(q1 − q22)

− q2(q1 + 2∥SBp∥ρp(x(t)))
q1 − q22

+
θ

q1 − q22
and kp2(x(t)) = q1 − kp1(x(t))q2.
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Proof. Substituting (38) into (11) yields

ṡ(t) = − kp1(x(t))ϕ1(s(t)) +ϖ(t)

ϖ̇(t) = − kp2(x(t))ϕ2(s(t)) + SBpdf
p(x(t))

dt

(39)

where ϕ1(s(t)) =
s(t)

∥s(t)∥1/2 + k3s(t), ϕ2(s(t)) =
1
2

s(t)
∥s(t)∥ +

3
2
k3

s(t)

∥s(t)∥1/2 + k23s(t).
Choose the following Lyapunov function

V (s(t), ϖ(t)) = ζT (t)Qζ(t) =
[
ϕT
1 (s(t)) ϖT (t)

] [ q1I q2I
q2I I

] [
ϕ1(s(t))
ϖ(t)

]
(40)

which is positive definite and radially unbounded. Furthermore, it can be proved that the Lyapunov
function (40) is continuous, but only differential except on the subspace Ω1 = {[sT (t) ϖT (t)] ∈
R2m : s(t) = 0}. If the time derivative of the Lyapunov function (40) along the system (39) is
negative definite for [sT (t) ϖT (t)] /∈ Ω1 and the trajectories of the system (39) can not stay on
the subspace Ω1 \ {0}, then the stability of the system (39) can be determined. As in [44, 45], the
trajectories of the system (39) will cross and not stay on the subspace Ω1 \ {0}. Thus, the stability
of the system (39) can be guaranteed if the time derivative of V (s(t), ϖ(t)) in (40) along with the
system (39) is negative definite for [sT (t) zT (t)] /∈ Ω1.

It can be calculated that

V̇ (s(t), ϖ(t)) = q1
sT (t)ṡ(t)

∥s(t)∥
+ 3k3q1

sT (t)ṡ(t)

∥s(t)∥1/2
+ 2k23q1s

T (t)ṡ(t) + 2q2
sT (t)ϖ̇(t)

∥s(t)∥1/2

+ 2q2
ϖT (t)ṡ(t)

∥s(t)∥1/2
− q2

(sT (t)ϖ(t))(sT (t)ṡ(t))

∥s(t)∥5/2
+ 2k3q2s

T (t)ϖ̇(t)

+ 2k3q2ϖ
T (t)ṡ(t) + 2ϖT (t)ϖ̇(t)

(41)

By (39), V̇ (s(t), ϖ(t)) in (41) can be further arranged as

V̇ (s(t), ϖ(t)) = − kp4(x(t))∥s(t)∥1/2 − 4k3k
p
4(x(t))∥s(t)∥ − 5k23k

p
4(x(t))∥s(t)∥3/2

− 2k33k
p
4(x(t))∥s(t)∥2 + 2q2

∥ϖ(t)∥2

∥s(t)∥1/2
+ 2k3q2∥ϖ(t)∥2

− q2
∥sT (t)ϖ(t)∥2

∥s(t)∥5/2
+ (q1 − kp1(x(t))q2 − kp2(x(t)))

sT (t)ϖ(t)

∥s(t)∥

+ 3k3(q1 − kp1(x(t))q2 − kp2(x(t)))
sT (t)ϖ(t)

∥s(t)∥1/2

+ 2k23(q1 − kp1(x(t))q2 − kp2(x(t)))s
T (t)ϖ(t)

+ 2q2
sT (t)

∥s(t)∥1/2
SBpdf

p(x(t))

dt
+ 2k3q2s

T (t)SBpdf
p(x(t))

dt

+ 2ϖT (t)SBpdf
p(x(t))

dt
≤ − (kp4(x(t)) + 2∥SBp∥ρp(x(t))q2)∥s(t)∥1/2

− 4k3(k
p
4(x(t)) +

1

2
∥SBp∥ρp(x(t))q2)∥s(t)∥ − 5k23k

p
4(x(t))∥s(t)∥3/2

(42)
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− 2k33k
p
4(x(t))∥s(t)∥2 + q2

∥ϖ(t)∥2

∥s(t)∥1/2
+ 2k3q2∥ϖ(t)∥2

+ (|q1 − kp1(x(t))q2 − kp2(x(t))|+ 2∥SBp∥ρp(x(t)))∥ϖ(t)∥
+ 3k3|q1 − kp1(x(t))q2 − kp2(x(t))|∥s(t)∥1/2∥ϖ(t)∥
+ 2k23|q1 − kp1(x(t))q2 − kp2(x(t))|∥s(t)∥∥ϖ(t)∥

where kp4(x(t)) = kp1(x(t))q1 + kp2(x(t))q2.
Due to q1−kp1(x(t))q2−k

p
2(x(t)) = 0 and ϕT

1 (s(t))ϕ1(s(t)) = ∥s(t)∥+2k3∥s(t)∥3/2+k23∥s(t)∥2,
it can be obtained that

V̇ (s(t), ϖ(t)) ≤ − 1

∥s(t)∥1/2
((kp4(x(t)) + 2∥SBp∥ρp(x(t))q2)∥s(t)∥

+ 2k3(k
p
4(x(t)) +

1

2
∥SBp∥ρp(x(t))q2)∥s(t)∥3/2 + k23k

p
4(x(t))∥s(t)∥2

−q2∥ϖ(t)∥2 − 2∥SBp∥ρp(x(t))∥s(t)∥1/2∥ϖ(t)∥
)

− 2k3

(
(kp4(x(t)) +

1

2
∥SBp∥ρp(x(t))q2)∥s(t)∥+ 2k3k

p
4(x(t))∥s(t)∥3/2

+k23k
p
4(x(t))∥s(t)∥2 − q2∥ϖ(t)∥2

)
(43)

Furthermore, it follows from (43) that

V̇ (s(t), ϖ(t)) ≤ − θ

∥s(t)∥1/2
∥ζ(t)∥2 − 2k3θ∥ζ(t)∥2

≤ − θ
λ
1/2
min(Q)

λmax(Q)
V 1/2(s(t), ϖ(t))− 2k3θ

1

λmax(Q)
V (s(t), ϖ(t))

(44)

if kp1(x(t)) can be selected such that[
kp1(x(t))(q1 − q22) + q1q2 + 2∥SBp∥ρp(x(t))q2 − θ −∥SBp∥ρp(x(t))

−∥SBp∥ρp(x(t)) −q2 − θ

]
> 0 (45)

Under the conditions of Theorem 2, it is straightforward to verify that (45) is satisfied and thus
(44) holds. By following similar arguments to [44, 45], the finite time convergence of s(t), ṡ(t),
z(t) can be derived. Since the integral sliding mode paradigm is used in this paper, the sliding
surface (8) can be reached from the initial time.

Remark 7. When the unperturbed dynamics with the variable gain super-twisting algorithm is
considered, the algorithm (39) can be regarded as an extension of the variable gain super-twisting
algorithm in [44] to the multi-input case and an extension of the constant gain multivariable super-
twisting algorithm in [45] to the variable gain case. In the multi-input case, although it is also
possible to implement the variable gain super-twisting algorithm in [44] by using the decoupling
method [2], the variable gain super-twisting algorithm (39) is more elegant and convenient since it
is inherently multivariable.
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4. Example

Consider the following bio-economic system [26]

ẋ1(t) = 0.15x2(t)− 0.5x1(t)− 0.5x1(t)− 0.01x21(t)− E(t)x1(t) + u1(t)

ẋ2(t) = 0.5x1(t)− 0.1x2(t)

0 = E(t)(pr(t)x1(t)− 50) + u2(t)

(46)

where x1(t) and x2(t) represent the population density of immature species and mature species,
respectively. E(t) is the harvest effort on the immature population. u1(t) represents the introduc-
tion or fishing of an immature population and u2(t) denotes government regulation of a biological
resource (via a tax or subsidy). pr(t) is a price coefficient per the individual population. r(t) is a

Markov process taking values in {1, 2} with transition rate matrix Λ =

[
−0.3 0.3
0.2 −0.2

]
. From

[26], p1 = 1, p2 = 1.2.
By translating the positive equilibriums to zero as in [26], the bio-economic system (46) is

transformed to the following system

ż1(t) = ar(t)z1(t) + 0.15z2(t) + br(t)z3(t)− 0.01z21(t)− z1(t)z3(t) + u1(t)

ż2(t) = 0.5z1(t)− 0.1z2(t)

0 = cr(t)z1(t) + pr(t)z1(t)z3(t) + u2(t)

(47)

where a1 = −1.25, a2 = −1.6667, b1 = −50, b2 = −41.6667, c1 = −0.75, c2 = −0.8.
By the sector nonlinearity approach in [53], the system (47) can be represented exactly in the

set {z(t) : −10 ≤ z1(t) ≤ 10} by the following Markovian jump T-S fuzzy descriptor system

Eż(t) =
r∑

i=1

hi(z1(t))A
p
i z(t) + B(u(t) + f(z(t))) (48)

with membership functions h1(z1(t)) = 0.5(1 − 0.1z1(t)) and h2(z1(t)) = 0.5(1 + 0.1z1(t)),

z(t) =

 z1(t)
z2(t)
z3(t)

, u(t) =

[
u1(t)
u2(t)

]
, E =

 1 0 0
0 1 0
0 0 0

, Ap
1 =

 ap + 0.1 0.15 bp + 10
0.5 0.1 0
cp 0 −10pp

,

Ap
2 =

 ap − 0.1 0.15 bp − 10
0.5 0.1 0
cp 0 10pp

, p = 1, 2, B =

 1 0
0 0
0 1

, f(z(t)) =
[
0.1 sin(z2(t))
0.1 cos(z2(t))

]
.

Fig.1-2 depict the time responses of the mode signal and the states of the bio-economic system
(48) operating open-loop with the initial condition z(t) = [0.9 − 0.4 0]T . This shows that the
bio-economic system (48) is unstable when no control is implemented. It is desirable to establish
control schemes to stabilize the system (48).

From the transition rate matrix, it can be computed that π1 = 0.4 and π2 = 0.6. By solving
the matrix inequalities (14)-(17) in Theorem 1 with α = ϵ1 = ϵ2 = 1 and β = 1.1, the design
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Fig. 1. Time response of the mode signal r(t)
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Fig. 2. Time response of the open-loop bio-economic system
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Fig. 3. Time response of the closed-loop system
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coefficients can be obtained as follows

K1
1 =

[
−8.2163 0.4696 191.6006
0.6452 −0.9225 44.2590

]
, K2

1 =

[
−1.0860 −2.0433 2.4234
2.5228 −1.7502 −1.2121

]
,

K1
2 =

[
−3.5331 −0.9872 269.3905
3.1267 −1.5804 −47.9597

]
, K2

2 =

[
0.6842 −4.0170 1.6095
1.1497 −0.8854 −2.0965

]
,

Y 1
1 =

 2.6425 −1.7038 −0.0458
−1.0449 1.3844 0.0250
−0.1882 0.0499 4.7660

 , Y 2
1 =

 2.7050 −1.7028 −0.1142
−1.1066 1.3963 0.0719
−0.0122 −0.0204 0.0624

 ,
Y 1
2 =

 2.7305 −1.7263 0.0495
−1.0901 1.3962 −0.0270
−0.0578 0.0151 4.4722

 , Y 2
2 =

 2.7782 −1.8056 0.1184
−1.0809 1.4138 −0.0532
0.0077 −0.0415 −0.0050

 .

(49)

It follows from (48) that ρ(z(t)) = |0.5z1(t) − 0.1z2(t)|. With k3 = 2, q1 = 3.0484, q2 =
−0.22, θ = 0.11, it can be calculated that k1(z(t)) = 12.2368 + 0.0207|0.5z1(t) − 0.1z2(t)| +
0.0606(0.5z1(t)− 0.1z2(t))

2, k2(z(t)) = 3.484 + 0.22k1(z(t)).

16



Now the integral sliding mode control scheme (9) and (38) with S =

[
1 0 0
0 0 1

]
can be

designed to stabilize the Markovian jump T-S fuzzy descriptor system (48). Under the initial
conditions z(t) = [0.9 − 0.4 0]T , ϖ(0) = [0 0]T and the same model signal in Fig.1. The time
responses of the mode signal, the states of the closed-loop system, the switching functions and the
control inputs are shown in Fig.3-5 respectively. It is seen that the resultant closed-loop system is
asymptotically stable and the switching functions are continuous.

Since z1(t) and z2(t) are the state variables of the differential equations, they are always con-
tinuous. The state variable of the algebraic equation, z3(t), however may jump at each switching
instant if the initial conditions are inconsistent. This is a common phenomenon in switched de-
scriptor systems [34]. The state jump of z3(t) will not arise at the switching instants until all the
states z1(t), z2(t) and z3(t) converge to zero. This fact is illustrated in Fig.3. Since u1(t) and u2(t)
are functions of the state z3(t), u1(t) and u2(t) may also undergo state jumps at each switching
instant. This coincides with Fig.5 where the control input u1(t) has instantaneous jumps at the
switching instants before the states converge to zero. As proved in Remark 2, it is also shown
from Fig.3 and Fig. 4 that although the state z3(t) is subject to state jumps at each switching
instant, the switching functions are always continuous. The reason why the control input u2(t)
converges to −0.1 is that when the ideal sliding mode occurs, the control inputs are required to
exactly compensate the unknown vector function f(z(t)) and limz→0 f(z(t)) = [0 0.1]T will be
satisfied.

From this example, it is verified that the proposed method can stabilize the bio-economic sys-
tem. From the biological viewpoint, the sustainable development of an ecosystem can be guar-
anteed by the method presented. As a result, the results obtained in this paper are useful for
management agencies concerned with governing ecological resources.

5. Conclusion

This paper has studied the stabilization problems for Markovian jump T-S fuzzy descriptor systems
via second order integral sliding modes. A new integral-type switching function was first defined
and was shown to be continuous. Then, a new variable gain super-twisting algorithm was develope-
d for multi-input systems. The integral sliding mode control scheme was based on the proposed
super-twisting algorithm and Non-PDC control method. It has been shown that the closed-loop
system formed by the proposed control scheme is continuous in the time interval between two
consecutive switchings.

Since each local subsystem of the Markovian T-S fuzzy descriptor system (4) in this paper
shares the same input distribution matrix Br(t) and time delay is not considered [54], future work
will focus on designing sliding mode control schemes for Markovian T-S fuzzy descriptor systems
when the input distribution matrices of each local system are no longer the same [11, 13, 22] and
where time delay is introduced into the switching function to improve the system performance
[55]. Extension of the proposed method to semi-Markovian jump systems [56, 57] is an interesting
and challenging avenue for future work.
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