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Abstract—This paper considers a multiple-input multiple-
output (MIMO) relay system with an energy harvesting relay
node powered by harvesting energy from the source node using
power splitting (PS). The rate maximization problem subject
to power constraints at both the source and relay nodes is
considered for two different scenarios. Firstly, the relay matrix
and PS ratio are jointly optimized with uniform source precoding
and then in the second scenario the source covariance is opti-
mized as well. Iterative approaches and dual decomposition are
proposed based on the structures of the optimal relay and source
covariance matrices for the scenarios.

Index Terms—MIMO, Relay, Energy Harvest, Power Splitting.

I. INTRODUCTION

Cooperative communication using relay has been seen as
one of the promising techniques to improve network coverage
and throughput since 1970s [1]. Since then, considerable work
has been done to explore cooperation strategies from various
perspectives. To take the advantages of the multiple-input
multiple-output (MIMO) technique, e.g. improving spectrum
utilization and link reliability, MIMO relay networks were
considered in [2]–[4] where the capacity maximization prob-
lem with source and relay transmit power thresholds was
considered. In [2] and [3], relay only and joint source and relay
optimization was considered. Then in [4], joint source and
relay design was studied for MIMO-OFDM relay networks.

With green communication becoming an important ten-
dency of next generation wireless communication, recently,
researchers have started paying attention to the combination of
energy harvesting technique and cooperative communication.
In [5], the outage probability and the ergodic capacity were
analyzed for one-way relaying system with energy harvesting
while [6] focused on the power allocation strategies for multi-
ple source-destination pair cooperative relay networks. In [7],
the outage and diversity performance were investigated using
stochastic geometry in energy harvesting enabled cooperative
networks with spatially random relays. In [8], game theory was
used to study simultaneous wireless information and power
transfer (SWIPT) for interference relay channels. These works
only considered single antenna and single-carrier relay net-
works. Later in [9], SWIPT was considered for a multi-antenna
relay network with single antenna source and destination
nodes. The transmit power at the relay was minimized subject
to the signal-to-inference-plus-noise ratio (SINR) and energy
harvesting constraints. [10] studied the optimal precoding for a
two-hop decode-and-forward (DF) MIMO relay network with

an energy harvesting receiver and an information decoding
receiver. The achievable rate was maximized subject to inde-
pendent transmit power and harvested energy constraints at
the source and relay transmission phases, respectively, with
fixed time switching (TS) ratio. The formulated problem was
convex after semidefinite relaxation (SDR) and hence can be
easily solved with existing software solvers.

In this paper, power-splitting based energy harvesting is
considered for amplify-and-forward (AF) MIMO relay net-
works. In order to maximize the achievable rate with power
constraints, we first consider uniform source precoding and
jointly optimize relay matrix and PS ratio with extension to a
more challenging scenario where the source covariance matrix
needs to be optimized as well. Unlike the convex problem
considered in [10], the noncovex problem here can not be
solved using SDR and software solvers. Hence we provide the
structures of the optimal source covariance and relay precoding
matrix based on which iterative approaches are employed to
derive the near-optimal results.

II. SYSTEM MODEL

A two-hop MIMO relay network is considered with power
splitting based energy harvesting at the relay node. The num-
bers of antennas for the source, relay and destination nodes
are M, L, and N , respectively. Using half-duplex relaying,
the signal transmission can be divided into two phases. As
is shown in Fig. 1, the block length T is split equally into
the two phases. In the first phase, information and energy are
simultaneously transmitted from the source to the relay with ε
of the received signal power used for energy harvesting and the
rest used for information forwarding. Then in the second phase
the relay forwards the rest received signal to the destination
node using the energy harvested in the first phase.
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Fig. 1. The framework of the proposed PSR

To better clarify the expressions, we summarize some com-
monly used symbols. s is the source symbol vector subject to
the maximum transmit power P. H1 and H2 give the channel
matrices between the source and relay, and the relay and
destination. Q is the source covariance matrix while F is the



relay beamforming matrix. n1 denotes the Addictive White
Gaussian Noise (AWGN) at relay with a variance of σ1

2. And
n2 is the AWGN at destination with a variance of σ2

2.

III. RATE MAXIMIZATION WITH UNIFORM SOURCE
PRECODING

In the uniform source pre-coding case, i.e. Q =E(ssH)=
P
D I, the harvested power at relay can be written as

tr(yeye
H) = σ2

1tr(ερ1H1H
H
1 ), (1)

where D is the number of transmit data streams satisfying
D ≤ min(M,L,N). We let the received signal for energy
harvesting ye =

√
εH1s and the signal-to-noise ratio (SNR)

at the relay ρ1 , P
Dσ2

1
. Here we assume that the antenna noise

is relatively smaller and can therefore be ignored. The received
signal at relay for information decoding is given by

yr =
√
1− εH1s+ n1. (2)

Then in the second phase, the receive signal at destination is

yd =
√
1− εH2FH1s+H2Fn1 + n2. (3)

In this case, the achievable rate can be written as

C =
1

2
log2 det

(
ID + (1− ε)ρ1H1H

H
1

−(1− ε)ρ1H1H
H
1 W−1

)
, (4)

where W = ID + GHHH
2 H2G, and G = σ1

σ2
F. And the

power constraint at relay is given by

tr(G(ID + (1− ε)ρ1H1H
H
1 )GH) ≤ ηtr(ερ2H1H

H
1 ), (5)

where ρ2 , P
Dσ2

2 . 0 ≤ η ≤ 1 denotes the energy convention
efficiency. Consequently, the problem of interest is

max
G,ε

C s.t. (6a)

tr(G(ID + (1− ε)ρ1H1H
H
1 )GH)

≤ ηtr(ερ2H1H
H
1 ). (6b)

Obviously, the problem is not convex and hence can not
been solved directly. Now define ρ̂1 = (1 − ε)ρ1, ρ̂2 = ερ2
and fix ε. The problem then becomes similar to the one in [2].
We consider the singular value decompositions (SVDs) of the
channel matrices shown below

H1 = U1Σ1V
H
1 , (7)

H2 = U2Σ2V
H
2 , (8)

where Σ1,Σ2 are diagonal matrices while others are unitary.
According to [2], the optimal relay matrix satisfies F =
V2ΛFU

H
1 where ΛF is diagonal. Let G = V2X

1
2 (I+ (1−

ε)ρ1Λ1)
− 1

2UH
1 with X = diag(x1, x2, ..., xD). In addition,

we let Λ1 = Σ2
1, Λ2 = Σ2

2 be diagonal matrices with
the vectors α = [α1, ...αD] and β = [β1, ...βD] as the

diagonal vectors, respectively. Problem (6) then becomes a
scalar optimization problem:

max
0≤ε≤1,{xk}

f({xk}, ε) (9a)

s.t. g({xk}, ε) , η
D∑

k=1

ερ2αk −
D∑

k=1

xk ≥ 0, (9b)

xk ≥ 0, ∀k (9c)

where

f({xk}, ε) ,
1

2

[
D∑

k=1

log2(1 + (1− ε)ρ1αk)

+
D∑

k=1

log2

(
1 + βkxk

1 + (1− ε)ρ1αk + βkxk

)]
.

(10)

Considering the Lagrangian, the dual problem is

max
{xk},ε,
ν,{λk}

L , f({xk}, ε) + νg({xk}, ε) +
D∑

k=1

λkxk (11a)

s.t. 0 ≤ ε ≤ 1, ν ≥ 0, xk ≥ 0, λk ≥ 0, ∀k. (11b)

Using Karush-Kuhn-Tucker (KKT) conditions, we have

νg({xk}, ε) = 0, (12a)
λkxk = 0,∀k, (12b)
∇xk

L = 0,∀k, (12c)
∇εL = 0. (12d)

Using (12c), we obtain

1

2 ln 2

(
βk

1 + βkxk
− βk

1 + (1− ε)ρ1αk + βkxk

)
−ν + λk = 0, ∀k. (13)

Due to the fact that λk ≥ 0, it holds that

ν ≥ 1

2 ln 2

(1−ε)ρ1αk

βk

(xk + 1
βk

)
(
xk + (1−ε)ρ1αk+1

βk

) , ∀k. (14)

Considering (12b), we have

xk

ν − 1

2 ln 2

(1−ε)ρ1αk

βk

(xk + 1
βk

)
(
xk + (1−ε)ρ1αk+1

βk

)
 = 0. (15)

According to [2], the optimal xk can then be written as

xk =
1

2βk
[

√
(1− ε)2ρ21α

2
k +

2

ln 2
(1− ε)ρ1αkβkµ

− (1− ε)ρ1αk − 2]+, (16)

where (a)+ = max{0, a} and µ = 1
ν can be obtained from

(12d). As such

l(µ) =
ρ1

2 ln 2

D∑
k=1

[(
1

1 + (1− ε)ρ1αk + βkxk

− 1

1 + (1− ε)ρ1αk

)
αk

]
+

1

µ
ηρ2αk = 0. (17)



Due to the inter-depended relationships among xk, ε, and
ν, it is difficult to derive the optimal closed form expressions
for all the variables at the same time. To solve the problem,
here we introduce an iterative method by firstly fixing ε.

Now we need to check the availability of root-searching
for l(µ) = 0. Obviously, l(µ) is monotonic decreasing when
µ ∈

[
maxk 2 ln 2

1+(1−ε)ρ1αk

(1−ε)ρ1αkβk
, ∞

)
. Moreover, we notice that

when µ ∈
[
mink 2 ln 2

1+(1−ε)ρ1αk

(1−ε)ρ1αkβk
,maxk 2 ln 2

1+(1−ε)ρ1αk

(1−ε)ρ1αkβk

]
,

l(µ) still decreases monotonically since in this interval xk

either equals to 0 or increases with µ. Consequently, we have

l(∞) → − ρ1
2 ln 2

D∑
k=1

αk

1 + (1− ε)ρ1αk
< 0, (18)

and

l

(
min
k

2 ln 2
1 + (1− ε)ρ1αk

(1− ε)ρ1αkβk

)
= max

k

1

2 ln 2

(1− ε)ρ1αkβk

1 + (1− ε)ρ1αk

D∑
k=1

ηρ2αk > 0. (19)

In contrast, it is obvious that xk = 0, ∀k, when µ ∈(
0,mink 2 ln 2

1+(1−ε)ρ1αk

(1−ε)ρ1αkβk

)
, and thus we know that

l(u) =
1

µ

D∑
k=1

ηρ2αk > 0. (20)

Consequently, an optimal µ∗ satisfying l(µ∗) = 0 can
always be found within

(
mink 2 ln 2

1+(1−ε)ρ1αk

(1−ε)ρ1αkβk
,∞
)

by root-
finding strategies such as bisection searching. Finally, we can
calculate the optimal PS ratio using (12a) as follows

ε =

∑D
k=1 xk

ηρ2
∑D

k=1 αk

. (21)

The iteration framework is summarized in Algorithm 1.

Algorithm 1 Iteration scheme for uniform source precoding
1: Initialization let ε = 0.001
2: while ε < 1 do
3: find µ∗ making l(µ∗) = 0 using root-finding method
4: calculate xk and ε∗ using (16) and (21)
5: if |ε∗ − ε| is small enough, iteration terminates. Other-

wise, ε = ε+ 0.001
6: end while

IV. RATE MAXIMIZATION WITH ARBITRARY SOURCE
PRECODING

In this section, a more general scenario with arbitrary source
covariance matrix is considered in which the source covariance
matrix, relay beamforming matrix and PS ratio need to be
jointly optimized. In this case, the achievable rate can be
expressed as

C =
1

2
log2 det

(
ID + (1− ε)

H2FH1QHH
1 FHHH

2

σ2
2ID + σ2

1H2FFHHH
2

)
.

(22)

Then the problem of interest can be written as

max
F,Q,ε

C (23a)

s.t. tr(Q) ≤ P, (23b)

tr(σ2
1FF

H + (1− ε)FH1QHH
1 FH)

≤ εηtr(H1QHH
1 ). (23c)

To make use of the results in the previous section, we
introduce an equivalent channel Ĥ1 = H1Q

1
2 and find that

the structure of the optimal relay beamforming still works, i.e.
F̂ = V2Σ̂F Û

H
1 . Meanwhile, Σ̂F is diagonal, and Û1 comes

from the SVD of Ĥ1 = Û1Σ̂1V̂
H
1 . Because the objective

function and the transmit power constraint at relay only depend
on Σ̂1 but not on Û1, it was claimed in [3] that the optimal
Q must require the least transmit power. Moreover, it can
be easily proved that the structures of the optimal source
covariance and relay beamforming matrices in [3] still work
after considering energy harvesting, by defining a new variable
ρ̂1 = (1 − ε)ρ1. So the structures of the optimal source and
relay matrices in (23) can be written as

F = V2ΣFU
H
1 , (24)

Q = V1ΛQV
H
1 , (25)

where U1,V1,U2,V2 have been introduced in (7)
and (8). ΛQ,ΣF are diagonal matrices with ΛQ =
diag(q1, q2, ..., qD), and ΛF = Σ2

F = diag(f1, f2, ..., fD).
Now let dk = fk((1 − ε)αkqk + σ2

1), ∀k, and rewrite the
optimization problem (23) as

max
ε,{dk},{qk}

f̃(ε, {dk}, {qk}) (26a)

s.t.

D∑
k=1

qk ≤ P, (26b)

g̃(ε, {dk}, {qk}) ≥ 0, (26c)
qk ≥ 0, dk ≥ 0,∀k (26d)
0 ≤ ε ≤ 1, (26e)

where we let

f̃(ε, {dk}, {qk})

, 1

2

D∑
k=1

log2

(
1 + (1− ε)αk

σ2
1
qk

)(
1 + βk

σ2
2
dk

)
1 + (1− ε)αk

σ2
1
qk + βk

σ2
2
dk

, (27)

g̃(ε, {dk}, {qk}) , εη
D∑

k=1

αkqk −
D∑

k=1

dk. (28)

Now problem (23) with matrix variables has been reformulated
into (26) which involves only scalar variables but still non-
convex. It is difficult to obtain a closed-form solution. Thus a
local optimal iterative algorithm is proposed in the following.

A. Updating d and ε∗ with fixed q

To start with, we let q = [q1, q2, . . . , qD]T , and d =
[d1, d2, . . . , dD]T . Then we fix q subject to (26b) and update



d and ε accordingly. Considering the Lagrangian of (26), we
formulate the following dual problem

max
ε,{dk},
ν,{λk}

L , f̃(ε, {dk}) + νg̃(ε, {dk}) +
D∑

k=1

λkdk (29a)

s.t. 0 ≤ ε ≤ 1, dk ≥ 0, ν ≥ 0, λk ≥ 0, ∀k. (29b)

The corresponding KKT conditions can be written as

νg̃(ε, {dk}) = 0, (30a)
λkdk = 0,∀k, (30b)
∇dk

L = 0,∀k, (30c)
∇εL = 0. (30d)

Following similar approach in the uniform source procoding
case, the optimal dk can be derived as

dk =
σ2
2

2βk

(√
(1− ε)2(

αk

σ2
1

qk)2 + 2(1− ε)
αk

σ2
1 ln 2

qkβkµ

−(1− ε)
αk

σ2
1

qk − 2

)+

, (31)

where µ = 1
ν can be obtained using (30d). Thus we have

l(µ) =− 1

2 ln 2

[
D∑

k=1

αk

σ2
1

qk

(
1

1 + (1− ε)αk

σ2
1
qk

− 1

1 + (1− ε)αk

σ2
1
qk + βk

σ2
2
dk

)]
+

1

µ
η

D∑
k=1

αkqk = 0.

(32)

Note that in this case, both ε and µ are needed to calculate
dk. Here we introduce an initial ε, and then search for the
optimal µ by bisection method using (31) and (32). With µ
known, we calculate dk using (31) and then ε∗ can be derived
using (30a) as follows

ε∗ =

∑D
k=1 dk

η
∑D

k=1 αkqk
. (33)

The iterative framework is similar to Algorithm 1 and hence
ignored to avoid redundancy.

B. Updating q with fixed d and ε

Now fixing d and ε, we update qk. Considering the La-
grangian of problem (26), the dual problem is defined as

max
ε,{qk},ν1,

ν2,{λk}

L =f̃(ε, {qk}) + ν1(P −
D∑

k=1

qk)

+ ν2g̃(ρ, {qk}) +
D∑

k=1

λkqk (34a)

s.t. 0 ≤ ε ≤ 1,ν1 ≥ 0, ν2 ≥ 0, λk ≥ 0, qk ≥ 0,∀k. (34b)

Again the KKT conditions are given by

ν1(P −
D∑

k=1

qk) = 0, (35a)

ν2g̃(ε, {qk}) = 0, (35b)
λkqk = 0,∀k, (35c)
∇qkL = 0,∀k, (35d)
∇εL = 0. (35e)

Then according to (35d), we have

(1− ε)αk

2 ln 2 σ2
1

(
1

1 + (1− ε)αk

σ2
1
qk

− 1

1 + (1− ε)αk

σ2
1
qk + βk

σ2
2
dk

)
− ν1 + ν2εηαk + λk = 0. (36)

Using (35d) and defining ν̂k = 2(ν1− ν2εηαk), we then have

qk =
σ2
1

2αk(1− ε)

(√
(
βk

σ2
2

dk)2 + 4
(1− ε)αkβk

ln 2σ2
1σ

2
2

dkµ̂k

−βk

σ2
2

dk − 2

)+

, (37)

where µ̂k = 1
ν̂k

. Since each qk depends on unique dual variable
µ̂k, it is difficult to find all the dual variables by searching.
Instead, here we use the dual decomposition method proposed
in [11] to derive the optimal solution to the dual problem
(34). The key idea is to find the optimal dual variables ν1 and
ν2 by alternating searching and then use them to calculate the
corresponding qk. The framework is presented in Algorithm 2.

C. Iterative Optimization
Algorithm 3 shows the framework of iteration to solve (26).

V. NUMERICAL RESULTS

In this section, the performance of the proposed schemes
are analyzed via simulations. We let M = N = L = 4 and
P = 1. H1 and H2 are modeled with a set of independent
zero-mean complex Gaussian random variables with a variance
of 10dBm. Unless otherwise stated, the iteration threshold is
10−3. Case I and Case II denote the uniform and arbitrary
source precoding scenarios, respectively. Note that for com-
parison the naive amplify-and-forward (NAF) scheme is also
considered. In the NAF scheme, we let Q = P

D I and F =
√
χI

where χ is the scalar which makes the equality in (5) holds
and the optimal PS ratio ε is obtained by exhaust searching.

Fig. 2 presents how the value of the noise variance σ2
1 at

relay decides the maximum rate. Let σ2
1 vary from −20dBm to

20dBm and σ2
2 fixed at σ2

2 = −20dBm. As can be observed,
the joint optimization of source, relay and PS ratio in Case
II yields the highest rate followed by the iterative scheme in
Case I while the NAF scheme shows the worst performance.

Fig. 3 shows the maximum rate versus the value of the noise
variance σ2

2 at destination. Here we let σ2
2 vary from −40dBm

to 0dBm with σ2
1 fixed at 0dBm. According to Fig. 3, the

proposed scheme in Case II outperforms the joint optimization
of relay and PS ratio in case I as well as the NAF scheme with
a higher gain at a lower σ2

2 .



Algorithm 2 Dual Decomposition for PS Relaying
1: Main Function
2: Fix d and ε
3: q = optimize ν1(d, ε)
4: Function q = optimize ν1(d, ε)

5: ϕk = (1−ε)αkβkdk

2σ2
1 ln 2(σ2

2+βkdk)
, ν1min = ν1max = maxk(ϕ)

6: while
∑D

k=1 qk ≥ P do
7: ν1max = ν1max + 10−4

8: q = optimize ν2(ν1max,d, ε)
9: end while

10: while |ν1max − ν1min| > ε do
11: ν1 = ν1max+ν1min

2
12: q = optimize ν2(ν1,d, ε)
13: if

∑D
k=1 qk ≥ P , ν1min = ν1; otherwise, ν1max = ν1

14: end while
15: Function q = optimize ν2(ν1,d, ε)
16: θk = ν1−ϕk

ηεαk
, ν2min = ν2max = mink(θ)

17: while ηε
∑D

k=1 αkqk −
∑D

k=1 dk ≤ 0 do
18: ν2max = ν2max + 10−4

19: q = optimize(ν1, ν2max,d, ε)
20: end while
21: while |ν1max − ν1min| > ε do
22: ν1 = ν1max+ν1min

2
23: q = optimize ν2(ν1,d, ε)
24: if ηε

∑D
k=1 αkqk −

∑D
k=1 dk ≤ 0, let ν2min = ν2;

otherwise, ν2max = ν2
25: end while
26: Function q = optimize(ν1, ν2,d, ε)
27: Calculate q according to (37)

Algorithm 3 Iteration Framework for PS Relaying
1: Initialization Let q satisfying (26b)
2: Calculate optimal d and ε with fixed q according to

Algorithm 1
3: Re-optimize q with the obtained d and ε via dual decom-

position method in Algorithm 2
4: Return to Step 2 until convergence

VI. CONCLUSION

This paper investigated wireless information and power
transfer for MIMO power splitting relaying. To maximize the
rate subject to the power constraints, we firstly considered
uniform source precoding and optimized the relay matrix and
PS ratio. Then the source covariance was optimized as well in
the second case. Iterative schemes which yielded near-optimal
solutions were proposed for the two cases.
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