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Abstract— In a robot mounted camera arrangement, hand-
eye calibration estimates the rigid relationship between the
robot and camera coordinate frames. Most hand-eye calibration
techniques use a calibration object to estimate the relative
transformation of the camera in several views of the calibration
object and link these to the forward kinematics of the robot
to compute the hand-eye transformation. Such approaches
achieve good accuracy for general use but for applications
such as robotic assisted minimally invasive surgery, acquiring
a calibration sequence multiple times during a procedure is
not practical. In this paper, we present a new approach to
tackle the problem by using the robotic surgical instruments
as the calibration object with well known geometry from
CAD models used for manufacturing. Our approach removes
the requirement of a custom sterile calibration object to be
used in the operating room and it simplifies the process of
acquiring calibration data when the laparoscope is constrained
to move around a remote centre of motion. This is the first
demonstration of the feasibility to perform hand-eye calibration
using components of the robotic system itself and we show
promising validation results on synthetic data as well as data
acquired with the da Vinci Research Kit.

I. INTRODUCTION

Minimally invasive surgery (MIS) has significantly al-
tered surgical practice by introducing specialised tools to
access the inner anatomy with minimal trauma. Robotic
systems have emerged as a powerful solution to some of
the challenges in operating such specialised instrumentation
by providing tele-operation of the surgical camera and tools.
Robotic MIS (RMIS) systems like the da Vinci R© (Intuitive
Surgical, CA) enable surgery to be carried by the surgeon
controlling articulated miniaturised instruments with dexter-
ous master manipulators and visualizing the anatomy with
stereo-endoscopic cameras inserted through keyhole ports
[1], [2], [3]. The tele-operation setup additionally provides
an exciting platform to realise many techniques for computer
assisted interventions (CAI) such as directly overlaying intra-
and pre- operative imaging onto the endoscopic video to
provide multi-modal visualisation with enhanced information
about the location of sub-surface tumours and blood ves-
sels. To correctly overlay this information onto the surgical
console and update it as the camera moves by using the
robot kinematics, it is necessary to estimate the hand-eye
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Fig. 1. Experimental set-up for the classic hand-eye calibration procedure
with a da Vinci R© (Intuitive Surgical, CA) surgical robot system. The
camera is attached to the end-effector and camTrobot is the camera’s pose
relative to the end-effector [4].

transformation between the stereo-endoscopic camera and
the robot coordinate system. When the hand-eye information
is known, additional information exchange can happen to
link information computed in the camera reference using
surgical vision frame [5] to the robot kinematics for example
to achieve enhance control with virtual fixtures [6] or motion
compensation [7]. The challenge in hand-eye calibration
during surgery is to ensure that the workflow during the
procedure is not severely affected while being able to adapt
to changes of the surgical camera and motion of the robot
manipulator.

Conventional hand-eye calibration algorithms estimate the
relative pose between the camera coordinate system and the
robotic end-effector where the camera is mounted by using
a calibration object as shown in Figure 1 as camTrobot. A
world coordinate frame is fixed as the origin of the cali-
bration object Fgrid, whilst the robot’s coordinate system is
fixed at Fbase. Extrinsic parameter estimation during camera
calibration or pose estimation are used to determine camTgrid
and the robot’s forward kinematics are used to determine
baseTrobot from synchronised joint encoder data. The calibra-
tion object can have different designs, for example, [8], [9],
[10], [11], [12], [13] use a planar checker board whereas
[14], [15], [16] use a uniform planar grid of black circles.
The principle behind estimating the hand-eye transformation
using these objects is that because their physical dimensions
are known in advance, it is possible to estimate the extrinsic
parameters of the camera with respect to the object directly
from images [17], [18]. In addition to planar calibration
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Fig. 2. (a) The schematic for general hand-eye calibration as mathematically represented by Eq. 2. The surgical camera is moved to different poses around
the calibration object and images are captured at each position. (b) The schematic for the proposed hand-eye calibration incorporating a tool tracking
algorithm [30] as mathematically represented by Eq. 3. No calibration grid is required and the camera does not move. Instead the instruments are moved
by the robotic system.

objects, three dimensional (3D) objects can also be used
but are more challenging to manufacture [19], [20]. Gen-
erally, calibration targets provide accurate estimation of the
hand-eye transformation but can be practically inappropriate
for many applications [21]. An alternative approach is to
use structure-from-motion (SfM) to estimate the hand-eye
calibration transformation directly from the camera’s sur-
roundings [22], [23]. This type of approach is well suited to
surgical applications as it does not alter the clinical workflow
or require additional sterilised equipment. However, directly
using SfM is not straightforward in surgery [24] because the
surgical site is highly non-rigid and additionally the remote
centre of motion (RCM) constraint on the surgical camera
can prevent the collection of sufficiently varied viewpoints
to provide accurate calibration. Another alternative solution
is to attach a sensor at the end-effector and measure robot
motion and sensor motion to identify hand-eye and robot-
world transformations [25] and probabilistically solve an
asynchronous problem between robotic joint information and
sensor data. The approach does not require a correspondence
between these two sets data and yields better results than
when the exact correspondence is used, however, results have
only been shown on simulation data and the method has not
been tested with a real robotic system.

For applications in RMIS, alternative calibration objects
for hand-eye calibration are the instruments used by the
surgeon to manipulate the anatomy. For example if the
geometry of the instrument is known, it is possible to use it as
a constraint in general calibration of the imaging sensor even
if the geometry is simple such as in needle procedures [26],
[27]. In RMIS, the instruments and camera are forced to more
asynchronously which avoids intractable mutual motion. The
physical geometry of the instruments is known in 3D from
manufacturing and computer aided design (CAD) models

are available. The laparoscopic camera can be controlled
through the robotic system, which decreases the sensitivity of
the calibration procedure to noise [8], [9], [28]. This means
that numerous methods for instrument tracking in 3D from
the laparoscopic video can be used as an initial platform
for automated hand-eye calibration. Typically model fitting
approaches making use of color features [29], [30], [31],
edge features [32], local gradient descriptors [33] and a
combination of shape-based features [30], [34] can be used
to align a 3D model of the instrument with laparoscopic
images.

In this paper, we introduce a new approach to estimate
the hand-eye transformation for RMIS systems which does
not require an additional calibration target. The method is
an important step towards providing CAI capabilities to
RMIS with automatic methods for updating calibration [5],
[35]. We estimate the surgical instrument’s pose relative
to the laparoscopic camera using prior methods for 3D
instrument tracking [30] and we develop a novel algorithm
to estimate the hand-eye transformation from the 3D pose
data. We demonstrate, through extensive experiments on both
synthetic and real data, that hand-eye calibration using CAD
models of surgical tools achieves higher accuracy in rotation
than using a planar object due to range of motion allowed
by the instrument. We additionally compare our results
with existing state-of-the-art hand-eye calibration methods
[12], [15], [36] demonstrating the potential benefits of using
instruments as calibration targets.

II. METHODS

A. Hand-eye Calibration

Hand-eye calibration involves determining the unknown
fixed transform X = robotTcam between a robot arm
coordinate frame Frobot and a camera coordinate frame Fcam
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Fig. 3. (a) Shows the CAD model used in the instrument tracking algorithm. (b) Shows an image of the Large Needle Driver (LND) instrument captured
by the camera. (c) Shows an image of the instrument moving within the field of view of the camera while it is being tracked.

statically attached to the arm (see Figure 1). The problem is
formulated as a linear system of equations [14] as:

AX = XB (1)

where A is the relative motion between Frobot and a fixed
reference frame at the base of the robot Fbase and is de-
termined using forward kinematics [38], B represents the
relative motion between Fcam and an observed reference
frame, normally a chessboard calibration grid [8], Fgrid.
These transforms can be written as the product of two rigid
transformations:

A = robotTbase(τ)(
robotTbase(τ

′))−1

B = camTgrid(τ)(
camTgrid(τ

′))−1
(2)

where τ and τ ′ are discrete time values indicating that the
two transforms are captured at different time instances, as
shown in Figure 2(a), where a solution exists when the two
transforms have non-parallel rotation axes [8].

For the hand-eye problem, obtaining a wide range of
camera to calibration target transforms increases the accuracy
of the calibration and the error in estimating the rotation part
of the transform is inversely proportional to the sine value of
relative rotation axes [15]. In surgical robotic systems, which
are constrained by an RCM, it is challenging to obtain the
sufficient range of motion with the camera, however surgical
instruments can in principle be positioned to acquire the
necessary range. To enable hand-eye calibration using an
instrument located at Farm, which is kinematically linked to
Fbase, we reformulate Eq. 1 to write A and B as

A = armTbase(τ)
(arm

Tbase(τ
′)
)−1

B = toolTcam(τ)
(tool

Tcam(τ
′)
)−1 (3)

where the set-up is shown in Figure 2(b). We estimate
armTbase and baseTrobot using forward kinematics provided
by the DH parameters [38] of the robot arm and the joint
encoder data. This leaves 2 unknowns in our reformulation,
the hand-eye transformation X and the transform between
the camera coordinate system and the instrument coordinate
system armTtool.

B. 3D Instrument Tracking

Normally, in standard camera calibration, estimating the
camera to grid transform is achieved by solving a PnP

problem whereby the known grid coordinates are matched
to easily detect image features. Estimating the transform
toolTcam between the instrument and the camera from Eq.
3 where the target is a complex model such as a surgical
instrument (see Figure 3(a)) is highly challenging. We use
a recently proposed instrument tracking method [30] which
estimates the 3D pose of robotic surgical instruments by
solving a joint cost of aligning a 3D model of the instrument
(see Figure 3(b)) with a color-based segmentation and a
local optical flow point tracking. It minimizes this cost
with gradient descent simultaneously across both eyes of the
stereo camera effectively creating stereo constraints and uses
a linear Kalman filter for temporal consistency in frame-to-
frame tracking.

C. Hand-eye Calibration with Adjoint Transformation

To solve our reformulation of Eq. 1, we have adopted the
hand-eye solution in [12] as a starting point and refer the
reader to the original paper for a detailed overview of the
method. Let a+a′ε, q+q′ε and b+b′ε be dual quaternion
representing homogeneous transformations A, armTtool and
B, and ε2 = 0. Thus Eq. 1 can be written as

(a+ a′ε)(q+ q′ε) = (q+ q′ε)(b+ b′ε) (4)

The dual quaternion can be separated into a rotation and
translation component.

a.q = q.b (5)

a′.q+ a.q′ = q.b′ + q′.b (6)

Eq. 5 can be rearranged into the matrix equation,[
a0 − b0 −(~a−~b)T
~a−~b [~a+~b]× + (a0 − b0)I3

]
q = 0

K(a,b)q = 0

(7)

where I3 is an identity matrix of size 3 × 3. The N K
matrices can be stacked into a 4N×4 matrix which allows the
rotation quaternion q to be determined using SVD. [19] pro-
posed an alternative method which through the modification
of K allows the solver to estimate rotation and translation
simultaneously. However, this method is more sensitive to
noise and the use of a quadratic equation has a possibility of
generating a solution that contains imaginary values, which



complicates its use in our proposed application.
Using the initial solution from Eq. 7, we propose a method

using an adjoint transformation relationship to enhance the
accuracy of hand-eye transformation estimation. Using Eq. 1,
we post multiply by armT−1tool and retrieve the equation in the
form of a similarity transformation A =arm Ttool B

armT−1tool,
which means that A and B are the same transformation
applied in different frames. This relationship can be written
as [

~ωa

~va

]
=

[
R 03×3

[~t]×R R

] [
~ωb

~vb

]
(8)

where R and ~t are the rotation and translation components
of armTtool, respectively. ~va, ωa and ~vb, ωb are the members of
Lie group for a rigid transformation A and B respectively,
calculated from the matrix logarithm formula explained in
[41], [42]. [

[~ωa]× ~va
~0T 0

]
= log (

[
RA ~ta
~0T 1

]
) (9)

When considering all the collected poses A and B, the
first row of Eq. 8 will represent the orthogonal Procrustes
Problem [43] which has been satisfied by the dual quaternion
approach. Referring to the second row, as the translation and
rotation part are already estimated with the dual quaternion,
we can deduce that the solution satisfies

~va = [~t]×R~ωb +R~vb (10)

As the instrument tracking algorithm is less accurate than
a grid-based pose estimation, some measurements will have
inconsistently high error and to enable the algorithm to
estimate a good solution for the hand-eye calibration, we
substitute a rotation component of B with high error with
the rotation component of A. According to the orthogonal
Procrustes Problem, the norm of ωa and ωb are equal in
an ideal case, where the norm of these vectors represent
angle of rotation. To eliminate this outlier, the substitution
ωa = Rωb is applied when there is more than 5 degree
difference between the two norms. After the substitution, we
will have:

~va = [~t]×~ωa +R~vb (11)

Therefore, to estimate the rotation refinement, we need to
compute a real quaternion q that optimises Eq. 7 and Eq. 11.
Additonally, to estimate the translation, we again rearrange
Eq. 11 such that.

[~ωa]~t = R~vb− ~va (12)

Therefore, the solution satisfies both Eq. 11 and Eq.
12. The algorithm then goes back to refine the translation
component and this process is repeated until the solution
converges. In this paper, the convergence is defined when
the change of rotation vectors and translation vectors are
both less than 0.001 radians and 1 mm, respectively for 20
iterations. The rotation vector is defined as a principle axis
of rotation with norm equals to degree of rotation.

The final stage in estimating the hand-eye transform
involves calculating a per-frame hand-eye transformation Xi

(a) (b)

Fig. 4. Synthetic data generated from projecting an instrument CAD tool at
poses generated from kinematic data and an artificial hand-eye transform.
The images are corrupted with Gaussian noise but the kinematic data is
noiseless.

Algorithm 1 Hand-Eye Calibration
1: procedure HANDEYE
2: baseTarm ← forward kinematics
3: A← construct tool’s relative motions
4: toolTcam ← tool tracking
5: B← construct tracking target’s relative motions
6: R0 ← solve Eq. 7
7: repeat
8: ~trefine ← solve Eq. 12 using R0

9: ~t0 ← ~trefine
10: Rrefine ← solving Eq. 7, 11 using ~t0
11: R0 ← Rrefine
12: until the solution converges
13: armTtool ← [R0,~t0; 0 0 0 1]
14: X1,X2, ...,XN ← solve eq. 13 for N frames.
15: X← average transformations X1,X2, ...,XN

16: return X . Hand to eye transformation
17: end procedure

before average them across each frame using the algorithm
described in [44].

Xi = (baseTrobot)
−1(armTbase,i)

−1

(armTtool)(
toolTcam,i)

(13)

The algorithm to achieve this is summarised in Algorithm
1.

III. EXPERIMENTS AND RESULTS

A. Experiments with synthetic data

Synthetic data is generated by rendering a CAD model of a
LND instrument (see Figure 3(b)) onto a virtual camera using
OpenGL. To maintain realism in the type of motion that we
would expect to see when using a surgical robotic system,
we collect joint encoder data using the da Vinci Research Kit
(DVRK) [45]. We use this to compute model-view transforms
using forward kinematics for a virtual da Vinci classic robot.
We generate a ground truth hand-eye transformation which
is combined with the computed transforms. For each new
set of joint values, we compute a new set of transforms
and render the instrument at the appropriate pose. Examples
images from this dataset are shown in Figure 4(a) and 4(b).
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Fig. 5. Performance of each algorithm when it is tested with synthetic
data with increasing number of poses used in the calibration. (a) Error in
rotation estimation. (b) Error in translation estimation.

Our hand-eye calibration algorithm is compared with algo-
rithms proposed in recent state-of-the-art calibration methods
[12], [15], [36]. We use synthetic data to understand how
increasing the number of captured poses affects the estimated
transformation and how the algorithm behaves when the
image and kinematic data are corrupted with increasing
Gaussian noise. Despite the fact that Gaussian noise is not
an ideal noise model for the data simulation, it is added to
this synthetic image to simulate image distortion. We add
noise to the kinematic data because commercial surgical
robotic systems, such as da Vinci, use tendon actuation
for the joints which introduces absolute positing errors in
estimating the transforms using forward kinematics [37].
This results in a discrepancy between an observed pose in
the camera coordinates and an instrument pose estimated
through forward kinematics, as the error introduces a small
displacement between them.

The hand-eye result computed using each method is com-
pared with the ground truth. The error in the rotation is
calculated with Rodrigues’ formula to determine the relative
degree of rotation between the two rotation matrices, while
for the translation we use root mean square (RMS) error. The
nomenclatures used in this section and the next are “OUR”
for our algorithm, “IDQ” for [12], “TSAI” for [15] and “ITE”
for [36].

1) Increasing number of poses: The results in Figure 5(a)
and 5(b) show the performance of each algorithm when
the number of poses is increased, which has been found to
reduce the geometric error in hand-eye calibration [14]. In
this experiment, no noise is added to the joint data, however
we add constant Gaussian noise to the image data. Therefore,
as the kinematic joint data is perfect, the error in the hand-
eye calibration is only caused by the error in estimating
the 3D instrument pose using the tool tracking algorithm.
Compared with the literature state-of-the-art methods, our
algorithm shows superiority with quicker convergence rate
and lower error in both rotation and translation part.

2) Behaviour with increasing Gaussian noise: Most ex-
isting research [13], [19], [23], [46] regarding hand-eye
calibration observes a linear relationship between noise and
error in both the rotation and translation estimation. How-
ever, as illustrated in Figure 6(a) and 6(b), our experiments
show that the linear behaviour is less evident when using

(a) (b)

Fig. 6. Performance of each algorithm when it is tested with synthetic data
with increasing intensity of Gaussian noise in the kinematics, this replicates
the real noise that is seen when estimating poses from tendon-driven robots
such as da Vinci. (a) Error in rotation estimation. (b) Error in translation
estimation.

(a) (b)

Fig. 7. Comparison between calibration performance with a standard
checkerboard and with a surgical instrument. The error in the rotation is
significantly improved when using the instrument and translation error is
comparable between both calibration targets.

our instrument tracking approach compared with using a
calibration grid. This is caused by higher errors in esti-
mating toolTcam using tool tracking methods compared with
estimating gridTcam using convention methods. Additionally,
the performance of the tool tracking algorithm is sensitive
to drift, resulting in increasingly noisy estimates of the
transform, which in turn increases the noise in the relative
transformation B in Eq. 3.

B. Comparison between instrument and grid hand-eye cali-
bration

We compare the accuracy of using a surgical instrument
as a hand-eye calibration target with a conventional checker-
board using real image data to demonstrate the advantage of
using an instrument as a calibration target. As we do not have
a ground truth hand-eye calibration for the real data, we have
to use the camera pose prediction as our validation method.
The concept is to find the error between the predicted camera
pose when using our estimated hand-eye transform and the
extrinsic pose obtained from camera calibration. Referring
to Eq. 2, we can predict camera pose as:

armTbase(τpredicted) = XBX−1 armTbase(τ
′) (14)

Figure 7(a) shows the improvement in rotation estimation
when using a surgical tool as a calibration target. However,
Figure 7(b) shows that a conventional grid-based calibration
still has some advantages over our proposed method. Despite
the higher accuracy in the rotation estimation that can also
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Fig. 8. (a) Shows error in rotation component when the algorithms are
tested with real data against increasing the number of poses used in the
calibration. (b) Shows error in translation component.

(a) (b)

Fig. 9. (a) Shows examples of the surgical instrument pose with respect
to camera. The surgical tool has a much wider motion range than the
camera and can therefore be used to create much more varied poses for
the calibration. (b) Shows examples of the camera pose with respect to a
calibration grid frame [17]. Due to the RCM constraint of surgical robotic
systems, the range of poses is confined within a very restricted space.

suppress error in translation, the translational error when cal-
ibrating with a grid is lower than when using an instrument
due to inaccuracies in correctly estimating the instrument
pose, particularly when using few images. However, after
the addition of several images, the error in estimating the
translation is comparable between the two methods. Note
that we only select a few frames out of whole data to avoid
confusion in the figures. Figure 9(b) illustrates that the RCM
constrained camera does not cover a sufficiently varied range
of poses, only moving with a small translation along the
insertion axis and a small rotation about the axis, while a
motion of surgical tool (shown in Figure 9(a)) spreads widely
across the frame.

C. Comparison between hand-eye algorithms

We also compare our novel hand-eye algorithm with other
existing hand-eye solutions using the same real data. Figure
8(a) and 8(b) shows the same trend as the synthetic result,
except that the errors in the experiment with real data are
higher than with synthetic which is expected. For a small
number of poses, every algorithm is still corrupted by noise
from tracking error. When it tends to convergence, our
algorithm achieves about 20 mm error in translation and 10
degree error in rotation which is the lowest error.

IV. CONCLUSION

In this paper, we proposed a hand-eye calibration method
using a robotic surgical instrument CAD model as the cali-
bration object. The approach is a practical way of performing
hand-eye calibration during robotic assisted surgery without
requiring additional calibration objects. Additionally, the
method makes it easier to collect the sufficiently wide range
of poses necessary for accurate hand-eye calibration because
the surgical tool can be moved directly at the surgical site.
This results in simpler workflow for any practical appli-
cations that require multiple calibrations during a surgical
procedure. As well as improving the ergonomics of calibra-
tion, our results on simulation data show that the developed
algorithm provides higher accuracy than existing methods
and this result is further confirmed through our experiments
with real data. Our method improves the estimation of
the rotation component of the transformation while having
comparable errors in estimation of the translation component
even when only several calibration frames are used. In future
work we aim to enhance the algorithm by better integration
with automatic instrument detection and pose estimation and
to integrate automatic camera calibration which at present is
considered to be known.
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