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Abstract 298 

High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is 299 

limited knowledge on specific causal genes and pathways. To better understand the genetics of blood 300 

pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to ~192,000 301 

individuals, and used ~155,063 samples for independent replication. We identified 31 novel blood pressure 302 

or hypertension associated genetic regions in the general population, including three rare missense variants 303 

in RBM47, COL21A1 and RRAS with larger effects (>1.5mmHg/allele) than common variants. Multiple rare, 304 

nonsense and missense variant associations were found in A2ML1 and a low-frequency nonsense variant in 305 

ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and 306 

hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for 307 

clinical intervention.  308 

  309 



Introduction 310 

High blood pressure (BP) or hypertension is a highly prevalent chronic disorder. It is estimated to be 311 

responsible for a larger proportion of global disease burden and premature mortality than any other disease 312 

risk factor1. Elevated systolic and/or diastolic BP increases the risk of several cardiovascular disorders 313 

including stroke, coronary heart disease (CHD), heart failure, peripheral arterial disease and abdominal 314 

aortic aneurysms2. BP is a complex, heritable, polygenic phenotype for which genome-wide association 315 

studies (GWAS) have identified over 67 genetic regions associated with BP and/or hypertension to date3-11. 316 

These variants are common (minor allele frequency, MAF≥0.05), mostly map to intronic or intergenic 317 

regions, with the causal alleles and genes not readily identified due to linkage disequilibrium (LD)4,5, and 318 

explain only ~2% of trait variance12. Low-frequency (0.01<MAF<0.05) and rare (MAF≤0.01) single 319 

nucleotide variants (SNVs), predominantly unexplored by GWAS may have larger phenotypic effects than 320 

common SNVs13, and may help to explain the missing heritability, and identify causative genes as 321 

demonstrated previously14.  322 

To identify novel coding variants and loci influencing BP traits and hypertension we performed the largest 323 

meta-analysis to date that included a total of ~350,000 individuals, directly genotyped with the Exome chip. 324 

The Exome chip contains ~240,000 mostly rare and low-frequency variants (Methods). A single-variant 325 

discovery analysis was performed, and candidate SNVs were taken forward for validation using independent 326 

replication samples. Gene-based tests were used to identify BP associated genes harboring multiple rare 327 

variant associations.  We next assessed whether the newly identified BP associated SNVs were associated 328 

with expression levels of nearby genes, and tested these variants in aggregate for a causal association of BP 329 

with other cardiovascular traits and risk factors. Our findings highlight the contribution of rare variants in 330 

the aetiology of blood pressure in the general population, and provide new insights into the pathophysiology 331 

of hypertension.   332 

 333 

Results 334 

Discovery of single variant BP associations  335 



We genotyped 192,763 individuals from 51 studies, and assessed association of 242,296 SNVs with 336 

diastolic BP (DBP), systolic BP (SBP), pulse pressure (PP) and hypertension (HTN; Supplementary Tables 337 

1, 2 and 3; Methods). An overview of the SNV discovery study design is given in Figure 1.  A fixed effects 338 

meta-analysis for each trait was performed using study-level association summary statistics from i) samples 339 

of European (EUR) ancestry (up to 165,276 individuals), and ii) a trans-ethnic meta-analysis of the EUR and 340 

additional South Asian (SAS) ancestry samples (EUR_SAS; up to 192,763 individuals). Two analyses of 341 

DBP, SBP and PP were performed, one in which the trait was inverse normal transformed and a second in 342 

which the raw phenotype was analysed. Both sets of results were consistent (Methods), therefore to 343 

minimise sensitivity to deviations from normality in the analysis of rare variants, the results from the 344 

analyses of the transformed traits were used for discovery. Strong correlations between the BP traits were 345 

observed across studies (Methods), hence no adjustment of significance thresholds for independent trait 346 

testing was applied.  347 

The discovery meta-analyses identified 50 genomic regions with genome-wide significant (GWS) evidence 348 

of association with at least one of the four BP traits tested (P<5x10-8; Supplementary Table 4). There were 349 

45 regions associated in the EUR_SAS samples, of which 13 were novel (Figure 2). An additional five 350 

regions were GWS in the EUR only meta-analyses of which two were novel (Supplementary Figure 1).  In 351 

total, 16 genomic regions were identified that were GWS for at least one BP trait that have not been 352 

previously reported. 353 

Replication of single variant BP associations  354 

Next we sought support for our findings, in an independent replication dataset comprising of 18 studies, 16 355 

of which were from the Cohorts for Heart and Aging Research in Genomic Epidemiology+ (CHARGE+) 356 

exome chip blood pressure consortium (Figure 1; Liu et al. Nature Genetics, submitted).  Variants were 357 

selected for replication first using the larger (transformed) EUR_SAS data, with additional variants from the 358 

(transformed) EUR data also selected. SNVs were selected if they mapped outside of known BP genomic 359 

regions and had MAF≥0.05 and P<1x10-5 or MAF<0.05 and P<1x10-4 with at least one BP trait, i.e. 360 

choosing a lower significance threshold for the selection of rare variants (full details of the selection criteria 361 

are provided in the Methods). In total 81 candidate SNVs were selected for replication (Supplementary 362 



Table 5). Eighty variants were selected from EUR_SAS (transformed) results and one SNV at the ZNF101 363 

locus from the EUR (transformed) analyses. The results for EUR_SAS and EUR were consistent 364 

(association statistics were correlated, =0.9 across ancestries for each of the traits). Of the 81 variants, 30 365 

SNVs were selected for association with DBP as the primary trait, 26 for SBP, 19 for PP and 6 for HTN, 366 

with the primary trait defined as the BP trait with the smallest association P-value in the EUR-SAS 367 

discovery analyses. 368 

Meta-analyses were performed on results from analyses of untransformed DBP, SBP, PP and HTN (as only 369 

results of untransformed traits were available from CHARGE+) in (i) up to 125,713 individuals of EUR 370 

descent, and (ii) up to 155,063 individuals of multiple ethnicities (4,632 of Hispanic descent, 22,077 of 371 

African American descent, 2,641 SAS samples with the remainder EUR; Figure 1). Given that a large 372 

proportion of the ancestries in the trans-ethnic meta-analyses were not included in our discovery samples, 373 

we used the EUR meta-analyses as the main data set for replication, but we also report any additional 374 

associations identified within the larger trans-ethnic dataset. 375 

Novel BP-SNV associations were identified based on two criteria (Figure 1; Methods). Firstly, replication of 376 

the primary BP trait-SNV association was sought at a Bonferroni adjusted P-value threshold in the 377 

replication data (P≤6.17x10-4, assuming α=0.05 for 81 SNVs tested and same direction of effect; Methods) 378 

without the need for GWS. Secondly, meta-analyses of discovery and replication results across all four 379 

(untransformed) BP traits were performed to assess the overall level of support across all samples for the 81 380 

candidate SNVs; those BP-SNV associations that were GWS (with statistical support in the replication 381 

studies; P<0.05 and the same direction of effect) were also declared as novel. 382 

 383 

Seventeen SNV-BP associations formally replicated with concordant direction of effect at a Bonferroni 384 

adjusted significance level for the primary trait. Fourteen were in the EUR meta-analyses, and amongst these 385 

was a rare non-synonymous (ns) SNV mapping to COL21A1 (Table 1, Supplementary Table 6). Three 386 

associations were in the trans-ethnic meta-analyses, these included two rare nsSNVs in RBM47 and RRAS 387 

(Table 1, Supplementary Table 7; Methods).  388 



  389 

In addition to the 17 SNV-BP trait associations that formally replicated, we identified 13 further SNV-390 

associations that were GWS in the combined (discovery and replication) meta-analyses. Ten of these were 391 

GWS in the combined EUR analyses, (Table 2; Supplementary Tables 6 and 8a), and three were GWS in the 392 

combined trans-ethnic meta-analyses (Table 2; Supplementary Tables 7 and 8b). 393 

 394 

This gives a total of 30 novel SNV-BP associations (15 SNV-DBP, 9 SNV-SBP and 6 SNV-PP; Tables 1 395 

and 2; Supplementary Figures 2 and 3). Five of the SNVs were GWS with more than one BP trait (Figure 3: 396 

Tables 1 and 2; Supplementary Table 8). Four loci (CERS5, TBX2, RGL3 and OBFC1) had GWS 397 

associations with HTN in addition to GWS associations with DBP and SBP. The PRKAG1 locus had GWS 398 

associations with both SBP and PP. 399 

 400 

Conditional analyses were performed to identify secondary signals of association within the novel BP loci. 401 

The RAREMETALWORKER (RMW) package (Methods)15 allows conditional analyses to be performed 402 

using summary level data. Hence, analyses of the transformed primary traits and HTN were re-run in RMW 403 

across the discovery studies (Figure 4).  The results of the RMW single variant tests were consistent with the 404 

initial discovery analyses (Supplementary Information). Given the RMW analyses were based on our 405 

discovery samples, the larger EUR-SAS data was used as the main analysis to increase power, but we also 406 

report any additional associations with evidence in EUR.  407 

 408 

We identified secondary independent signals of association in four loci, PREX1, PRKAG1 and RRP1B 409 

within the EUR_SAS analyses and COL21A1 in the EUR analyses (Pconditional<1x10-4, Bonferroni adjusted 410 

for ~500 variants within each region; Methods; Supplementary Tables 9 and 10). Three independent 411 

association signals were identified in the MYH6 locus in the EUR_SAS analyses (Supplementary Table 11).  412 

 413 

Gene-based BP associations  414 

To improve statistical power to detect associations in genes harbouring rare variants, analytical methods that 415 

combine effects of variants across a gene into a single test have been devised and are implemented in the 416 



RMW package15. We applied the gene-based sequence kernel association test (SKAT)16  and Burden tests17 417 

to the RMW dataset (MAF<0.05 or MAF<0.01; Figure 4; Methods). One previously unidentified BP gene 418 

(A2ML1) was associated with HTN (P= 7.73x10-7) in the EUR_SAS studies and also in EUR studies 419 

(Supplementary Table 12; Bonferroni-corrected threshold of significance P<2.8x10-6, after adjusting for 420 

17,996 genes tested, Methods). The gene showed residual association with the primary BP trait after 421 

conditioning on the most associated SNV in the gene (Pconditional=5.00x10-4; Supplementary Table 12), 422 

suggesting that the association is due to multiple rare variants in the gene. One nonsense variant 423 

(rs199651558, p.Arg893*, MAF=3.5x10-4) was observed, and there were multiple missense variants (Figure 424 

5).  A2ML1 encodes alpha-2-macroglobulin-like 1 protein, and is a member of the alpha macroglobulin 425 

superfamily, which comprises protease inhibitors targeting a wide range of substrates. Mutations in this gene 426 

are associated with a disorder clinically related to Noonan syndrome, a developmental disorder which 427 

involves cardiac abnormalities18. We sought replication in the CHARGE+ studies for this gene, however 428 

there was no evidence of association with HTN (P= 0.45). Given the very low frequencies of the variants 429 

involved, however, studies in which the variants are polymorphic will be required to replicate the 430 

association with HTN. The DBH gene was found to be associated with DBP using the SKAT test 431 

(P=2.88x10-6). However, this was not due to multiple rare variants as the association was driven by 432 

rs77273740 (Supplementary Table 5) and the SNV was not validated in the replication samples. 433 

 434 

Rare and common variant associations in established BP loci 435 

Of the 67 established BP loci, 35 loci were on the Exome chip (N=43 SNVs or close proxies r2>0.7). All 43 436 

SNVs had at least nominal evidence of association with BP in our discovery samples (P<0.01; 437 

Supplementary Table 13). We also assessed if any of the established BP loci contained coding variants that 438 

are associated with BP traits and in LD (r2>0.2) with the known BP variants on the Exome chip 439 

(Supplementary Table 13), using the 1000G phase 3 release for LD annotation. Focusing on SNVs that were 440 

GWS for any BP trait from our transformed discovery data for either ancestry, there were 25 coding 441 

variants, of which 6 were predicted to be damaging at loci labelled CDC25A, SLC39A8, HFE, ULK4, ST7L-442 

CAPZA1-MOV10 and CYP1A1-ULK3. Three of these are published variants at loci labelled SLC39A8, HFE 443 

and ST7-CAPZA1-MOV10. At CYP1A1-ULK3, the coding variant was in moderate LD with the reported 444 



variant, but was less significantly associated with DBP in our EUR_SAS dataset (P=2.24x10-8 compared to 445 

P=1.68x10-15 for the published variant). At the ULK4 locus the predicted damaging coding variant had 446 

similar association as the published coding variant (predicted to be benign), and prior work has already 447 

indicated several associated nsSNVs in strong LD in ULK4 19. The nsSNV within the CDC25A locus 448 

(rs11718350 in SPINK8) had similar association with DBP as the intergenic published SNV in our 449 

EUR_SAS dataset (P=2.00x10-8 compared to P=2.27x10-8 for the published variant). Overall at least 5 of 450 

the known loci are consistent with having a coding causal variant. 451 

Gene-based SKAT tests of all genes that map within 1 Mb of a previously reported SNV association 452 

(Supplementary Table 14), indicated no genes with multiple rare or low-frequency variant associations. 453 

Single variant conditional analyses showed that rs33966350, a rare nonsense variant in ENPEP (MAF=0.01) 454 

was associated with SBP (Pconditional=1.61x10-5) in the EUR_SAS samples (Supplementary Tables 14 and 15; 455 

Methods) independently of the known SNV (rs6825911). ENPEP encodes aminopeptidase A (APA) an 456 

enzyme of the renin-angiotensin-aldosterone system (RAAS) that converts angiotensin II (AngII) to AngIII.  457 

There were no other established loci with convincing low-frequency or rare SNV associations in the 458 

EUR_SAS samples. However, HOXC4, had evidence of a second independent signal with a rare missense 459 

SNV in EUR samples (rs78731604; MAF=0.005, Pconditional= 5.76x10-5; Supplementary Table 15).  The 460 

secondary signal in the HOXC4 region, mapped to CALCOCO1, ~300kb from the known SNV. The gene 461 

association (MAF≤0.01, P=2.37x10-5) was below the required significance threshold and attributable to 462 

rs78731604, which is not predicted to have detrimental effects on protein structure. Therefore, replication of 463 

this association is required. Three loci (ST7L-CAPZA1-MOV10, FIGN-GRB14, and TBX5-TBX3) had 464 

evidence of a second independent signal in the region in EUR_SAS samples with a common variant 465 

(Pconditional<1x10-4; Supplementary Table 15) that has not been previously reported.   466 

Having identified 30 novel loci associated with BP traits, as well as additional new independent SNVs at 467 

four novel loci and five known loci, we calculated the percent of the trait variance explained (Methods). 468 

This was 2.08%/2.11%/1.15% for SBP/DBP/PP for the 43 previously reported BP-SNVs covered in our 469 

dataset, increasing to 3.38%/3.41%/2.08% respectively with the inclusion of the 30 lead SNVs from novel 470 

loci, plus new independent SNV-BP associations identified from novel and known loci. 471 



 472 

Effect of BP SNVs on cardiovascular traits & risk factors 473 

Amongst our novel BP-SNV associations, some have previously been reported to be associated with other 474 

cardiovascular traits and risk factors (Supplementary Table 16); these include coronary heart disease (CHD: 475 

PHACTR1, ABO)20,21, QT interval (RNF207)22, heart rate (MYH6)23, and cholesterol levels (2q36.3, ABO, 476 

ZNF101)24. 477 

To test the impact of BP variants on cardiovascular endpoints and risk factors we created three weighted 478 

genetic risk scores (GRS) according to SBP/DBP/PP based on the newly identified and previously published 479 

BP variants (up to N=125; Methods). The GRS models were used to test the causal effect of BP on the 480 

following traits: ischemic stroke (including the subtypes, cardiometabolic, large and small vessel 25), CHD, 481 

heart failure,26 left ventricular mass27, left ventricular wall thickness27, high-density lipoprotein cholesterol 482 

(HDL-c), low-density lipoprotein (LDL-c), triglycerides, total cholesterol, body mass index (BMI), waist-483 

hip ratio adjusted BMI, height and estimated glomerular filtration rate (eGFR) (Methods). As expected, BP 484 

was positively associated with increased CHD risk (OR [95% CI]=1.39[1.22-1.59] per 10mmHg increase in 485 

SBP, P=6.07×10-7; 1.62[1.28-2.05] per 10mmHg increase in DBP, P=5.99x10-5; 1.70[1.34-2.16] per 486 

10mmHg increase in PP, P=1.20x10-5; Table 3), and increased risk of ischemic stroke (OR [95% 487 

CI]=1.93[1.47-2.55] per 10mmHg increase in DBP, P=2.81×10-6; 1.57[1.35-1.84] per 10mmHg increase in 488 

SBP, P=1.16×10-8; 2.12[1.58-2.84] per 10mmHg increase in PP, P=5.35x10-7). The positive association with 489 

ischemic stroke was primarily due to large vessel stroke (Table 3).  DBP and SBP were also positively 490 

associated with left ventricular mass (9.57 [3.98-15.17] gram increase per 10mmHg increase in DBP, 491 

P=8.02x10-4 and 5.13 [1.77-8.48] gram increase per 10mmHg increase in SBP, P=0.0027) and left 492 

ventricular wall thickness (0.10 [0.06-0.13] cm increase per 10mmHg increase in DBP, P=1.88x10-8 and 493 

0.05 [0.03-0.07] cm increase per 10mmHg increase in SBP, P=5.52x10-6, Table 3). There was no convincing 494 

evidence to support the BP associated variants having an effect on lipid levels (P>0.1), BMI (P>0.005), 495 

waist hip ratio adjusted BMI (P>0.1), height (P>0.06), eGFR (P>0.02) or heart failure (P>0.04). The causal 496 

associations with CHD, stroke, and left ventricular measures augment the results from a previous association 497 

analysis using 29 BP variants28. Our data strongly support the previous observations of no causal 498 



relationship between BP and eGFR. Lack of evidence of a BP effect with heart failure may only be due to 499 

lack of power, as the association was in the expected direction.  500 

 501 

 502 

Possible functional variants at BP loci and candidate genes 503 

Twenty-six of our newly discovered BP associated SNVs had MAF≥0.05 and therefore due to extensive LD 504 

with other SNVs not genotyped on the Exome array, identifying the causal genes requires additional 505 

information. If a SNV is associated with increased or decreased expression of a particular gene, i.e. it is an 506 

expression quantitative trait locus (eQTL) this suggests the gene on which the SNV acts could be in the 507 

causal pathway. To help identify potential candidate causal genes in the novel BP loci (Supplementary Table 508 

9), information from publicly available eQTL databases was investigated (MuTHER for LCL, adipose and 509 

skin and GTEx for nine tissues including the heart and tibial artery; Methods). 510 

The DBP increasing allele of the nsSNV, rs7302981-A, was associated with increased expression of CERS5 511 

in: LCLs (PMuTHER=3.13x10-72) skin (PMuTHER=2.40x10-58) adipose (PMuTHER=2.87x10-54) and nerve 512 

(PGTEx=4.5x10-12) (Supplementary Figure 4). Additional testing (Methods) provided no evidence against 513 

colocalisation of the eQTL and DBP association signals, implicating CERS5 as a candidate causal gene for 514 

this DBP locus. CERS5 (LAG1 homolog, ceramide synthase 5) is involved in the synthesis of ceramide, a 515 

lipid molecule involved in several cellular signaling pathways. Cers5 knockdown has been shown to reduce 516 

cardiomyocyte hypertrophy in mouse models29. However, it is unclear whether the blood pressure raising 517 

effects at this locus are the cause or result of any potential effects on cardiac hypertrophy. Future studies 518 

investigating this locus in relation to parameters of cardiac hypertrophy and function (e.g. ventricular wall 519 

thickness) should help address this question. 520 

The DBP raising allele of the nsSNV (rs867186-A) was associated with increased expression of PROCR in 521 

adipose tissue (PMuTHER=3.24x10-15) and skin (PMuTHER=1.01x10-11) (Supplementary Figure 4). There was no 522 

evidence against colocalisation of the eQTL and DBP association thus supporting PROCR as a candidate 523 

causal gene. PROCR encodes the Endothelial Protein C receptor, a serine protease involved in the blood 524 



coagulation pathway, and rs867186 has previously been associated with coagulation and haematological 525 

factors.30,31 The PP decreasing allele of, rs10407022-T, which is predicted to have detrimental effects on 526 

protein structure (Methods) was associated with increased expression of AMH in muscle (PGTEx=9.95x10-15), 527 

thyroid (PGTEx=8.54x10-7), nerve (PGTEx=7.15x10-8), tibial artery (PGTEx=6.46x10-9), adipose 528 

(PGTEx=4.69x10-7), and skin (PGTEx=5.88x10-8) (Supplementary Figure 4). There was no evidence against 529 

colocalisation of the eQTL and PP association, which supports AMH as a candidate causal gene for PP. Low 530 

AMH levels have been previously associated with hypertensive status in women with the protein acting as a 531 

marker of ovarian reserve32. The intergenic SBP raising allele of rs4728142-A was associated with reduced 532 

expression of IRF5 in skin (PMuTHER=5.24x10-31) and LCLs (PMuTHER=1.39x10-34), whole blood 533 

(PGTEx=3.12x10-7) and tibial artery (PGTEx=1.71x10-7).  534 

 535 

Three novel rare nsSNVs were identified that map to RBM47, RRAS (both associated with SBP) and 536 

COL21A1 (associated with PP). They had larger effect sizes than common variant associations (>1.5mmHg 537 

per allele; Supplementary Figure 5) and were predicted to have detrimental effects on protein structure 538 

(Supplementary Table 16; Methods). In RBM47, rs35529250 (p.Gly538Arg) is located in a highly conserved 539 

region of the gene and was most strongly associated with SBP (MAF=0.008; +1.59 mmHg per T allele; 540 

P=5.90x10-9). RBM47 encodes the RNA binding motif protein 47 and is responsible for post-transcriptional 541 

regulation of RNA, through its direct and selective binding with the molecule.33 In RRAS, rs61760904 542 

(p.Asp133Asn) was most strongly associated with SBP (MAF=0.007; +1.51 mmHg per T allele; P=8.45x10-543 

8). RRAS encodes a small GTPase belonging to the Ras subfamily of proteins H-RAS, N-RAS, and K-RAS 544 

and has been implicated in actin cytoskeleton remodelling, and controlling cell proliferation, migration and 545 

cycle processes34. The nsSNV in COL21A1 (rs200999181, p.Gly665Val) was most strongly associated with 546 

PP (MAF=0.001; +3.14 mmHg per A allele; P=1.93x10-9). COL21A1 encodes the collagen alpha-1 chain 547 

precursor of type XXI collagen, a member of the FACIT (fibril-associated collagens with an interrupted 548 

triple helix) family of proteins35. The gene is detected in many tissues, including the heart and aorta. Based 549 

on our results, these three genes represent good candidates for functional follow-up. However, due to the 550 

incomplete coverage of all SNVs across the region on the Exome chip, it is possible that other non-551 

genotyped SNVs may better explain some of these associations. We therefore checked for variants in LD 552 



(r2>0.3) with these three rare nsSNVs in the UK10K + 1000G dataset36 to ascertain if there are other 553 

candidate SNVs at these loci (Supplementary Table 17). There were no SNVs within 1Mb of the RBM47 554 

locus in LD with the BP associated SNV. At the COL21A1 locus there were only SNVs in moderate LD, and 555 

these were annotated as intronic, intergenic or in the 5’UTR. At the RRAS locus, there were two SNVs in 556 

strong LD with the BP associated SNV, which both mapped to introns of SCAF1 and are not predicted to be 557 

damaging. All SNVs in LD at both loci were rare as expected (Supplementary Table 17) supporting a role 558 

for rare variants. Hence, the rare BP associated nsSNVs at RBM47, COL21A1 and RRAS remain the best 559 

causal candidates. 560 

 561 

Pathway and network analyses 562 

To identify connected gene sets and pathways implicated by the BP associated genes we used Meta-Analysis 563 

Gene-set Enrichment of variant Associations (MAGENTA)37 and GeneGo MetaCore (Thomson Reuters, 564 

UK).  MAGENTA tests for over-representation of BP associated genes in pre-annotated pathways (gene 565 

sets) (Methods and Supplementary Table 18a). GeneGo Metacore identifies potential gene networks.  The 566 

MAGENTA analysis was used for hypothesis generation and results were compared with the GeneGo 567 

Metacore outputs to cross-validate findings. 568 

Using MAGENTA there was an enrichment (P<0.01 and FDR<5% in either the EUR_SAS or the EUR 569 

participants) of six gene sets with DBP, three gene sets with HTN and two gene sets for SBP 570 

(Supplementary Table 18b).  The RNA polymerase I promoter clearance (chromatin modification) pathway 571 

showed the most evidence of enrichment with genes associated with DBP (PReactome=8.4x10-5, FDR=2.48%). 572 

NOTCH signalling was the most associated pathway with SBP (PReactome = 3.00x10-4, FDR = 5%) driven by 573 

associations at the FURIN gene.  The inorganic cation anion solute carrier (SLC) transporter pathway had 574 

the most evidence of enrichment by HTN associated genes (PReactome=8.00x10-6, FDR=2.13%).  575 

Using GeneGo MetaCore, five network processes were enriched (FDR<5%; Methods; Supplementary 576 

Tables 19 and 20). These included several networks with genes known to influence vascular tone and BP: 577 

inflammation signalling, P=1.14x10-4 and blood vessel development P=2.34x10-4. The transcription and 578 

chromatin modification network (P=2.85x10-4) was also enriched, a pathway that was also highlighted in the 579 



MAGENTA analysis, with overlap of the same histone genes (HIST1H4C, HIST1H2AC, HIST1H2BC, 580 

HIST1H1T) and has also been recently reported in an integrative network analysis of published BP loci and 581 

whole blood expression profiling38. Two cardiac development pathways were enriched: the oxidative stress-582 

driven (ROS/NADPH) (P=4.12x10-4) and the Wnt/β-catenin/integrin-driven (P=0.0010). Both these cardiac 583 

development pathways include the MYH6, MYH7, and TBX2 genes, revealing a potential overlap with 584 

cardiomyopathies and hypertension, and suggesting some similarity in the underlying biological 585 

mechanisms. 586 

 587 

Discussion 588 

By conducting the largest ever genetic study of BP, we identified further novel common variants with small 589 

effects on BP traits, similar to what has been observed for obesity and height39,40. More importantly, our 590 

study identified some of the first rare coding variants of strong effect (>1.5mmHg) that are robustly 591 

associated with BP traits in the general population, complementing and extending the previous discovery 592 

and characterisation of variants underlying rare Mendelian disorders of blood pressure regulation 41. Using 593 

SNV associations in 17 genes reported to be associated with monogenic disorders of blood pressure 594 

(Methods) we found no convincing evidence of enrichment (Penrichment=0.044). This suggests that BP control 595 

in the general population may occur through different pathways to monogenic disorders of BP re-enforcing 596 

the importance of our study findings. The identification of 30 novel BP loci plus further new independent 597 

secondary signals within four novel and five known loci (Methods) has augmented the trait variance 598 

explained by 1.3%, 1.2% and 0.93% for SBP, DBP and PP respectively within our data-set. This suggests 599 

that with substantially larger sample sizes, for example through UK BioBank42, we expect to identify 1000s 600 

more loci associated with BP traits, and replicate more of our discovery SNV associations that are not yet 601 

validated in the current report.  602 

The discovery of rare missense variants has implicated several interesting candidate genes, which are often 603 

difficult to identify from common variant GWAS, and should therefore lead to more rapidly actionable 604 

biology. A2ML1, COL21A1, RRAS and RBM47 all warrant further follow-up studies to define the role of 605 



these genes in regulation of BP traits, as well as functional studies to understand their mechanisms of action. 606 

COL21A1 and RRAS warrant particular interest since both are involved in blood vessel remodelling, a 607 

pathway of known aetiological relevance to hypertension.  608 

We observed a rare nonsense SBP associated variant in ENPEP (rs33966350; p.Trp317* ): this overlaps a 609 

highly conserved region of both the gene and protein and is predicted to result in either a truncated protein 610 

with reduced catalytic function or is subject to nonsense mediated RNA decay.  ENPEP converts angiotensin 611 

II (AngII) to Ang-III.  AngII activates the angiotensin 1 (AT1) receptor resulting in vasoconstriction, while 612 

AngIII activates the angiotensin 2 (AT2) receptor that promotes vasodilation and protects against 613 

hypertension.43 The predicted truncated protein may lead to predominant AngII signaling in the body, and 614 

increases in BP.  This new observation could potentially inform therapeutic strategies. Of note, angiotensin-615 

converting-enzyme (ACE) inhibitors are commonly used in the treatment of hypertension. However, patients 616 

who suffer from adverse reactions to ACE inhibitors, such as dry cough and skin rash, would benefit from 617 

alternative drugs that target RAAS. Murine studies have shown that in the brain, AngIII is the preferred AT1 618 

agonist that promotes vasoconstriction and increases blood pressure, as opposed to AngII in the peripheral 619 

system. These results have motivated the development of brain specific APA inhibitors to treat 620 

hypertension44. Our results confirm APAs, such as ENPEP, as a valid target to modify blood pressure, but 621 

suggest that long-term systemic reduction in APA activity may lead to an increase in blood pressure. Future 622 

studies are needed to examine the effects of the p.Trp317* variant on the RAAS system, specifically in the 623 

brain and peripheral vasculature, in order to test the benefits of the proposed therapeutic strategy in humans.  624 

In addition to highlighting new genes in pathways of established relevance to BP and hypertension, and 625 

identifying new pathways, we have also identified multiple signals at new loci. For example, there are three 626 

distinct signals at the locus containing the MYH6/MYH7 genes, and we note that TBX2 maps to one of the 627 

novel regions. These genes are related to cardiac development and/or cardiomyopathies, and provide an 628 

insight into the shared inheritance of multiple complex traits. Unravelling the causal networks within these 629 

polygenic pathways may provide opportunities for novel therapies to treat or prevent both hypertension and 630 

cardiomyopathies. 631 

 632 



URLs 633 
Exome chip design information: http://genome.sph.umich.edu/wiki/Exome_Chip_Design 634 

RareMetalWorker information: http://genome.sph.umich.edu/wiki/RAREMETALWORKER 635 

Summary SNV association results: http://www.phenoscanner.medschl.cam.ac.uk 636 

Databases used for variant annotation: http://www.ncbi.nlm.nih.gov/SNP/  637 

http://www.ensembl.org/info/docs/tools/index.html and http://evs.gs.washington.edu/EVS/ 638 

UCSC reference file used for annotation of variants with gene and exon information: 639 

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refFlat.txt.gz 640 

Databases used for pathway analysis: MAGENTA (https://www.broadinstitute.org/mpg/magenta/) and 641 

THOMSON REUTERS MetaCoreTM Single Experiment Analysis workflow tool  642 

(http://thomsonreuters.com/en/products-services/pharma-life-sciences/pharmaceutical-643 

research/metacore.html).  644 

 645 

Acknowledgements 646 

1. CHD Exome+ Consortium 647 

CCHS, CGPS, CIHDS: We thank participants and staff of the Copenhagen City Heart Study, Copenhagen 648 

Ischemic Heart Disease Study, and the Copenhagen General Population Study for their important 649 

contributions. 650 

EPIC-InterAct: Funding for the InterAct project was provided by the EU FP6 programme (grant number 651 

LSHM_CT_2006_037197). We thank all EPIC participants and staff for their contribution to the study. We 652 

thank the lab team at the MRC Epidemiology Unit for sample management and Nicola Kerrison for data 653 

management.  654 

EPIC-CVD: CHD case ascertainment and validation, genotyping, and clinical chemistry assays in EPIC-655 

CVD were principally supported by grants awarded to the University of Cambridge from the EU Framework 656 

http://genome.sph.umich.edu/wiki/Exome_Chip_Design
http://genome.sph.umich.edu/wiki/RAREMETALWORKER
http://www.ncbi.nlm.nih.gov/SNP/
http://www.ensembl.org/info/docs/tools/index.html
http://evs.gs.washington.edu/EVS/
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refFlat.txt.gz
https://www.broadinstitute.org/mpg/magenta/
http://thomsonreuters.com/en/products-services/pharma-life-sciences/pharmaceutical-research/metacore.html
http://thomsonreuters.com/en/products-services/pharma-life-sciences/pharmaceutical-research/metacore.html


Programme 7 (HEALTH-F2-2012-279233), the UK Medical Research Council (G0800270) and British Heart 657 

Foundation (SP/09/002), and the European Research Council (268834). We thank all EPIC participants and 658 

staff for their contribution to the study, the laboratory teams at the Medical Research Council Epidemiology 659 

Unit for sample management and Cambridge Genomic Services for genotyping, Sarah Spackman for data 660 

management, and the team at the EPIC-CVD Coordinating Centre for study coordination and administration. 661 

MORGAM: This work has been sustained by the MORGAM Project's recent funding:  European Union FP 662 

7 projects ENGAGE (HEALTH-F4-2007-201413), CHANCES (HEALTH-F3-2010-242244) and 663 

BiomarCaRE (278913). This has supported central coordination, workshops and part of the activities of the 664 

The MORGAM Data Centre, at THL in Helsinki, Finland. The MORGAM Participating Centres are funded 665 

by regional and national governments, research councils, charities, and other local sources. 666 

WOSCOPS/PROSPER: The research leading to these results has received funding from the European 667 

Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° HEALTH-F2-2009-668 

223004 669 

BRAVE: The BRAVE study genetic epidemiology working group is a collaboration between the 670 

Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, 671 

UK, the Centre for Control of Chronic Diseases, icddr,b, Dhaka, Bangladesh and the National Institute of 672 

Cardiovascular Diseases, Dhaka, Bangladesh. 673 

PROMIS: We are thankful to all the study participants in Pakistan. Recruitment in PROMIS was funded 674 

through grants available to investigators at the Center for Non-Communicable Diseases, Pakistan (Danish 675 

Saleheen and Philippe Frossard) and investigators at the University of Cambridge, UK (Danish Saleheen and 676 

John Danesh). Field-work, genotyping, and standard clinical chemistry assays in PROMIS were principally 677 

supported by grants awarded to the University of Cambridge from the British Heart Foundation, UK Medical 678 

Research Council, Wellcome Trust, EU Framework 6-funded Bloodomics Integrated Project, Pfizer, Novartis, 679 

and Merck. We would like to acknowledge the contributions made by the following individuals who were 680 

involved in the field work and other administrative aspects of the study:  Mohammad Zeeshan Ozair, Usman 681 

Ahmed, Abdul Hakeem, Hamza Khalid, Kamran Shahid, Fahad Shuja, Ali Kazmi, Mustafa Qadir Hameed, 682 



Naeem Khan, Sadiq Khan, Ayaz Ali, Madad Ali, Saeed Ahmed, Muhammad Waqar Khan, Muhammad Razaq 683 

Khan, Abdul Ghafoor, Mir Alam, Riazuddin, Muhammad Irshad Javed, Abdul Ghaffar, Tanveer Baig Mirza, 684 

Muhammad Shahid, Jabir Furqan, Muhammad Iqbal Abbasi, Tanveer Abbas, Rana Zulfiqar, Muhammad 685 

Wajid, Irfan Ali, Muhammad Ikhlaq, Danish Sheikh and Muhammad Imran. 686 

CHD Exome+ Consortium: This work was funded by the UK Medical Research Council (G0800270), British 687 

Heart Foundation (SP/09/002), UK National Institute for Health Research Cambridge Biomedical Research 688 

Centre, European Research Council (268834), European Commission Framework Programme 7 (HEALTH-689 

F2-2012-279233) and Merck and Pfizer. 690 

 691 

2. ExomeBP Consortium 692 

Airwave: We thank all participants of the Airwave Health Monitoring Study. The study is funded by the UK 693 

Home Office, (Grant number 780-TETRA) with additional support from the National Institute for Health 694 

Research (NIHR) Imperial College Health Care NHS Trust (ICHNT) and Imperial College Biomedical 695 

Research Centre (BRC) (Grant number BRC-P38084). We thank Andy Heard and the Airwave Health 696 

Monitoring Study team for invaluable support. SNP Genotyping was performed at the Wellcome Trust Centre 697 

for Human Genetics, University of Oxford. 698 

ASCOT: The ASCOT study was supported by Pfizer, New York, NY, USA for the ASCOT study and the 699 

collection of the ASCOT DNA repository; by Servier Research Group, Paris, France; and by Leo Laboratories, 700 

Copenhagen, Denmark. We thank all ASCOT trial participants, physicians, nurses, and practices in the 701 

participating countries for their important contribution to the study. In particular we thank Clare Muckian and 702 

David Toomey for their help in DNA extraction, storage, and handling. Genotyping of the Exome chip in 703 

ASCOT-SC and ASCOT-UK was funded by the National Institutes of Health Research (NIHR). We would 704 

also like to acknowledge the Barts and The London Genome Centre staff for genotyping the Exome chip array. 705 

This work forms part of the research programme of the NIHR Cardiovascular Biomedical Research Unit at 706 

Barts. 707 



1958BC: We are grateful for using the British 1958 Birth Cohort DNA collection. Sample collection funded 708 

by the Medical Research Council grant G0000934 and the Wellcome Trust grant 068545/Z/02. Genotyping 709 

was funded by the Wellcome Trust. 710 

BRIGHT: This work was supported by the Medical Research Council of Great Britain (grant number 711 

G9521010D), and the British Heart Foundation (grant number PG/02/128). A.F.D. was supported by the 712 

British Heart Foundation (grant numbers RG/07/005/23633, SP/08/005/25115); the European Union 713 

Ingenious HyperCare Consortium: Integrated Genomics, Clinical Research, and Care in Hypertension (grant 714 

number LSHM-C7-2006-037093). The BRIGHT study is extremely grateful to all the patients who 715 

participated in the study and the BRIGHT nursing team. The Exome chip was funded by the Wellcome Trust 716 

Strategic Awards (083948 and 085475). We would also like to thank the Barts Genome Centre staff for their 717 

assistance with this project. This work forms part of the research programme of the NIHR Cardiovascular 718 

Biomedical Research Unit at Barts. 719 

CROATIA-Korcula: We would like to acknowledge the invaluable contributions of the recruitment team in 720 

Korcula, the administrative teams in Croatia and Edinburgh and the people of Korcula. The CROATIA-721 

Korcula study was funded by grants from the Medical Research Council (UK), European Commission 722 

Framework 6 project EUROSPAN (Contract No. LSHG-CT-2006-018947), Ministry of Science, Education 723 

and Sports of the Republic of Croatia (grant 216-1080315-0302) and the Croatian Science Foundation (grant 724 

8875).  725 

DIABNORD:  We are indebted to the study participants who dedicated their time and samples to these studies. 726 

We thank John Hutiainen and Åsa Ågren (Umeå Medical Biobank) for data organization and Kerstin Enquist 727 

and Thore Johansson (Västerbottens County Council) for technical assistance with DNA extraction. We also 728 

thank M Sterner, M Juhas and P Storm for their expert technical assistance with genotyping and genotype data 729 

preparation. 730 

EGCUT: EGCUT received financing from European Regional Development Fund, road-map grant 731 

no.3.2.0304.11-0312 and grant "Center of Excellence in Genomics" (EXCEGEN).  EGCUT studies were 732 



covered also by targeted financing from Estonian Government (IUT24-6, IUT20-60)and CTG grant 733 

(SP1GVARENG) from Development Fund of the University of Tartu.  734 

Fenland study: The Fenland Study is funded by the Medical Research Council (MC_U106179471) and 735 

Wellcome Trust. We are grateful to all the volunteers for their time and help, and to the General Practitioners 736 

and practice staff for assistance with recruitment.  We thank the Fenland Study Investigators, Fenland Study 737 

Co-ordination team and the Epidemiology Field, Data and Laboratory teams. 738 

FINRISK 97/02: Veikko Salomaa-Dr. Salomaa was supported by the Academy of Finland, grant number 739 

139635, and the Finnish Foundation for Cardiovascular Research. 740 

GS:SFHS: We would like to acknowledge the invaluable contributions of the families who took part in the 741 

Generation Scotland: Scottish Family Health Study, the general practitioners and Scottish School of Primary 742 

Care for their help in recruiting them, and the whole Generation Scotland team, which includes academic 743 

researchers, IT staff, laboratory technicians, statisticians and research managers. SNP genotyping was 744 

performed at the Wellcome Trust Clinical Research Facility in Edinburgh. GS:SFHS is funded by the Scottish 745 

Executive Health Department, Chief Scientist Office, grant number CZD/16/6. SNP genotyping was funded 746 

by the Medical Research Council UK  747 

GLACIER:  We are indebted to the study participants who dedicated their time and samples to these studies. 748 

We thank John Hutiainen and Åsa Ågren (Umeå Medical Biobank) for data organization and Kerstin Enquist 749 

and Thore Johansson (Västerbottens County Council) for technical assistance with DNA extraction. We also 750 

thank M Sterner, M Juhas and P Storm for their expert technical assistance with genotyping and genotype data 751 

preparation. 752 

GoDARTS: We acknowledge the support of the Health Informatics Centre, University of Dundee for 753 

managing and supplying the anonymised data and NHS Tayside, the original data owner. We are grateful to 754 

all the participants who took part in the Go-DARTS study, to the general practitioners, to the Scottish School 755 

of Primary Care for their help in recruiting the participants, and to the whole team, which includes 756 

interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, 757 

receptionists, and nurses.  758 



GRAPHIC: Recruitment and genotyping of the Genetic Regulation of Arterial Pressure of Humans in the 759 

Community cohort was funded by the British Heart Foundation. N.J.S. holds a British Heart Foundation Chair 760 

of Cardiology and is a senior  National Institute for Health Research Investigator . This study is part of the 761 

research portfolio supported by the Leicester National Institute for Health Research Biomedical Research Unit 762 

in Cardiovascular Disease. 763 

HELIC-MANOLIS: This work was funded by the Wellcome Trust (098051) and the European Research 764 

Council (ERC-2011-StG 280559-SEPI). The MANOLIS study is dedicated to the memory of Manolis 765 

Giannakakis, 1978–2010. We thank the residents of the Mylopotamos villages for taking part. We thank the 766 

Sample Management and Genotyping Facilities staff at the Wellcome Trust Sanger Institute for sample 767 

preparation, quality control and genotyping. 768 

The Nord-Trøndelag Health Study (The HUNT Study): This is a collaboration between HUNT Research 769 

Centre (Faculty of Medicine, Norwegian University of Science and Technology NTNU), Nord-Trøndelag 770 

County Council, Central Norway Health Authority, and the Norwegian Institute of Public Health. CJW is 771 

supported by HL094535 and HL109946. 772 

INCIPE: The INCIPE study was supported by Foundation CARIVR, Verona, Italy and by the University of 773 

Verona.  774 

LBC21 and LBC36: We thank the cohort participants and team members who contributed to these studies. 775 

Phenotype collection in the Lothian Birth Cohort 1921 was supported by the UK’s Biotechnology and 776 

Biological Sciences Research Council (BBSRC), The Royal Society and The Chief Scientist Office of the 777 

Scottish Government. Phenotype collection in the Lothian Birth Cohort 1936 was supported by Age UK (The 778 

Disconnected Mind project).  Genotyping was supported by Centre for Cognitive Ageing and Cognitive 779 

Epidemiology (Pilot Fund award), Age UK, and the Royal Society of Edinburgh. The work was undertaken 780 

by The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross 781 

council Lifelong Health and Wellbeing Initiative (MR/K026992/1). Funding from the BBSRC and Medical 782 

Research Council (MRC) is gratefully acknowledged. 783 



LIFELINES: The Lifelines Cohort Study, and generation and management of GWAS genotype data for the 784 

Lifelines Cohort Study is supported by the Netherlands Organization of Scientific Research NWO (grant 785 

175.010.2007.006), the Economic Structure Enhancing Fund (FES) of the Dutch government, the Ministry of 786 

Economic Affairs, the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and 787 

Sports, the Northern Netherlands Collaboration of Provinces (SNN), the Province of Groningen, University 788 

Medical Center Groningen, the University of Groningen, Dutch Kidney Foundation and Dutch Diabetes 789 

Research Foundation. N. Verweij is supported by the Netherlands Heart Foundation (grant NHS2010B280). 790 

Lifelines is a multi-disciplinary prospective population-based cohort study examining in a unique three-791 

generation design the health and health-related behaviours of 167,729 persons living in the North of The 792 

Netherlands. It employs a broad range of investigative procedures in assessing the biomedical, socio-793 

demographic, behavioural, physical and psychological factors which contribute to the health and disease of 794 

the general population, with a special focus on multi-morbidity and complex genetics" 795 

LOLIPOP: The LOLIPOP study is supported by the National Institute for Health Research (NIHR) 796 

Comprehensive Biomedical Research Centre Imperial College Healthcare NHS Trust, the British Heart 797 

Foundation (SP/04/002), the Medical Research Council (G0601966, G0700931), the Wellcome Trust 798 

(084723/Z/08/Z), the NIHR (RP-PG-0407-10371), European Union FP7 (EpiMigrant, 279143) and Action on 799 

Hearing Loss (G51). The work was carried out in part at the NIHR/Wellcome Trust Imperial Clinical Research 800 

Facility. We thank the participants and research staff who made the study possible. 801 

MDC: This study was funded by the European Research Council (StG-282255), the Swedish Heart and Lung 802 

Foundation and the Swedish Research Council. Exome chip genotyping in the MDC Cohort was supported in 803 

part by NIH R01HL107816 to Kathiresan. Dr. Kathiresan's work was also funded by Fondation Leducq. 804 

NFBC1966 and NFBC1986: The NFBC1966 and NFBC1986 studies received financial support from the 805 

Academy of Finland (project grants 104781, 120315, 129269, 1114194, 24300796, Center of Excellence in 806 

Complex Disease Genetics and SALVE), University Hospital Oulu, Biocenter, University of Oulu, Finland 807 

(75617), NHLBI grant 5R01HL087679-02 through the STAMPEED program (1RL1MH083268-01), 808 

NIH/NIMH (5R01MH63706:02), ENGAGE project and grant agreement HEALTH-F4-2007-201413, EU 809 

FP7 EurHEALTHAgeing -277849, the Medical Research Council, UK (G0500539, G0600705, G1002319,  810 



G0802782, PrevMetSyn/SALVE) and the MRC, Centenary Early Career Award. The DNA extractions, 811 

sample quality controls, biobank up-keeping and aliquotting was performed in the National Public Health 812 

Institute, Biomedicum Helsinki, Finland and supported financially by the Academy of Finland and Biocentrum 813 

Helsinki.  The Section of Investigative Medicine, Imperial College is funded by grants from the MRC, 814 

BBSRC, NIHR, and an Integrative Mammalian Biology (IMB) Capacity Building Award, an FP7- HEALTH- 815 

2009- 241592 EuroCHIP grant and is supported by the NIHR Imperial Biomedical Research Centre Funding 816 

Scheme.   AIFB is also supported by the MRC, Diabetes UK, EPSRC and an EU FP7 NutriTech grant. We 817 

thank the late Professor Paula Rantakallio (launch of NFBCs), and Ms Outi Tornwall and Ms Minttu Jussila 818 

(DNA biobanking). The authors would like to acknowledge the contribution of the late Academian of Science 819 

Leena Peltonen.    820 

OBB: National Institute for Health Research, Oxford Biomedical Research Centre, Oxford University 821 

Hospital Trust, Oxford, UK 822 

PIVUS/ULSAM: - ULSAM and PIVUS are supported by the Swedish Research Council, Swedish Heart-823 

Lung Foundation, Swedish Diabetes Foundation and Uppsala University. The investigators want to express 824 

their deepest gratitude towards the study participants. 825 

Twins UK: -The study was funded by the Wellcome Trust: European Community’s Seventh Framework 826 

Programme (FP7/2007-2013). The study also receives support from the National Institute for Health Research 827 

(NIHR)- funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and 828 

St Thomas' NHS Foundation Trust in partnership with King's College London. SNP Genotyping was 829 

performed at performed by the Genomics Core at the Wellcome Trust Centre for Human Genetics, University 830 

of Oxford. 831 

UHP: The Utrecht Health Project received grants from the Ministry of Health, Welfare and Sports (VWS), 832 

the University of Utrecht, the Province of Utrecht, the Dutch Organisation of GPs and inhabitants of the 833 

“Leidsche Rijn” district, Care Research, the University Medical Centre of Utrecht, and the Dutch College of 834 

Healthcare Insurance Companies. We thank Utrecht, for their cooperation in this project. 835 



UKHLS: These data are from Understanding Society: The UK Household Longitudinal Study, which is led 836 

by the Institute for Social and Economic Research at the University of Essex and funded by the Economic and 837 

Social Research Council. The data were collected by NatCen and the genome wide scan data were analysed 838 

by the Wellcome Trust Sanger Institute. Information on how to access the data can be found on the 839 

Understanding Society website https://www.understandingsociety.ac.uk/. The 'Understanding Society 840 

Scientific Group' include the following: Understanding Society Scientific Group: Michaela Benzeval, 841 

Jonathan Burton, Nicholas Buck, Annette Jäckle, Meena Kumari, Heather Laurie, Peter Lynn, Stephen 842 

Pudney, Birgitta Rabe, Shamit Saggar, Noah Uhrig, Dieter Wolke 843 

F. D. wishes to acknowledge the MRC Unit at the University of Bristol (MC_UU_12013/1-9) 844 

A.P.M. is a Wellcome Trust Senior Research Fellow in Basic Biomedical Science (grant number WT098017). 845 

M.I.M. is a Wellcome Trust Senior Investigator (WT098381); and a National Institute of Health Research 846 

Senior Investigator. 847 

M. H.  is supported by NIH RO1 grant LM010098 848 

M.D.T. has been supported by MRC fellowship G0902313.  849 

F.W.A is supported by the UCL Hospitals NIHR Biomedical Research Centre and by a Dekker scholarship 850 

(Junior Staff Member 2014T001) from the Dutch Heart Foundation 851 

P.B.M, M.J.C, H.W.W, A. T, K.W. wish to acknowledge the NIHR Cardiovascular Biomedical Research Unit 852 

at Barts and The London, Queen Mary University of London, UK for support. 853 

H. Y. is funded by the European Research Council (ERC) award (323195 and SZ-50371). 854 

S.R. was supported by the Academy of Finland (251217 and 255847), Center of Excellence in Complex 855 

Disease Genetics, EU FP7 projects ENGAGE (201413) and BioSHaRE (261433), the Finnish Foundation for 856 

Cardiovascular Research, Biocentrum Helsinki, and the Sigrid Juselius Foundation’ 857 

Peter Sever is an NIHR Senior Investigator and acknowledges support from the Biomedical Research Centre 858 

award to Imperial College Healthcare NHS Trust. 859 



Nicole Soranzo's research is supported by the Wellcome Trust (Grant Codes WT098051 and WT091310), the 860 

EU FP7 (EPIGENESYS Grant Code 257082 and BLUEPRINT Grant Code HEALTH-F5-2011-282510) and 861 

the National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Donor 862 

Health and Genomics at the University of Cambridge in partnership with NHS Blood and Transplant 863 

(NHSBT).  The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, 864 

the Department of Health or NHSBT. 865 

 866 

3. GoT2D and T2D-GENES consortia 867 

ADDITION: We would like to thank Torsten Lauritzen and Annelli Sandbæk for the use of the ADDITION 868 

cohort. The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent Research Center 869 

at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk 870 

Foundation (www.metabol.ku.dk). 871 

DPS:  has been financially supported by grants from the Academy of Finland (117844 and 40758, 211497, 872 

and 118590 (MU); The EVO funding of the Kuopio University Hospital from Ministry of Health and Social 873 

Affairs (5254), Finnish Funding Agency for Technology and Innovation (40058/07), Nordic Centre of 874 

Excellence on ‘Systems biology in controlled dietary interventions and cohort studies, SYSDIET (070014), 875 

The Finnish Diabetes Research Foundation, Yrjö Jahnsson Foundation (56358), Sigrid Juselius Foundation 876 

and TEKES grants 70103/06 and 40058/07.  877 

DR's EXTRA: This Study was supported by grants to Rainer Rauramaa by the Ministry of Education and 878 

Culture of Finland (627; 2004-2011), Academy of Finland (102318; 123885), Kuopio University Hospital, 879 

Finnish Diabetes Association, Finnish Heart Association, Päivikki and Sakari Sohlberg Foundation and by 880 

grants from European Commission FP6 Integrated Project (EXGENESIS); LSHM-CT-2004-005272, City of 881 

Kuopio and Social Insurance Institution of Finland (4/26/ 2010). 882 

FIN-D2D 2007: This study was supported by funds from the hospital districts of Pirkanmaa; Southern 883 

Ostrobothnia; North Ostrobothnia; Central Finland and Northern Savo; the Finnish National Public Health 884 

Institute; the Finnish Diabetes Association; the Ministry of Social Affairs and Health in Finland; Finland’s 885 

http://www.metabol.ku.dk/


Slottery Machine Association; the Academy of Finland [grant number 129293] and Commission of the 886 

European Communities, Directorate C-Public Health [grant agreement no. 2004310].  887 

FUSION: The FUSION study was supported by DK093757, DK072193, DK062370, and 1Z01 HG000024. 888 

Health 2006/2008:  This work was supported by the Timber Merchant Vilhelm Bang’s Foundation, the 889 

Danish Heart Foundation (Grant number 07-10-R61-A1754-B838-22392F), and the Health Insurance 890 

Foundation (Helsefonden; Grant number 2012B233). The Health2006 was financially supported by grants 891 

from the Velux Foundation; The Danish Medical Research Council, Danish Agency for Science, Technology 892 

and Innovation; The Aase and Ejner Danielsens Foundation; ALK-Abello A/S, Hørsholm, Denmark, and 893 

Research Centre for Prevention and Health, the Capital Region of Denmark. 894 

Inter99: The Inter99 was initiated by Torben Jørgensen (PI), Knut Borch-Johnsen (co-PI), Hans Ibsen and 895 

Troels F. Thomsen. The steering committee comprises Torben Jørgensen  and Charlotta Pisinger. The study 896 

was financially supported by research grants from the Danish Research Council, the Danish Centre for Health 897 

Technology Assessment, Novo Nordisk Inc., Research Foundation of Copenhagen County, Ministry of 898 

Internal Affairs and Health, the Danish Heart Foundation, the Danish Pharmaceutical Association, the 899 

Augustinus Foundation, the Ib Henriksen Foundation, the Becket Foundation, and the Danish Diabetes 900 

Association. 901 

METSIM: The METSIM study was supported by the Academy of Finland (contract 124243), the Finnish 902 

Heart Foundation, the Finnish Diabetes Foundation, Tekes (contract 1510/31/06), and the Commission of the 903 

European Community (HEALTH-F2-2007 201681), and the US National Institutes of Health grants 904 

DK093757, DK072193, DK062370, and 1Z01 HG000024.  905 

Genotyping of the METSIM and DPS studies, and part of the FUSION study, was conducted at the Genetic 906 

Resources Core Facility (GRCF) at the Johns Hopkins Institute of Genetic Medicine. The Broad Genomics 907 

Platform for genotyping of the FIN-D2D 2007, FINRISK 2007, DR'sEXTRA, and FUSION studies. 908 

 909 



Funding for the GoT2D and T2D-GENES studies was provided by grants NIH U01s DK085526, DK085501, 910 

DK085524, DK085545, and DK085584 (Multiethnic Study of Type 2 Diabetes Genes) and DK088389 (Low-911 

Pass Sequencing and High-Density SNP Genotyping for Type 2 Diabetes). 912 

C.M.L. is funded by the Wellcome Trust (086596/Z/08/Z) and the Li Ka Shing Foundation 913 

T.T. is funded by personal grants from the Finnish Cultural Foundation, the Emil Aaltonen Foundation and 914 

the Orion-Farmos Research Foundation. 915 

 916 

4. GTEx Project: The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of 917 

the Office of the Director of the National Institutes of Health. Additional funds were provided by the NCI, 918 

NHGRI, NHLBI, NIDA, NIMH, and NINDS. Donors were enrolled at Biospecimen Source Sites funded by 919 

NCI\SAIC-Frederick, Inc. (SAIC-F) subcontracts to the National Disease Research Interchange (10XS170), 920 

Roswell Park Cancer Institute 10XS171), and Science Care, Inc. (X10S172). The Laboratory, Data Analysis, 921 

and Coordinating Center (LDACC) was funded through a contract (HHSN268201000029C) to The Broad 922 

Institute, Inc. Biorepository operations were funded through an SAIC-F subcontract to Van Andel Institute 923 

(10ST1035). Additional data repository and project management were provided by SAIC-F 924 

(HHSN261200800001E). The Brain Bank was supported by a supplements to University of Miami grants 925 

DA006227, Washington University St Louis (MH101810), and the University of Pennsylvania (MH101822). 926 

The data used for the analyses described in this manuscript were obtained from the GTEx Portal and dbGaP 927 

accession number phs000424.v3.p1. 928 

 929 

5. MuTHER consortium (TwinsUK): The study was funded by the Wellcome Trust; European Community’s 930 

Seventh Framework Programme (FP7/2007-2013). The study also receives support from the National Institute 931 

for Health Research (NIHR) BioResource Clinical Research Facility and Biomedical Research Centre based 932 

at Guy's and St Thomas' NHS Foundation Trust and King's College London. Tim Spector is holder of an ERC 933 

Advanced Principal Investigator award. SNP Genotyping was performed by The Wellcome Trust Sanger 934 

Institute and National Eye Institute via NIH/CIDR. 935 



 936 

6. METASTROKE: provided in 25 937 

 938 

7. EchoGen consortium: provided in 27 939 

 940 

8. CHARGE-Heart Failure consortium 941 

 942 

ARIC Study: The ARIC Study is carried out as a collaborative study supported by National Heart, Lung, and 943 

Blood Institute (NHLBI) contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, 944 

HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and 945 

HHSN268201100012C), R01HL087641, R01HL59367 and R01HL086694; National Human Genome 946 

Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. 947 

The authors thank the staff and participants of the ARIC study for their important contributions. CHS: This 948 

CHS research was supported by NHLBI contracts HHSN268201200036C, HSN268200800007C, 949 

N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; 950 

and NHLBI grants U01HL080295, R01HL087652, R01HL105756, R01HL103612, and R01HL120393 with 951 

additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional 952 

support was provided through R01AG023629 from the National Institute on Aging (NIA). A full list of 953 

principal CHS investigators and institutions can be found at CHS-NHLBI.org. The provision of genotyping 954 

data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant 955 

UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research 956 

Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The 957 

content is solely the responsibility of the authors and does not necessarily represent the official views of the 958 

National Institutes of Health. FHS: The FHS was supported by NHLBI (Contract No. N01-HC-25195) and its 959 

contract with Affymetrix, Inc for genotyping services (Contract No. N02-HL-6-4278). This work was also 960 

supported in part by grants from the NHLBI 2K24HL04334, R01HL077477, and R01HL093328 (all to RSV). 961 

A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert 962 

Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and 963 

Boston Medical Center. The analyses reflect intellectual input and resource development from the FHS 964 



investigators participating in the SNP Health Association Resource (SHARe) project. The generation and 965 

management of GWAS genotype data for the Rotterdam Study is supported by the Netherlands Organisation 966 

of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012). This study is funded by the 967 

Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative 968 

(NGI)/Netherlands Organisation for Scientific Research (NWO) project nr. 050-060-810. We thank Pascal 969 

Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera and Marjolein Peters for their help in creating the GWAS 970 

database, and Karol Estrada and Maksim V. Struchalin for their support in creation and analysis of imputed 971 

data. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, 972 

Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for 973 

Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, 974 

Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are 975 

grateful to the study participants, the staff of the Rotterdam Study and the participating general practitioners 976 

and pharmacists.  977 

CL is funded by the NHLBI/NIH Contract #N01-HC-25195, NIH NIDDK R01 DK078616 and K24 DK080140, and 978 

by the Boston University School of Medicine 979 

ATK is supported in part by NHLBI grant R01HL117078 (MAP) and NIDDK grant R01DK89256 (IBB). 980 

 981 

 982 

Author contributions 983 

Supervision and management of the project: JMHH and PBM. The following authors contributed to the 984 

drafting of the manuscript: JMMH, PBM, PSu, HW, ASB, FD, JPC, DRB, KW, MT, FWA, LVW, NJS, JD 985 

AKM, HY, CMM, NG, XS, TaT, DFF, MHs, OG, TF, VT. All authors critically reviewed and approved the 986 

final version of the manuscript.  Statistical analysis review: JMMH, PSu, FD, HW, JPC, RY, NM, PBM, 987 

LVW, HY, TF, EMi, ADM, AM, AM, EE, ASB, FWA, MJC, CF, TF, SEH, ASH, JEH, JL, GM, JM, NM, 988 

APM, APo, NJS, RAS, LS, KE, MT, VT, TVV, NV, KW, AMY, WZg, NG, CML, AKM, XS, TT. Central 989 

Data QC: JMMH, ASB, PSu, RY, FD, HW, JPC, TF, LVW, PBM, EMi, NM, CML, NG, XS, AKM. 990 

Central Data analysis: JMMH, PSu, FD, HW, JPC, NG, CML, AKM, XS. Pathway analysis and 991 



literature review: JMMH, DRB, PBM, MT, KW, VT, OG, AT, FWA. GWAS lookups, eQTL analysis, 992 

GRS, variant annotation and enrichment analyses: JMMH, ASB, DRB, JRS, DFF, FD, MHr, PBM, 993 

FWA, TT, CML, AKM, SBu.  Study Investigators in alphabetical order by consortium (CHD Exome+, 994 

ExomeBP and GoT2D): DSA, PA, EA, DA, ASB, RC, JD, JF, IF, PF, JWJ, FKe, ASM, SFN, BGN, DS, 995 

NSa, JV, FWA, PIWB, MJB, MJC, JCC, JMC, IJD, GD, AFD, PE, TE, PWF, GG, PH, CH, KH, EI, MJ, 996 

FKa, SK, JSK, LLi, MIM, OM, AMe, ADM, APM, PBM, MEN, SP, CP, OPo, DP, SR, OR, IR, VS, NJS, 997 

PSe, TDS, JMS, NJW, CJW, EZ, MB, IB, FSC, LG, TH, EKH, PJ, JKu, ML, TAL, AL, KLM, HO, OPe, 998 

RR, JT, MU. Study Phenotyping in alphabetical order by consortium (CHD Exome+, ExomeBP and 999 

GoT2D): PA, DA, SBl, MC, JF, JWJ, FKe, KK, SFN, BGN, CJP, AR, MS, NSa, JV, WZo, RAB, MJB, 1000 

MJC, JCC, JMC, AFD, ASFD, LAD, TE, AF, GG, GH, PH, AS H, OLH, EI, MJ, FK, JSK, LLi, LLa, GM, 1001 

AMc, PM, AMe, RMg, MJN, MEN, OPo, NP, FR, VS, NJS, TDS, AVS, JMS, MT, AV, NV, NJW, TiT, 1002 

CC, LLH, MEJ, AK, PK, JL DPS, SM, ERBP, AS, TS, HMS, BT. Study Data QC and analysis in 1003 

alphabetical order by consortium (CHD Exome+, ExomeBP and GoT2D): ASB, AJMC, JMMH, JK, 1004 

SFN, BGN, MMN, SP, MP, PSu, ST, GV, SMW, RY, FWA, JPC, FD, AF, TF, CH, AMc, AMj, APM, 1005 

PBM, CP, WR, FR, NJS, MT, VT, HW, HY, NG, AKM, XS.  Exome chip data QC in alphabetical order 1006 

by consortium (CHD Exome+, ExomeBP and GoT2D): ASB, JMMH, SFN, BGN, PSu, RY, FWA, 1007 

PIWB, AIFB, JCC, JPC, PD, LAD, FD, EE, CF, TF, SEH, PH, SSH, KH, JEH, EK, AMj, GM, JM, NM, 1008 

EMi, AMo, APM, PBM, CPN, MJN, CP, AP, WR, NRR, RAS, NS, LS, KES, MDT, VT, TVV, TVV, NV, 1009 

HW, HY, AMY, EZ, WZg, NG, CML, AKM, XS. Exome chip Data analysis in alphabetical order by 1010 

consortium (CHD Exome+, ExomeBP and GoT2D): JMMH, PSu, RY, FWA, PIWB, AIFB, RAB, MJC, 1011 

JCC, JPC, PD, LAD, PE, EE, CF, TF, PWF, SF, CG, SEH, PH, ASH, CH, OLH, JEH, EI, MJ, FKa, JSK, 1012 

DCML, LLi, JL, GM, RMr, JM, NM, MIM, PM, OM, CM, EMi, AMo, APM, RMg, PBM, CPN, MJN, TO, 1013 

APo, APa, WR, NRR, NJS, RAS, NS, LS, TDS, KES, MDT, ET, VT, TVV, NV, LVW, NJW, HW, HY, 1014 

AMY, EZ, HZ, WZg, LLB, APG, NG, MHs, JRH, AUJ, JBJ, CML, AKM, NN, XS, AS, AJS. GRS 1015 

lookups: AEJ, EMa, HFM, HL, HMH, JFF, MTr, RSV, WL.  1016 
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Figure Legends 1137 

Figure 1 Study design and work flow diagram of single variant discovery analyses. EUR=European, SAS=South 1138 

Asian, HIS=Hispanic, AA=African American, HTN=hypertension, BP=blood pressure, SBP=systolic blood pressure, 1139 

DBP= diastolic blood pressure, PP=pulse pressure, N=sample size, MAF=minor allele frequency, P=P-value 1140 

significance threshold, SNV=single-nucleotide variant, GWS=genome-wide significance *Further details of the selection 1141 

criteria are provided in the methods. 1142 

Figure 2 Discovery SNV-BP associations.  Results are provided for (a) transformed SBP (b) transformed DBP (c) 1143 

transformed PP and (d) HTN in the European and South Asian (EUR_SAS) discovery samples. The y-axis represents –1144 

log10P for association. Red triangles represent variants that map to one of the 81 regions selected for replication, blue 1145 

triangles represent SNVs that map to previously published BP regions, and grey triangles represent all remaining SNVs. 1146 

SNVs are ordered according to chromosome (black lines on the outside of the plot) and physical position. Genes that 1147 

SNVs map to are given in the outer blocks. 1148 

 1149 

Figure 3 Overlap of the 30 novel loci associations across SBP, DBP, PP and HTN. The Venn diagram shows which 1150 

of the 30 newly identified BP loci are associated with multiple BP traits. Only SNV-BP trait associations that were 1151 

genome-wide significant (P < 5x10-8) in the combined discovery and replication meta-analyses are listed for any given 1152 

BP trait, within the corresponding ancestry dataset that the given locus was validated for (see Tables 1 and 2). The 1153 

association of RRAS variant with SBP was replicated in the independent samples, but did not achieve GWS in the 1154 

combined discovery and replication meta-analysis and is therefore only included for SBP. HTN=hypertension, 1155 

SBP=systolic blood pressure, DBP= diastolic blood pressure, PP=pulse pressure. 1156 

Figure 4 Study design for conditional analyses and rare variant gene-based discovery analyses. 1157 

RMW=RareMetalWorker, EUR=European, SAS = South Asian, HTN=hypertension, BP=blood pressure, SBP=systolic 1158 

blood pressure, DBP= diastolic blood pressure, PP=pulse pressure. N=sample size, MAF=minor allele frequency, P=P-1159 

value significance threshold, Pcond=conditional P-value significance threshold 1160 

Figure 5 Locus plot for A2ML1 and secondary amino acid structure of the gene product. (a) Locus plot for A2ML1 1161 

associated with HTN identified through gene based tests. The variants’ positions along the gene (x axis, based on 1162 



human genome build 37) and the –log10(P-value of association) (y axis) are indicated. The variants are colour coded: 1163 

nonsense (black), missense, predicted damaging (blue), and missense (orange). The schematic above the x-axis 1164 

represents the intron / exon (black vertical bars) structure, the untranslated regions are shown as grey vertical bars. 1165 

(b) The white box denotes the full-length amino acid sequence for each of the two gene products. Black numbers 1166 

denote amino acid residue positions of note. Coloured boxes depict putative functional domains (see below). Coloured 1167 

vertical lines indicate the amino acid substitutions corresponding to the variants depicted in the locus plots above using 1168 

the same colour coding. Bold, italic indicates the SNV association with smallest P-value. 1169 

Dark grey – signal peptide sequence. Brown – regions of intramolecular disulfide bonds. For simplicity only those 1170 

regions coinciding with variants described were indicated. Black – bait region described to interact with proteases. 1171 

Purple – thiol ester sequence region aiding in interaction with proteases. Light grey – alpha helical regions thought to 1172 

mediate A2ML1 interaction with LRP1, facilitating receptor-mediated endocytosis. 1173 
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 1175 

  1176 



Table 1 Novel blood pressure trait associated loci. Variants with formal replication 1177 

Variant information  Discovery Replication Combined 

Locus rsID Chr:Pos (EA:EAF) Trait Pt PU N β P N β P 

EUR 

RNF207 rs709209 1:6.28 (A:0.655) PP 4.57 x 10-6 1.60 x 10-6 122,780 0.17 5.83 x 10-4 284,683 0.20 9.62 x 10-9 

C5orf56 rs12521868 5:131.78 (T:0.373) DBP 1.59 x 10-6 3.03 x 10-7 122,795 -0.18 2.29 x 10-5 282,023 -0.19 6.12 x 10-11 

PHACTR1 rs9349379 6:12.90 (A:0.566) SBP 2.11 x 10-8 1.78 x 10-7 122,809 0.24 4.06 x 10-4 284,673 0.29 8.84 x 10-10 

COL21A1 rs200999181† 6:55.94 (A:0.002) PP 3.08 x 10-8 2.46 x 10-7 121,487 2.70 1.90 x 10-4 242,486 3.25 6.27 x 10-10 

ABO rs687621 9:136.14 (A:0.615) DBP 8.80 x 10-8 2.55 x 10-7 122,798 0.16 1.96 x 10-4 276,014 0.19 5.45 x 10-10 

ADO rs10995311 10:64.56 (C:0.567) DBP 1.86 x 10-6 1.14 x 10-6 122,798 0.23 8.47 x 10-8 266,456 0.21 1.12 x 10-12 

LMO1 rs110419 11:8.25 (A:0.48) DBP 9.41 x 10-6 2.22 x 10-5 122,798 0.16 1.81 x 10-4 279,935 0.16 3.04 x 10-8 

OR5B12 rs11229457 11:58.21 (T:0.236) SBP 1.58 x 10-6 4.62 x 10-5 122,809 -0.32 7.53 x 10-5 284,680 -0.31 2.70 x 10-8 

CERS5 rs7302981 12:50.54 (A:0.361) DBP 1.35 x 10-13 4.60 x 10-11 122,798 0.24 2.64 x 10-8 284,718 0.25 1.38 x 10-17 

MYH6 rs452036 14:23.87 (A:0.327) PP 4.59 x 10-11 2.80 x 10-13 122,780 -0.21 1.81 x 10-5 284,672 -0.28 2.96 x 10-16 

DPEP1 rs1126464 16:89.70 (C:0.256) DBP 1.19 x 10-9 4.35 x 10-11 118,677 0.24 1.68 x 10-6 261,564 0.28 1.02 x 10-15 

TBX2 rs8068318† 17:59.48 (T:0.698) DBP 7.46 x 10-13 5.71 x 10-10 122,798 0.26 3.23 x 10-8 281,978 0.26 1.95 x 10-16 

RGL3 rs167479 
19:11.53 (T:0.486) 

DBP 
2.22 x 10-23 1.97 x 10-22 

122,797 -0.29 
3.01 x 10-

11 
283,332 -0.33 1.99 x 10-31 

PREX1 rs6095241 20:47.31 (A:0.452) DBP 5.65 x 10-6 2.29 x 10-5 122,798 -0.18 2.56 x 10-5 281,322 -0.17 4.75 x 10-9 

ALL ancestry 

RBM47 rs35529250† 4:40.43 (T:0.01) SBP 6.56 x 10-7 6.15 x 10-6 148,878 -1.43 5.02 x 10-4 306,352 -1.55 2.42 x 10-8 

OBFC1 rs4387287 10:105.68 (A:0.157) SBP 2.23 x 10-8 1.32 x 10-7 147,791 0.28 3.37 x 10-4 320,494 0.36 9.12 x 10-10 

RRAS rs61760904† 19:50.14 (T:0.008) SBP 1.96 x 10-6 1.90 x 10-5 148,878 1.38 5.70 x 10-4 322,664 1.50 8.45 x 10-8 

SNV-BP associations are reported for the newly identified BP loci that replicated at P < 6.2 x 10-4 (Bonferroni correction for the 81 variants selected for replication for a primary 1178 
blood pressure trait; Methods). Loci are categorised into EUR and ALL ancestry based on the meta-analysis used to replicate the variants for the primary BP trait shown in columns 1179 
labelled ‘Trait’. In the columns that contains the discovery meta-analyses results, Pt represents the P-value for association of the variant with the transformed primary BP trait in the 1180 
EUR_SAS discovery meta-analyses (which was also used to select the variant for replication) and Pu  represents the P-value for association with the untransformed primary BP trait 1181 
in the ancestry in which the variant replicated. N, β and P, which denote the number of samples, estimated allelic effect and P-value for association with the primary BP trait, are 1182 
provided for the untransformed primary BP trait in the replication data and also from the combined (discovery and replication) meta-analyses. NB: ALL ancestry corresponds to all 1183 
ancestries in the combined (discovery + replication) meta-analyses 1184 
Locus – Gene or region containing the SNV, rsID - dbSNP rsID. Chr:Pos (EA:EAF) – Chromosome:NCBI Build 37 position in Mb (effect allele:effect allele frequency), Trait – primary 1185 
blood pressure trait for which the variant was and also replicated, β - effect estimate, N:sample size, EUR - European.  1186 
† indicates it is a non-synonymous SNV (nsSNV) or is in linkage disequilibrium with a nsSNV (r2 > 0.8) that is predicted to be damaging   1187 



Table 2 Novel blood pressure trait associated loci. Variants with GWS evidence of association in combined 1188 
meta-analyses 1189 
 1190 

Variant information  Discovery Replication Combined 

Locus rsID Chr:Pos (EA:EAF) Trait Pt PU N β P N β P 

EUR 

2q36.3 rs2972146 2:227.10 (T:0.652) DBP§ 
(HTN) 

1.51 x 10-9 2.47 x 10-7 122,798 0.13 2.20 x 10-3 275,610 0.17 8.40 x 10-9 

ZBTB38 rs16851397 3:141.13 (A:0.953) DBP§ 
(SBP) 

6.87 x 10-6 3.20 x 10-5 122,798 -0.38 1.20 x 10-4 284,717 -0.38 3.01 x 10-8 

PRDM6 rs1008058 5:122.44 (A:0.135) SBP 5.09 x 10-7 1.01 x 10-8 43,109 0.46 3.61 x 10-3 176,362 0.55 2.99 x 10-10 

GPR20 rs34591516 8:142.37 (T:0.055) SBP§ 
(DBP) 

1.54 x 10-6 1.01 x 10-7 122,807 0.51 4.20 x 10-4 282,009 0.64 6.10 x 10-10 

HOXB7 rs7406910 17:46.69 (T:0.118) SBP 6.07 x 10-10 2.74 x 10-9 122,809 -0.20 4.89 x 10-2 284,690 -0.46 3.80 x 10-8 

AMH rs10407022† 19:2.25 (T:0.82) PP 1.63 x 10-7 1.73 x 10-7 118,656 -0.19 1.62 x 10-3 252,525 -0.26 5.94 x 10-9 

ZNF101 rs2304130 19:19.79 (A:0.914) DBP 1.66 x 10-8 1.92 x 10-8 122,798 -0.17 1.71 x 10-2 284,705 -0.29 1.53 x 10-8 

PROCR rs867186 20:33.76 (A:0.873) DBP 1.44 x 10-6 4.15 x 10-7 122,798 0.21 2.48 x 10-3 284,722 0.26 1.19 x 10-8 

RRP1B rs9306160 21:45.11 (T:0.374) DBP§ 
(SBP) 

1.04 x 10-8 1.90 x 10-6 100,489 -0.16 4.30 x 10-4 249,817 -0.18 6.80 x 10-9 

TNRC6B rs470113 22:40.73 (A:0.804) PP 1.48 x 10-10 1.31 x 10-9 122,780 -0.14 1.37 x 10-2 284,683 -0.25 1.67 x 10-9 

ALL ancestry 

7q32.1 rs4728142 7:128.57 (A:0.433) SBP 8.10 x 10-6 4.21 x 10-6 150,542 -0.21 8.62 x 10-4 338,338 -0.24 3.45 x 10-8 

PRKAG1 rs1126930† 12:49.40 (C:0.036) PP 2.12 x 10-6 4.62 x 10-7 151,481 0.36 3.74 x 10-3 314,894 0.50 3.34 x 10-8 

SBNO1 rs1060105 12:123.81 (T:0.209) DBP 6.66 x 10-7 1.09 x 10-6 150,532 -0.15 2.67 x 10-3 336,413 -0.18 3.07 x 10-8 

 1191 
SNV-BP associations are reported for the newly identified BP loci that showed genome-wide significant association (P < 5 x 10-8) in the combined discovery and replication meta-1192 
analyses. In the columns that contain results from the discovery meta-analyses, Pt represents the P-value for association of the variant with the transformed primary BP trait in the 1193 
EUR_SAS discovery meta-analyses (used to select the variant for replication) and Pu represents the P-value for association with the untransformed BP trait in the ancestry in which 1194 
the variant was validated.  Loci are categorised into EUR and ALL ancestry based on the ancestry in which the variant showed association with a blood pressure trait at P < 5 x 10-8. 1195 
N, β and P, which denote the number of samples, estimated allelic effect and P-value for association with the validated BP trait, are provided for the untransformed BP trait in the 1196 
replication data and also from the combined (discovery and replication) meta-analyses. NB: ALL ancestry corresponds to all ancestries in the combined (discovery + replication) 1197 
meta-analyses.  1198 
 1199 
Locus – Gene or region containing the SNV, rsID - dbSNP rsID. Chr:Pos (EA:EAF) – Chromosome:NCBI Build 37 position in Mb (effect allele:effect allele frequency), Trait - blood 1200 
pressure trait for which association is reported, EUR - European.  1201 
§ At four loci (2q36.3, ZBTB38, GPR20 and RRP1B) the primary trait used to select the variants for replication is given in parentheses because the variant associations were 1202 
validated in the combined meta-analysis for the listed secondary trait. For these variants, Pt denotes the P-value for association with the primary trait, the other P-values provided 1203 
are for the secondary trait.  1204 
† indicates it is a non-synonymous SNV (nsSNV) or is linkage disequilibrium with a nsSNV (r2>0.8) that is predicted to be damaging1205 



Table 3 Results of the genetic risk score analyses across CVD traits and risk factors. 1206 

CHD, coronary heart disease; HDL, high density lipoprotein; LDL, low density lipoprotein; eGFR, estimated glomerular filtration rate; DBP, diastolic blood pressure; SBP systolic blood pressure; PP, pulse pressure; OR, odds ratio; g, grams; INVT, inverse normally 1207 

transformed (hence no units); N, sample size; P, P-value of association of BP with the trait listed; CI, confidence interval. Results are considered significant if P < 0.0038, which corresponds to a Bonferroni correction for 13 phenotypes tested.1208 

Outcome Units N DBP (per 10mmHg increase) SBP (per 10mmHg increase) PP (per 10mmHg increase) 

   Effect [95% CI] P Effect [95% CI] P Effect [95% CI] P 

CHD OR 82,056  1.62 [ 1.28, 2.05] 5.99 x 10-5  1.39 [ 1.22, 1.59] 6.07 x 10-7  1.70 [ 1.34, 2.16] 1.20 x 10-5 

Ischemic stroke OR 25,799  1.93 [ 1.47, 2.55] 2.81 x 10-6  1.57 [ 1.35, 1.84] 1.16 x 10-8  2.12 [ 1.58, 2.84] 5.35 x 10-7 

Cardioembolic stroke OR 16,113  1.43 [ 0.86, 2.39] 0.1683  1.33 [ 0.99, 1.80] 0.0584  1.73 [ 1.00, 3.02] 0.0518 

Large vessel stroke OR 13,903  2.26 [ 1.25, 4.08] 0.0068  1.85 [ 1.32, 2.59] 3.61 x 10-4  3.05 [ 1.64, 5.68] 4.37 x 10-4 

Small vessel stroke OR 15,617  1.96 [ 1.13, 3.41] 0.0168  1.56 [ 1.13, 2.16] 0.0064  1.98 [ 1.09, 3.61] 0.0248 

Heart failure OR 13,282  1.48 [ 1.02, 2.17] 0.0409  1.25 [ 1.00, 1.57] 0.0512  1.33 [ 0.88, 2.02] 0.1757 

Left ventricular mass g 11,273  9.57 [ 3.98,15.17] 8.02 x 10-4  5.13 [ 1.77, 8.48] 0.0027  5.97 [-0.38,12.31] 0.0653 

Left ventricular wall thickness cm 11,311  0.10 [ 0.06, 0.13] 1.88 x 10-8  0.05 [ 0.03, 0.07] 5.52 x 10-6  0.05 [ 0.01, 0.09] 0.0187 

HDL mg/dl 80,395  0.25 [-1.00, 1.51] 0.6930  0.21 [-0.50, 0.92] 0.5622  0.47 [-0.79, 1.73] 0.4668 

LDL mg/dl 77,021 -1.57 [-5.20, 2.06] 0.3972  0.07 [-2.03, 2.16] 0.9498  1.87 [-1.86, 5.59] 0.3255 

Total cholesterol mg/dl 80,455 -1.34 [-5.90, 3.22] 0.5639  0.70 [-1.93, 3.32] 0.6029  3.68 [-0.97, 8.33] 0.1209 

Triglycerides mg/dl 77,779  0.02 [-0.03, 0.08] 0.3859  0.02 [-0.01, 0.05] 0.2697  0.03 [-0.03, 0.08] 0.3025 

BMI INVT 526,508 -0.10 [-0.18,-0.01] 0.0342 -0.07 [-0.13,-0.02] 0.0058 -0.12 [-0.23,-0.02] 0.0165 

WHRadjBMI INVT 344,369  0.03 [-0.04, 0.11] 0.4025  0.03 [-0.02, 0.08] 0.2170  0.06 [-0.03, 0.15] 0.1885 

Height INVT 458,927  0.02 [-0.15, 0.18] 0.8592 -0.04 [-0.15, 0.06] 0.4170 -0.18 [-0.37, 0.01] 0.0683 

eGFR INVT 51,039 -0.02 [-0.15, 0.11] 0.7810 -0.03 [-0.10, 0.04] 0.4080 -0.07 [-0.20, 0.06] 0.2741 
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Online Methods 1211 

Overview of discovery studies 1212 

The cohorts contributing to the discovery meta-analyses comprise studies from three consortia (CHD 1213 

Exome+, ExomeBP, and GoT2D/T2D-GENES) with a total number of 192,763 unique samples.  All 1214 

participants provided written informed consent and the studies were approved by their local Research Ethics 1215 

Committees and/or Institutional Review Boards.  1216 

The CHD Exome+ consortium comprised 77,385 samples: eight studies (49,898 samples) of European 1217 

(EUR) ancestry, two studies (27,487 samples) of South Asian (SAS) ancestry (Supplementary Table 1). The 1218 

ExomeBP consortium included 25 studies (75,620 samples) of EUR ancestry (Supplementary Table 1).  The 1219 

GoT2D consortium comprised 14 studies (39,758 samples) of Northern EUR ancestry from Denmark, 1220 

Finland, and Sweden (Supplementary Table 1). The participating studies and their characteristics including 1221 

BP phenotypes are detailed in Supplementary Tables 1 and 2. Note, any studies contributing to multiple 1222 

consortia were only included once in all meta-analyses.  1223 

Phenotypes 1224 

Four blood pressure (BP) traits were analysed: systolic blood pressure (SBP), diastolic blood pressure 1225 

(DBP), pulse pressure (PP) and hypertension (HTN).  For individuals known to be taking BP lowering 1226 

medication, 15/10 mmHg was added to the raw SBP/DBP values, respectively, to obtain medication-1227 

adjusted SBP/DBP values45.  PP was defined as SBP minus DBP, post-adjustment.  For HTN, individuals 1228 

were classified as hypertensive cases if they satisfied at least one of: (i) SBP≥140 mmHg, (ii) DBP≥90 1229 

mmHg, (iii) taking anti-hypertensive or BP lowering medication. All other individuals were included as 1230 

controls. The four BP traits were correlated (SBP:DBP correlations were between 0.6 and 0.8, and SBP:PP 1231 

correlations were ~0.8). However, they measure partly distinct physiological features including, cardiac 1232 

output, vascular resistance, and arterial stiffness, all measures for determining a cardiovascular risk profile. 1233 

Therefore the genetic architecture of the individual phenotypes are of interest, and a multi-phenotype 1234 

mapping approach was not adopted. 1235 

 1236 



 1237 

Genotyping 1238 

All samples were genotyped using one of the Illumina HumanExome Beadchip arrays (Supplementary Table 1239 

3). An Exome chip quality control Standard Operating Procedure (SOP) developed by Anubha Mahajan, 1240 

Neil Robertson and Will Rayner at the Wellcome Trust Centre for Human Genetics, University of Oxford 1241 

was used by most studies for genotype calling and QC46 (Supplementary Table 3). All genotypes were 1242 

aligned to the plus strand of the human genome reference sequence (Build37) prior to any analyses and any 1243 

unresolved mappings were removed. Genotype cluster plots were reviewed for all the novel rare variants 1244 

(both lead and secondary signals) and for rare variants that contributed to the gene-based testing. 1245 

Meta-analyses 1246 

Meta-analyses were performed using METAL47, for both discovery and replication analyses, using inverse 1247 

variance weighted fixed effect meta-analysis for the continuous traits (SBP, DBP and PP) and sample size 1248 

weighted meta-analysis for the binary trait (HTN). 1249 

Discovery SNV analyses 1250 

Analyses of both untransformed and inverse normal transformed SBP, DBP and PP were conducted within 1251 

each contributing study. The analyses of the transformed traits were performed in order to minimise 1252 

sensitivity to deviations from normality in the analysis of rare variants and for discovery of new SNV-BP 1253 

associations. The residuals from the null model obtained after regressing the medication-adjusted trait on the 1254 

covariates (age, age2, sex, BMI, and disease status for CHD) within a linear regression model, were ranked 1255 

and inverse normalised. These normalised residuals were used to test trait-SNV associations. All SNVs that 1256 

passed QC were analysed for association, without any further filtering by MAF, but a minor allele count of 1257 

10 was used for the analysis of HTN. An additive allelic effects model was assumed.  1258 

Two meta-analyses were performed for each trait, one with EUR and SAS ancestries combined (EUR_SAS) 1259 

and another for EUR ancestry alone. Contributing studies used principal components (PCs) to adjust for 1260 

population stratification. Consequently minimal inflation in the association test statistics, λ, was observed (1261 



λ=1.07 for SBP, 1.10 for DBP, 1.04 for PP and <1 for HTN in the transformed discovery meta-analysis in 1262 

EUR_SAS; λ= 1.06 for SBP, 1.09 for DBP, 1.05 for PP and <1 for HTN in the transformed discovery 1263 

meta-analysis in EUR; Supplementary Figure 6). The meta-analyses were performed independently in two 1264 

centres and results were found to be concordant between centres. Given the studies contributing to the 1265 

discovery analyses were ascertained on CHD or T2D, we tested potential systematic bias in calculated effect 1266 

estimates amongst these studies. No evidence of bias in the overall effect estimates was obtained. 1267 

The results for the transformed traits were taken forward and used to select candidate SNVs for replication. 1268 

Results (P-values) from the transformed and untransformed analyses were strongly correlated (r2>0.9).  1269 

Replication SNV analyses 1270 

SNVs associated with any of the transformed traits (SBP, DBP, PP) or HTN were annotated using the 1271 

Illumina SNV annotation file, humanexome-12v1_a_gene_annotation.txt, independently across two centres. 1272 

Given the difference in power to detect common versus low frequency and rare variant associations, two 1273 

different significance thresholds were chosen for SNV selection. For SNVs with MAF≥0.05, P≤1x10-5 was 1274 

selected, while, P≤ 1x10-4 was used for SNVs with MAF < 0.05. By choosing a significance threshold of 1275 

P<1x10-4 we maximized the opportunity to follow-up rare variants (making the assumption that any true 1276 

signals at this threshold could replicate at Bonferroni adjusted significance, P≤6.17x10-4, assuming α=0.05 1277 

for 81 SNVs). All previously published BP associated SNVs and any variants in LD with them (r2>0.2), 1278 

were removed from the list of associated SNVs as we aimed to replicate new findings only. SNVs for which 1279 

only one study contributed to the association result or showed evidence of heterogeneity (Phet<0.0001) were 1280 

removed from the list as they were likely to be an artefact. Where SNVs were associated with multiple traits, 1281 

to minimise the number of tests performed, only the trait with the smallest P-value was selected as the 1282 

primary trait in which replication was sought. Where multiple SNVs fitted these selection criteria for a 1283 

single region, only the SNV with the smallest P-value was selected. In total, 81 SNVs were selected for 1284 

validation in independent samples. These 81 SNVs had concordant association results for both transformed 1285 

and non-transformed traits. Eighty SNVs were selected from EUR_SAS results (with consistent support in 1286 

EUR), and one SNV from EUR results only. In the next step, we looked up the 81 SNV-BP associations 1287 

using data from a separate consortium, the CHARGE+ exome chip blood pressure consortium (who had 1288 



analysed untransformed SBP, DBP, PP and HTN), and UHP and Lolipop (ExomeBP consortium; 1289 

Supplementary Tables 2 and 3). The analysed residuals from CHARGE+ were approximately normally 1290 

distributed in their largest studies (Supplementary Figure 7). 1291 

Two meta-analyses of the replication datasets were performed: one of EUR samples, and a second of EUR, 1292 

African American, Hispanics and SAS ancestries (“ALL”). Replication was confirmed if P (1-tailed) < 1293 

0.05/81=6.17x10-4 and the effect (beta) was in the direction observed in discovery meta-analyses for the 1294 

selected trait. A combined meta-analysis was performed of discovery (untransformed results as only 1295 

untransformed data was available from CHARGE+ exome chip blood pressure consortium) and replication 1296 

results across the four traits to assess the overall support for each locus. For the combined meta-analyses, a 1297 

GWS threshold of, P≤5x10-8, was used to declare a SNV as novel rather than a less stringent experiment 1298 

wide threshold, as GWS is used to declare significance in GWAS and we wish to minimise the possibility of 1299 

false positive associations. (Note that GWS is equivalent to an exome-wide threshold of P≤2x10-7 adjusted 1300 

for four traits). 1301 

 1302 

Note: all validated BP-associated variants were associated at P<10-5 in the discovery dataset (for the primary 1303 

trait). Hence, we could have used the same inclusion criteria for both common and rare SNVs. Therefore the 1304 

optimal threshold to choose for future experiments may need further consideration. 1305 

Conditional analyses and gene-based tests 1306 

The RAREMETALWORKER (RMW) tool15 (version 4.13.3) that does not require individual level data to 1307 

perform conditional analyses and gene-based tests was used for conditional analyses. All studies that 1308 

contributed to the SNV discovery analyses were re-contacted and asked to run RMW. Only FENLAND, 1309 

GoDARTS, HELIC-MANOLIS, UKHLS and EPIC-InterAct were unable to run RMW, while two new 1310 

studies were included, INCIPE and NFBC1966 (Supplementary Table 1 and 2). In total, 43 studies (147,402 1311 

samples) were included in the EUR analyses and 45 studies (173,329 samples) in the EUR_SAS analyses 1312 

(Supplementary Tables 2 and 3). Comparison of discovery and RMW study level results were made 1313 

(Supplementary Information).  1314 



For each novel locus, the genomic coordinates and size of the region were defined according to 1315 

recombination rates (Supplementary Table 9) around the lead variant. For known loci, a 1 Mb window was 1316 

used (Supplementary Table 14). Conditional analyses were performed across each region, in both EUR and 1317 

EUR_SAS samples, for the transformed phenotype corresponding to the validated BP trait for novel loci and 1318 

the published BP trait for known loci. 1319 

Gene based tests were performed in both the EUR and EUR_SAS datasets using the Sequence Kernel 1320 

Association Test (SKAT)16 method implemented in RMW as it allows for the SNVs to have different 1321 

directions and magnitudes of effect. Burden tests were also performed but are not presented as only SKAT 1322 

provided significant results. The variants in the gene-based tests using SKAT were weighted using the 1323 

default settings, i.e. a beta distribution density function to up-weight rare variants, Beta(MAFj,1,25) where 1324 

MAFj represents the pooled MAF for variant j across all studies. Analyses were restricted to coding SNVs 1325 

with MAF<5% and <1%. Genes were deemed to be associated if P <2.8x10-6 (Bonferroni adjusted for 1326 

17,996 genes). To confirm the gene associations were not attributable to a solitary SNV, a gene-based test 1327 

conditional on the most associated SNV was performed (Pconditional< 0.001). The QC of all SNVs 1328 

contributing to the gene based tests including the number of samples and studies were checked prior to 1329 

claiming association. We sought replication of associated genes in the CHARGE+ exome chip blood 1330 

pressure consortium.  1331 

 1332 

Pathway analyses with MAGENTA 1333 

We tested seven databases in MAGENTA37 (BioCarta, Kyoto Encyclopedia of Genes and Genomes, 1334 

Ingenuity, Panther, Panther Biological Processes, Panther Molecular Functions and Reactome) for 1335 

overrepresentation of the SNV discovery results from both EUR and EUR_SAS ancestries. Each of the four 1336 

BP phenotypes were tested. Pathways exhibiting P<0.01 and FDR<5% were considered statistically 1337 

significant. 1338 

GeneGo MetaCore Network analyses 1339 



A set of BP genes based on previously published studies and our current results (locus defined as r2>0.4 and 1340 

500kb on either side of the lead SNV; Supplementary Table 19) were tested for enrichment using the 1341 

THOMSON REUTERS MetaCoreTM Single Experiment Analysis workflow tool. The data were mapped 1342 

onto selected MetaCore ontology databases: pathway maps, process networks, GO processes and diseases / 1343 

biomarkers, for which functional information is derived from experimental literature. Outputs were sorted 1344 

based on P- and FDR-values. A gene set was considered enriched for a particular process if P<0.05 and 1345 

FDR<5%. 1346 

 1347 
Genetic Risk Score 1348 
 1349 

To assess the effect of BP on CHD, ischemic stroke (and subtypes: large vessel, small vessel and 1350 

cardioembolic stroke) left ventricular mass, left ventricular wall thickness, heart failure, HDL-c, LDL-c, 1351 

total cholesterol, triglycerides and eGFR, we performed a weighted generalized linear regression of the 1352 

genetic associations with each outcome variable on the genetic associations with BP.  1353 

When genetic variants are uncorrelated, the estimates from such a weighted linear regression analysis using 1354 

summarized data, and a genetic risk score analysis using individual-level data, are equal48. We refer to the 1355 

analysis as a genetic risk score (also known as a polygenic risk score) analysis as this is likely to be more 1356 

familiar to applied readers. As some of the genetic variants in our analysis are correlated, a generalized 1357 

weighted linear regression model is fitted that accounts for the correlations between variants, as follows:  1358 

If βX are the genetic associations (beta-coefficients) with the risk factor (here, BP) and βY are the genetic 1359 

associations with the outcome, then the causal estimate from a weighted generalized linear regression is (βX
T 1360 

Ώ-1βX)-1 βX
TΏ-1βY, with standard error, 1361 

 𝜎̂√(𝛽𝑋
𝑇Ω−1𝛽𝑋)−1, 1362 

where T is a matrix transpose, 𝜎̂ is the estimate of the residual standard error from the regression model, and 1363 

the weighting matrix Ώ has terms 1364 

Ω𝑗1𝑗2 = 𝜎𝑌𝑗1𝜎𝑌𝑗2ρ𝑗1𝑗2 1365 

,where σYj is the standard error of the genetic association with the outcome for the jth SNV, and ρj1j2 is the 1366 

correlation between the j1th and j2 th SNVs. The presence of the estimated residual standard error allows for 1367 



heterogeneity between the causal estimates from the individual SNVs as overdispersion in the regression 1368 

model (in the case of underdispersion, the residual standard error estimate is set to unity). This is equivalent 1369 

to combining the causal estimates from each SNV using a multiplicative random-effects model49. 1370 

 1371 

For each of SBP, DBP and PP, the score was created using both the novel and known BP SNVs or a close 1372 

proxy (r2>0.8). Both the sentinel SNV association and any secondary SNV associations that remained after 1373 

adjusting for the sentinel SNV were included in the genetic risk score. For the 30 validated novel SNV-BP 1374 

associations, βs were taken from the independent replication analyses (Table 1 and 2) to weight the SNV in 1375 

the genetic risk score. For the secondary SNVs from the seven novel loci and five known loci, βs were taken 1376 

from the discovery analyses (Supplementary Tables 10 and 15). For the 82 known SNVs, 43 were either 1377 

genotyped or had proxies on the Exome chip and the βs were taken from discovery results (Supplementary 1378 

Table 13), the remaining βs were taken from published effect estimates. This strategy for selecting betas for 1379 

use in the GRS was taken to minimize the influence of winner’s curse. The associations between the BP 1380 

variants with CHD, HDL-c, LDL-c, total cholesterol, log(triglycerides) and log(eGFR) were obtained using 1381 

the CHD Exome+ Consortium studies, the associations with BMI, waist-hip ratio adjusted BMI and height 1382 

from the GIANT consortium (unpublished data), ischemic stroke from METASTROKE25, and left 1383 

ventricular mass, left ventricular wall thickness and heart failure from EchoGen27 and CHARGE-HF26. A 1384 

causal interpretation of the association of GRS with the outcome as the effect of BP on the outcome assumes 1385 

that the effects of genetic variants on the outcome are mediated via blood pressure and not via alternate 1386 

causal pathways, for example via LV thickness. There are also limitations of the Mendelian randomization 1387 

approach in distinguishing between the causal effects of different measures of blood pressure, due to the 1388 

paucity of genetic variants associated with only one measure of blood pressure. 1389 

 1390 

eQTL analyses 1391 

The MuTHER dataset contains gene expression data from 850 UK twins for 23,596 probes and 2,029,988 1392 

(HapMap 2 imputed) SNVs. All cis–associated SNVs with FDR<1%, within each of the 30 novel regions 1393 

(IMPUTE info score >0.8) were extracted from the MuTHER project dataset for, LCL (n=777), adipose 1394 



(n=776) and skin (n=667) 50. The pilot phase of the GTEx Project (dbGaP Accession phs000424.v3.p1) 1395 

provides expression data from up to 156 individuals for 52,576 genes and 6,820,472 genotyped SNVs 1396 

(imputed to 1000 Genomes project, MAF≥5%)51.  The eQTL analysis was focused on subcutaneous adipose 1397 

tissue (n=94), tibial artery (n=112), heart (left ventricle) (n=83), lung (n=119), skeletal muscle (n=138), 1398 

tibial nerve (n=88), skin (sun exposed, lower leg) (n=96), thyroid (n=105) and whole blood (n=156) which 1399 

have >80 samples and genes expressed at least 0.1 RPKM in 10 or more individuals in a given tissue. All 1400 

transcripts with a transcription start site (TSS) within one of the 30 new BP loci and for which there was a 1401 

cis-associated SNV (IMPUTE info score >0.4) within 1Mb of the TSS at FDR<5%, were identified.  Kidney 1402 

was not evaluated because the sample size was too small (n=8). From each resource, we report eQTL 1403 

signals, which reach the resource-specific thresholds for significance described above, for SNVs that are in 1404 

LD (r2>0.8) with our sentinel SNV. 1405 

For identified eQTLs, we tested whether they colocalised with the BP associated SNV52. Colocalisation 1406 

analyses were considered to be significant if the posterior probability of colocalisation was greater than 0.95. 1407 

Annotation of variants 1408 

In silico prediction of the functional effect of associated variants was based on the annotation from dbSNP, 1409 

the Ensembl Variant Effect Predictor tool and the Exome Variant Server, NHLBI GO Exome Sequencing 1410 

Project (ESP), Seattle, WA. 1411 

Trait variance explained 1412 

The percentage trait variance explained for SBP, DBP, PP was assessed with 5,861 individuals with 1413 

complete information for all phenotypes and covariates from the population-based cohort, 1958BC.   1414 

Two genetic models were investigated: one containing the 43 previously known BP associated SNVs 1415 

covered on the Exome chip; the other additionally including the 30 novel lead SNVs and 9 conditionally 1416 

independent SNVs from both novel and known loci.  These nine conditionally independent SNVs were 1417 

taken from the EUR results, as 1958BC is EUR. They included four from novel loci (PREX1, COL21A1, 1418 

PRKAG1 and MYH6 (there was only 1 in EUR); Supplementary Table 10) and five from known loci (ST7L-1419 

CAPZA1-MOV10, FIGN-GRB14, ENPEP, TBX5-TBX3 and HOXC4; Supplementary Table 15). 1420 



The residual trait was obtained by adjusting each of the BP traits in a regression model with sex and BMI 1421 

variables (not age or age2 as all 1958BC individuals were aged 44 years).  The residual trait was regressed 1422 

on all SNVs within the corresponding model and adjusted for the first ten PCs.  The R2 calculated from this 1423 

regression model was used as the percentage trait variance explained. 1424 

 1425 

Monogenic Enrichment analyses 1426 

To determine if sub-significant signals of association were present in a set of genes associated with 1427 

monogenic forms of disease, we performed an enrichment analysis of the discovery single variant meta-1428 

analyses association results for all four traits, both for EUR and EUR_SAS datasets. 1429 

The monogenic gene set included: WNK1, WNK4, KLHL3, CUL3, PPARG, NR3C2, CYP11B1, CYP11B2, 1430 

CYP17A1, HSD11B2, SCNN1A, SCNN1B, SCNN1G, CLCNKB, KCNJ1, SLC12A1, SLC12A33.  The 1431 

association results of coding SNVs in these genes were extracted and the number of tests with P<0.001 1432 

observed.  In order to determine how often such an observation would be observed by chance, we 1433 

constructed 1,000 matched gene sets. The matching criteria for each monogenic gene was the intersection of 1434 

all genes in the same exon length quintile and all genes in the same coding variant count decile. Within the 1435 

matched sets, the number of variants with P<0.001 was observed.  The empirical P-value was calculated as 1436 

the fraction of matched sets with an equal or larger number of variants less than 0.001. 1437 

 1438 
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