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Abstract
Zooarchaeological and paleoecological investigations have traditionally been unable to

reconstruct the ethology of herd animals, which likely had a significant influence on the

mobility and subsistence strategies of prehistoric humans. In this paper, we reconstruct the

migratory behavior of red deer (Cervus elaphus) and caprids at the Pleistocene-Holocene

transition in the northeastern Adriatic region using stable oxygen isotope analysis of tooth

enamel. The data show a significant change in δ18O values from the Pleistocene into the

Holocene, as well as isotopic variation between taxa, the case study sites, and through

time. We then discuss the implications of seasonal faunal availability as determining factors

in human mobility patterns.

Introduction
The seasonal availability of plant and animal resources was integral to the subsistence and
mobility strategies of past human groups [1–6] and the migratory behavior of large herbivore
species has long been used as a proxy for the mobility of late Pleistocene hunter-gatherers in
Europe, relying on modern ethology as a baseline for interpretation (e.g. Paleolithic Epirus,
Greece, [7–10]). Since the end of the last ice age, substantial changes in landscape, climate, and
human activity have influenced habitat size, vegetation, and population levels. It is therefore
likely that significant changes in herbivore mobility, including preferred pathways as well
as range distance, have occurred. Seasonal predictability and reliability of these faunal
resources may have been crucial for human survival at times of environmental change or cli-
matic instability.
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This study investigates the mobility of herbivore prey species at the head of the Adriatic
(Istria, Croatia) during the Pleistocene-Holocene transition (12,000–8,000 years ago) and
spans the cultural phases of the Late Upper Paleolithic, the Mesolithic, and the early Neolithic.
Zooarchaeological evidence attests to the economic importance of ungulate taxa including red
deer (Cervus elaphus), ibex (Capra ibex), and chamois (Rupicapra rupicapra) at a number of
cave sites in the region throughout time [11–17]. We use intra-tooth stable isotope data from
archaeological specimens at three of these cave sites to test assumptions about the prehistoric
migratory behavior of these prey species based on modern ethology.

The present day migratory behavior of red deer is variable, with movement between habitats
due to differences in seasonal forage quality, weather, pests, mating, and current wildlife man-
agement practices [18–23]. In addition, adjacent populations of red deer may have very differ-
ent migration and mobility patterns [18, 24] over variable distances (e.g., from 10–140 km
[23]). Migratory behavior is most often described in cold-adapted populations of North Ameri-
can elk (Cervus elaphus canadensis) e.g. [18, 19, 23], which offers a potential analogue for red
deer populations extant during the cold climate of the terminal Pleistocene in Europe. If the
mobility of this species is predominantly determined by environmental factors in the present,
there must be a substantial amount of uncertainty in predicting expected mobility patterns in
the past, and red deer may or may not have been migratory depending on specific local condi-
tions. This would have had implications for the lifestyles of hunter-gatherers in the northeast-
ern Adriatic during the late Pleistocene, whose specialized subsistence economy was based on
red deer [12–17].

Though most caprids are traditionally regarded as high-altitude taxa, this may be a result of
present-day distribution of steep, craggy rock faces at high altitudes rather than an altitudinal
preference [25] and archaeological evidence from the study region suggests that they occupied
elevations much lower than this (100m above sea level) in the late Pleistocene [26, 27]. Caprids
do not migrate laterally across large distances, and most of their movement is related to mating
and forage quality (R. rupicapra, [28–29]; R. pyrenaica [30–31]; C. pyrenaica [32]). This sug-
gests that populations of chamois and ibex in the past were likely not seasonally migratory over
long distances, making them a more accessible resource throughout the year. Based on the fau-
nal data at the case study sites [15–17] there is a shift away from the late Pleistocene hunting of
red deer-whose modern day behavioral ecology suggests are selective migrators-to multiple
species, including chamois and ibex, which are assumed to be non-migratory, in the early
Holocene.

Testing whether the migratory behavior seen in modern populations occurred in the past
remains a challenge using traditional zooarchaeological methods. Stable isotope analysis has
many applications to zooarchaeological inquiry, contributing to topics such as diet, climate,
ecology and mobility in the past [33]. Here we seek to establish the nature of seasonal mobility
of red deer and caprids using the incremental analysis of δ18O from their tooth enamel carbon-
ate. The intra-tooth δ18O isotopic variation of an animal with limited mobility reflects seasonal
variations in meteoric water δ18O, which in high and mid latitudes tracks ambient temperature.
Animals that move between summer and winter pastures throughout the year along latitudinal
or altitudinal gradients minimize the seasonal variation in their external environment, resulting
in a damped isotope signal and lower intra-tooth variability. Thus a larger range in δ18O values
are expected to be seen within a single tooth of an animal with limited mobility than in a migra-
tory animal.

A cyclical oxygen isotopic pattern has been well-documented in ovicaprids, domestic sheep
(Ovis aries) and goat (Capra hircus) [34–36] and observed in a non-migratory red deer popula-
tion in Scotland [37]. The observed range in δ18O for non-migrating individuals is 2–4‰ for
caprids [34] and between 3–4‰ for red deer [37]. In contrast, damped oxygen and carbon
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isotopic fluctuations in tooth enamel have been shown in migratory modern North American
caribou (Rangifer tarandus) with a low range of intra-tooth variation (approximately 1‰ in
δ18O) [38]. If migratory, the archaeological red deer in this study should exhibit limited intra-
tooth isotopic variability; if not, seasonal intra-tooth isotopic variation should be detectable.
Likewise, non-migratory caprids in this study are expected to exhibit relatively higher intra-
tooth isotopic variation.

Environment and archaeology of the study region
The Istrian Peninsula of Croatia has a diverse topography and coastline, unique environmental
history, and is a “crossroads” location between Europe and Southwest Asia. Based on regional
records, the terminal Pleistocene Bølling-Allerød interstadial (14,600–12,900 BP) was charac-
terized by a sustained rise in temperatures and increased water availability, leading to the
spread of forest into upland areas from refugial populations located on lower slopes in Istria
and the surrounding area [14, 39–42]. The Younger Dryas (12,900–11,500) was cool and dry,
and grassland and open shrubland were the dominant groundcover [42–45]. In the initial
Holocene, warming resumed in the Pre-Boreal and Boreal (11,500–9,000 BP) and the area
became reforested with deciduous species [46–48]. There was some variability in vegetation
because of the short-lived cooling oscillations within these periods, perhaps creating a “patchy”
environment [45]. The Atlantic period (9,000–6,000 BP) was warmer and wetter, and the
arrival of agriculture in the region at this time significantly altered the vegetative cover as land
was cleared and new species introduced [41]. These climate-driven environmental and ecologi-
cal changes would have strongly influenced human settlement patterns, seasonal site use, and
subsistence strategies at the Pleistocene-Holocene transition. In addition, rapid sea level rise
would have played a critical role in shaping the landscape. Following deglaciation, the level of
the Adriatic Sea rose rapidly, but not at a constant rate; sea level was -23m by 8,500 years ago
when the area first became submerged by freshwater (Fig 1) [49, 50]. Changes in regional eco-
systems as the Great Adriatic Plain disappeared and habitat transition from grassland to coastal
environments (Fig 2) were likely a key factor in influencing the seasonal mobility of large herbi-
vores that were a staple resource at this time.

There is evidence of late Pleistocene/Late Upper Paleolithic and early Holocene/Mesolithic
forager groups using cave sites in the Istrian Peninsula as hunting outposts and base camps
where they made tools and may have held ritual feasts [12, 51]. In contrast, Late Upper Paleo-
lithic and Mesolithic open air sites at lower elevations are rare. This dearth of archaeology
could represent the reality of an uninhabited landscape, but is not due to lack of survey and
research [51]. The most likely explanation is the loss of sites due to the inundation of the Great
Adriatic Plain, which may well have been the center of human population during the Paleo-
lithic until the incursion of the sea in the terminal Pleistocene. In this case, Istrian cave sites
can be placed in the hinterland, which was only explored towards the end of the Late Upper
Paleolithic and during the Mesolithic period [52–53]. Neolithic occupation appears to be pri-
marily by agro-pastoralists using the caves for herding activities [54–56].

Stable isotope analysis and modelling migration
The δ18O signature recorded in tooth enamel carbonate in mammals is related to meteoric
δ18Owater [57–60], which can be related to temperature [61, 62], such that tooth enamel δ18Ocar-

bonate can be used as a proxy for temperature. In temperate environments, the δ18Owater values
are higher in warm temperatures and lower in cooler temperatures [63]. Due to the nature of
tooth mineralization processes in hypsodont teeth, in temperate climates the intra-tooth δ18O
signal varies with seasonal fluctuations in temperature and records sub-annual temperature
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variability c.f. [64–67] although the tooth enamel isotopic signal is modulated by a number of
factors, including the temperature—water isotope relationship, the available water sources, spe-
cies-specific physiological effects [68, 69] tooth mineralization rates [64, 66, 70] and sampling
[65,71]. Damping of the δ18O signal occurs to a varying degree depending on the animal’s sub-
family and genera, c.f. [72]. In caprids, this damping factor is approximately 10% [35, 64, 73,
74] and can be up to 50% in cervids [72].

Tooth enamel carbonate δ13C values are reflective of carbon isotopic values of the whole
diet with herbivore bioapatite δ13C values higher than the diet by 12–14‰ [64, 75, 76], particu-
larly in ruminants [77, 78]. In addition to isotopic fractionation that occurs during photosyn-
thesis [79], external factors such as water availability, temperature [80], light [81], salinity [82–
84], and altitude [85–88] influence carbon isotopic ratios in the plant and will affect the

Fig 1. Map of the study region showing sampled sites.

doi:10.1371/journal.pone.0155714.g001
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eventual δ13C signal in herbivores. Observed differences in δ13C values in intra-tooth samples
can be ascribed to changes in diet during tooth formation such as browsing rather than grazing
and, as noted above, may be affected by the rate of tooth mineralization in different species [64,
66, 70]. For these reasons, faunal carbon isotopic values are not used for reconstructing sea-
sonal migration in this paper, but are included as an indicator of diet rather than a measure of
variability.

Materials & Methods

Selection of Samples
Ten red deer and fourteen caprid teeth were sampled from the sites of Pupićina (PUP), Nugl-
janska (NUG), and Vela Špilja Lošinj (VSL) (c.f. Fig 1). Samples were selected based on tooth
(M2 or M3), tooth wear (less wear is desirable) and taxonomic identification. Verification that
teeth from the same stratigraphic context were not from the same individual was based on

Fig 2. Schematic of vegetation change on Istria and the Great Adriatic Plain through time. Clip art from
[98].

doi:10.1371/journal.pone.0155714.g002
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ontogenetic age, symmetry, wear, coloration, and morphology of the teeth. At least two speci-
mens of each taxon were selected from each stratigraphic horizon when possible. Balasse and
colleagues [36] recently suggested based on the M2 in sheep that teeth should be at least 18mm
in height (half the average height of the tooth) in order to record the maximum and minimum
δ18O over an annual cycle. The dental morphology of ovicaprids, which includes sheep, goat,
chamois, and ibex, are similar such that this expectation can be applied to these taxa. Twelve
out of fourteen caprid teeth meet or exceed the suggested height of 18mm. A minimum sam-
pling height for Cervus elaphus has not been established. However, to record the maximum
and minimum δ18O over an annual cycle sampling should go across M2-M3 pairs as these
teeth mineralize over a period of nine months each and grow sequentially [37, 89]. As only iso-
lated red deer teeth were available for sampling, M3 were selected wherever possible. Contex-
tual information for isotopically sampled teeth is presented by site in Table 1. The distinction
of chamois (Rupicapra rupicapra) and ibex (Capra ibex) from one another is problematic, simi-
lar to that of domestic sheep (Ovis aries) and goats (Capra hircus). While there has been much
literature devoted to distinguishing sheep and goats through osteology and tooth morphology
[90–95] there is a lack of sources dedicated to distinguishing chamois and ibex from each
other. But although difficult to distinguish osteologically (especially when highly fragmented),
separating chamois and ibex may not make much of a difference for paleoecological recon-
structions. They fill a very similar ecological niche, have similar behaviors, provide similar
amounts of meat, and have similar modern, and perhaps prehistoric, ecomorphology [28,
30, 31].

Though sample sizes are limited due to the nature of the archaeological record, when teeth
are sub-sampled as few as 4 samples can be drilled at equal increments along the cusp to calcu-
late mean δ18O with a standard deviation of ±0.01‰ at 95% confidence in a sample as small as
4 teeth [96]. At least 3 teeth, and optimally 5–6, should be sampled for each stratigraphic level
when making comparisons between groups [97]. We have sampled at least 4 teeth from each
phase, and generally taken 8–10 subsamples per tooth.

Preparation and Analysis
Once measured and photographed, teeth were drilled along the growth axis in the direction of
tooth formation, from the crown to cervix, using a Marathon dental drill and a 1mm diamond-
tipped drill bit. Powdered enamel was transferred into pre-weighed tubes, which were then
weighed again in order to calculate the sample weight (between 3–4 mg) prior to cleaning.
Samples from Nugljanska and Vela Špilja Lošinj were drilled and prepared at the Dorothy Gar-
rod Laboratory, McDonald Institute for Archaeological Research, University of Cambridge.
Samples from Pupićina were drilled at the Arheološki Muzej Istre in Pula, Croatia or in Cam-
bridge and were prepared in the Dorothy Garrod Laboratory. Specimens were sampled with
permission from the Arheološki Muzej Istre (Pula) and the Croatian Academy of Sciences and
Arts (Zagreb). Teeth that were radiocarbon dated at Oxford University Radiocarbon Accelera-
tor Unit were destroyed in the sampling process; all other specimens have been returned to
archaeological collections held at the Arheološki Muzej Istre.

After being drilled, enamel powder was treated for bioapatite extraction using the method
described in Balasse and colleagues 2002 [34]. First, 2% aq. sodium hypochlorite solution was
added to the samples to remove organic matter, followed by 0.1M aq. acetic acid to remove
exogenous carbonate, and then freeze dried. Additional matrix-matched tooth enamel stan-
dards were included within each batch of samples to ensure sample fidelity and to rule out con-
tamination during the sample preparation process. Samples were isotopically analyzed at the
Godwin Laboratory, Department of Earth Sciences, University of Cambridge. Samples from
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Pupićina and VSL were reacted with 100% orthophosphoric acid at 90°C using a Micromass
Multicarb Preparation System, then the carbon dioxide produced was dried and transferred
cryogenically into a VG SIRA mass spectrometer or VG PRISMmass spectrometer. Samples
from Nugljanska were analyzed on a Thermo Finnigan MAT253 coupled with a Gas Bench II.
Based on repeat measurements of isotopic standards, the precision is better than ±0.08‰ for
δ13C and better than ±0.10‰ for δ18O for machine standards. Results are reported with refer-
ence to VPDB and expressed as δ18O‰ = [R(sample)/R(standard)]-1�1000. All statistics were
computed using the Paleontological Statistics (PAST) program [99]. The data were found to be
normally distributed using a Shapiro-Wilk test or were otherwise large enough under central
limit theorem to apply parametric tests. This included a Student’s t-test to determine whether
mean values and variances of teeth for cervid and caprid sample groups were significantly dif-
ferent between the late Pleistocene/Late Upper Paleolithic and early Holocene/Mesolithic
periods.

Results

Ranges of variation in δ18O and δ13C through time
Isotopic data from each individual are summarized in Table 2. In general, caprids in all archae-
ological levels at the case study sites have a larger intra-tooth δ18O and δ13C range than do red

Table 1. Contextual information for teeth selected for isotopic analysis.

Lab ID Specimen ID Radiocarbon ID Status Taxon Period Level 14C cal BP Tooth Crown Height (mm)

NUG 1 12.072 OxA 26060 Destroyed Cervus Mesolithic 4 8,770–9,020* LM3 25

NUG 2 12.191 Returned Cervus Mesolithic 4 8,980–9,316 RM3 19

NUG 3 12.249 Returned Caprid Mesolithic 4 8,980–9,316 LM2 16

NUG 6 17.429 OxA 26347 Destroyed Cervus Mesolithic 5 8,716–9,007* LM3 18

NUG 11 14.116 OxA 26059 Destroyed Caprid Mesolithic 5 9,345–9,400* RM3 20

NUG 13 18.467 Returned Cervus Paleolithic 6 12,845–13,225 LM3 25

NUG 17 20.088 OxA 2462–26 Destroyed Cervus Paleolithic 6 12,845–13,225* RM3 27

NUG 24 23.040 Returned Caprid Palaeolithic 7 >13,225 RM2 27

NUG 25 28.020 OxA 2462–22 Destroyed Caprid Palaeolithic 8 14,212–15,077* RM2 40

VSL 5 65.080 Returned Caprid Neolithic 45 6,955–7,170 RM3 32

VSL 6 65.078 OxA 26174 Destroyed Caprid Neolithic 45 6,955–7,170* RM3 29

VSL 1 19.001 OxA 32823 Destroyed Caprid Meso/Neolithic 60 7,011–7,252* RM3 32

VSL 2 69.003 OxA 26173 Destroyed Caprid Meso/Neolithic 60 7,150–7,259* RM3 25

PUP 3 609.38 Returned Caprid Neolithic 331 6,890–7,425 LM3 30

PUP 4 581.26 Returned Caprid Neolithic 324 6,890–7,425 LM3 28

PUP 7 892C.17 Returned Caprid Mesolithic 346 10,385–11,400 LM2 20

PUP 8 892C.17 Returned Caprid Mesolithic 346 10,385–11,400 LM3 17

PUP 28 758A.34 Returned Cervid Mesolithic 345 9,905–10,820 LM3 19

PUP 29 766B.7 Returned Cervid Mesolithic 345 9,905–10,820 LM3 21

PUP 31 226B.18 Returned Cervid Mesolithic 202 9,905–10,820 LM3 24

PUP 24 1256B.511 Returned Cervid Paleolithic 361 11,950–12,960 LM2 18

PUP 26 1259.567 Returned Cervid Paleolithic 354 11,950–12,960 LM2 15

PUP 12 1277B.807 Returned Caprid Paleolithic 363 >12,960 LM2 40

PUP 15 1287B.807 Returned Caprid Paleolithic 363 >12,960 RM2 27

An asterisk (*) indicates that the tooth was directly dated. Dates for Nugljanska are previously published [15]. Dates for VSL are published here for the

first time. “Older than” estimates are provided for undated layers (Nugljanska Level 7, Pupićina Horizon R2).

doi:10.1371/journal.pone.0155714.t001
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deer. These differences are here argued to be attributable to species-specific migratory and for-
aging behaviors. Species and individual physiology, as well as crown height and period of tooth
formation, may also contribute to variation. Below, we consider variability within groups of
caprids and red deer through time and between species.

Variation within Caprids through Time
The fourteen caprid teeth from Pupićina, Nugljanska, and VSL span the Late Upper Paleolithic
(terminal Pleistocene) and Mesolithic and Neolithic (early Holocene), and represent 13 indi-
viduals (the teeth PUP 7 and PUP 8 are from one individual). When the carbon and oxygen
isotopic data from each individual are plotted by period, a few temporal patterns emerge (Fig
3). First, there is a significant (Student’s t-test, p<0.001) increase in δ18O from the Late Upper
Paleolithic (4 individuals, n = 46, overall mean δ18O = -6.8‰) to the Mesolithic period (3 indi-
viduals, n = 27, overall mean δ18O = -3.2‰). This is greater than the ~1‰ difference between
Late Pleistocene and Holocene global ocean δ18O, suggesting this increase does not solely
reflect a change in the δ18O of source waters and likely reflects increasing temperatures. This
supports paleoclimatic reconstructions that suggest a regional warming trend from the Pleisto-
cene to the Holocene, as summarized above. While the mean δ18O is slightly lower in the

Table 2. Minimum,maximum, range, andmean values of δ18O and δ13C from caprid and red deer teeth at the case study sites.

Sample Taxon Period 14C cal BP Tooth Crown
Height
(mm)

Min
δ18O

Max
δ18O

Range
δ18O

Mean
δ18O

Min
δ13C

Max
δ13C

Range
δ13C

Mean
δ13C

NUG 24 Caprid Paleolithic >13,225 RM2 27 -6.9 -3.0 3.9 -5.4 -11.6 -11.0 0.6 -11.3

NUG 25 Caprid Paleolithic 14,212–15,077* RM2 40 -8.4 -2.6 5.8 -5.7 -12.1 -9.7x 2.4 -11.5

PUP 12 Caprid Paleolithic >12,960 LM2 40 -9.0 -3.7 5.3 -6.3 -10.7 -5.7x 5.0 -9.4

PUP 15 Caprid Paleolithic >12,960 RM2 27 -8.9 -4.4 4.4 -6.9 -11.0 -9.7 1.3 -10.3

PUP 7 Caprid Mesolithic 10,385–11,396 LM2 20 -6.3 -1.5 4.8 -4.3 -11.6 -9.5 2.1 -11.0

PUP 8 Caprid Mesolithic 10,385–11,396 LM3 17 -6.1 -3.3 2.9 -5.0 -11.3 -8.8 2.4 -10.5

NUG 11 Caprid Mesolithic 9,345–9,402* RM3 20 -5.7 -1.5 4.2 -3.4 -10.8 -10.2 0.7 -10.4

NUG 3 Caprid Mesolithic 8,977–9,316 LM2 16 -2.7 -0.2 2.5 -1.3 -12.2 -10.3 1.9 -11.1

VSL 1 Caprid Meso/Neolithic 7,561–7,665* RM3 32 -5.0 -2.4 2.5 -3.7 -11.9 -6.4 5.5 -9.0

VSL 2 Caprid Meso/Neolithic 7,150–7,259* RM3 25 -6.2 -1.1 5.1 -2.9 -12.5 -9.4 3.1 -10.9

VSL 5 Caprid Neolithic 6,955–7,170 RM3 32 -4.8 -1.4 3.4 -3.3 -12.0 -10.1 1.8 -11.0

VSL 6 Caprid Neolithic 6,955–7,170* RM3 29 -4.5 -1.3 3.2 -2.8 -12.6 -9.8 2.8 -11.1

PUP 3 Caprid Neolithic 6,890–7,425 LM3 30 -5.9 -3.2 2.7 -5.0 -13.6 -9.2 4.4 -11.0

PUP 4 Caprid Neolithic 6,890–7,425 LM3 28 -7.9 -4.1 3.8 -6.3 -12.7 -11.2 1.5 -12.1

NUG 13 Cervus Paleolithic 12,845–13,225 LM3 25 -7.8 -5.9 2.0 -7.0 -12.1 -11.3 0.8 -11.7

NUG 17 Cervus Paleolithic 12,845–13,225* RM3 27 -7.2 -6.2 0.9 -6.9 -11.9 -10.5 1.3 -11.4

PUP 26 Cervus Paleolithic 11,950–12,960 LM2 15 -8.0 -6.3 1.7 -7.1 -11.4 -10.1 1.4 -10.9

PUP 24 Cervus Paleolithic 11,950–12,960 LM2 -7.7 -7.4 0.4 -7.6 -12.9 -11.3 1.6 -12.2

PUP 28 Cervus Mesolithic 9,905–10,820 LM3 19 -6.9 -4.6 2.3 -6.0 -12.2 -8.0 4.2 -10.1

PUP 29 Cervus Mesolithic 9,905–10,820 LM3 21 -7.8 -5.6 2.3 -6.7 -14.2 -10.3 3.9 -12.6

PUP 31 Cervus Mesolithic 9,905–10,820 LM3 24 -5.8 -3.3 2.4 -4.7 -11.7 -10.0 1.6 -11.1

NUG 6 Cervus Mesolithic 8,716–9,007* LM3 18 -7.4 -5.1 2.3 -6.6 -13.2 -12.6 0.7 -12.9

NUG 2 Cervus Mesolithic 8,977–9,316 RM3 19 -7.7 -5.4 2.4 -6.6 -13.3 -12.7 0.6 -13.1

NUG 1 Cervus Mesolithic 8,769–9,024* LM3 25 -7.4 -4.6 2.8 -5.6 -12.4 -11.8 0.6 -12.1

Dates marked with an asterisk (*) denote samples where the tooth was directly dated. The two δ13C maximum values marked with an (x) (NUG 25 and

PUP 12) were identified as outliers within the text. All δ values are in per mil VPDB.

doi:10.1371/journal.pone.0155714.t002
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Neolithic samples (6 individuals, n = 54, overall mean δ18O = -3.9‰) relative to those from the
Mesolithic, this difference is not significant (Student’s t-test, p = 0.1). The wide intra-tooth var-
iation in caprid oxygen isotope values indicates that these individuals recorded a large range of
temperatures in their dental enamel in all time periods. Both the intra-tooth and inter-individ-
ual δ13C results for caprids are more variable in the Neolithic than in earlier periods, but there
is no significant change of mean δ13C values through time for caprids.

Variation within Red Deer through Time
Ten red deer teeth from ten individuals were analyzed from Late Upper Paleolithic (terminal
Pleistocene) and Mesolithic (early Holocene) levels at Nugljanska and Pupićina (Fig 4). There is
a significant difference (Student’s t-test, p<0.001) in δ18O values between the 4 individuals ana-
lyzed in the Late Upper Paleolithic (mean δ18O = -7.1‰, n = 27) and the 6 individuals in the
Mesolithic (mean δ18O = -6‰, n = 59). The increase in variance in δ18O values from the Late
Upper Paleolithic to the Mesolithic is significant (Student’s t-test, p = 0.001). There is also a sig-
nificant difference (Student’s t-test, p = 0.03) in δ13C between the 4 individuals sampled from
the Late Upper Paleolithic (mean δ13C = -11.2‰, n = 27) and the 6 individuals in the Mesolithic
sample (mean δ13C = -11.9, n = 59). The range of carbon isotope values also appears to be larger
in the Mesolithic group, but this increase in variability is not statistically significant.

Fig 3. Oxygen and carbon isotopic values of caprid individuals by phase. Each vertical line represents an individual (e.g., NUG 25), with points
representing mean, minimum and maximum.

doi:10.1371/journal.pone.0155714.g003

Stable Isotope Analysis and Prehistoric Ungulate Mobility

PLOS ONE | DOI:10.1371/journal.pone.0155714 June 8, 2016 9 / 19



Variation in Caprids vs. Red Deer
There is less intra-species variation in enamel oxygen isotope values for red deer than for
caprids in both the Late Upper Paleolithic and Mesolithic (Fig 5). The mean δ18O based on all
measured values for the Late Upper Paleolithic caprids was -6.2±1.9‰, whereas the mean δ18O
for red deer during this time was -7.1±0.6‰. Both the mean values and variances of these taxa
are significantly different (Student’s t-test, p<0.001). The mean δ18O based on all measured
values for Mesolithic caprids was -3.2±2‰, whereas the mean δ18O for red deer in this period
was -6±1.1‰. The means and variances for these two taxa are significantly different (Student’s
t-test p<0.001) in both periods.

Intra-individual carbon and oxygen isotopic variation differs by species over time (Fig 6).
For Late Upper Paleolithic Cervus intra-individual oxygen isotopic ranges are up to ca. 2‰
(n = 4), whereas in the Mesolithic, this increases to approximately 2–3‰ (n = 6)–a statistically
significant shift (p = 0.005). In contrast, there is no statistically significant change for caprid
intra-individual oxygen isotopic ranges through time: caprid intra-individual oxygen isotopic
ranges are ~4–6‰ (n = 4) for the Late Upper Paleolithic, 2.5 to 5‰ (n = 3) in the Mesolithic,
and 2.5 to 5‰ (n = 5).for the Neolithic. Based on both “population” scale (all observed δ18O
values for all intra-tooth samples of each taxon within a specific time period) and ranges in
δ18O values of individuals, the two species do not significantly overlap in degree of variability,

Fig 4. Oxygen and carbon isotopic values of red deer individuals by phase. Each vertical line represents an individual (e.g., NUG 13), with points
representing mean, minimum and maximum, n = 86.

doi:10.1371/journal.pone.0155714.g004
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ranges, or mean values of δ18O. There also does not appear to be a taxon-specific difference in
variability, ranges, or mean values of δ13C.

Variation in Teeth
Because different teeth (M2 vs. M3) form over different lengths of time (i.e. record different
periods [36]) and have different crown heights, we evaluated whether δ18O and δ13C results in
our sample might vary along these parameters and found no pattern that suggested intra-indi-
vidual variation was strongly constrained by type of tooth (e.g. M2 vs M3) in this study (Fig 7).
We found a weak yet statistically significant correlation between tooth crown height and range
of δ18O values recorded within an individual (r2 = 0.22, p = 0.02). This relationship suggests
that shorter crown heights record a smaller range of values, but explains only a small portion

Fig 5. Boxplot of δ18O values in caprids and red deer through time, where box = 50% and whiskers are 95%.

doi:10.1371/journal.pone.0155714.g005
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(22%) of the observed variation. A small degree of influence of crown height on the recorded
range was expected; as noted above, a crown height of at least 18mm in caprid teeth was
desirable in sample selection since this is likely to include the complete range of δ18O values
recorded in the tooth (cf. [36]). Although it is necessary to sample across red deer M2-M3 pairs
to detect the full to seasonal cycle of δ18O values [37], the M2 and M3 mineralize over a similar
number of months [89]; thus, the amount of intra-tooth variation should not be influenced by
type of tooth despite the signal being seasonally biased.

Discussion and Conclusions

Variation in δ18O and δ13C through time
That there are different isotopic patterns between the taxonomic categories, and within the
taxa through time, suggests that there is not an overall change in the variability of environmen-
tal seasonality recorded in the teeth. Caprids act as a control group, preserving the same degree
of intra-tooth variability throughout the Pleistocene-Holocene transition. Red deer intra-indi-
vidual oxygen isotope ranges are significantly different between the Pleistocene/Late Upper
Paleolithic and the Holocene/Mesolithic. The temporal difference in δ18O variability combined
with the limited intra-tooth variability seen in red deer individuals suggests that variability is

Fig 6. Scatter plot of intra-individual ranges of δ18O and δ13C values, which shows an increase in intra-individual variability of δ18O and no
change in δ13C inCervus specimens from the late Pleistocene/Paleolithic to the early Holocene/Mesolithic and no pattern in intra-individual
variability of δ18O or δ13C in caprids between the late Pleistocene/Paleolithic and the early Holocene/Mesolithic and Neolithic.

doi:10.1371/journal.pone.0155714.g006
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not wholly determined by factors such as tooth formation or species-specific physiology and
instead may have to do with changes in migratory behavior and range size through time, as dis-
cussed above. There is no significant change in variability of δ18O ranges exhibited in caprids,
suggesting seasonal mobility is likely restricted throughout time for these taxa. Furthermore,
variability in carbon isotope ranges appears to have no relationship with taxa or time periods
and is likely indicative of individual foraging preferences. Based on these results, we interpret
that the data indicate red deer appear to have been migrating seasonally in the late Pleistocene/
Late Upper Paleolithic, and potentially moving over smaller ranges in the early Holocene/
Mesolithic. The combined caprid data suggest that these animals appear to not be migrating at
any point in time and may have been a stable year round resource.

Implications for archaeology
The nature of the archaeological record and the unknown size of herds and their ranges in the
past make it especially challenging to interpret seasonal migratory behavior from archaeolog-
ical stable isotope data. The data presented here suggest that these ungulate taxa, which were
significant components of prehistoric diet and are found in varying relative abundances
through time at the case study sites [11–17, 52, 53, 55], had distinct mobility patterns. These

Fig 7. Scatter plot of ranges of δ18O and δ13C values in cervids and caprids by upper and lower molars showing no relationship between tooth
sampled and δ18O and δ13C values.

doi:10.1371/journal.pone.0155714.g007
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would likely have been known to human groups and would have influenced human decisions
about seasonal settlement and food choice.

Caprids and red deer were not the only taxa influencing human mobility and resource use.
Other terrestrial ungulates such as wild boar, roe deer, and aurochs were important economic
species [11–17, 52, 53, 55], but these taxa do not generally migrate on a seasonal basis over
long distances, although wild boar may have extremely large home ranges [100, 101] and
information about aurochs mobility is largely based on anecdotal historical evidence when
the range of this species was already significantly reduced [102]. Modern roe deer generally
have very small migratory ranges [103–105]. These three taxa may have been resources that
were accessible year round, and they are all found in the faunal assemblages at the study sites
[15–17].

The seasonal availability of these terrestrial mammal resources would have played a role in
determining human mobility patterns. Above all the movements of the red deer must have
been the most important to people in the Late Upper Paleolithic, as they are the dominant
species in the faunal assemblages at Nugljanska and Pupićina. There is some evidence for a
change in mobility of red deer during the Mesolithic, though this could be further supported
with a larger dataset. Nevertheless, this change coincides with more heterogenous zooarchaeo-
logical assemblages at these sites [17], and suggests that a dietary shift could have been influ-
enced in part by unpredictability in red deer mobility. Based on these data, there does seem to
be evidence for a focus on seasonally migrating red deer in the Late Upper Paleolithic, and a
broadening diet in the Mesolithic focusing on non-migratory, more seasonally predictable
foodstuffs.

We have shown through the incremental isotopic analysis of carbonate from caprid and red
deer tooth enamel that there are marked differences in ranges of variation of oxygen isotope
values. These data suggest that red deer were seasonally migrating, making them available near
the cave sites at only certain parts of the year. It can be argued that caprids inhabited more
restricted habitats and did not migrate long distances. The differing seasonal availability of
these and other terrestrial mammals, supplemented by molluscs and plant foods, would have
played a significant part in determining human mobility strategies during the Pleistocene-
Holocene transition in the context of rapid environmental change and sea level rise in the
northeastern Adriatic.
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