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Abstract. We measure the influence of different time-scales on the in-
traday dynamics of financial markets. This is obtained by decompos-
ing financial time series into simple oscillations associated with distinct
time-scales. We propose two new time-varying measures of complexity:
1) an amplitude scaling exponent and 2) an entropy-like measure. We
apply these measures to intraday, 30-second sampled prices of various
stock market indices. Our results reveal intraday trends where differ-
ent time-horizons contribute with variable relative amplitudes over the
course of the trading day. Our findings indicate that the time series
we analysed have a non-stationary multifractal nature with predomi-
nantly persistent behaviour at the middle of the trading session and
anti-persistent behaviour at the opening and at the closing of the ses-
sion. We demonstrate that these patterns are statistically significant,
robust, reproducible and characteristic of each stock market. We ar-
gue that any modelling, analytics or trading strategy must take into
account these non-stationary intraday scaling patterns.

1 Introduction

Financial markets are complex and dynamic systems that generate non-stationary,
non-linear and noisy time series. These time series do not consist of a single driving
force, but of several components that are superimposed onto each other in a hier-
archical form. The oscillating components are generated by many participants with
diverse interests and investment horizons that interact and create effects that seem
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to repeat themselves cyclically with different characteristic periods [1]. These effects
can be retrieved and quantified by looking at the statistical properties of financial
data at different time-scales.

A classical paradigm used to model financial markets is the efficient market hy-
pothesis (EMH) [2], which states that financial markets are efficient if they reflect
all available information, thus arbitrage conditions are quickly eliminated. According
to this theory, stock prices are unpredictable. The weak form of the EMH admits a
rapid price adjustment process [2]. However, in practice, prices do not tend to adjust
to new information so rapidly, taking a certain amount of time. During this time
investors can take actions to exploit temporary profitable opportunities arising from
new information [3,4].
According to the fractal market hypothesis (FMH) [5], financial participants are

heterogeneous and market stability exists if there are investors with different time-
horizons that create liquidity. Market participants have investment horizons that vary
from seconds to years (market makers, noise traders, hedge funds). They treat the ar-
riving information differently and affect the price dynamics in various ways depending
on their trading time-scales [6]. The existence of investors with different investment
horizons induces a stable market, markets become unstable when one horizon becomes
dominant since liquidity dries up [7–10].

The FMH predicts that critical events are connected to dominant investment
horizons and is usually associated to self-similarity, fractality or multifractality. Self-
similarity in financial data was first studied by Mandelbrot [11,12], and has been found
to be present across financial markets with complex properties that are significantly
related to economic and financial characteristics of the markets [13–17]. Self-similarity
is related to the occurrence of similar patterns at different time-scales. In this sense,
probabilistic properties of self-similar processes remain invariant when the process
is viewed at different time-scales [11,18]. Specifically, a stochastic process X(t) is
statistically self-similar, with scaling exponent 0 < H < 1, if for any real a > 0 it
follows the scaling law:

X(at)
d
= aHX(t) t ∈ R, (1)

where the equality (
d
=) is in probability distribution [19].

An example of self-similar process is fractional Brownian motion (FBM), a
Gaussian process with stationary increments characterized by a positive scaling ex-
ponent 0 < H < 1 [20]. When 0 < H < 1/2, the increments of FBM show negative
autocorrelation. The case 1/2 < H < 1 corresponds to FBM with increment process
exhibiting long-range dependence, i.e., the autocorrelation of the increment process
decreases as a power law. When H = 1

2 , the FBM is reduced to Brownian motion
(BM), a process with independent increments [19]. Another self-similar process with
stationary and independent increments but with heavy-tailed infinite variance distri-
bution is the α-stable Lévy motion [19]. Empirical estimates of the scaling properties
are affected by both the autocorrelation between the increments, as in the case of
FBM, and the high variability, as in stochastic processes whose increments are inde-
pendent and heavy-tailed (Lévy processes) [21,22].

It has been observed that more than one scaling exponent is needed to account for
the scaling properties of financial time series. Indeed, each moment of the distribution
of financial returns varies as a power law of the time horizon with a different H
exponent [18]. This phenomenon is called multiscaling and reflects the occurrence of
different dynamics at different time-scales, it can be attributed to the heterogeneity
of market participants. Time-dependent scaling behaviour has also been observed in
financial time series [23,24], the local variations of roughness can be described by
allowing the H exponent to vary with time [25].
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Entropy has also been used to measure the complexity of financial time series [26–
28]. A low value of entropy indicates the presence of more predictable patterns which
are therefore associated with periods of financial inefficiency. Conversely, when time
series exhibit more irregular and less predictable patterns, the uncertainty level is
higher and such periods are described by larger entropy values.
In this paper, we propose two new time-dependent measures of complexity based

on the scaling properties of financial time series. These novel measures are obtained
via the Hilbert-Huang transform [29], a methodology which as a first step decomposes
the analysed time series into several oscillatory modes by means of empirical mode
decomposition (EMD). Secondly, the Hilbert transform is applied to these oscillations
to obtain time varying attributes. The time-dependent scaling properties of financial
time series are associated with the relative weights of the amplitudes at characteristic
frequencies.
The first measure that we introduce in this paper is a scaling exponent which

quantifies the relative hierarchical variations of the amplitudes of the components
with respect to their associated time-scales. By estimating a time-dependent scaling
exponent for models with known scaling laws, we demonstrate that our measure varies
consistently around the expected values set in the models. When applied to intraday
financial time series this measure reveals instead non-stationary scaling patterns.
The second measure introduced in this paper is an entropic measure quantifying
the dispersion of the amplitudes of the components. The entropic measure is more
general than the scaling exponent because does not assume any a-priori relation
between the amplitudes of the components. Furthermore, through this last measure
we demonstrate that non-stationary changes in the complexity of financial time series
create persistent and reproducible patterns during the trading day.
The remaining of this paper is organized as follows. In Sect. 2, we intro-

duce the Hilbert-Huang transform, the methodology used to identify the oscillat-
ing components of the data. The proposed scaling measure and some applications
to self-similar process are described in Sect. 3. In Sect. 4, we propose a comparative
entropy-like measure. In Sect. 5, we apply the proposed measures to intraday financial
data. Section 6 details the intraday scaling properties of some stock market indices.
Finally, in Sect. 7, we provide conclusions and future perspectives.

2 Hilbert-Huang transform

The Hilbert-Huang transform (HHT) [29] is a technique used to analyse non-linear and
non-stationary time series. It was originally designed to study water wave evolution,
but it has proven to be a useful tool for other complex signals, including financial
time series [30–34].
The HHT consists of two steps: namely, the empirical mode decomposition (EMD)

and the Hilbert transform (HT). The EMD decomposes the time series into a set of
narrow-band intrinsic mode functions (IMFs) and the Hilbert transformation of these
IMFs provides local frequency and amplitude attributes.
The EMD is a fully adaptive decomposition, differently from the Fourier and the

wavelet transforms, it does not require any a priori basis system [35]. Furthermore,
it can be used to analyse non-stationary time series. The purpose of the method is to
identify oscillating components of the signal with scales defined by the local maxima
and the minima of the data itself. Hence, given a time series x(t), t = 1, 2, . . . , T ,
the EMD decomposes it into a finite number of IMFs denoted as ck(t), k = 1, . . . , n
and a residue function, r(t). The number of IMFs, n, is approximately of the order of
log2(T ) [29]. The IMFs are components oscillating around zero and obtained through
a sifting process which uses the local extrema to separate oscillations starting with
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the highest frequency. At the end of the sifting process, the time series x(t) can be
expressed as:

x(t) =

n∑

k=1

ck(t) + r(t). (2)

The residue function, r(t), is the non-oscillating drift of the data. For more details
about this decomposition refer to [29]. The EMD was proposed as a way to pre-process
time series before applying the Hilbert transform. It generates components of the
time series whose Hilbert transform can lead to physically meaningful definitions of
instantaneous amplitude and frequency. The Hilbert transformation of each function
ck is defined as:

ĉk(t) =
1

π

∞∫

−∞

ck(τ)

t− τ dτ, (3)

where the integral has a singular point at τ = t and it is defined as a Cauchy principal
value [36]. Each function ck and its Hilbert transformation, ĉk, produce a complex
function zk, defined as zk(t) = ck(t) + ĉk(t) with amplitude

ak(t) =
√
c2k(t) + ĉ

2
k(t), (4)

and phase

θk(t) = tan
−1 ĉk(t)
ck(t)

. (5)

The instantaneous frequency is defined as the derivative of the phase with respect
to time

ωk(t) =
dθk(t)

dt
. (6)

The instantaneous amplitude results in a smooth function, an ‘envelope’, which takes
the overall shape of the time series touching the maxima and the minima but never
crossing the time series itself. This amplitude function represents the combined os-
cillations of all frequencies involved in the component but removes all the frequency
information.
In this paper the Hilbert transform is numerical estimated by using a FFT-based

method described in [37], for a different numerical estimation based on the Sinc
function refer to [38].

3 Time-dependent scaling exponent

The proposed time-dependent scaling exponent, denoted as H∗(t), is constructed by
observing how the local amplitudes ak(t) (Eq. (4)) change with respect to the local
periods τk(t) = ω

−1
k (t) (Eq. (6)) for all k = 1, 2, . . . , n.

We first applied the method to FBM and empirically observed that the amplitude
function obtained through the HHT follows a power-law behaviour with respect to
the instantaneous period:

ak(t) ∝ τH
∗(t)

k (t), (7)

where the exponent H∗(t) describes the local scaling properties of the IMF ampli-
tudes and takes values distributed around the self-similar exponent H of FBM. The
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Fig. 1. Illustration that for FBM the local amplitudes ak(t) and the periods τk(t) follow

Eq. (7): ak(t) ∝ τH
∗(t)

k (t). The plots report the instantaneous amplitude as a function of
period for the following four randomly chosen time instances: t = 1326, 2 252, 3 421, 5 405.
The simulated process is a FBM with self-similar exponent H = 0.6 and length T = 10 000
points. The straight lines are best-fit linear regressions.

exponent H∗(t) is based on the scaling properties of the absolute value of the fluc-
tuations, therefore comparisons with other estimators such as the generalized Hurst
exponent [39] must be done for the first order moments i.e., q = 1 [40].
In Fig. 1, we exemplify Eq. (7) showing the linear fit between log ak(t) and

log τk(t) for four randomly chosen time instances of a FBM with self-similar ex-
ponent H = 0.6 and length T = 10 000. The values of H∗(t) reported in the plots
are obtained from the slope of the regression line. We observe that they are all con-
sistently close to the self-similar value H = 0.6. For the chosen values of t, we cal-
culated the goodness of the linear fit by estimating the coefficient of determination
R2 [41] (values of this coefficient range from 0 to 1, with 1 indicating a perfect fit
between the data and the linear model). Results for the four randomly chosen time in-
stances t = 1326, 2 252, 3 421, 5 405 are as follow: R2(1 326) = 0.99, R2(2 252) = 0.90,
R2(3 421) = 0.98, R2(5 405) = 0.99, indicating therefore that for those time instances,
the data are well represented by the power law of Eq. (7).
Similar linear scaling results are obtained across all times, but the scaling ex-

ponent is different at each time step, making H∗(t) a time-dependent estimator. A
value of H∗(t) > 0.5 is obtained when around time t, the amplitude of long cycles
is larger than in a pure random walk. This can be interpreted as a persistent be-
haviour in the amplitudes of the process, meaning that in a neighbourhood of time
t the process is in a cycle indistinguishable from a trend. On the contrary, values of
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H∗(t) < 0.5 represent a rougher and more chaotic behaviour around time t. These
processes are composed of oscillations with more similar amplitudes across time-scales
than in Brownian motion, creating a complex and uncertain behaviour. In this case,
high frequency components are more active and their contribution to the total vari-
ance is more significant than in a random walk process.

3.1 Extended simulation of self-similar and long memory processes

In order to test the power-law relation of Eq. (7), we extended the simulation set of
FBM and we considered other two different self-similar processes, namely α-stable
Lévy motion (SLM) [19] and autoregressive fractionally integrated moving average
(ARFIMA) processes [42].
For each stochastic process, we simulated m = 1000 paths of length T = 10 000

points1. We estimated H∗(t) and calculated the time-dependent sample mean over
the number of simulations, i.e., we calculated 〈H∗(t)〉 = 1

m

∑m
i=1H

∗
i (t).

We also estimated the sample mean of H∗(t) over time and over the number of
simulations, 〈〈H∗〉〉 = 1

T

∑T
t=1 〈H∗(t)〉. We then estimated the standard deviation of

H∗(t) as:

σH∗ =

√√√√
T∑

t=1

m∑

i=1

(H∗i (t)− 〈〈H∗〉〉)2 / (Tm− 1).

For each process, the average over time and over the number of simulations of the
coefficient of determination is also estimated and denoted as

〈〈
R2
〉〉
. We compared

the estimated H∗(t) with the generalized Hurst exponent with q = 1 [39] here denoted
as HG.

– Fractional Brownian motion. We simulated stochastic processes with
different self-similar exponents, H = 0.1, 0.2, . . . , 0.9. All the simulations were
done using the Matlab® wavelet toolbox. Results for different values of H
are reported in Fig. 2(a). We observe that 〈H∗(t)〉 consistently varies around
the input self-similar value of H. Some disturbances can be observed at the
beginning and at the end of these time series due to the boundary effects of
the EMD [44].
In Table 2(b), we report 〈〈H∗〉〉 and the standard deviation of H∗(t). We

observe a good agreement with the self-similar parameter H, but we also
observe large values for σH∗ that could be attributed to the local characteristics
of H∗(t). We notice that FBM with small scaling exponents (H < 0.3) have
smaller

〈〈
R2
〉〉
coefficients indicating significant deviations from the scaling

law of Eq. (7).
The comparison of 〈H∗(t)〉 with the generalized Hurst exponent shows
equivalent values for the estimated exponents. We also considered FBM paths
with shorter length, T = 1000 and T = 500 points, noting that the longer
the time series, the better the estimation of the scaling exponent H. Likewise,
the standard deviation and the goodness of the fit improve with the length
of the time series. However, all results are consistent with the ones reported
here for length T = 10 000.

1 The length of the SLM is set to T = 214−6 000, following the algorithm proposed in [43].
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Fig. 2. (a) Illustration that for FBM the scaling exponent H∗(t) is on average close to the
self-similar exponent H. The plot reports the sample mean of H∗(t), denoted as 〈H∗(t)〉 and
computed overm = 1000 simulations of FBM with self-similar exponentH = 0.1, 0.2, . . . , 0.9
(bottom to top) and length T = 10 000 points. (b) Sample mean of H∗(t) over time and over
the number of simulations, denoted as 〈〈H∗〉〉, standard deviation of H∗(t) and sample mean
of the coefficient of determination,

〈〈
R2
〉〉
. The values of GHE(1) denote the generalized

Hurst exponent with q = 1.

– α-stable Lévy motion (SLM). This process is a generalization of the Brown-
ian motion to the α-stable distribution with 0 < α ≤ 2. The case α = 2 corre-
sponds to Brownian motion. The SLM is a 1/α-self-similar process (H = 1/α)
with stationary and independent increments [19].
We generated SLM processes using the toolbox provided by [43], sample

paths are of length T = 10 384, with parameters for the generation m = 128
and M = 6000, making m(M +T ) to be a power of 2, see [43] for more details.
We considered the case H = 1/α for values of H = 0.5, 0.55, . . . , 0.95.
The time-dependent sample mean over the number of simulations is dis-

played in Fig. 3(a). We observe a noisier estimator than the one obtained for
FBM. In Table 3(b), we report 〈〈H∗(t)〉〉, noticing a fair estimate of the self-
similar parameter H, with better results for SLM with smaller H. The means
of the coefficient of determination suggest that the scaling relation of Eq. (7)
is indeed satisfied. We compared the proposed estimator with the generalized
Hurst exponent with q = 1, obtaining consistent results and agreement with
the expected scaling law HG = 1/α [40].

– ARFIMA. We tested the linear relationship of Eq. (7) in ARFIMA(p, d, q)
processes with Gaussian innovations, p, q ∈ N, autoregressive and mov-
ing average coefficients respectively [42]. This model is an extension to the
ARIMA(p, d, q) model, allowing the differencing exponent d to take fractional
values, −1/2 < d < 1/2. The correspondence between the two parameters H
and d is given by H = d + 1/2. The interval 0 < d < 1/2 of long-range de-
pendence corresponds to 1/2 < H < 1 [45]. We considered the simple case
of ARFIMA(0,d,0) with fractional order d = −0.4,−0.3, . . . , 0.4 and length
T = 10 000. We calculated H∗(t) for the integrated ARFIMA time series.
From Fig. 4(a), we observe that the estimator 〈H∗〉 is a good approximation

of the exponent H. In Table 4(b), we report 〈〈H∗〉〉, the standard deviation of
H∗(t) and the sample mean of the coefficient of determination,

〈〈
R2
〉〉
. Similar

to the FBM case, the estimation is more accurate for larger H with larger
coefficient of determination.
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Fig. 3. (a) Illustration that for SLM the scaling exponent H∗(t) is on average close to the
value H = 1/α. The plots report the sample mean of H∗(t), denoted as 〈H∗(t)〉 and com-
puted over m = 1000 simulations of SLM with self-similar exponent H = 0.5, 0.55, . . . , 0.95
(bottom to top) and length T = 10 384 points. (b) Sample mean of H∗(t) over time and
over the number of simulations, denoted as 〈〈H∗〉〉, standard deviation of H∗(t) and sample
mean of the coefficient of determination,

〈〈
R2
〉〉
.

t
0 2000 4000 6000 8000 10000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)

H
H∗ GHE(1)

〈〈H 〉〉 〈〈
R2〉〉 〈HG〉

0.1 0.14 0.09 0.29 0.21 0.01
0.2 0.23 0.09 0.48 0.27 0.01
0.3 0.32 0.09 0.64 0.34 0.01
0.4 0.40 0.09 0.74 0.42 0.01
0.5 0.49 0.09 0.81 0.50 0.01
0.6 0.57 0.09 0.85 0.59 0.01
0.7 0.65 0.09 0.88 0.68 0.01
0.8 0.73 0.10 0.90 0.77 0.01
0.9 0.81 0.10 0.91 0.84 0.01

(b)

σ σH∗ G

Fig. 4. (a) Illustration that for ARFIMA(0,1,0) the scaling exponent H∗(t) is on average
close to the valueH = d+0.5. The plots report the sample mean ofH∗(t), denoted as 〈H∗(t)〉
and computed over m = 1000 simulations of ARFIMA(0,d,0) with self-similar exponent
H = 0.1, 0.2, . . . , 0.9 (bottom to top) and length T = 10 000 points. (b) Sample mean of
H∗(t) over time and over the number of simulations, denoted as 〈〈H∗〉〉, standard deviation
of H∗(t) and sample mean of the coefficient of determination,

〈〈
R2
〉〉
.

From the analysis of these three different stochastic processes, we observe that
our proposed method produces a fair estimate of the self-similar parameter H. The
chosen models concern two different properties which contribute to the self-similarity
of the processes. The first property is the long-range autocorrelation of the increments.
The second property is the high variability or the heavy tails in the distribution of
the increments of the α-stable Lévy motion. We have demonstrated empirically that
the analytics of the relative amplitude of the oscillating components of the signal
capture both of these properties. Let us remark that this scaling exponent is not
intended as an alternative method to estimate H, which can instead be obtained
with more reliable tools [15,46,47]. The aim of this method is instead to compute the
time-dependent amplitude contribution of the prevalent fluctuations present in a time



Complex, Inter-networked Economic and Social Systems 2005

series, distinguishing between periods when high or low frequencies are contributing
more than what could be expected from Brownian motion.

4 Time-dependent complexity measure

We define a time-dependent Shannon entropy-like measure based on the square of
the amplitude of the IMFs. This measure provides a time-varying quantification of
complexity spectrum that offers an alternative to the scaling exponent to measure
the strength of cycles present in financial time series. Making use of the functions ak,
described in Eq. (4), we define a time-scale relative distribution of amplitudes as:

pk(t) =
a2k(t)
n∑
k=1

a2k(t)
, (8)

where n is the number of IMFs excluding the residue. Similarly to Shannon
entropy [48], we define the time-dependent complexity measure as:

C∗(t) = −
n∑

k=1

pk(t) ln pk(t). (9)

Equation (9) provides a measure of the distribution of amplitudes between the oscil-
lating components. If the total amplitude at time t is concentrated in one oscillation
mode, we observe a low complexity value, implying that around time t the process
is following a prevalent trend. On the contrary, if at time t all the oscillation modes
have similar amplitudes, we obtain a large complexity value which indicates a more
erratic and unpredictable behaviour.
Thus, C∗(t) provides a time-varying estimation of disorder and adapts closely to

our visual perception of complexity. Moreover, Eq. (9) offers a more general measure
of uncertainty than the variance since the latter measures the dispersion around
the mean, while C∗(t) measures the dispersion of energy around the different IMFs.
Similar to an entropy measure, the value of the proposed complexity at time t varies
between zero, if one IMFs dominates the energy of the process, and log(n) if the
energy is uniformly distributed between the n IMFs.
The choice of weights equal to the square of the amplitudes in Eq. (8) is arbitrary,

although it is in agreement with other measures of entropy that have been defined,
for example in [49]. We tested alternative choices, such as the linear weight ak(t),
obtaining analogous results to the ones reported here.
Let us note that, although not independent, the two measures convey different

information. The estimator C∗(t) is an information quantifier of uncertainty, it is
obtained from the distribution of the amplitudes regardless of their time-scales and
it only quantifies the homogeneity of the components. On the other hand, the scaling
exponent,H∗(t), measures the change in the amplitudes across time-scales, testing the
scaling law of Eq. (7). In this way, H∗(t) is a more restrictive measure which assumes
a linear relationship between the logarithm of the amplitudes and the logarithm of
the oscillating periods.

5 Time-dependent scaling in stock markets

We applied the proposed measures to intraday prices of four stock market indices:
(1) S&P 500 (USA), (2) IPC (Mexico), (3) Nikkei 225 (Japan) and (4) XU 100
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Fig. 5. 30-second sampled log-prices for different stock market indices for the period January
15th, 2014 to June 16th, 2014. (a) S&P 500, (b) IPC, (c) Nikkei 225 and (d) XU 100.

Table 1. Number of days and length of each financial time series.

Country Index No. of Days Length
USA S&P 500 105 81.900
Japan Nikkei 225 104 62.400
Mexico IPC 101 78.780
Turkey XU 100 106 78.440

(Turkey). We intentionally chose two financial markets that are classified as developed
markets (USA and Japan) and two emerging markets (Mexico and Turkey) with the
additional feature that the Japanese and the Turkish stock exchanges have two trading
sessions separated by a lunch break.
The data set, obtained from Bloomberg, consists of prices recorded at 30-second

intervals. This sampling frequency provides a reasonable balance between the effects
of market micro-structure frictions at the very highest sampling frequencies on the
one hand, and the analytics on a wide frequency range on the other. The data set
covers a period of 5 months, from January 15th, 2014 to June 16th, 2014. The number
of days and the number of data points for every trading day depend on the opening
hours of each stock exchange. The logarithm of prices for each stock market index
are plotted in Fig. 5. Table 1 shows the number of days and the length of each time
series.
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Fig. 6. Time-dependent scaling exponent for different stock market indices for the period
January 15th, 2014 to June 16th, 2014. The scaling exponent H∗(t) is depicted by a dark-
blue line. The light-blue line represents H̄∗(t), a rolling window average over the length
of a trading day. The dashed red line indicates the value H = 0.5. (a) S&P 500, (b) IPC,
(c) Nikkei 225 and (d) XU 100.

The time evolution of H∗(t) over the 5-month period for each financial index is
shown in Fig. 6 (dark-blue line). We note that H∗(t) has large intraday variations
which obscure any possible trend over longer periods. For this reason, we report a
moving average version of H∗(t) denoted as H̄∗(t) (light-blue line in the same Figure).
More specifically, H̄∗(t) is calculated from the relation, āk(t) ∝ τ̄ H̄

∗(t)
k (t), where āk(t)

and τ̄k(t) are the averages over a rolling window of the size of a trading day. The
dashed red line in this Figure indicates the value H = 0.5.
By comparing the values of H∗(t) and H̄∗(t) for the four different stock market

indices, we observe that the S&P 500 index is the one closest to the value H = 0.5 as
expected for Brownian motion, with values of H̄∗(t) fluctuating around 0.5 exposing
only some brief departures from it (see Fig. 6(a)). For instance, we can detect a
period around February 2014 where the scaling parameter results in significantly
larger values. In this period of time, the S&P 500 index was indeed in a rising rally,
see Fig. 5(a). Therefore, this suggests that the identified persistent behaviour could
be attributed to the recognition of a long time-scale cycle with larger amplitudes than
in the case of pure random walk.
In Fig. 6(c), we report the scaling dynamics for the Nikkei 225 index. We observe

that H̄∗(t) has values constantly above 0.5, specially at the end of the analysed period.
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Table 2. Average goodness-of-fit coefficient (R2) for the amplitude versus period log-linear
model for different financial indices. First, the average is calculated for all the time instances
t, then it is calculated separately for those instances whereH∗(t) < 0.45, 0.45 < H∗(t) < 0.55
and H∗(t) > 0.55.

Index
〈
R2
〉
All

〈
R2
〉
H∗<0.45

〈
R2
〉
0.45<H∗<0.55

〈
R2
〉
H∗>0.55

S&P 500 0.8753 0.825 0.8716 0.8916
IPC 0.8812 0.7971 0.8703 0.8915
NIKKEI 225 0.8072 0.7345 0.7829 0.8198
XU100 0.9196 0.7987 0.8737 0.9209

It should be noted that this market has lunch breaks which affect the intraday values
of H̄∗(t).
For the IPC index the values ofH∗(t) and H̄∗(t) are consistently closer toH = 0.6,

see Fig. 6(b). This suggests that the IPC returns show intervals where the amplitudes
display a persistent behaviour. Similarly, the Turkish scaling exponents take values
larger than H = 0.5, see Fig. 6(d).
We tested the validity of Eq. (7) when applied to financial data by computing

for every time instance t the coefficient of determination R2(t). The mean over the
whole period is reported in the second column of Table 2. We also considered the
three cases: H∗(t) < 0.45, a window around 0.45 < H∗(t) < 0.55 and H∗(t) > 0.55.
We observe that the goodness-of-fit is generally better for H∗(t) > 0.5, see Table 2.
For a comparative analysis, we calculated the complexity measure C∗(t) described

by Eq. (9). The obtained values for each stock market index are illustrated in Fig. 7.
We observe that the complexity values for the S&P 500 index, Fig. 7(a), are overall
the largest among the four indices.
The IPC index shows an increasing evolution of C∗(t), suggesting a more uniform

distribution of amplitudes at the beginning of 2014, see Fig. 7(b). On the contrary,
the Nikkei 225 index presents a decreasing measure of complexity, indicating a period
of higher complexity at the beginning of the sample period, Fig. 7(c). Finally, the XU
100 index presents alternate intervals of high and low complexity, displaying regularly
large values in the last two months of the analysed period. This higher randomness
is also visible from the scaling exponent that displays relative lower values of H̄∗(t),
Fig. 7(d).
Overall, the functions H∗(t) and C∗(t) vary in opposite directions. For each mar-

ket, the correlation between these two measures is negative with values ρS&P = −0.21,
ρIPC = −0.23, ρNikkei = −0.28, ρXU = −0.15. We note that these correlations val-
ues are relatively small, indicating a weak linear dependence between these variables.
This is to be expected as the underlying measures are associated with rather different
properties.

6 Intraday analysis of scaling patterns

We investigated the intraday patterns by separating the paths of H∗(t) and C∗(t)
into daily windows. Taking for example the time series H∗(t) for the S&P 500 index
displayed in Fig. 6(a), we separated this time series into the n = 105 days included
in the data set, see Table 1. In Fig. 8(a), we display these daily time series (one day
on top of the other). The colour bar represents the value of H∗(t). This graphical
representation allows us to compare trading sessions and identify patterns at specific
time of the day.
We estimated the statistical mean of H∗(t) across the days, resulting in an av-

erage value for each time instance of the trading session. This average, denoted
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Fig. 7. Time-dependent complexity measure, C∗(t), for different stock market indices for
the period January 15th, 2014 to June 16th, 2014. (a) S&P 500, (b) IPC, (c) Nikkei 225 and
(d) XU 100.

as 〈H∗(t)〉days, describes the regular behaviour of H∗(t) on a trading session, see
Fig. 8(b).
In order to validate that the observed dynamics of 〈H∗(t)〉days are statistically

significant, we compared these dynamics with the scaling exponents, H∗BM(t), ob-
tained from several realizations of Brownian motions of length equal to the analysed
financial time series, see Table 1. The time series of H∗BM(t) were fragmented into n
windows of equal length. The mean over these n windows is denoted as 〈H∗BM(t)〉.
The pink band reported in Fig. 8(b) corresponds to the 5th and the 95th percentiles
of the empirical distribution of 〈H∗BM(t)〉 computed from 100 simulations.
We compared the values of H∗(t) obtained for each stock market index with the

〈H∗BM(t)〉 band. At each time instance t of the trading session, we estimated the rel-
ative fraction of H∗(t) values that falls outside the pink band. In Fig. 8(c), we report
these results as a ratio of the number of days outside the band divided by the total
number of days. This ratio is labelled as likelihood. The colour bar of this figure
represents the value of the average scaling exponent, i.e., 〈H∗(t)〉days (value plotted
in Fig. 8(b)). From this Figure, we observe that across the day there are periods of
time with very high empirical probability of observing values of the scaling exponents
significantly different from the corresponding values extracted from pure Brownian
motion.
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Fig. 8. Intraday analysis for the S&P 500 Index. (a) Intraday dynamics of the scaling expo-
nent, H∗(t), as a function of day and time. The colour bar indicates the value of the scaling
exponent H∗(t). (b) Mean of H∗(t) over the 105 days, denoted as 〈H∗(t)〉days. The pink
band corresponds to the 5th and 95th percentile of the distribution of 〈H∗BM(t)〉 computed
from 100 simulations. (c) Likelihood of H∗(t) to fall outside the 5th and 95th percentile
band for Brownian motion (pink band of Figure (b)). The colour bar indicates 〈H∗(t)〉days,
the value shown in Figure (b). (d) Mean of the windowed complexity measure, denoted
as 〈C∗(t)〉days.

The mean of the complexity measure, C∗(t), at each time t of the trading session
is shown in Fig. 8(d). Equally as with the H∗(t) exponent, the mean of C∗(t) is com-
puted across all n days and it is denoted as 〈C∗(t)〉days. The same daily analysis for
the remaining three stock market indices is reported in Figs. 9, 10 and 11, respec-
tively. Overall, from the intraday scaling and complexity measures we observed the
following patterns:

– For each stock market index, the daily average 〈H∗(t)〉days displays an inverted
U-shaped form that reflects a more chaotic behaviour at the beginning and
at the end of the trading session. The opposite behaviour is observed for the
complexity measure, 〈C∗(t)〉days, which reveals a U-shaped form.

– The S&P 500 index displays the largest values of H∗(t) (a stronger amplitude
persistent behaviour) during the middle of the trading session. From Fig. 8(a),
we observe that most of the days present large values of H∗(t) around mid-
day. At this time, the average exponent 〈H∗(t)〉days reaches a value of 0.6, see
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Fig. 9. Intraday analysis for the IPC index. Caption for sub-figures (a), (b), (c) and (d) are
the same as Fig. 8.

Fig. 8(b). These values are significantly different from what would be expected
for Brownian motion with more than 80% of the observations outside the 5th

and the 95th percentiles, see Fig. 8(c). Consistently, the complexity measure
reaches its minimum at the same time of the trading session, see Fig. 8(d).

– The Mexican stock exchange is characterized by some large scaling values at the
middle of the day. However the most noticeable pattern is the peak formed just
before the end of the trading session, see Fig. 9(a). The mean of the windowed
values reaches a maximum of 0.65, creating an upswing shape at this time,
see Fig. 9(b). This could be associated with an increase of trades in the last
few minutes of the trading session which creates a more drastic change in the
amplitudes. This pattern is only present in the Mexican stock exchange.
From Fig. 9(c), we observe that some minutes before the closing of the

market, more than 90% of the local scaling indices fall outside the 5th and the
95th percentile band for Brownian motion. The complexity measure also reflects
a steep increase of disorder at the end of the trading session, see Fig. 9(d).

– The Japanese and the Turkish stock exchanges display two regions of large
values for the scaling exponent. These regions are separated by the lunch break,
see Figs. 10(a) and 11(a) respectively. The mean of the scaling exponent reflects
a quasi-double inverted U-shaped form that is associated with the opening and
closing of the morning and afternoon sessions, see Figs. 10(b) and 11(b). It
is worth noting that the two trading sessions do not display exactly the same
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Fig. 10. Intraday analysis for the Nikkei 225 index. Caption for sub-figures (a), (b), (c) and
(d) are the same as Fig. 8. The white vertical band in each sub-figure corresponds to the
lunch break in this stock exchange.

profile. For the Japanese financial market, the inverted U-shaped form of the
first trading session is slightly skewed to the right, in comparison with the more
symmetric shape of the second trading session, see Fig. 10(b).

– For the Turkish stock exchange, we observe that the first part of the trading
session shows larger values of H∗(t). More than 90% of the analysed days
present local scaling exponents that surpass the value of 0.6, see Fig. 11(c). The
dominance of one IMF amplitude in the first trading session is also reflected
in the lower values of the complexity measure, which reaches the lowest value
when compared to the other stock market indices, see Fig. 11(d).

Overall the intraday patterns of H∗(t) and C∗(t) confirm the well known fact that
activity on financial markets is not constant throughout the day. The uncovered
patterns corroborate the hectic buy and sell activity affecting different markets at
the opening and closing of trading sessions [50,51]. Smaller values of H∗(t) (large
values of C∗(t)) imply a non-persistent and rougher behaviour which is reflected
in higher volatility. The exposed daily patterns of 〈H∗(t)〉days and 〈C∗(t)〉days are
in agreement with the results which document the existence of a distinct U-shaped
pattern in market activity and volatility over a trading day, i.e., volatility is higher
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Fig. 11. Intraday analysis for the XU 100 index. Caption for sub-figures (a), (b), (c) and
(d) are the same as Fig. 8. The white vertical band in each sub-figure corresponds to the
lunch break in this stock exchange.

at the opening and at the closing of the trading session and low in the middle of the
day, see for example [52–54].
By comparing the intraday complexity values across the four markets, we observe

that S&P 500 index displays the largest values across all the trading session. The
Nikkei 225 index is the second most complex, followed by the IPC index and lastly
the XU 100 index which has the smaller complexity values. This is in agreement with
the results reported for developed and emerging markets [15,28,55].

7 Conclusion

We studied the relative weight of the oscillating components present in intraday
financial time series coupled with their characteristic time-scale. These components
are extracted via the Hilbert-Huang transform. We have shown that the combination
of the EMD and its associated Hilbert spectral analysis offers a powerful tool to un-
cover the time-dependent scaling patterns of intraday financial data.
We proposed two new time-dependent measures: 1) an amplitude scaling

exponent and 2) an entropy-like complexity measure. Our measures are non-
parametric and they do not assume any a priori stochastic process. The scaling
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exponent only assumes the existence of a power-law relation between the instan-
taneous amplitudes and the instantaneous periods which was empirically shown to be
present. By applying our methodology to different models with known scaling laws,
we demonstrated that the time-dependent values of our scaling exponent vary consis-
tently around the known exponent of the models. When applied to real financial data,
our measures uncover significant variations of the scaling properties of the market
during the trading day and provide evidences of non-stationary patterns. We verified
that the scaling exponent and the complexity measure are related, with larger scaling
exponents associated with lower complexity values. However, the proposed measures
convey different information about the properties of the oscillating components of the
signal. Specifically, we applied the scaling and the entropy-like measures to the study
of four financial markets, two developed (US and Japan) and two emerging markets
(Mexico and Turkey). We contrasted and compared the decomposition of their finan-
cial indices. With the use of intraday data, we recognized some patterns and identified
periods of low and high complexity.
Compared to the other analysed stock market indices, the S&P 500 index results

the most complex. The intraday analysis reveals a distinctive anti-persistent behav-
iour at the opening and at the closing of the trading session, contrasting with the
persistent behaviour at the middle of the session. Similar intraday results are obtained
for the other stock market indices. The variations observed in the scaling measure
are well outside the 5th and the 95th percentiles expected for Brownian motion, sug-
gesting strong deviations from this model that could be attributed to the presence of
long-range dependence or/and heavy tails.
With the proposed measures, we are able to describe the dynamics of financial

time series whose regularity changes over time. Our results suggest that financial time
series have dynamic scaling properties that change during the trading day following
identifiable patterns that are characteristic of each market. The origin of the scaling
laws could be attributed to the autocorrelation of the process, the presence of heavy
tails and the non-stationarity of the time series. It is beyond the purpose of this paper
to investigate this aspect (which is discussed in [22] by using a different approach).
Our aim here was to uncover non-stationary scaling patterns which we showed to
be significant, reproducible and characteristic of specific stock markets. These non-
stationary scaling patterns must be considered when modelling financial time series
and building trading strategies.

The authors wish to thank Bloomberg for providing the data. NN would like to acknowledge
the financial support from Conacyt-Mexico. TDM wishes to thank the COST Action TD1210
for partially supporting this work. TA wishes to thank the Systemic Risk Centre at LSE.
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J. Neurosci. Methods 105, 65 (2001)

50. T.G. Andersen, T. Bollerslev, J. Empirical Finance 4, 115 (1997)
51. A. Chakraborti, I.M. Toke, M. Patriarca, F. Abergel, Quant. Finance 11, 991 (2011)
52. R. Allez, J.-P. Bouchaud, New J. Phys. 13, 025010 (2011)
53. K. Boudt, C. Croux, S. Laurent, J. Empirical Finance 18, 353 (2011)



2016 The European Physical Journal Special Topics

54. R.A. Wood, T.H. McInish, K. Ord, J. Finance 40, 723 (1985)
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