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Abstract

Introduction

Immune system activation is involved in Huntington’s disease (HD) pathogenesis and bio-

markers for this process could be relevant to study the disease and characterise the thera-

peutic response to specific interventions. We aimed to study inflammatory cytokines and

microglial markers in the CSF of HD patients.

Methods

CSF TNF-α, IL-1β, IL-6, IL-8, YKL-40, chitotriosidase, total tau and neurofilament light

chain (NFL) from 23 mutation carriers and 14 healthy controls were assayed.

Results

CSF TNF-α and IL-1βwere below the limit of detection. Mutation carriers had higher YKL-40

(p = 0.003), chitotriosidase (p = 0.015) and IL-6 (p = 0.041) than controls. YKL-40 significantly

correlated with disease stage (p = 0.007), UHDRS total functional capacity score (r = -0.46,

p = 0.016), and UHDRS total motor score (r = 0.59, p = 4.5*10−4) after adjustment for age.

Conclusion

YKL-40 levels in CSF may, after further study, come to have a role as biomarkers for some

aspects of HD. Further investigation is needed to support our exploratory findings.

Introduction

Huntington’s disease (HD) is a neurodegenerative condition in which progressive decline in
cognitive, motor and behaviour functions are a consequence of neuronal dysfunction and
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death. The primary cause of HD is known–a polyglutamine expansion in the first exon of the
HTT gene[1, 2]–but the mechanisms by which mutant huntingtin (mHTT) protein leads to
neuronal cell death still need clarification. The immune system, both peripherally and in the
central nervous system (CNS), has been implicated in HD pathogenesis[3, 4]. Numerous post-
mortem and in vivo studies have shown that complement activation[5], microglial activation
[6],[7] and concentrations of pro-inflammatory and immunomodulatory cytokines IL-1β,
IL-6, IL-8, IL-10, CCl2 and TNF-α[4, 8] are increased in peripheral blood in HD patients com-
pared with controls. Animal studies suggest that inhibition of inflammatory pathways could
ameliorate HD severity[9, 10]. One compound aimed at modulating inflammatory glial activ-
ity, laquinimod, is currently being tested in HD and several other clinical trials are being pre-
pared.[11, 12]

Biomarkers reflecting these peripheral and/or central derangements of neuroinflammation
could be useful to better characterise disease progression and the therapeutic response to spe-
cific interventions. Cerebrospinal fluid (CSF) is a relatively accessible body fluid, enriched in
brain-derived proteins[13], that has proven to be of value as a source of biomarkers in HD[14]
and other neurodegenerative diseases[4, 15, 16]. In 2014, Vinther-Jensen and colleagues found
a statistically non-significant trend towards increasing CSF levels of the microglialmarker
YKL-40 with later disease stage, but no association with disease severity or replication has been
sought in HD CSF collected under strictly standardised conditions.[17]

In this work, we explored immune-associated substances previously reported to be altered
in CSF or plasma in HD, namely proinflammatory cytokines–TNF-α, IL-1β, IL-6 and IL-8 –
and microglialmarkers–YKL-40 and chitotriosidase–in the CSF of well-characterisedpatients,
to determine what markers are capable of predicting clinical severity in HD. By measuring
total tau and neurofilament light chain (NFL)–establishedmarkers of neuronal cell death[18,
19]–in the same CSF samples, we also examined whether neuroinflammation and neurodegen-
eration are linked.

Materials and Methods

Ethical approval was given by the joint University College London/ University College London
Hospitals ethics committee. All patients gave informed written consent before enrolment.
Patient consent, inclusion and exclusion criteria, clinical assessment, CSF collection and stor-
age were as previously published.[14] In brief, samples were collected after an overnight fast at
the same time of day and centrifuged and aliquoted rapidly on ice using a standardised proto-
col and polypropylene plasticware.[14] Healthy controls were contemporaneously recruited,
drawn from a population with a similar age to patients, and clinically well, so the risk of inci-
dental neurodegenerative diseases was very low. Relevant aspects of clinical severity were quan-
tified using the total functional capacity (TFC) and total motor score (TMS) components of the
Unified Huntington’s Disease Rating Scale (UHDRS).[20] Disease burden score, a function of
age and CAG repeat length known to predict many features of HD onset and progression, was
calculated. [21, 22]

CSF analyte quantification

CSF TNF-α, IL-1β, IL-6 and IL-8 were measured using a Meso Scale Discovery antibody-based
tetra-plex array with electrochemiluminiscencedetection according to the manufacturer’s
instructions (Meso Scale Discovery, Gaithersburg,MD, USA). CSF TNF-α and IL-1β concen-
trations were below the lower limits of detection (LODs) of the assay for all samples. CSF IL-6
and IL-8 concentrations were above the LODs (0.32 pg/mL and 0.25 pg/mL, respectively) in all
samples, except for one in which IL-6 was<0.32 pg/mL. CSF YKL-40 concentration was
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measured by enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s
instructions (R&D Systems Inc. Minneapolis, MN). This assay has an LOD of 6.25 ng/mL and
all samples were well above this limit.

CSF chitotriosidase was measured using an in-house enzyme activity assay, as previously
described.[23]Two samples in the HD group and eight samples in the control group were
below the LOD of the assay (0.2 nkat/L). This distribution of undetectable values was statisti-
cally significant between the two groups (Chi-square 10.3569, p = 0.00129), in keeping with a
disease-related difference (see results section). CSF total tau was quantified using the INNOT-
EST enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s instruc-
tions (Fujirebio, Ghent, Belgium). CSF NFL was measured using the NF-light ELISA according
to the manufacturer’s instructions (UmanDiagnostics, Umeå, Sweden). All samples had CSF
total tau and NFL concentrations above the LODs for the assays (45.8 and 50 ng/L, respec-
tively). All measurements were performed as single analyses in one round of experiments using
one batch of reagents. Based on internal quality control samples intra-assay coefficients of vari-
ation were 30% for IL-6, 12% for IL-8, 7% for YKL-40, 10% for chitotriosidase, 10% for total
tau and 15% for NFL. Laboratory technicians were board-certifiedand blinded to clinical data.

Statistical analysis

Statistical analysis was performedwith Stata 14 software (StataCorp, TX, USA).We used one-
way ANOVA to assess baseline intergroup differences. Potentially confounding demographic
variables (age, gender) were examined in preliminary analyses and those found significant
were included as covariates for subsequent analyses. Samples below the LOD were assigned the
LOD concentration. The distributions of all tested molecules were tested for normality. Two-
group comparisons were tested using unpaired two-tailed t-test or Wilcoxon log-rank test.
Stepwise forward logistic regression analysis was used to find combinations of molecules with
better diagnostic performance, and these combinations’ receiver operating characteristics were
compared with the best molecule alone. To test associations with disease progression we calcu-
lated Pearson’s and partial correlations coefficients.Where appropriate, bootstrapping with
1,000 repetitions was applied to non-normal variables. Significance level was defined as
p<0.05. Where there was concern about a single participant group or outliers unduly influenc-
ing the analysis, a sensitivity analysis was conducted, repeating the tests with those datapoints
excluded.

Results

Participants’ characteristics

Thirty-seven cross-sectional CSF samples were obtained from 14 healthy controls, 3 pre-mani-
fest gene expansion carriers (HDGECs), and 20 manifest HDGECs.Details are given in
Table 1. There was no significant difference in age or gender distribution among the included
groups. CAG repeat number did not vary significantly betweenHDGEC groups.

CSF concentrations

Medians and interquartile range (IQR) of CSF concentrations of quantified substances are
shown in Table 2. Only IL-8 was normally distributed. CSF TNF-α and IL-1β concentrations
were below the limit of detection in all cases. No substance varied between genders. YKL-40
and IL-8 were significantly correlated with age in healthy control participants (r = 0.82,
p = 2.6�10−12 for YKL-40 and r = 0.50, p = 0.002 for IL-8) so age was used as a covariate for
these analyses. No other associations with age were found.
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Effects of haemoglobin contamination

The concentration of CSF haemoglobin was not found to be associated with the concentrations
of any analytes, and therefore we assume any minimal blood contamination did not interfere
with quantification of the analytes.

Comparison between healthy controls versus gene expansion carriers

CSF YKL-40, chitotriosidase and IL-6 were significantly elevated in HDGECs compared with
controls (Fig 1; p = 0.003, AUC = 0.797 for YKL-40, p = 0.015, AUC = 0.7419 for chitotriosi-
dase; p = 0.041, AUC = 0.7029 for IL-6). IL-8 was not significantly altered between these groups
(p = 0.228, AUC = 0.5909). Forward stepwise logistic regression analysis showed that the com-
bination of YKL40 and IL-6 had a higher diagnostic power (AUC = 0.8620) than any of the
individual molecules.However, this combination was not statistically significantly better than
YKL-40 alone (p = 0.2674).

Associations with disease stage

In HDGECs, there was a statistically significant positive association betweenCSF YKL-40 level
and disease stage (p = 0.001, Fig 2A). This association remained significant after controlling for
age (p = 0.003). Repeating the analysis excluding premanifest individuals (p = 0.018), outliers
(p = 0.005) and both (p = 0.013) supported the statistical significance of this association. CSF
IL-8 level, too, was significantly positively associated with disease stage (p = 0.023), but not
after controlling for age (p = 0.153). Chitotriosidase and IL-6 were not significantly associated
with disease stage (p = 0.891 and p = 0.398, respectively).

Table 1. Characteristics of included participants by disease stage.

n (%) Age (±SD) M:F ratio CAG TFC TMS Disease burden

Total sample 37 47 (±12) 14:23

Healthy controls 14 (38) 44 (±13) 4:10 N/A 13 N/A N/A

Pre-manifest 3 (8) 40 (±10) 1:2 42 13 1 252

Early stage 15 (41) 50 (±12) 6:9 44 11 27 407

Moderate stage 5 (14) 58 (±2) 3:2 43 5 50 421

Intergroup differences p = 0.077 p = 0.716 p = 0.261 p = 1*10−8 p = 0.005 p = 0.007

M:F, male to female ratio; CAG, Cytosine-adenosine-guanine repeats; TFC, total functional score; TMS, total motor score; N/A, not applicable.

doi:10.1371/journal.pone.0163479.t001

Table 2. CSF biomarkers concentrations by disease stage.

YKL-40ng/mL

(median, IQR)

Chitotriosidasenkat/L

(median, IQR)

IL-6pg/mL

(median, IQR)

IL-8pg/mL

(median, IQR)

NfLpg/mL

(median, IQR)

taupg/mL

(median, IQR)

Total 116.76 (103.43) 0.47 (0.46) 0.85 (0.40) 33.50 (7.50) 1223 (1625) 238 (105)

Healthy

controls

83.071 (58.133) 0.20 (0.27) 0.70 (0.30) 34.00 (19.00) 300 (134) 192 (104)

Pre-manifest 91.420 (54.687) 0.47 (0.32) 0.90 (0.40) 28.00 (11.00) 842 (365) 196 (87)

Early stage 124.757 (95.458) 0.51 (0.34) 1.00 (0.80) 33.00 (5.00) 1969 (1126) 252 (126)

Moderate

stage

194.121 (16.371) 0.41 (0.82) 0.95 (0.80) 38.00 (10.50) 2231 (994) 384 (183)

IQR, interquartile range; IL, interleukin; NfL, neurofilament light chain.

doi:10.1371/journal.pone.0163479.t002
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Associations with clinical severity

There was a statistically significant negative association betweenCSF YKL-40 and TFC after
controlling for age (r = -0.46, p = 0.005; Fig 2B), but not disease burden score (r = -0.36,
p = 0.090). CSF chitotriosidase, IL-6 and IL-8 were not significantly associated with TFC
(r = 0.12, p = 0.607; r = -0.16, p = 0. 531 and r = -0.37, p = 0.093, respectively).

CSF YKL-40 was significantly positively associated with TMS (r = 0.65, p = 1.3�10−5, Fig
2C). This association remained significant after controlling for age (r = 0.59, p = 4.5�10−4), and

Fig 1. Comparison in CSF levels of inflammatory molecules between 14 healthy controls versus 23 gene expansion carriers. The p-values for

unpaired two-tailed t-test (Il-8) or Wilcoxon log-rank test (YKL-40, chitotriosidase, IL-6) are shown.

doi:10.1371/journal.pone.0163479.g001
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also after controlling for disease burden score (r = 0.49, p = 0.037), indicating that CSF YKL-40
can independently predict severity of motor manifestations beyond the known predictive value
of age and CAG repeat length. Chitotriosidase, IL-6 and IL-8 were not statistically significantly
associated with TMS (r = -0.15, p = 0.234; r = -0.08, p = 0.666; and r = 0.23, p = 0.3055,
respectively).

Associations with markers of neuronal death

Because they had been found to be associated with measures of clinical severity, YKL-40 and
IL-6 were further examined for association with CSF tau and NFL levels, each of which has
been shown to be associated with neuronal death in neurodegenerative and other conditions.
[24–26] There were statistically significant positive associations between YKL-40 and both
total tau (r = 0.65,.p = 1.4�10−5) and NFL (r = 0.72,.p = 3.7�10−26), which remained significant
after controlling for age (r = 0.69, p = 1.2�10−4; r = 0.72, p = 1.5�10−9, respectively), and disease
burden score (r = 0.51, p = 0.006; r = 0.55, p = 3.5�10−6, respectively), again suggesting that
YKL-40 level can predict these markers of neuronal death, independent of their mutual associ-
ation with age and CAG repeat length. IL-6 did not show any such association with tau or NFL
(r = 0.17, p = 0.559; r = 0,23, p = 0.300, respectively).

Discussion

In this exploratory cross-sectional study using CSF samples collected and processed under rig-
orously controlled conditions, we show that CSF concentrations of the microglialmarkers
YKL-40 and chitotriosidase, and the pro-inflammatory cytokine IL-6, were elevated in
HDGECs compared with healthy controls.

YKL-40 was most robustly associated with clinical severity: age-adjusted YKL-40 CSF con-
centrations in gene expansion carriers were associated with disease stage and with clinical mea-
surements of disease progression—UHDRS TFC and UHDRS TMS. These latter associations
remained statistically significant after adjustment for disease burden score, indicating that CSF
YKL-40 has independent clinical predictive power, beyond its association with age and CAG
repeat length. To our knowledge, the only other CSF substance for which such independent
predictive power has been reported is the pathological agent itself, mutant huntingtin protein
(mHTT).[14]

Furthermore, CSF YKL-40 was associated with the CSF markers of neuronal death tau and
NFL; and retained this predictive power after adjustment for the mutually-associated predic-
tors age and CAG repeat length.

Fig 2. Relationship between CSF concentration of YKL-40 and measures of disease progression and clinical severity. a, disease stage; b, UHDRS

total functional score; c, UHDRS total motor score. The p-values for partial Pearson’s correlation coefficient adjusted for age are shown.

doi:10.1371/journal.pone.0163479.g002
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YKL-40, also known as chitinase 3-like protein 1 (CHI3L1), is a member of the 18 glycosyl
hydrolase family, without enzymatic activity and with poorly understood function.[27]During
neuroinflammation YKL-40 is expressed and secreted by microglia[28] and is associated with
astrocytosis and astrocyticmotility.[29] Neuroinflammation is thought to have an important
role on HD pathogenesis and mHTThas a direct effect on the NFκB pathway.[30] This inter-
action induces expression of pro-inflammatorymolecules and may explain the elevation of
YKL-40 in HD CSF.

IL-6 in CSF–previously shown to be elevated in HD blood plasma–was found to be associ-
ated with disease stage but not with more granular clinical measures of severity or neuronal
death. IL-6 is known to cross the blood-brain barrier[31] so it seemsmost likely that its CSF
level reflects systemic elevation or possibly parallel CNS and peripheral immune activation.[4]
Nevertheless these results should be interpreted with caution since the coefficient of variation
of this assay was relatively high.

To our knowledge, this is the first study describing the potential of CSF YKL-40 as an inde-
pendent predictor of clinical severity and neuronal death in HD. Our findings differ from those
of Vinther-Jensen et al, who did not find a statistically significant association betweenCSF
YKL-40 and disease stage or severity.[17] Differences in sample collection, processing and
assay methodologymay explain the differences in our findings. Our standardised protocols
aim to reduce avoidable inter-subject variability by controlling fasting state, time of day, collec-
tion methodology, processing methods and equipment. Still, it would be sensible to further val-
idate these differences in larger cohorts. To our knowledge, our study is the first to explore the
relationships betweenCSF inflammatorymarkers and clinical variables such as TFC and TMS,
and biomarkers of neuronal cell death.[17]

Notwithstanding the striking findings in respect of YKL-40, this exploratory study requires
validation in larger studies such as the HDClarity initiative.[32] The longitudinal predictive
power of CSF YKL-40 should be examined in studies with repeat CSF collection. Furthermore,
evaluation in blood of biomarkers proposed from CSF is an important focus of our work.
Blood has hitherto failed to yield meaningful biomarkers of CNS disease activity but this
remains an important aim if suitably CNS-specific bloodmarkers can be identified.[33]

Conclusion

We conclude that IL-6, chitotriosidase and YKL-40 show disease-related elevations in CSF in
HD, affirming the role of microglial activation and the innate immune system in the disease.
CSF YKL-40 in particular can independently predict clinical severity and neuronal death, and
may be a useful targeted biomarker for the contribution of microglial dysfunction to disease
activity.
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