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We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed
to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems
such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded
and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the
molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian
(site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix
elements are obtained using our recently developed analytic overlap method. We derive a general
expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the
nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in
a model ethylene dimer and through a chain of ten model ethylenes validate our implementation
and demonstrate its computational efficiency. On the larger system, we calculate the qualitative
behaviour of charge mobility with change in temperature T for different regimes of the intermolecular
electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated
regime at low temperatures to a band-like transport regime at higher temperatures. For higher
electronic couplings, the thermally activated regime disappears and the mobility decreases according
to a power law. This is interpreted by a gradual loss in probability for resonance between the
sites as the temperature increases. The polaron hopping model solved for the same system gives a
qualitatively different result and underestimates the mobility decay at higher temperatures. Taken
together, the FOB-SH methodology introduced here shows promise for a realistic investigation of
charge carrier transport in complex organic, aqueous, and biological systems. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4960144]

I. INTRODUCTION

The transport of charge carriers through organic and
biological semiconductors is at the heart of many exciting
technologies such as organic electronics, organic light-
emitting diodes and photovoltaics, and nanobioelectronics.
While important progress has been made by several groups
in recent years towards theory and computational modeling
of charge transport (CT) in organic semiconductors (OSs),1–10

the nature of excess electrons and electron holes in these
materials, as well as their transport mechanism, is still not
very well understood. There are two crucial differences with
respect to inorganic semiconductors that make the theoretical
treatment challenging. First, OS is characterized by a high
degree of thermal fluctuations, as the molecules forming the
material are held together by the relatively weak van der Waals
interactions. Second, the dielectric constant of OS is very low,
usually not exceeding 4-6. As we will discuss below, these two
materials’ characteristics place CT in OS in a difficult regime,
where common assertions of standard theories, such as band
theory or small polaron hopping, are often not valid.6,7,10–13

The band-like description relies on “Bloch” states and
breaks down for ambient temperatures (T) where the mean

a)e-mail: j.blumberger@ucl.ac.uk

free path is comparable to intermolecular lattice spacings.14,15

This theory does not take into account the effects of strong,
anharmonic thermal molecular motions on charge transport,
which are particularly pronounced in OS due to the weak
van der Waals interactions. On the other hand, the thermally
activated charge (or small polaron) hopping mechanism, which
is often assumed in the literature, is problematic, at least for
single crystalline materials without deep traps. See, e.g.,
Refs. 11–13 and 16 for the case of fullerene single crystals.
Activation energies for charge hopping are typically very
small in these materials (0.1 eV) and may even disappear for
certain molecular configurations, as illustrated in Figure 1.
This is due to small reorganization energy λ (also termed
local electron-phonon coupling), which is a consequence
of the low dielectric constant of OS, in combination with
relatively large electronic couplings between the molecules,
Hab. For configurations where Hab ≥ λ/2, the energy barrier
for CT disappears (assuming equal site energies) and localized
charge carriers no longer form.

What makes CT in OS complex is the strong coupling
between electron and nuclear dynamics. Since nuclear thermal
fluctuations are large, they may not be treated as a perturbation
of the electronic problem, as is done in band theory or
Greens function approaches, while the electronic problem
may not be integrated out and treated as a perturbation of
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FIG. 1. Adiabatic (red) and diabatic (blue) free energy surfaces for electron
transfer. The adiabatic surfaces are plotted for three different values of the
electronic coupling matrix element (transfer integral) Hab for constant re-
organization free energy λ. ∆E is the diabatic energy gap (or site energy
difference) Eq. (51).

the nuclear problem, as is done in hopping models. What
is needed is a unified framework that is able to treat both
the electron and nuclear dynamics at an equal footing. Then
an unbiased description of the CT mechanism is possible,
which can encompass a broad spectrum ranging from delo-
calized band transport, polaronic hopping, disorder-induced
hopping, carrier tunneling, and combinations thereof. Several
theoretical frameworks have been developed to treat coupled
electron-nuclear dynamics including multi-configurational
time-dependent Hartree,17,18 ab initio multiple spawning,19,20

exact factorization of the molecular wavefunction,21–23 and
mixed quantum-classical non-adiabatic molecular dynamics
(MQC-NAMD)23–25 simulation such as Ehrenfest24 and fewest
switches surface hopping (FSSH) MD.25 Here we focus on
the latter method as it is well tested and practical for large
systems.

Fewest Switches Surface Hopping MD (SH-MD)25 is
well established in the theoretical chemistry community
for simulation of non-adiabatic processes, in particular,
ultrafast photo-induced relaxation of molecules and chemical
reactions. Several reviews exist that discuss the merits and
shortcomings of this method,26–30 also in the context of
CT in OS.31 In SH-MD, the adiabatic electronic states
are propagated in time according to the time-dependent
electronic Schrödinger equation and the nuclei evolve
classically on adiabatic electronic states. The classical nuclear
motion creates a time dependent external potential that
couples to the electronic degrees of freedom, whereas the
quantum back reaction from the electrons to the nuclei is
incorporated by stochastic hops of the nuclei between the
different adiabatic electronic states. The calculation of the
latter is usually the time-limiting factor. A wide spectrum
of electronic structure methods has been combined with
SH ranging from ab initio wavefunction methods (multi-
reference configuration interaction (MRCI),32 CI,33 complete
active space self-consistent field (CASSCF)32,34,35), to density
functional theory (DFT)-based methods (time-dependent DFT
(TDDFT),36–38 open-shell Kohn Sham39,40), to semiempirical
approaches such as self-consistent charge density functional
tight binding (SCC-DFTB)41–46 and time-dependent SCC-
DFTB,47,48 OM3,49,50 AM1,51,52 and Pariser-Parr-Pople (PPP)
electronic Hamiltonians.5,53 Whereas the ab initio methods
are in practice limited to very small systems, semi-empirical

methods can be used to tackle large systems of several
hundreds to thousands of atoms.5,42,44–46,52

MQC-NAMD approaches targeted specifically for the
modeling of CT in extended condensed phase systems and bulk
materials have been reported, but they are less well developed
than the above mentioned methods for molecular photo-
excitation processes. Troisi and co-workers modeled CT in
OS by a 1D chain of displaced harmonic oscillators described
by an idealized model Hamiltonian, and integrated the time
dependent Schrödinger equation for an excess charge moving
along this chain.54–56 The model could successfully reproduce
the temperature dependence of the mobility in rubrene.55 Wang
and Beljonne used a similar model Hamiltonian approach for
a 1D chain of displaced harmonic oscillator within a SH
scheme to propagate the charge carrier.8,57 Ren et al. have
developed a MQC-NAMD scheme for CT in OS and applied
it to a monolayer of a pentathiophene derivative. While
their scheme goes beyond harmonic oscillator models and
incorporates explicit atomistic detail, the back reaction from
the electronic to the nuclear degrees of freedom was omitted7

preventing the possibility of spontaneous localization and
delocalization of the charge carrier (i.e., polaron formation).
Recently, Kubař and Elstner have extended their SCC-DFTB-
based MQC-NAMD approach, initially developed for CT
in biomolecules,43–45 to OS materials and computed hole
mobilities in anthracene and a hexabenzocoronene derivative
on the level of Ehrenfest MD.10

In this contribution, we report on an implementation of
SH-MD that is designed to efficiently propagate an excess
electron or electron hole in strongly fluctuating structures
such as OS materials or large redox active biomolecules. The
focus here is on efficiency and on practical applications to real
materials comprising several thousands or ten-thousands of
atoms. Inspired by electron transfer theory58,59 and constrained
density functional theory (CDFT),60–64 we construct the time-
dependent electronic wavefunction in a charge localized
electronic state basis, also termed diabatic basis, although we
avoid the term “diabatic” here as the non-adiabatic coupling
vectors between the charge localized states are non-vanishing.
In principle, each charge localized electronic state may
be a correlated open-shell wavefunction obtained from the
adiabatic electronic states via a charge localization procedure,
or in case of CDFT, a Kohn-Sham determinant with the excess
electron or hole constrained on a given molecular site. To
make computations practical, however, we follow the notion
of an “excess charge carrier,” and assert that the complicated
many-body or multi-determinantal electron dynamics can be
effectively described by a one-particle wavefunction for an
excess charge moving in an effective, time-dependent potential
due to the other electrons and the nuclei.

In our method, this charge carrier wavefunction is
expanded in a basis of fragment (or site) orbitals that mediate
the CT, more specifically the singly occupied molecular
orbitals (SOMOs) of the molecules forming the material, as
obtained from DFT calculations. Hence we term our method
“fragment orbital-based SH” (FOB-SH). The dynamics of the
remaining valence and core electrons of the molecules is not
explicitly treated. The diagonal matrix elements (site energies)
of the electronic Hamiltonian in the DFT SOMO basis are
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approximated with a classical force field and the off-diagonal
matrix elements (electronic couplings) are calculated using
our recently developed analytic overlap method (AOM).65

Diagonalization of the electronic Hamiltonian thus obtained
gives the adiabatic electronic states used for the SH-MD
simulation of CT.

FOB-SH is a minimalistic but atomistic MQC-NAMD
method that uses parametrized electronic structure information
to propagate the charge carrier wavefunction. In this sense, it
shares similarities with the SCC-DFTB-based SH-MD method
developed by Kubař and Elstner, but it differs in the way the
electronic Hamiltonian matrix elements and nuclear forces are
computed. Our method has a number of beneficial features:
(i) It is fast because the charge carrier dynamics is propagated
in terms of the parametrized DFT SOMOs rather than full
charge transfer determinants. The approximation made when
replacing determinants by SOMOs for the calculation of
off-diagonal matrix elements has been scrutinized before for
pi-conjugated systems.65–67 We found this to be a good and
useful approximation in most cases, with systematic errors that
can be corrected in a straightforward manner. (ii) It should
be relatively straightforward to make FOB-SH linear scaling
with system size because the electronic Hamiltonian in the
SOMO basis is sparse. Therefore, applications to very large
condensed phase systems should be feasible. (iii) Working in a
charge-localized basis, we minimize the self-interaction error
of density functionals that hampers the correct description of
adiabatic electronic CT states. Though we note that in-roads
have been made recently to address this problem by enforcing
the integer-derivative discontinuity.68–70

There are some restrictions as well in this first version. (i)
We describe CT only within the band formed by the SOMOs
(intra-band CT). (ii) We assume that there is only a single
charge carrier present as would be the case after injection of an
electron or electron hole in a large junk of material (i.e., CT
at very low carrier concentration). (iii) Charge separation
processes where holes and electrons are present at the same
time, as well as superexchange processes where holes and
electrons contribute simultaneously to CT via different bridge
levels, cannot be currently treated. But our scheme may be
suitably extended to describe such situations in future.

In a first application of FOB-SH, we investigate CT in a
linear chain of ethylene-like molecules (ELMs). We find that at
low electronic coupling strengths between the molecules, the
temperature dependence of the charge mobility goes through
a maximum, indicative of a crossover from activated transport
at low T to band-like transport at high T . For sufficiently high
electronic coupling strengths, the activated regime disappears
and the mobility decreases with increasing T over the entire
temperature range. The results are in qualitative agreement
with previous SH simulations using harmonic oscillator model
Hamiltonians.8

This paper is organized as follows. In Section II A, we
give the basic equations for SH, and in Section II B, we define
the site basis representation of the charge carrier wavefunction
and give details on the construction of the electronic
Hamiltonian and non-adiabatic coupling matrix elements
(NACEs) in the site basis, and on the transformation of these
quantities to the adiabatic representation. In Section II C,

we derive an expression for the nuclear forces in the site
basis representation and give explicit expressions for their
transformation to the adiabatic representation, which is used
in FOB-SH. In Section III A, we explain in detail the ultrafast
calculation of the electronic Hamiltonian matrix elements,
non-adiabatic coupling elements, and non-adiabatic coupling
vectors (NACVs) in the site basis using our recently developed
analytic overlap method (AOM). After a summary of the
simulation details in Sec. IV, we present a validation of
the implementation in Sec. V. In particular, we validate
the nuclear force calculation on the adiabatic surfaces by
comparison to the exact analytic expression for a 2-site model
and by monitoring the conservation of total energy during
the FOB-SH run for a 10-site model. Then we report on the
results of our first application, CT in a chain of ethylene-like
molecules. This work is concluded in Sec. VI.

II. THEORY

A. Fewest switches surface hopping (FSSH)

The FSSH algorithm proposed by Tully25 has been
extensively reviewed.26–30 Here we summarize the basic
equations that will be referred to in Secs. II B–II D. In the
FSSH method, the electronic Schrödinger equation is solved
for the time-dependent electronic potential due to classical
nuclear motion. The time-dependent electronic wavefunction
Ψ(t) is usually expressed as a linear combination of adiabatic
electronic wavefunctions ψn(R(t)) that depend parametrically
on the nuclear coordinates R(t), Ψ(t) = n cn(t)ψn(R(t)), and
cn are the time-dependent expansion coefficients. Insertion in
the time-dependent electronic Schrödinger equation gives the
time evolution in terms of the expansion coefficients,

i~ċm(t) =

n

cn(t) �Had
mn − i~dad

mn

�
, (1)

where Had
mn are the matrix elements of the electronic

Hamiltonian in the adiabatic basis (superscript “ad”), Had
mn

= ⟨ψm|H |ψn⟩ = Enδmn, and dad
mn are the non-adiabatic

coupling matrix elements (NACEs),

dad
mn =


ψm

���
dψn

dt


. (2)

The classical nuclei evolve on a single adiabatic electronic
energy surface at any given time according to Newton’s
equation of motion. For potential energy surface n = i, Ei,

mIR̈I = −∇RI
Ei ≡ FI, i, (3)

where mI is the mass and RI the position vector of nucleus
I. Time derivatives are denoted by a dot. The feedback from
the electronic to the nuclear subsystem is incorporated in the
ability of the system to undergo stochastic “surface hops,”
i.e., switches from one potential energy surface to another.
In the FSSH algorithm devised by Tully, the probability gj i
of switching from the current adiabatic electronic state i to
another adiabatic electronic state j is calculated from

gj i =
bj i∆t

aii
, (4)
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bj i = −2Re
(
a∗j id

ad
j i

)
, (5)

a j i = cjc∗i , (6)

where ∆t is the MD time step and a j i the elements of the
density matrix.

B. Site basis representation

In this work, we are interested in describing the evolution
of an excess electron or hole through a molecular material.
Here we consider the case of an excess electron in a material
made of M sites, where “site” refers to a molecule or molecular
fragment of the material but note that the formalism is
analogous for an excess hole. To this end, the time-dependent
electronic wavefunction, Ψ(t), is expanded in a set of time-
dependent electronic wavefunctions with the excess electron
localized at site l, {φl},

Ψ(t) =
M
l=1

ul(t)φl(R(t)). (7)

In principle, the M wavefunctions φl can be N-electron
determinants with the excess electron localized at site l using a
suitable localization procedure such as Generalized Mulliken-
Hush (GMH) or constrained DFT (CDFT). However, as
mentioned in the Introduction, here we restrict ourselves
to an effective 1-electron description where the {φl} are a set
of M orthogonal 1-electron fragment (or site) orbitals, rather
than N-electron wavefunctions. The site orbitals are obtained
from the singly occupied molecular orbitals (SOMOs) of
the isolated molecules, in the following denoted {ϕm}, via
Löwdin orthogonalization:

φl =

M
m=1

Tmlϕm, (8)

where Tml are the elements of the matrix T, Tml ≡ [T]ml

= [S−1/2]ml and S the overlap matrix with elements Sml

≡ [S]ml = ⟨ϕm|ϕl⟩. The SOMOs {ϕm} can be obtained from
gas phase calculations on the isolated molecules in vacuum
for the same atomic configuration as in the material and for
the charge state 1− (1+ for holes). Hence, while the {ϕm} are
strictly localized on site m and have zero amplitude anywhere
else, the {φm} are strongly localized on site m and have small
tails on the neighboring sites to enforce orthogonality. As an
illustrative example, we show in Figure 2 {ϕm} for a dimer
and a chain of ethylene-like molecules, in this case the π2p
molecular orbital of each molecule.

Insertion of Eq. (7) in the time-dependent electronic
Schrödinger equation and multiplication from the left with φk
and integration give

i~u̇k(t) =

l

ul(t) (Hkl − i~dkl) , (9)

where Hkl are the matrix elements of the electronic
Hamiltonian H and dkl the non-adiabatic coupling elements
(NACEs) in the orthogonal site orbital basis, respectively,

Hkl ≡ [H]kl = ⟨φk |H |φl⟩, (10)
dkl ≡ [D]kl = ⟨φk |φ̇l⟩. (11)

FIG. 2. Systems simulated in this work using FOB-SH. (a) Electron hole
transfer in a ethylene-like molecule (ELM) donor-acceptor complex and
(b) electron transport in a 1D chain of 10 ELMs. In (b) the chain is replicated
to illustrate the SOMOs of the positively charged ELMs (ϕ1,ϕ2,ϕ3, . . .) in
blue and red isosurfaces. They are used as basis functions for expansion of
the hole carrier wavefunction Ψ(t), Eqs. (7) and (8). Carbon atoms are drawn
in green. The directions x and z are labelled for comparison with Table I: x
is the direction pointing along the direction of stacking, while z points along
the long axis of the molecule.

Eq. (9) determines the time evolution of the excess electron
in terms of the expansion coefficients in the orthogonal site
orbital basis {φl}. The matrix elements Hkl and dkl can be
expressed in terms of the non-orthogonal site orbital basis
{ϕl} by substitution of Eq. (8),

Hkl = [T†V′T]kl = [T−1H′T]kl, (12)

dkl = [T†D′T]kl + [T†SṪ]kl, (13)

where

V ′kl ≡ [V′]kl = ⟨ϕk |H |ϕl⟩, (14)

d ′kl ≡ [D′]kl = ⟨ϕk |ϕ̇l⟩, (15)

and

H′ = S−1V′ (16)

is the electronic Hamiltonian in the non-orthogonal site orbital
basis. As we will see in Section III, the Hamiltonian will be
constructed in the orthogonal basis, which requires us to
solve the standard eigenvalue equation for H rather than the
generalized eigenvalue equation for V′.

During the surface hopping simulation, the nuclei are
propagated on one of the adiabatic electronic potential energy
surfaces according to Eq. (3), and the probability for hopping
from adiabatic electronic state i to another state j, Eq. (4),
needs to be calculated at every MD time step. This requires
the knowledge of the adiabatic electronic energies En and the
NACEs between the adiabatic electronic states ψn. They can
be easily obtained from the site orbital representation via a
unitary transformation,

ψn(t) =

l

Ulnφl(t), (17)
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where Uln ≡ [U]ln and U diagonalizes H,

Had = U†HU, (18)

with En = [Had]nn.
For calculation of the NACEs, we insert the unitary

transformation Eq. (17) in Eq. (2). This gives for n = j, i,

dad
j i = [U†DU] j i + [U†U̇] j i, (19)

where D is the matrix of NACEs in the site orbital basis,
Eq. (11). In Section II C, we discuss how the nuclear gradients
on the adiabatic electronic states and hence the forces for MD
simulation can be obtained from the gradients in the site basis
representation.

C. Nuclear gradients

The force on nucleus I on the adiabatic potential energy
surface Ei is

FI, i = −∇I⟨ψi |H |ψi⟩ = −⟨ψi |∇IH |ψi⟩, (20)

where we have used the Hellmann-Feynman theorem in
the last equation. Unfortunately, the expectation value of

the gradient of the Hamiltonian is not available in our
approach as we do not construct explicit expressions of the
adiabatic wavefunctions ψi in terms of spatial coordinates.
However, the nuclear force can be rigorously computed
from the gradient of the Hamiltonian matrix elements in
the site basis {φl}, which are readily available in our
scheme,

FI, i = −[U†(∇IH)U]ii, (21)

where

[∇IH]kl ≡ ∇IHkl = ∇I⟨φk |H |φl⟩. (22)

A similar expression has been used before in the context of
CDFT configuration interaction.71 Equation (21) implies that
nuclear derivatives of the transformation matrix U are not
needed. To show this we insert Eq. (17) for n = i in the RHS
of Eq. (20) to obtain

FI, i = −[U†GIU]ii, (23)

with matrix elements [GI]kl = ⟨φk |∇IH |φl⟩. The latter
elements can be written as

⟨φk |∇IH |φl⟩ = ∇I⟨φk |H |φl⟩ − ⟨∇Iφk |H |φl⟩ − ⟨φk |H |∇Iφl⟩ (24)

= ∇IHkl − ⟨∇Iφk |

m

Hmlφm⟩ − ⟨∇Iφl |

m

Hmkφm⟩∗ (25)

= ∇IHkl +

m

(dI,kmHml − HkmdI,ml), (26)

where

dI,kl ≡ [DI]kl = ⟨φk |∇Iφl⟩ (27)

are the NACVs in the orthogonal site basis. In Eq. (26), we
have made use of the identity

dI,km = −d∗I,mk (28)

which is valid for orthogonal wavefunctions, and the star on
the right hand side of Eq. (28) denotes the complex conjugate.
Thus, in matrix notation, GI in Eq. (23) is given by

GI = ∇IH + [DI ,H], (29)

where the second term on the RHS of Eq. (29) is
the commutator [DI ,H] = DIH − HDI , and [DI ,H] , 0 in
general. To proceed, we note that we are only interested in the
diagonal elements of the matrix on the RHS of Eq. (23). It can
be easily shown that the diagonal elements of the transformed
commutator vanish,

[U†[DI ,H]U]ii = [U†DIHU − U†HDIU]ii (30)

= [U†DIUU
†HU]ii − [U†HUU†DIU]ii (31)

= [U†DIU]iiEi − Ei[U†DIU]ii (32)
= 0. (33)

Hence, inserting Eqs. (29) and (33) in Eq. (23) gives Eq. (21).

D. Special case: Donor-acceptor complex

In the special case of ET in a donor-acceptor complex (2
sites only), the transformation from the orthogonal site basis
to the adiabatic basis is analytic. For a 2 × 2 matrix, Eq. (18)
gives the usual expression

E0/1(R) = H11(R) + H22(R)
2

± 1
2


∆E2(R) + 4H2

12(R), (34)

where on the RHS of Eq. (34), the minus sign is for the
adiabatic ground state energy, E0, and the plus sign for the
excited adiabatic state, E1, and∆E is the vertical site (diabatic)
energy gap,

∆E(R) = H22(R) − H11(R). (35)

Hence, the forces on the two adiabatic surfaces can be directly
obtained by differentiation of Eq. (34). The more tedious route
in Section II C for the general N-site case can be avoided.
The resultant expression

FI,0/1 = −
∇IH11 + ∇IH22

2

∓ ∆E(∇IH22 − ∇IH11) + 4H12∇IH12

2

∆E2 + 4H2

12

(36)

is, of course, equivalent to Eq. (21) (i = 0,1).
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III. IMPLEMENTATION

The formulation of surface hopping in the site basis in
Sections II B and II C requires the calculation of a number
of matrix elements and nuclear derivatives. For propagation
of the electronic subsystem according to Eq. (9), one needs
to calculate the electronic Hamiltonian matrix elements Hkk,
Hkl, as well as the non-adiabatic coupling elements (NACEs)
dkl. For propagation of the nuclear subsystem with forces given
by Eq. (21), one needs to calculate at each MD time step the
nuclear gradients ∇IHkk, ∇IHkl, and the unitary transforma-
tion matrix Ukl. In the following, we describe computationally
efficient strategies for the calculation of these quantities.

A. Diagonal matrix elements (site energies) Hkk

The site orbital basis functions {φk} are strongly localized
on site k and typically have only a very small contribution on
neighboring sites l to enforce orthogonality. The correspond-
ing site energies Hkk = ⟨φk |H |φk⟩ are approximated here at the
classical force field level. The site k carries the total excess
electron whereas all other sites l , k are modeled in their
neutral charge state. The force field parameters for charged
and neutral states of the sites may be taken from standard force
fields or obtained from electronic structure calculations of the
isolated molecules. The total site energy is then computed for
the full condensed phase system with site k in the charged state
and sites l , k in the neutral state applying periodic boundary
conditions. Condensed phase electronic polarization effects
can be accounted for using, e.g., electronically polarizable
force fields.

B. Off-diagonal matrix elements
(electronic couplings) Hkl

The off-diagonal elements Hkl, l , k, are an intrinsically
quantum mechanical property. For their calculation, we
consider at first the non-orthogonal site orbitals {ϕk} and
the corresponding overlap matrix elements Skl. As mentioned
before, we restrict ourselves to a 1-electron description and
identify ϕk simply with the SOMO of molecule k, and
similarly for molecule l. The SOMO is obtained from standard
electronic structure calculation on the isolated molecule in
the charged state. The SOMO is then represented in a
minimum basis of Slater-type atomic orbitals (STOs) with
optimized Slater decay coefficients. For π-conjugated systems,
it is usually sufficient to include only one optimized Slater
p-orbital per atom contributing to π-conjugation. In this case

Skl = ⟨ϕk |ϕl⟩ =
atoms
i∈k

atoms
j ∈l

c∗pπ, icpπ, j⟨pπ, i |pπ, j⟩, (37)

where i and j run over all π-conjugated atoms in molecules
k and l, respectively, pπ, i is the STO p orbital on atom i
pointing along the direction of pi-conjugation and cpπ, i is the
corresponding expansion coefficients. The latter is obtained
from projection of pπ, i on the SOMO obtained from explicit
electronic structure calculation with a standard basis set. (In
our previous work, we have denoted the double sum on the
right hand side of Eq. (37) by S̄kl.65) The overlap matrix
elements of Eq. (37) are used to obtain Hkl according to the

linear relationship

Hkl = CSkl, (38)

where C is a constant of proportion. Equation (38) asserts
that the off-diagonal Hamiltonian matrix element between
the orthogonal site orbitals (φkφl), Hkl, is proportional to
the orbital overlap of the corresponding non-orthogonal site
orbitals (ϕk, ϕl), Skl, where the two orbital pairs are related
by the Lowdin transformation Eq. (8). The estimation of Hkl

according to Eq. (38) with overlaps computed according to
Eq. (37) is denoted as analytic overlap method (AOM). The
crucial advantage of this scheme is that the calculation of
the overlap Eq. (37) and electronic coupling via Eq. (38) is
analytic and ultrafast owing to the STO representation of the
SOMO.

Equation (38) was suggested a long time ago by Longuet-
Higgins and Roberts72 and seems like a major approximation
at first sight. However, we have previously given theoretical
arguments for the validity of Eq. (38) in the small overlap
regime using the exact expression for Hkl within constrained
density functional theory.73 We have also previously assessed
the accuracy of Eq. (38) on a diverse set of π-conjugated
donor-acceptor pairs and found a good linear correlation
between Hkl and Skl as well as transferability of the
relation to other π-conjugated compounds.65 In that study we
devised a training set of π-conjugated organic donor-acceptor
pairs (HAB11 database66 and C60) for which we calculated
electronic coupling matrix elements (transfer integrals) Hkl

at the level of fragment-orbital density functional theory
(FODFT12,64,74), as well as the SOMO overlaps Skl according
to Eq. (37). A linear fit (R2 = 0.974) gave C = 1.819 eV. We
found that the same linear relation holds well for a diverse
set of π-conjugated organic donor-acceptor pairs (acenes,
thiophene, porphin, imidazole, C60 in random orientations)
that were not included in the linear fit (denoted “test set”
in Ref. 65). The average error in Hkl values obtained from
the STO overlap according to Eq. (38) was only a factor of
1.9, translating into an error in the non-adiabatic ET rate by
a factor of 3.6.65 Remarkably, this is less than an order of
magnitude error in the reaction rate, which is often referred to
as “chemical accuracy.” Other groups have reported similarly
good correlations. Friesner and co-workers noticed a good
correlation between overlap and coupling for ET between
bacteriochlorophyll cofactors, except for one cofactor pair
where deviations were somewhat larger but still reasonable,75

and Troisi used Eq. (38) for the estimation of electronic
couplings between DNA base pairs.76

Although Eq. (38) gives a useful approximation for a wide
class of π-conjugated compounds, it needs to be tested against
explicit electronic structure calculations for molecules outside
our training and test sets. Other expressions relating overlaps
with electronic couplings have been suggested as well,72

and they may be used alternatively. Finally, we note that
there is a subtle difference between the donor-acceptor pairs
investigated in Ref. 65 and the multi-site systems investigated
in this work. In the latter, the φk have small tails on all
neighboring sites l, not only on a single site as in case of
donor-acceptor compounds. The influence of these additional
tails on Hkl can be expected to be small and is neglected.
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C. Time evolution of Hkk , Hkl, and SOMOs

The diagonal and off-diagonal Hamiltonian matrix
elements as well as the SOMOs are time-dependent due
to the dynamics of the nuclear subsystem R = R(t), Hkk

= Hkk(R(t)), Hkl = Hkl(R(t)), and ϕk = ϕk(R(t)), see Eq. (9).
The time-evolution of the site energies, Hkk(t), is simply given
by the force field energy of state k along the SH MD trajectory
R(t). The off-diagonal element Hkl(t) is proportional to the
time dependent overlap Skl(t) between the SOMOs. The
question is how to update the SOMO ϕk(t) efficiently during
the SH MD run. In our scheme, the projection coefficients
cpπ, i in Eq. (37) are calculated for the minimum energy
structure of molecule k in vacuum and used as an input for
the FOB-SH simulation. After every nuclear dynamics time
step, the orientation of the atomic orbital pπ, i is updated so
that it remains parallel to the direction of π-conjugation. This
direction is orthogonal to the plane that minimizes the sum
of the distances between the plane and atom i and the atoms
covalently connected to i. The expansion coefficients of all
atomic orbitals on molecule k are then scaled by the same
factor (typically a small number close to 1) to normalize the
SOMO at the new geometry. The expansion coefficients are
not changed otherwise. Hence, the atomic orbitals comprising
the SOMO follow the motion of the atoms but they are frozen
otherwise.

One can expect this to be a reasonable approximation if
the SOMO is stable against intramolecular vibrations. As we
will see in Section V A 1, this is the case for hole transfer
in our model ethylene systems. There are, however, situations
where this approximation is likely to break down. For instance,
in case of degeneracy of the SOMO, certain vibronic modes
or environmental effects may lift the degeneracy leading to
rapid change of expansion coefficients and strong orbital
relaxation. To describe such effects, more elaborate methods
are needed for the update of the SOMO along the SH MD
trajectory.

D. Non-adiabatic coupling elements (NACEs)

Equation (37) is also used for rapid estimation of the
NACEs. The time derivative of the site basis function in
Eq. (15) is replaced by a finite difference approximation,

d ′kl(t) =

ϕk(t)���

d
dt
ϕl(t)


(39)

≈ 1
∆t

(⟨ϕk(t)|ϕl(t + ∆t)⟩ − ⟨ϕk(t)|ϕl(t)⟩)

=
1
∆t

(Skl′(t) − Skl(t)), (40)

where ∆t is the MD time step, and Skl′ the overlap between ϕk

at time t and ϕl at time t + ∆t. Both Skl′ and Skl are calculated
according to Eq. (37). The NACEs in the non-orthogonal site
basis, d ′

kl
, are then transformed to the NACEs in the orthogonal

basis, dkl, according to Eq. (13). The transformation matrix
Tkl is simply obtained from Skl via matrix inversion and
the time derivative Ṫkl is approximated by a finite difference
calculation.

E. Nuclear gradients

For the calculation of the total force Eq. (21), the diagonal
contribution of the Hamiltonian, ∇IHkk, is taken from the
force field, consistently with our choice for the diagonal
energies. The off-diagonal contributions, k , l, are obtained
from Eq. (38),

∇IHkl = C ∇ISkl . (41)

The nuclear gradients of the overlap, ∇ISkl, can be
conveniently expressed in terms of the NACVs,

∇ISkl = ∇I⟨ϕk |ϕl⟩ = ⟨∇Iϕk |ϕl⟩ + ⟨ϕk |∇Iϕl⟩
= d′∗I,lk + d′I,kl (42)

which are calculated numerically using the finite difference
approximation,

d′I,kl = ⟨ϕk |∇Iϕl(R1, . . . ,RI , . . . ,RM)⟩

≈



1
∆s

(⟨ϕk |ϕl(R1, . . . ,RI + ∆sex, . . . ,RM)⟩ − ⟨ϕk |ϕl(R1, . . . ,RI , . . . ,RM)⟩)
1
∆s

(⟨ϕk |ϕl(R1, . . . ,RI + ∆sey, . . . ,RM)⟩ − ⟨ϕk |ϕl(R1, . . . ,RI , . . . ,RM)⟩)
1
∆s

(⟨ϕk |ϕl(R1, . . . ,RI + ∆sez, . . . ,RM)⟩ − ⟨ϕk |ϕl(R1, . . . ,RI , . . . ,RM)⟩)



(43)

=




1
∆s

(SI,kl′ − Skl1) if I ∈ l

0 if I < l
. (44)

In Eqs. (43) and (44), ∆s is a small displacement and ex,
ey, ez are the unit vectors in x, y , and z directions, SI,kl′

is the vector of overlaps between ϕk at nuclear coordinates
R = (R1, . . . ,RI , . . . ,RM) and ϕl at nuclear coordinates of
atom I displaced by ∆sex, ∆sey, and ∆sez, respectively (first

vector in Eq. (43)), and 0 and 1 are the null and unity vectors,
respectively. Eq. (44) assumes that a displacement of a given
atom I on a molecule l only leads to a change in the SOMO for
that molecule, i.e., ϕl. The SOMOs of all other sites including
site k remain unchanged. This is a consequence of the neglect
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of electronic relaxation effects due to nuclear motion in our
scheme, as discussed above.

F. Integration of equations of motion

The coupled equations of motion for the excess charge
carrier, Eq. (9), and classical nuclei, Eq. (3), are integrated
numerically using an electronic time step δt and a nuclear
time step ∆t for propagation of charge carrier and nuclei,
respectively. At the initial time t, the electronic Hamiltonian
matrix elements Hkk(t) and Hkl(t), the nuclear gradients
∇IHkk and ∇IHkl, and the NACEs d ′

kl
(t) are calculated as

described in Secs. III A–III E. They are transformed to the
adiabatic basis according to Eqs. (18), (21), and (13) to obtain
the adiabatic energies Ei(t), nuclear forces FI, i(t), and NACEs
dkl(t). The nuclei are then propagated on a given adiabatic
surface i from time t to t + ∆t according to Eq. (3) using the
velocity Verlet algorithm. This is followed by the calculation
of the electronic Hamiltonian matrix elements at time t + ∆t,
Hkk(t + ∆t), and Hkl(t + ∆t). In the next step, the expansion
coefficients of the charge carrier wavefunction in the site basis,
uk, are propagated according to Eq. (9) from time t to t + ∆t
in steps of δt using the fourth-order Runge-Kutta algorithm.77

At each electronic integration time step n, the electronic
Hamiltonian matrix elements are linearly interpolated between
Hkl(t) and Hkl(t + ∆t), Hkl(t + nδt) = Hkl(t) + [Hkl(t + ∆t)
− Hkl(t)](nδt/∆t), n = 1, . . . , (∆t/δt), and similarly for the
diagonal elements. The coefficients uk(t + ∆t) are then
transformed to the adiabatic basis ci(t + ∆t). The latter are
used for the calculation of the surface hopping probabilities
between the current adiabatic electronic state i and all other
states j , i according to Eq. (4). When a surface hop from i to
j is attempted, the atomic velocities of the system are rescaled

by a factor κ =


Ti−(E j−Ei)

Ti
, where Ti is the total kinetic

energy of the system in state i and Ei, E j are the potential
energies in states i and j, respectively. If there is not enough
kinetic energy to compensate for the difference in potential
energy, the hop does not happen. If the hop does happen, the
nuclear forces are updated. We note that our velocity rescaling
approach differs from the usual approach, where the velocity
component in the direction of the non-adiabatic coupling
vector is rescaled. Unfortunately, the current implementation
of our methodology did not allow us to scale the velocity
in that way. As the purpose of this work is to introduce and
demonstrate the feasibility of a new methodology rather than
report quantitative results, we disregard in this first version of
our implementation any possible systematic errors due to the
modified velocity rescaling approach.

G. Decoherence correction

A well-known shortcoming of the SH method is
electronic over-coherence. After passing the crossing region,
the off-diagonal electronic density matrix element does not
decay sufficiently leading to an overly coherent electronic
wavefunction with probability density on two or more
surfaces. Several correction schemes have been suggested to
mitigate this problem.28,78–85 One of the simplest approaches,

which we use in the current implementation, is to collapse the
charge carrier wavefunction Ψ(t) to the active adiabatic state
when the system is sufficiently far from a crossing point.79

Application of this procedure to the two model systems that
we simulate in this work is explained in more detail in
Section IV C.

H. Work flow of FOB-SH simulation

A simplified work flow is shown in Figure 3. It consists
of a preparatory fragment orbital (FO)-parametrization and
the actual FOB-SH MD simulation. The FO-parametrization
involves three steps. First, standard Kohn-Sham DFT
calculations are carried out to obtain the SOMO ϕk of the
molecules or molecular sites that mediate charge transport.
Second, the SOMOs are expanded in a minimum basis
of Slater-type orbitals with optimized exponential decay
coefficients µ̄2p and expansion coefficients cpπ, i. Third, force
field parameters for the neutral and charged states of the
molecules need to be chosen either from existing force fields
or by parametrization to electronic structure calculations. It is
desirable for the force field to reproduce properties that are
important for charge transport, in particular, reorganization
energy λ (Eq. (45)) and ionization potential/electron affinity.

The SOMO parameters µ̄2p and cpπ, i as well as the
force field parameters are used as an input for the FOB-SH
simulation. The FOB-SH program consists of fortran routines
for charge carrier propagation which are interfaced by a tcl
script with the classical MD package NAMD86 (name of the

FIG. 3. Simplified workflow of a fragment orbital-based surface hopping
(FOB-SH) simulation. FO: fragment orbital, DFT: density functional theory,
MD: molecular dynamics, SOMO: singly occupied molecular orbital, AOM:
analytic overlap method, TF1-TF3: transformations, SH probs: surface hop-
ping probabilities. See Section III H for an explanation of the scheme.
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package not to be confused with non-adiabatic molecular
dynamics). The charge carrier propagation routines read the
SOMO parameters and calculate the off-diagonal Hamiltonian
matrix elements and nuclear gradients, the NACEs and
NACVs as explained in Sections III B-III E. Transformations
to the adiabatic electronic states are carried out and the charge
carrier wavefunction is propagated in time and surface hopping
probabilities are calculated as described in Sections III F
and III G. The classical MD package reads the force field
parameters for neutral and charged molecules, computes
the diagonal Hamiltonian matrix elements and gradients as
outlined in Section III A, and propagates the nuclei on the
adiabatic electronic states using forces imported from the
charge propagation routine. The output of the FOB-SH MD
simulation is the time-dependent wavefunction of the charge
carrier, Ψ(t), and the nuclear trajectory R(t).

IV. SIMULATION DETAILS

A. Model systems

In a first demonstration and validation of the FOB-SH
methodology, we have chosen to simulate electron hole
transfer between ethylene-like molecules (ELMs). We call
them “ethylene-like” because only their nuclear geometries
correspond to real ethylene molecules. The reorganization
energy λ and the constant C determining the magnitude of
Hkl (Eq. (38)) are chosen freely to simulate hole transfer
in different parameter regimes, see Section IV B for details.
The two model systems simulated are shown in Figure 2.
Panel A displays a simple donor-acceptor complex, consisting
of two ELMs at an average centre-to-centre distance of
4 Å. The SOMOs of the left and right ELM, ϕ1 and ϕ2,
respectively, are indicated by isosurfaces. They are used
as basis functions for the expansion of the charge carrier
wavefunction according to Eqs. (7) and (8) and for the
construction of the electronic Hamiltonian. Panel B shows
ten ELMs, designed to demonstrate the transferability of
the method onto organic molecular systems. Again these
molecules are spaced 4 Å apart. Each molecule contributes a
SOMO for the expansion of the charge carrier wavefunction
and construction of the electronic Hamiltonian. The SOMOs
of the first three ELMs are indicated by isosurfaces.

B. Force field parameters

The site energies Hkk and corresponding forces ∇IHkk

are calculated with a classical force field as described in
Section III A. For the neutral ELM, we use the standard
parameters taken from the Generalized Amber Force Field
(GAFF).87 For the positively charged ELM, the excess charge
of +1 is equally distributed over the two C atoms, and
the van der Waals parameters are the ones of the neutral
ELM. Intramolecular reorganization upon change of charge is
modeled by a change in equilibrium distance between the two
carbon bonds, all other bonding parameters remain unchanged.
For simulation of the ELM dimer, the equilibrium bond length
for the charged ELM was chosen so that the reorganization
energy for hole transfer between the two ELMs at infinite

separation,

λ = [EC(RN) + EN(RC)] − [EC(RC) + EN(RN)], (45)

is λ = 0.3 eV. In Eq. (45), EC(RN) is the total force field
energy of the charged ELM (subscript C) at the minimum
energy configuration of the neutral ELM, RN, EN(RC) is the
total force field energy of the neutral ELM (subscript N) at
the minimum energy configuration of the charged ELM, RC,
and EC(RC), EN(RN) are the energies at the minimum energy
configurations of the respective states. This gave a C==C
equilibrium bond length r0 = 1.401 Å for the charged ELM
using r0 = 1.324 Å for the neutral ELM and a harmonic bond
force constant of 589.7 kcal mol−1 Å−2 from the GAFF force
field. For the 10 ELM system, simulations demonstrating
energy conservation were carried out for λ = 0.3 eV and
simulations of charge mobility for λ = 0.2 eV. For the latter,
r0 of the charged ELM was adjusted to 1.387 Å while leaving
all other parameters unchanged.

The off-diagonal elements Hkl, k , l, are calculated using
the AOM method, Eq. (38), as described in Section III B. We
treated the constant of proportion C as a free parameter
to investigate different coupling regimes. Simulations of the
ELM dimer were carried out for C = 88.7 meV and 443.5 meV
giving average coupling values ⟨|H12|2⟩1/2 = 8 meV and
41 meV, respectively. Simulations of the 10 ELM system
were carried out for C = 17.74,177.4, and 1419 meV giving
average coupling values ⟨|H12|2⟩1/2 = 2.1 meV, 21 meV, and
140 meV, respectively, which we refer to as small, medium,
and high electronic coupling regimes. The calculation of the
overlap integrals Skl was carried out as described in Ref. 65
using a minimum Slater basis of p orbitals with Slater decay
coefficients µ̄2p = 1.0000 a.u.−1. The NACVs, and by virtue
of Eqs. (41) and (42) ∇IHkl and ∇ISkl, respectively, are
obtained by numeric differentiation according to Eq. (44)
using an increment ∆s = 10−4 Å. For calculation of the
hopping probability, the NACEs are calculated by numeric
differentiation according to Eq. (40).

C. FOB-SH simulations

For the dimer system, a classical MD trajectory was
generated, where the first ELM was modeled in the positively
charged state and the other ELM in the neutral state.
A weak harmonic position restraint with force constant
of 1.0 kcal mol−1 Å−2 was applied to maintain a stable
intermolecular separation of about 4 Å between the ELMs.
Configurations from this run were selected for FOB-SH
simulations, with the initial electronic state chosen to be
ϕ1, i.e., the hole is fully localized on the first molecule. An
electronic time step δt = 0.1 fs was used, which was found
to be the maximum possible time step without introducing
errors into the charge carrier propagation for the two
systems investigated. The nuclear time step was ∆t = 0.5 fs.
FOB-SH simulations were carried out in the NVT ensemble
at 300 K using a Langevin thermostat with a friction constant
γ = 10 ps−1. A decoherence correction was applied as follows.
In the model with 2 ELMs, with only two adiabatic surfaces,
when the system was in the adiabatic ground state, the
electronic wavefunction was collapsed onto the ground state
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when the system passed through one of the ground state
minima in the direction away from the crossing point. In
the model with 10 ELMs (see below), where the adiabatic
potential energy surfaces are not analytically known in terms
of the localized (site) basis states, the wavefunction was
collapsed instead onto the current adiabatic state if the NACEs
between the current state and all other states in the system fell
below a threshold of 5 × 10−6 a.u.−1

For the calculation of charge mobility along the 1D chain
of M = 10 ELMs, a classical MD trajectory at temperature
T was generated for 1 ns without surface hops, where the
first ELM is modeled in the positively charged state and
the remaining 9 ELMs in the neutral state. A restraint
potential is applied as described above. Configurations from
that MD trajectory were taken as initial configurations and
velocities for FOB-SH runs. Simulation parameters are the
same as described above except where mentioned otherwise.
For each FOB-SH trajectory, the mean-squared displacement
(MSD) of the centre of charge of the carrier was obtained
from the time evolution of the expansion coefficients in
the site basis, Eq. (9), and averaged over all N FOB-SH
trajectories,

R2(t) = 1
N

N
n=1

⟨Ψn(t)|x |Ψn(t)⟩2 (46)

=
1
N

N
n=1

*
,

M
l=1

|ul,n(t)|2xl,n(t)+
-

2

, (47)

where xl,n is the position of the centre of mass of ELM l in
trajectory n, and

M
l=1 |ul,n(t)|2 = 1. The SH trajectories were

initiated with the charge carrier localized on the first site,
hence R2(0) = 0. When the MSD is linear, which was the
case for the system investigated here, the Einstein diffusion
constant D can be obtained from the MSD,

D =
1
2

dR2(t)
dt

. (48)

Eq. (48) is obtained by solving the 1D diffusion equation for
the initial condition ρ(x, t = 0) = δ(x) and zero flux boundary
condition ∂ρ/∂x |x=0, t = 0, where ρ is the probability density.
Therefore Eq. (48) describes diffusion along the chain until
the charge, initially at x = 0, begins to populate the terminal
site, i.e., in the short time limit. The mobility µ is then given
by

µ =
eD
kBT

, (49)

where e is the elementary charge and kB the Boltzmann
constant. MSDs were calculated for small, medium, and
high electronic coupling regimes (see Section IV B for ET
parameters λ and C) and for a wide range of temperatures,
T = 50,75,100,150,200,250,300,500,800, and 1000 K. The
MSD was averaged over 500 FOB-SH trajectories to obtain
R2(t). In each case, there was a clear linear regime in the time-
evolution of R2(t), occurring before charge carrier amplitude
was building up at the final site of the system (which would
introduce artificial reflection effects). D was obtained from a
linear fit to this region in each case. The statistical uncertainty

of the mobility, obtained by block averaging of R2(t), was
typically 10% of the mean value.

D. Polaron hopping/kinetic Monte Carlo simulation

In addition to FOB-SH simulations, the charge mobility
of the 10 ELM system was also calculated assuming
charge carrier hopping. The hopping rate from site l to
k, l, k = 1, . . . ,10, was obtained from the semi-classical
expression88–91

kkl = κklνn exp *
,
−

max[∆A‡
kl
,0]

kBT
+
-
, (50)

where κkl = κkl(Hkl, λ, νn) is the electronic transmission
coefficient, νn is the effective nuclear frequency along
the reaction coordinate, and ∆A‡

kl
= (λ/4) − ∆kl is the ET

activation free energy with ∆kl ∼ Hkl. For an explicit
expression of κkl and ∆kl, see, e.g., Ref. 92. We have chosen
νn = 1700 cm−1, representative of the C==C stretch frequency,
and λ = 0.2 eV as in the FOB-SH simulations. According to
Eq. (50), for configurations where ∆A‡

kl
was negative as a

consequence of large electronic coupling, the exponent was set
to zero, corresponding to activation-less ET. Charge mobilities
were calculated using an in-house written kinetic Monte Carlo
(KMC) code. KMC trajectories were initiated from the same
configurations from which the FOB-SH runs were initiated,
and they were run for the same values of electronic coupling
strength (i.e., values of C) and temperatures T as the FOB-
SH simulations. For each initial configuration and values of
C and T , a number of KMC trajectories were generated,
typically 1 × 105–5 × 105 depending on the coupling strength.
The mobility was calculated as µ = (∂v/∂E)E=0, where v is
the drift velocity of the charge carrier and E is the electric
field along the chain. The derivative was approximated by
a 3-point finite difference calculation using an increment of
δE = 105 V cm−1. The drift velocity was obtained by averaging
over all KMC trajectories and over all initial configurations
with an applied bias of ±δE along the x direction, aligned
with the direction of the chain. The statistical uncertainty of
the mobility obtained by block averaging of the drift velocity
is typically 22% of the mean value.

V. RESULTS AND DISCUSSION

A. Validation of implementation

With the algorithm from Section II implemented as
described in Section III, a validation of the numerical
implementation is necessary. While the AOM method for
calculation of the electronic Hamiltonian matrix elements Hkl

has been assessed before against DFT and wavefunction theory
calculations65 (summarized in Section III B), the calculation of
the NACVs and the nuclear forces on the adiabatic potential
energy surfaces are new features that need to be tested.
Ultimately, the charge carrier dynamics predicted by FOB-
SH should be tested on small systems that are amenable to
SH simulation with electronic structure calculations at the
ab initio level of theory35 or with TDDFT in combinational
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with a validated exchange correlation functional. Such
investigations are planned for the future.

1. Non-adiabatic coupling vectors: AOM vs FODFT

Similar to the validation of Hkl in Ref. 65, we assess
the NACVs obtained from AOM against reference values at
the FODFT level. In both cases the NACVs are calculated
according to the finite difference approximation, Eq. (44). Test
calculations were carried out on stacked ethylene dimers with
various stacking distances of 3.5 Å, 4.5 Å, and 5.0 Å and
displacements of C atoms in the x, y , and z-directions,
see Figure 2(a). In the FODFT calculations, the Kohn-
Sham orbitals of the molecules are fully re-optimized after
each nuclear displacement δs and the overlap between the
DFT SOMOs calculated using grid integration. In the AOM
calculations, where the DFT SOMOs are projected on a
minimum-Slater type basis according to Eq. (37), we assume
that the projection coefficients cpπ, i are the same in the
displaced and undisplaced structure and they were obtained for
the minimum energy structures of the molecules in vacuum.
Hence, comparison to FODFT reference values informs us
about errors due to the projection of the DFT SOMO on the
minimum Slater-type basis and the freezing of the projection
coefficients.

Table I summarizes the results. The NACV component
along the stacking (x-) direction is very well reproduced with
AOM. The absolute maximum error is 0.03 Å−1, occurring at
van der Waals contact at 3.5 Å. The agreement is excellent
for the larger distances, 4.5 Å and 5.0 Å. The NACV
component along the y-direction is zero for both methods
due to symmetry. The component parallel to the C==C bond
(z-direction) showed a larger deviation with respect to the
FODFT results. To see whether this is due to the freezing
of the projection coefficients, we have carried out AOM
calculations where projection coefficients are calculated for
both displaced and undisplaced structures and subsequently

TABLE I. Non-adiabatic coupling vectors (NACVs) d′
I ,kl

, Eq. (44), be-
tween the charge localized states (SOMOs) of a stacked ethylene dimer from
fragment-orbital DFT (FODFT) calculations, analytic overlap method with-
out (AOM) and with update of expansion coefficients (AOM (updated)).a

Separation Method [d′CA1,21]x (Å−1) [d′CA1,21]z (Å−1)
3.5 Å FODFT 6.0 × 10−2 4.0 × 10−2

AOM 3.4 × 10−2 3.1 × 10−3

AOM (updated) 4.1 × 10−2 5.8 × 10−3

4.5 Å FODFT 2.2 × 10−2 2.0 × 10−2

AOM 2.1 × 10−2 1.2 × 10−3

AOM (updated) 1.7 × 10−2 3.8 × 10−3

5.0 Å FODFT 1.3 × 10−2 1.4 × 10−2

AOM 1.5 × 10−2 1.4 × 10−3

AOM (updated) 1.0 × 10−2 2.7 × 10−3

aFor each method, calculations were carried out at three different intermolecu-
lar separations as indicated. Due to symmetry, [d′CB1,21]x = [d′CA1,21]x, [d′CB1,21]z
=−[d′CA1,21]z. [d′CA1,12]x =−[d′CA2,21]x, [d′CA1,12]z = [d′CA2,21]z and similar for CB1,
CB2. [d′

I ,21]y = [d′I ,12]y = 0 for all carbon atoms. See Figure 2 for definition of atom
labels.

used for NACV calculation. The results of these calculations
are also shown in Table I (denoted AOM (updated)). The
updating of the projection coefficients gives slightly improved
results for the z-direction, but a significant discrepancy still
remains. The reason for this is still unclear and is subject of
ongoing investigations.

The NACVs are used for the calculation of the off-
diagonal forces according to Eqs. (41) and (42). Here we
briefly analyze the importance of these forces. The largest
NACV values are found for the stacked ethylene dimer at
van der Waals contact, 6.0 × 10−2 Å−1 and 4.0 × 10−2 Å−1

in the x- and z-directions, translating to an off-diagonal
force of 2 × 10−3 and 1 × 10−3 Hartree/bohr, respectively
(using C = 1819 meV from Ref. 65). On both C atoms,
the component in the stacking (x-) direction points in the
direction of the other monomer pushing them together or
apart. This force can become comparable to the weak van der
Waals forces between the molecules and should be included.
On the other hand, the component in the z-direction along
the C==C bond is typically two orders of magnitude smaller
than those arising from the bond force constant in the force
field. In view of this analysis, the error in the force along the
z-direction due to the error in the NACV can be neglected.

2. Nuclear forces and energy conservation

As demonstrated in Section II, for a dimer system, the
nuclear forces on the active potential surface can be calculated
using either Eq. (36) or the general N-site expression
Eq. (21) for N = 2. While both expressions are of course
equivalent for a dimer, the implementation of the general
N-site expression is more involved than the one for Eq. (36).
A comparison between the numerical results obtained from
the two expressions is therefore a good test for the validity of
our implementation of Eq. (21). To achieve this, we carried
out four FOB-SH simulations of 100 ps in length each,
though with surface hops always being rejected. Hence, each
simulation was carried out on a single adiabatic potential
energy surface (ground or excited) and the scaling constant
in Eq. (38) was chosen to produce two different values of the
average electronic coupling, ⟨|H12|2⟩1/2 = 8 meV and 41 meV,
respectively. Thus, for two different values of the coupling, we
produced both a ground-state and an excited-state trajectory.
For each trajectory, at 100 regularly spaced configurations
1 ps apart, we calculated the forces on each atom according to
both Eqs. (36) and (21), as well as a version of Eq. (21) that
sets the off-diagonal forces ∇IHkl to 0. This last expression
was chosen to demonstrate how the importance of these
off-diagonal forces changes depending on the strength of the
coupling.

The results are shown in Figure 4, which plots the forces
from the full expression Eq. (21) (symbols in red) and from
Eq. (21) with ∇IHkl = 0 (symbols in green) against the ones
obtained from the full expression Eq. (36). We observe exact
agreement between Eqs. (21) and (36) for all four cases,
validating the force calculation. In contrast, an error is made
when neglecting the off-diagonal forces in Eq. (21), which
becomes pronounced in the larger coupling case (panels A and
C) and also is greatest on the excited state trajectory, where
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FIG. 4. Nuclear forces obtained from the general M -state expression,
Eq. (21), and from the 2-state expression, Eq. (36). The x, y, and z
components of the nuclear forces in the ELM donor-acceptor complex are
plotted for configurations obtained from MD simulation (a) on the adiabatic
ground state E0, ⟨|H12|2⟩1/2= 41 meV, (b) on the adiabatic ground state E0,
⟨|H12|2⟩1/2= 8 meV, (c) on the excited state E1, ⟨|H12|2⟩1/2= 41 meV, and
(d) on the excited state, ⟨|H12|2⟩1/2= 8 meV. λ = 0.3 eV in each case. Red
crosses refer to the full force calculation in Eq. (21) while green circles refer
to the diagonal force approximation (∇IHkl = 0), as described in Table II.

the relative effect of the off-diagonal force terms is maximum
(panel C, up to 0.1 Hartree/bohr).

Having validated our force calculations and begun to
understand the importance of the off-diagonal forces, we
wanted to further investigate if our SH simulations would
conserve total energy well, and to understand if the omission of
off-diagonal gradients would cause a significant computational
speedup. To see this, we performed individual FOB-SH
simulations for the higher coupling strength model of between
0.1 and 1 ns in length for six different simulation setups in
the NVE ensemble. Three of these were on model ELM
dimers, respectively, calculating the nuclear forces on the
active potential energy surface using Eq. (36), Eq. (21), and
the version of Eq. (21) that sets the off-diagonal forces to
0. The latter two force expressions were also applied to
the 1D chain of 10 ELMs. For reference, we have also
carried out a simulation on the electronic ground state with
surface hops being suppressed. Table II summarizes the

TABLE II. Total energy conservation of FOB-SH simulation for the ELM
dimer (λ = 0.3 eV, ⟨|Hab|2⟩1/2= 41 meV) and for a chain of 10 ELMs in the
NVE ensemble (λ = 0.3 eV, ⟨|Hab|2⟩1/2= 41 meV), and the corresponding
timing on a single compute core.

Total energy drift CPU time
Force expression Number of sites (Hartree/ps/atom) (s/ps)

Eq. (36), no hops 2 1.78 × 10−9 0.6
Eq. (36) 2 1.18 × 10−6 31
Eq. (21) 2 8.75 × 10−7 45
Eq. (21), ∇IHkl = 0 2 7.40 × 10−6 33
Eq. (21) 10 5.45 × 10−6 1028
Eq. (21), ∇IHkl = 0 10 1.04 × 10−5 675

energy conservation and computational cost of each of these
simulations.

We find that the total energy drift of our FOB-SH
implementation is reasonably small, 10−6 Hartree/ps/atom
for the 2 and 10 ELM systems. Yet, this is about 3 orders
of magnitude higher than for the reference MD simulations
without hops, 10−9 Hartree/ps/atom. The higher energy drift
in the FOB-SH runs is related to the discontinuity in the
forces that comes from undergoing surface hops. Tully’s
original publication25 discussed this to some extent, choosing
to keep the sudden switches for the sake of simplicity while
noting suggestions for fictitious forces that would carry the
molecules smoothly from one trajectory to another. We have
also chosen to allow the system to hop suddenly between
surfaces, both for reason of computational simplicity and also
to avoid any possible outcome of the molecules being stuck
on some interpolation between actual adiabatic surfaces while
the system undergoes several surface hops.

The energy drift obtained for Eqs. (36) and (21) is
very similar, which is expected as these two expressions
are equivalent for N = 2. When neglecting the off-diagonal
gradients, the energy drift increases by about an order
of magnitude, from 10−6 to 10−5 Hartree/ps/atom. This
is consistent with the increasing error in the forces as
shown in Figures 4(a) and 4(c). An energy drift of about
10−5 Hartree/ps/atom is typical for density functional-based
molecular dynamics simulation, where much of the drift
comes from the iteration of the Kohn-Sham equations in
each time step. Hence, it appears that omission of the
off-diagonal gradients still gives reasonable results for the
coupling regime investigated here (a few 10 meV, typical
for OS materials). However, the energy drift could quickly
deteriorate further, in particular when surface hops occur
more frequently. Therefore, we recommend that off-diagonal
gradients should be included in FOB-SH simulation for OS
materials. Finally, considering the timing in Table II, we
highlight the computational efficiency of our implementation,
allowing us to sample several picoseconds of SH dynamics
per hour and CPU core for the 10 ELM model.

B. FOB-SH for ELM dimer

In the following, we consider the ELM dimer and analyze
the mechanism of thermally activated hole transfer as obtained
from FOB-SH. Before we do so, we need to define a
few quantities. First, we define an initial charge-localized
(diabatic) CT state A, where ELM 1 and ELM 2 are described
with the force field topology of the positively charged and
neutral states, respectively, with total potential energy (or site
energy or diabatic energy) EA(R) ≡ H11(R), where R is the
nuclear configuration of the ELM dimer. Similarly, a final
charge-localized state B is defined, where ELM 2 now carries
the positive charge and ELM 1 is neutral, with site energy
EB(R) ≡ H22(R). Analogously with ET theory, we choose the
vertical energy gap for transfer of the total charge from ELM
1 to ELM 2 at fixed nuclear configuration as the reaction
coordinate,

∆E(R) = EB(R) − EA(R). (51)
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The reorganization energy was chosen to be λ = 0.3 eV
and the coupling strength was chosen to be C = 88.7 meV as
before, giving ⟨|H12|2⟩1/2 = 8 meV. In this regime, the adiabatic
ground state potential energy exhibits a double well feature
(see Figure 1) with an activation barrier that is sufficiently
low so that thermal CT is expected to occur on the 100 fs to
ps time scale (∆E‡ = 67 meV). In the region around the left
minimum, the adiabatic ground state surface E0(R) is almost
identical with EA(R) and in the right minimum with EB(R).

The FOB-SH runs are initiated on the adiabatic
ground state surface E0(R) using initial configurations that
were sampled in MD simulations on the potential energy
surface EA(R) (hole localized on ELM 1). The initial hole
wavefunction has an amplitude only on ELM 1, u1(0) = 1,
u2(0) = 0. Since E0(R) ≈ EA(R) in the minimum region of
A, the energy gap ∆E(R) shown in Figure 5(a) initially
oscillates around the minimum of state A, that is, around
∆E = λ = 0.3 eV. Thermal fluctuations in the site energy
difference ∆E continually bring the system close to the
crossing point (“resonance region”) ∆E = 0, until a surface
hop occurs at about 300 fs and another two follow at about
400 fs. During the lifetime of these excitations (a few 10 fs
or C==C vibrations), the site energy difference is oscillating
around ∆E = 0, which enables transfer of electronic hole
population from ELM 1 to ELM 2 within about 300 fs.
Eventually, the system settles down into the adiabatic ground
state again, now in the minimum of the final diabatic state
B, and all of the hole amplitude is transferred to ELM 2,
u1(t) = 0, u2(t) = 1 from t = 600 fs.

The hole transfer taking place at around ∆E = 0 fits
with what we expect from well known theory. If we
consider a quantum system described by a time-independent
Hamiltonian with two diabatic states a and b, initialized with
Pa(0) = 1,Pb(0) = 0. Then

Pb(t) =
4H2

ab

(Eb − Ea)2 + 4H2
ab

sin2(1
2
ΩRt), (52)

where ΩR is the Rabi frequency, given by

ΩR =
1
~


(Eb − Ea)2 + 4H2

ab
. (53)

Hence, significant CT can occur only when |∆E | is on
the order of |Hab | or less, with a maximum amplitude of

FIG. 5. Mechanism of hole transfer in the ELM donor-acceptor complex
from FOB-SH simulation. Time series of (a) the diabatic energy gap ∆E ,
Eq. (51), (b) the active adiabatic surface that determines the nuclear dynamics,
either ground or excited, (c) the amplitude of the charge localized electronic
hole state (SOMO) that is initially occupied.

population transfer when ∆E = 0. The topology of the excited
state E1(R) in the ELM dimer is such that it has a minimum
at ∆E = 0. Hence, when the ELM dimer is on the excited
state surface, the energy gap oscillates around ∆E = 0, which
permits large transfer of hole amplitude between the ELMs.

We further analyzed the statistics of surface hops, by
taking advantage of our efficient simulation approach to
produce 500 trajectories for the ELM dimer with a total
accumulated length of 1 ns. In particular, we were interested
to understand how the surface-hopping probability Eq. (4)
correlates with the vertical energy gap ∆E. One would usually
expect that the probabilities are highest at the crossing region
at ∆E = 0 and fall away to 0 rather quickly away from
this point: this is due to the non-adiabatic coupling element
between the surfaces being strongest at the crossing region and
weakest away from it. Our results are shown in Figure 6: it is
immediately clear that the behavior of the hopping probability
is more complicated than originally envisaged. While we
observe a clear peak of the distribution centred on ∆E = 0, we
also observe configurations close to the crossing point with
a vanishing hopping probability, e.g., when the NACVs are
close to being orthogonal to the nuclear velocities. What is
perhaps surprising is that a small but finite hopping probability
survives into the initial and final state minima at ±300 meV.
Hence, in a small number of cases, we observe surface hops
when the system is in one of the stable ground state potential
energy minima.

C. Charge mobility from FOB-SH and polaron
hopping/KMC

As a major motivation behind the development of this
method was the ability to apply it to larger systems to study
CT, we now turn to an application to the chain of 10 ELMs. We
used this system to calculate the hole mobility along its length
for varying values of temperature and electronic coupling
strength. Our intention was to demonstrate that, similarly to
a recent investigation by Wang and Beljonne,8 our FOB-SH
method is capable of reproducing the thermally activated CT
at low electronic coupling strength and its absence for higher
coupling strength. We chose a range of temperature values

FIG. 6. Hopping probability Eq. (4) versus diabatic energy gap ∆E , Eq. (51).
Data are obtained from 500 FOB-SH runs for the ELM donor-acceptor
complex with a total accumulated length of 1 ns.
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for three different values of electronic coupling strength, see
Section IV C for simulation details. The mobilities obtained
from FOB-SH according to Eq. (49) are plotted against
temperature in Figure 7.

As we anticipated, we can see a thermally activated charge
transport for the smallest electronic coupling strength (blue
symbols) at low temperatures. Around room temperature, we
observe a crossover from activated to band-like transport
with the mobility decreasing for increasing temperatures
according to µ ∝ T−3.5. With increasing electronic coupling
strengths, thermal activation gradually disappears. For the
highest coupling strength investigated (red symbols), the
mobility decreases steadily with T according to µ ∝ T−1.2.
A qualitatively very similar behavior, i.e., crossover from
activated to band-like transport at low coupling and
disappearance of activated regime at high coupling regime, has
been obtained from SH simulations by Wang and Beljonne.8

Moreover, an inverse power law dependence of the mobility
with temperature similar to the one observed here for the large
coupling regime has been reported by Troisi and Orlandi6,54

and by Fratini et al.3

To explain the steady decrease in mobility with increasing
temperature in the high coupling regime, we return to the
concept of resonance for charge transfer. In Figure 8(a), we
plot the probability distribution of the vertical energy gap
between the first site where the charge is initially located and
the second site, ∆E12, along an equilibrium MD simulation
in that initial electronic state, for different temperatures.
We also indicate an averaged resonance region arising
from the mean electronic coupling along these trajectories,
⟨|H12|⟩ = 129.9 meV, which remains rather insensitive on
temperature. For low temperature, we find that the peak
of the thermal equilibrium distribution of ∆E12 is already
well within the resonance region, which we define with
the boundaries ∆E12 = ±2⟨|H12|⟩, as at these boundaries the
prefactor in Eq. (52) is exactly 0.5 and potentially allows half
the charge to transfer to the second site. Therefore propagation
of the charge carrier occurs instantly for the vast majority of
initial configurations. A temperature increase will broaden the

FIG. 7. Temperature dependence of hole mobility along a chain of 10
ELMs, for three different values of average electronic coupling: ⟨|H12|2⟩1/2

= 2.1 meV (blue), ⟨|H12|2⟩1/2= 21 meV (green), ⟨|H12|2⟩1/2= 140 meV (red),
λ = 0.2 eV in each case. Results from FOB-SH (SH, ⃝ symbols) and for
small polaron hopping/kinetic Monte Carlo simulation (KMC, + symbols) are
shown. Best fits of the FOB-SH data between 300 and 1000 K to an inverse
power-law are indicated by dashed lines.

FIG. 8. Normalized probability distributions of the site energy difference
∆E12 between first and second ELM obtained from an equilibrium trajectory
for the 10 ELM chain with the hole localized on the first ELM. Data are
shown for three different temperatures within the range plotted in Figure 7.
The resonance region for CT is indicated by arrows. As the temperature
increases, thermal fluctuations in the site energies broaden these distributions.
For sufficiently high values of ⟨|H12|⟩, as shown in panel A, this reduces the
area under the curve that is within the resonance region and the mobility
thus decreases accordingly with temperature. For smaller values of ⟨|H12|⟩,
as shown in panel B, this broadening instead allows the area under the curve
in the resonance region to increase from zero and thus increasing temperature
instead increases mobility.

distribution for ∆E12 and thereby reduces the probability for
the system to be within the resonance region. Consequently,
the time it takes for the charge to move from site 1 to site 2 and
further along the chain will increase and hence the mobility
will decrease.

The situation is strikingly different for the temperature-
activated transport observed in the low coupling regime,
Figure 8(b). Here the peak of the equilibrium distribution
of ∆E12 is outside the very narrow resonance region
(⟨|H12|⟩ = 1.6 meV). As the temperature increases, the energy
gap distribution becomes wider and the probability for
resonance increases. Therefore the charge mobility increases
with increasing temperature at low temperature. The reason for
the crossover at about room temperature is less clear, though
we think that the effect of increasing probability for resonance
saturates at a sufficiently high temperature so that the T−1 term
of Eq. (49) takes over. The observed T−3.5 dependence points
to an additional effect that leads to a decrease of the diffusion
constant with temperature in this regime.

Our explanation of the T-dependence of mobility is
further illustrated in Figure 9, where we plot the fraction of
time (= probability) that the system has spent in the resonance
region ∆E12(t) = ±2|H12(t)| during the same equilibrium MD
runs described above (first site in charged state, all other sites
in neutral state). We assert that this resonance probability
be proportional to the diffusion constant and in the spirit of
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FIG. 9. Correlation between the resonance probability for the first two
molecules in the ELM chain divided by kBT , and the corresponding hole
mobility when the temperature is changed. Mobilities are shown for the three
different coupling regimes defined in Figure 7 (same color code applies). The
mobilities are taken from Figure 7.

Eq. (49) divide it by kBT to correlate it with the mobility from
SH. As one can see in Figure 9, the correlation is reasonably
good for both band-like and thermally activated regimes.

For comparison, we have also plotted in Figure 7
mobilities calculated for the polaron hopping model using
KMC simulation, as explained in Section IV D. For the
lowest coupling regime, the KMC demonstrates a thermal
activation at low T due to the presence of small activation
barrier, but a much weaker mobility decay than FOB-SH
at high T . In the high coupling regime, the mobility decay
with temperature is underestimated compared to FOB-SH. We
note that Eq. (50), which the hopping model relies upon for
rate calculations, is problematic for the high coupling regime
due to the absence of an energy barrier for charge transfer.
Interestingly, below room temperature, the mobility from
hopping and FOB-SH are about the same. Therefore, care
needs to be taken when comparing the two approaches—any
agreement between them may be fortuitous and should be
scrutinized further, e.g., by determining the T-dependence of
the mobility at the temperature of interest.

VI. CONCLUSIONS

We have successfully implemented a very efficient surface
hopping algorithm, denoted fragment orbital-based surface
hopping (FOB-SH), that is designed for the simulation of
charge carrier transport in large pi-conjugated systems such
as OS materials and biological molecules. A key feature
is the construction of the electronic Hamiltonian in a basis
of fragment orbitals (SOMOs) of the molecules or molecular
fragments. We have derived a general expression for the forces
on the adiabatic potential energy surfaces in terms of nuclear
gradients of the charge localized states, and we have validated
our force expression and have demonstrated its use, with
applications on a simple donor-acceptor system as well as a
larger one-dimensional chain. With both of these systems we
have demonstrated our method’s ability to investigate relevant
CT properties.

For the chain of 10 ELMs, we observed a crossover from
activated to band-like charge transport for small electronic
couplings. The activated regime gradually disappears with
increasing electronic coupling resulting in an inverse power-
law dependence of mobility with temperature. This is in
qualitative agreement with previous SH simulations by Wang
and Beljonne for CT along a chain of harmonic oscillators.8

A power-law decay was also observed by Troisi55 for single
crystalline rubrene, which falls in the large coupling regime
investigated here. It is important to note that our results are
obtained without assuming a specific charge transport model:
the CT mechanism is a result of the FOB-SH simulation using
only the CT mediating SOMOs as an input. The calculation of
charge mobility on a many-molecule one-dimensional system
was a good proof of concept and demonstrates how the method
shows promise for tackling future applications for two and
three-dimensional systems.

Similarly to the method of Kubař and Elstner,44,45 our
FOB-SH methodology bridges the gap between the semi-
empirical SH implementations5,46,47,49,51 and the harmonic
oscillator/model Hamiltonian approaches developed by Troisi
and Orlandi6,54 and by Wang and Beljonne.8 Like semi-
empirical models, it is a fully atomistic MD method but, at
variance with them, only the CT mediating redox active
orbital(s) of each molecule or molecular fragment are
treated by a quantum mechanical parametrization, whereas
the rest of the molecule is treated with a classical force
field. This makes the FOB-SH method highly efficient. It
also offers several advantages with respect to harmonic
oscillator/model Hamiltonian approaches: (i) “sites” are
molecules in full atomistic representation in FOB-MD rather
than one-dimensional harmonic oscillators; (ii) parameters
related to local and non-local electron-phonon coupling in
harmonic oscillator models are generated on-the-fly during
FOB-SH and are time-dependent rather than constants;
(iii) the quantum back reaction from the electronic to the
nuclear degrees of freedom is included allowing, e.g., the
description of spontaneous polaron formation/charge locali-
zation; and (iv) the effect of the environment on site energy and
electronic coupling fluctuations can be included at the force
field level. Therefore, the FOB-SH method is expected to give
a realistic picture of CT in organic materials at a computational
cost similar to those of classical MD simulations.

The method presented here is in its early stages, and we
foresee many avenues of improvement still to come. Although
we believe that our electronic Hamiltonian is a good model,
there remains the possibility to increase the accuracy of the
calculation of both diagonal and off-diagonal elements of it. At
present the diagonal elements of the Hamiltonian are obtained
with a fixed point charge model. We are presently working
on an expansion of our current implementation which will
enable the calculation of the site energies with polarizable
force fields, improving the method’s ability to model the
polarizable environment. We may also be able to increase the
accuracy of the off-diagonal Hamiltonian matrix elements and
NACVs further. Interpolation schemes or machine learning
techniques could be used to better reconstruct the SOMO
along the FOB-SH trajectory and a larger basis set could be
used to improve their representation.
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There are also ways in which the surface hopping
algorithm can be improved. We have discussed how a
correction to the electronic over-coherence problem is
necessary to match the system’s long-term behavior to
physical intuition, but our current decoherence correction
is relatively crude, with a simple collapse of the electronic
wavefunction whenever the system meets a certain criterion.
The effect of the decoherence correction and discussions of
different approaches are common in the literature, as we
have referenced in Section III G: it has been shown that it
is necessary to treat the effects of electronic over-coherence
not just to avoid nonsensical system behavior at long time
scales but also, e.g., to obtain a correct statistical balance of
adiabatic state populations. Obvious expansions to our method
would therefore include a more thorough treatment of this
decoherence problem, and additionally an algorithm capable
of detecting and handling so-called trivial, or non-avoided,
crossings.8,93 This latter problem needs to be accounted for
in larger systems, where adiabatic electronic states may be
spatially distant (non-interacting) but very close in energy.
Thus this issue will also need to be addressed if the method is
to be applied, as we intend, to realistic model systems for OS
materials.

Moving to larger systems also motivates us to search
for even greater computational efficiency. Although the
method as it stands is extremely fast compared to standard
electronic structure methods, each simulation is run on a
single computational core and a significant speedup could in
theory be obtained by parallelizing the method. We anticipate
that the calculation of the Hamiltonian elements, in particular,
the analytic overlap method (which currently accounts for the
majority of the time for each simulation), could be parallelized
to both reduce simulation time and improve the scaling with
system size. Parallelizing the site energy calculations would
also allow us to offset the loss of computational efficiency
that would come with implementing a more advanced force
field.

The method presented in this paper shows promise for
applications to a variety of condensed phase systems, both as
it currently exists and with the planned improvements we list
above. In future work we intend to use it on CT problems
in organic molecular crystals and disordered systems such as
might be found in organic electronic devices, and on ultrafast
electron transport problems in solvated biomolecules such
as proteins and DNA. The computational efficiency of the
method should make it possible to carry out these simulations
with the required system size and time scales, providing
significant insight into important current research questions of
charge transport in aqueous, organic, and biological environ-
ments.
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