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Matroid Regression

Franz J. Király ∗ Louis Theran†

Abstract

We propose an algebraic combinatorial method for solving large sparse linear sys-
tems of equations locally - that is, a method which can compute single evaluations of
the signal without computing the whole signal. The method scales only in the spar-
sity of the system and not in its size, and allows to provide error estimates for any
solution method. At the heart of our approach is the so-called regression matroid, a
combinatorial object associated to sparsity patterns, which allows to replace inver-
sion of the large matrix with the inversion of a kernel matrix that is constant size.
We show that our method provides the best linear unbiased estimator (BLUE) for this
setting and the minimum variance unbiased estimator (MVUE) under Gaussian noise
assumptions, and furthermore we show that the size of the kernel matrix which is to
be inverted can be traded off with accuracy.

1. Introduction

Sparse linear systems are a recurring topic in modern science. They occur in a wide variety of

contexts such as numerical analysis, medical imaging, control theory or signal processing. Of

particular interest are sparse linear systems of big size - that is, a number of equations which is

of the order of thousands, millions, billions or more - since they occur in practice, e.g. in linear

inverse problems such as tomography, or analysis of large scale data with sparse structure as they

occur in recommender systems or network analysis.

Whole areas of research, spanning disciplines in most areas of science, have been devoted to

the end of solving linear systems of equations Ax = b where A is huge and sparse. A selection

of books on the topic, in which numerical solution strategies are outlined, and which is far from

being representative, includes [1, 4, 5, 10, 11]. Further important is the area in medical imaging

which is concerned with sparse linear systems specifically arising from certain geometries in

tomography, compare the algebraic approaches in [6, 7], for which specific techniques have

been developed. Moreover, we would like to mention that sparse matrices and their spectral

properties also appear as a recurring topic in networks, see e.g. [2].

Regarding the huge corpus of existing literature, we would, however, like to stress one fact:

the state-of-the-art methods and theories mostly make use of spectral or analytical properties of

the huge matrices; efficient methods which use particular structure - be it algebraic or combina-

torial - of the sparse system of equations, seem not to be available. Furthermore, all methods
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usually seek a complete solution of the system in terms of x , while scenarios where some projec-

tion P x with P a matrix and P x of tractable size might be desirable - e.g., if in the tomography

scenario, only part of the scanned region needs a high resolution, or in the networks scenario,

where only part of the network might be of, say, predictive interest. Similarly, in the recom-

mender systems scenario, it is more natural to make a recommendation for a single item instead

of making all possible recommendations at once.

In this paper, we propose theoretical foundations and practical methods to address this kind

of problem, which have the potential advantage of scaling with the row-size of P instead of the

size of A. That is, optimally the method will have a running time that does not scale with the size

of A, only with certain sparsity properties of A which in many practical scenarios scale constant

with respect to the size of A. The only assumption we will need for this to work is that there

exist a sufficient number of linear dependencies of rows of A which are sparse in their coefficient

representation. This is frequently the case if A has intrinsic combinatorial meaning, or is highly

structured otherwise.

The central ingredient is the notion of regression matroid, which provides a kind of dictionary

for minimal such dependencies (= circuits), and the circuit kernel matrix, which is the covariance

matrix between the circuits. Restricting to small circuits in a "neighborhood" of P, we are able

to obtain a least squares estimator for P x where the most costly ingredient is inversion of the

circuit kernel matrix - which scales with the size and number the circuits, and not the size of

A. Therefore, through choosing the circuits - interpreted as the “locality” parameter of matroid

regression - we also obtain a tool of trading off accuracy of the solution with computational cost.

More concisely, our main contributions are:

• the notions of matroid regression and circuit kernel, capturing algebraic combinatorial

properties of the linear system

• an explicit algorithm computing a variance minimizing estimator for the evaluation P x

• an explicit form for the variance of that estimator which depends not on x but only on

the noise model

• an explicit algorithm to compute that variance without computing P x

• proofs of optimality and universality for the estimator (BLUE in general, MVUE for Gaus-

sian noise and for unknown noise)

• a proof of the error being monotonous in the “locality” of the estimate, yielding a complexity-

accuracy-tradeoff

• characterization of the regression matroid in some cases, including potential measure-

ments, 2-sparse vectors, rank one matrix completion; explanation how in these cases cir-

cuits and combinatorial properties of characteristic graphs relate

Our framework also explains some particular findings in the case of matrix completion [8], which

we can reproduce by reduction to a sparse linear system, and solves open questions about the

optimality of the estimators raised in [8]. In the same sense, we hypothesize that the matroid

regression methods have a rather general and natural extension to the non-linear case.
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2. Structured linear estimation

We will consider two compressed sensing problems which are dual to each other. In the sequel,

the field K is always one of C or R, and the parameter n will be the signal dimension.

Problem 2.1 (Primal problem (P)). There is an unknown signal x ∈ Kn observed via a linear

measurement process:

b = Ax + ǫ (1)

The noise ǫ is centered and has finite variance, and the matrix A∈KN×n is known. The task is to

compute a linear evaluation γ= 〈w, x〉, for a known w 6= 0 in the row-span span A.

In general, n will be large, and potentially N ≫ n, but A will be either sparse, structured or

both. This means that simply inverting an n× n sub-matrix of A is not a good solution. Instead,

we will show how to use the structure of A to find solutions locally, using very few coordinates of

b or both.

Problem 2.2 (Dual problem (D)). There is an unknown signal y ∈Kn and an unknown scalar γ,

satisfying a constraint

γw′ = A′ y (2)

The task is to estimate γ from observations b = y + ǫ, with A′ ∈KN×n and w′ known.

Since the Dual Problem (D) can be treated with the same methods, we will focus on the

Primal problem (P).

2.1. The Problems in Context

We interpret the general problem (P) as a supervised learning problem. To see this, take the

rows a1, a2, . . . , aN to be training data points and the coordinates b1, . . . , bN of b to be training

labels. The unknown vector x is then the regressor, and the learning tasks can be: (i) imputation

of single coordinates of x ; (ii) prediction of the label of a new point w; (iii) denoising, which

corresponds to w being one of the ai; among others.

Alternatively, even though N is typically quite large, so that x is not compressed in the classic

sense, problem (P) can be interpreted in terms of compressed sensing. Here, the task is to use as

few coordinates of b as possible to estimate 〈w, x〉 accurately. This should be contrasted with the

approach of computing the (pseudo-)inverse of A, e.g., for i.i.d. noise the estimator w⊤A−1 b.

2.2. Example Instances

To fix, the concept, we show how to cast some scenarios in terms of problem (P).

Example 2.3 (Measuring potentials). The task is to measure from an unknown potential x , given

a set of measurements. The rows of A are of the form e j− ei, where {ei : i ∈ [n]} are the standard

basis vectors of Kn. The vector w is also of this form.

Example 2.4 (Rank 1 Matrix Completion). The task is to impute or denoise the entry at position

(i, j) in a partially-observed, m× n rank 1 matrix A = u · v⊤. The vector x is the concatenation

of the entry-wise logarithms of u and v; the vector e j+m − ei is a row of A if the position (i, j) is

observed; the vector b is the vectorization of the set of observed entries; w = e j − ei where (i, j)

is the position of the entry to impute or de-noise.
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Example 2.5 (Discrete tomography). The task is to reconstruct a bitmap image (subset of a lattice

in Euclidean space) from a number of projections. The matrix A has a decaying spectrum and w

describes a regularized region of interest.

3. Regression matroids

Our strategy for solving the problem (P) will be to exploit the structure of the constraint matrix

A. The object that captures this is the regression matroid of A and w, which we now define.

Definition 3.1. Let a1, . . . , aN ∈K
n be a collection of vectors, let w ∈Kn be a target vector.

(i) The (linear) regression matroid associated to the ai and w is the pair ([N], I), where

I :=
�

I ⊆ [N] : the set {w} ∪ {ai : i ∈ I} is linearly independent
	

and we write a∗ := w. We will denote the matroid by L(w|a1, . . . , aN ) := ([N], I). If A is

the matrix having ai as i-th row, we simply write L(w|A).

(ii) A set C ⊆ [N] with ∗ ∈ C is called (linear) particular regression circuit of L(w|A), if the

equation w =
∑

i∈C λiai implies λi 6= 0 for all i ∈ C .

(iii) A set C ⊆ [N] is called general regression circuit of L(w|A), if it is a regression circuit of

L(0|A).

In matroid terms, the regression matroid is the elementary quotient of the linear matroid of

A by the element w. Note that a set C ⊆ [N] can not be both a particular and general regression

circuit. Also, if w is one of the ai, then {i} is a particular regression circuit. An extension to more

than one target vector is straightforward, but for simplicity, we continue with only the single

target vector w.

If λ ∈ Kn is a vector, we say that the support of λ is the set {i ∈ [N] : λi 6= 0}. Circuits and

regression circuits correspond to linear dependencies with minimal support.

Proposition 3.2. Let L(w|A) be a regression matroid. Then:

(i) C ⊆ [N] is a particular regression circuit if and only if there is a unique vector λ ∈ KN

supported on C such that w = λA.

(ii) C ⊆ [N] is a general regression circuit if and only if there is a unique, up to scalar multiplica-

tion, vector λ ∈ Kn supported on C such that λA= 0.

Proof. We will prove (i), since the proof of (ii) is similar. Suppose that λ1A= w and λ2A= w on

a set C , and let j ∈ [N] be arbitrary. Set α = λ1( j)/λ2( j). Then (αλ2 − λ1)A = (α− 1)w, and

the support of (αλ2−λ1)( C . In particular, C has minimal support if and only if α= 1. Since j

was arbitrary, we are done.

Proposition 3.2 justifies the following definition:

Definition 3.3. Let w ∈ Kn, let A ∈ KN×n, let C be a particular regression circuit of L(w|A). We

call the unique vector λ associated to C by Proposition 3.2 the circuit vector of C . Similarly, we

may pick a normed representative to define the circuit vector of a general circuit. For a circuit C

of either type (recall that a circuit can be particular or general, but not both), we will use λC to

denote its circuit vector.
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We introduce a definition for formal linear combinations of circuits:

Definition 3.4. For circuits C1, . . . , Cm and α1, . . . ,αm ∈K, we will define a circuit divisor to be a

formal linear combination

αC1 + · · ·+αmCm,

and associate to it the circuit vector α1λC1
+ · · ·+ αmλCm

. We denote the K-vector space of all

circuit divisors of L(w|A) by C(w|A), and we write 0 = 0C . Two circuit divisors D1, D2 are called

linearly equivalent if their circuit vectors are the same, in which case we write D1 ∼ D2.

The purpose of this notation is to put an emphasis on the algorithmic process of combining

circuits, over the pure consideration of the circuit vector. Indeed, in general, the same circuit

vector can be obtained from different formal linear combinations of circuits.

The principal objects for solving the sparse linear system are the respective spans of particular

and general regression circuits, which we will term regression space and general circuit space.

They can be seen as analogues to the particular and general solutions occurring in the theory of

differential equations: for solving the linear system accurately and efficiently, we need to find one

particular regression circuit in the regression space, and a sufficient number of general circuits

in the general circuit space.

Definition 3.5. Let L(w|A) be a regression matroid. The regression space, is affine span

Cp(w|A) := aff{C ∈ C(w|A) : C is a particular regression circuit}

(where aff denotes the affine hull), and the general circuit space is

Cc(w|A) := span{C ∈ C(w|A) : C is a general regression circuit}

Elements of Cp(w|A) are called particular regression divisors, elements of Cc(w|A) are called gen-

eral regression divisors.

Since Cp(w|A) contains circuit divisors, and not just the circuit vectors, is has richer structure

than the left kernel A.

The relationship between the two spaces is:

Lemma 3.6. Let L(w|A) be a regression matroid with w 6= 0. Then:

(i) Ker A= {λD : D ∈ Cc(w|A)}

(ii) Let Cp be a fixed particular regression circuit vector. Then

Cp(w|A) = {C : C ∼ Cp + D with D ∈ Cc(w|A)}

Proof. The first equality follows from the fact that the kernel vectors with minimal support span

the kernel. For the second, it suffices to prove that for two particular regression circuits C1, C2,

there is D ∈ Cc(w|A) such that C1 − C2 ∼ D. By definition, (λC1
− λC2

)A= 0, therefore λC1−C2
∈

Ker A the statement then follows from the first equality.

One could interject that representing the left kernel vectors of A in terms of circuits and

circuit divisors is unnecessarily complicated. The theoretical estimator will be formulated, in

terms of the non-zero entries of the circuit vector λC ; also, the algorithmic procedure will also

benefit from treating the circuits as sets of indices instead of the circuit vector λC . The reader is

invited to think about circuits and divisors simultaneously in terms of the circuit vectors plus the
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information which entries are non-zero, but we think that the notion of circuit divisors makes

more clear where the advantages of our algebraic combinatorial method lie.

The final object we need to define before describing the estimation procedure is linear spans

of divisors:

Definition 3.7. (i) A K-vector space Lc ⊆ Cc(w|A) closed under linear equivalence is called

linear system of general circuit divisors, or short, general system of circuits.

(ii) A K-affine space Lp ⊆ Cp(w|A) closed under linear equivalence is called affine system of

particular circuit divisors, or short, particular system of circuits.

A general/particular system of circuit divisors L is said to be generated by circuit divisors

C1, . . . , Cm if every element in L is linearly equivalent to a linear/affine combination of the Ci. In

this case, the C1, . . . , Cm are called generating system of L, and if m is additionally minimal, they

are called a basis of L (in both the linear/affine cases).

Remark 3.8 — An important example of particular systems is given as follows: let Lc be a general

system, and Cp ∈ Cp(w|A), for example Cp a particular regression circuit. Then, Cp + Lc :=

{Cp + Cc : Cc ∈ Lc} is a particular system.

Particular systems will be one of the main ingredients in estimating the projection 〈w, x〉. The

above remark shows that to this end, it suffices to acquire a single particular circuit and some

general system of circuits.

Examples of regression matroids We give some examples of regression matroids and discuss

the structure of their regression circuits.

Example 3.9 (Uniform regression matroid). If A is generic, then L(w|A) is a quotient of a rank n

uniform matroid, so all special regression

Example 3.10 (Generic low-rank). If A is generic of rank r, any r rows will form a special regres-

sion circuit, any r + 1 rows a general one. In particular, if r ≪ n, then special regression circuits

have sparse support. only rank r. As in Example 3.9, the special regression circuits are easy to

find, but now they are sparse, provided r ≪ n: only r rows are required.

Example 3.11 (Graphic regression matroids). as a basis for the space of cycles. The regression

space is therefore equivalent to the first homology of the graph G, a basis of which can be

efficiently computed in O(n+ N) time.

The potentials Example 2.3 and matrix completion Example 2.4 both give rise to graphic

regression matroids. We will explore strategies for finding good sets of special regression circuits

in this case below.

Another combinatorial example comes from matrices with sparse filling patterns and generic

non-zero entries.

Example 3.12 ((1,ℓ)-sparsity matroids). We now define a kernel which will be key in our esti-

mation procedure. The intuition behind the technical definition is that special regression circuit

vectors define linear If the rows of A have at most d generic non-zero entries, and the kernel of A

is spanned by ℓ ≤ d − 1 generic vectors, then L(w|A) is the quotient of a (1,ℓ)-sparsity matroid

on a d-hypergraph.
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4. Matroid Regression

The strategy for constructing the matroid regression estimator is as follows: each special regres-

sion divisor produces one exact estimate for the evaluation 〈w, x〉. The estimator is obtained

for the choice of regression divisor minimizing variance. Since the special regression divisors

form an affine space, on which variance is a quadratic form, we obtain the variance minimizing

estimate as explicit solution to a quadratic system. The major algorithmical advantage of the

matroid regression view was outlined in Remark 3.8: after finding one special regression circuit,

general regression circuits that are easier to find can be used to produce more special circuits in

order to decrease the variance and this the estimation error.

4.1. An Unbiased Estimator

Recall problem (P): we are provided with the data for a regression matroid L(w|A), with A ∈

KN×n known and x ∈ Kn unknown, and want to estimate an evaluation 〈w, x〉 of the unknown

signal x , from b = Ax + ǫ. Let Σ be the covariance matrix of the N -dimensional random vector

ǫ. First we construct circuit-vector estimators.

Proposition 4.1. Let D be a particular regression divisor of L(w|A), with circuit vector λD. Then,

bγ(D) :=


λD, b
�

is an unbiased estimator for 〈w, x〉 with variance Var(bγ(D)) = λ∗DΣλD. Conversely, all unbiased

estimators linear in b are of the type bγ(D) for some particular regression divisor D.

Proof. By linearity of expectation and centeredness of ǫ, it follows that

E(bγ(D)) =


λD,E(b)
�
= λDAx = 〈w, x〉,

where the last equality follows from the fact that λD is a circuit divisor - thus bγ(D) is unbiased.

The statement for the variance follows from bilinearity of covariance via the equation

Var(bγ(D)) = Var(〈λD, b〉) = λ∗D Var(b)λD = λ
∗
D Var(ǫ)λD.

The converse statement follows from Lemma 3.6.

Proposition 4.1 shows how a good estimator for 〈w, x〉 can be obtained: find a divisor D with

small variance. Since the latter is quadratic in λD, this can be reduced to a quadratic optimization

problem. However, there is one major issue with the present formulation: such an optimization

would be essentially over λD, not in terms of the circuits, and eventually involve inversion of an

(N × N) matrix - therefore nothing is gained yet with respect to the pseudo-inversion done in

usual linear regression. To address this issue, we will express the variance from Proposition 4.1

in terms of circuits and divisors.

4.2. The Circuit Kernel

The circuit kernel is the analogue of the covariance matrix of the estimator bγ, but represented in

the coordinates induced by circuits and formal divisors. It yields a quadratic form on the circuit

space C(w|A), allowing optimization to take place over the combinatrial structure of the circuits

as compared to the circuit vectors λ∗.
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Definition 4.2. Fix a covariance matrix Σ ∈ KN×N . For two regression divisors D1, D2 with circuit

vectors λ1,λ2, we define the circuit kernel function

k(D1, D2) = λ
∗
1Σλ2.

For a collection D1, . . . , Dm of regression divisors and Σ, we define the circuit kernel matrix K to

be the (m×m) matrix which has k(Di, D j) as entries.

Lemma 4.3. The circuit kernel is a positive semi-definite bilinear form on C(w|A). For a particular

regression divisor D ∈ CP(w|A), it holds that Var(bγ(D)) = k(D, D).

Proof. The matrix Σ is positive semi-definite as covariance matrix of a random variable. There-

fore, there is a Cholesky decomposition Σ = U⊤U with U ∈ RN×N . Observe that by definition,

any circuit kernel matrix K will be of the form K = Λ∗ΣΛ for Λ ∈KN×m and some m. Therefore,

K = (UΛ)∗(UΛ) is a positive semi-definite matrix, which implies positive semi-definiteness of k.

The second statement follows from Proposition 4.1 and the definition of k.

Proposition 4.4. Let L be a particular system, generated by C1, . . . , Cm. The quadratic form k(D, D)

is minimized for D ∈ L by exactly the divisors

D =

n∑

i=1

αiCi, where α ∈
�

K−11
��

1⊤K−11
�−1

,

1 is the vector of ones, K is the (m×m) kernel matrix with entries k(Ci , C j), and K−11= {x ∈Kn :

K x = 1}.

Proof. Since L is a particular system, it holds that D ∈ L if and only if 1⊤α = 1. Bilinearity of K

implies that k(D, D) = α⊤Kα. From this, we obtain the Lagrangian

L(α,ξ) = α⊤Kα+ ξ
�

1− 1⊤α
�

,

where the slack term models the condition 1⊤α= 1. A straightforward computation yields

∂ L

∂ α
= 2Kα− ξ1

By Lemma 4.3 K is positive semi-definite, therefore α⊤Kα is convex, so the minimizers of k(D, D)

satisfying 1⊤α= 1 will exactly correpond to the α ∈ K−11/1⊤K1.

4.3. The Optimal Estimator

We are now ready to give the final form of our estimator:

Theorem 4.1. Let L be a particular system. Let D ∈ L be any divisor minimizing k(D, D), as in

Proposition 4.4. Consider the estimator

bγ(L) := 〈λD, b〉.

(i) bγ(L) is independent of the choice of the minimizer D of k(D, D).
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(ii) bγ(L) is an unbiased estimator for 〈w, x〉.

(iii) Varbγ(L) = k(D, D) =minD∈L Var
�
bγ(D)
�

.

Proof. (i) follows from elementary linear algebra. (ii) follows immediately from Proposition 4.1.

(iii) follows from Lemma 4.3.

Theorem 4.1 indicates an algorithmic way to obtain good estimates for 〈w, x〉: namely, first

find generators C1, . . . , Cm for a particular system; then determine the minimizer D as described

in Proposition 4.4, keeping track of the circuit vector. Finally, compute bγ. At the same time,

Theorem 4.1 highlights several important advantages of our estimator L. First, computation

of bγ involves only (pseudo-)inversion of an (m× m)-matrix, as opposed to (pseudo-)inversion

of an (n × n)-matrix for the naive strategy - this is an advantage in the sparse setting, as we

will show that m can be chosen small in some common scenarios. Second, Theorem 4.1 (i) in

particular shows that the estimate does not depend on the particular generating system chosen

for L; therefore, following Remark 3.8, we may choose a system of the form Di = Cp+Ci, where

Ci are general circuits, and Cp is the same particular circuit for all Di . This means, for each new

w, we only need to find a single particular circuit, while the system of general circuits given

by the Ci needs only to be changed when A changes. Due to the bilinear equality k(Di, D j) =

k(Cp, Cp) + k(Cp, Ci) + k(Cp, C j) + k(Ci, C j) this also means that the kernel matrix K has to be

computed only once per A.

4.4. Algorithms

We provide algorithms computing the estimated evaluation and variance bounds for the error.

Since the the circuit vectors, the circuit kernel matrix K , and the optimal α are required

for both, we first compute those, given a collection of circuits C1, . . . , Cm. Algorithm 1 outlines

informal steps for this. We use MATLAB notation for submatrices and concatenation. The com-

Algorithm 1 Computes circuit kernel K and α.

Input: A, w, circuits C1, . . . , Cm, covariance matrix Σ.

Output: circuit union C , circuit vector matrix Λ, kernel matrix K and minimizer α.

1: For all i = 1 . . . m, compute the circuit vector λi of the Ci as the normalized left kernel vector

of the matrix [A[Ci, :]; w]

2: Write the λi as rows of a matrix Λ, with rows indexed by C .

3: Write C = C1 ∪ · · · ∪ Cm.

3: Compute the kernel matrix K = Λ∗ ·Σ[C , C] ·Λ

4: Calculate α =
�

K−11
��

1⊤K−11
�−1

.

5: Output Λ, K and α.

putations in steps 1 and 3 can be done fairly efficiently, since while Σ or A may be huge, the

circuits Ci select only small submatrices. In an optimal scenario, increasing the number of rows

of A has only a small or negligible effect on the size of C . Note that inputting b is not required,

therefore Algorithm 1 needs not to be rerun if A, w,Σ stay the same, i.e., if it is only the signal x

which changes.

Algorithms 2 and 3 takes the computed invariants from Algorithm 1 and computes estimates

for 〈w, x〉 and its variance. These algorithms consist only of multiplications, and again can be

9



made efficient by the fact that the occurring matrices are of size at most #C , therefore again

controlled by the choice of circuits.

Algorithm 2 Estimates the evaluation 〈w, x〉.

Input: w,A, b, a collection of circuits C1, . . . , Cm, covariances Σ.

Output: The variance-minimizing estimate bγ(α) for 〈w, x〉.

1: Compute Λ and α with Algorithm 1.

2: Write C = C1 ∪ · · · ∪ Cm (this could also be obtained from Algorithm 1)

3: Return α⊤ ·Λ · b[C] as an estimate.

Algorithm 3 Estimates the variance of the evaluation 〈w, x〉.

Input: A, w, a collection of circuits C1, . . . , Cm, covariances Σ.

Output: The variance lower bound for log(Ai j).

1: Calculate K and α with Algorithm 1.

2: Return α⊤ · K ·α.

Algorithm 3 can be used to obtain the variance bound independently of the observations in

b - therefore an error estimate which is independent of the algorithm which does the actual esti-

mation.

We would further like to note that the size of all matrices multiplied or inverted in the course

of all three algorithms is bounded by the cardinality of the circuit union C . The only matrix of

potentially larger size is [A[Ci, :]; w] which can have more columns than #C , up to n. However,

there is no noise on A, and this matrix is used only to compute the unique (up to multiplicative

constant) left kernel vector, so it can be replaced by the matrix consisting of any #C + 1 linearly

independent columns. Therefore, once a suitable circuit basis C1, . . . , Cm is known which is

accurate enough, 〈w, x〉 can be estimated in complexity depending only on #C , and not on N or

n.

4.5. On Finding Circuits

While the algorithms presented in section 4.4 are fairly fast and near-optimal by the consider-

ations in sections 5.2 and 5.3, they highly rely on the collection of circuits which is input and

which determines the submatrix to consider. Therefore, one is tempted to believe that the diffi-

cult problem of inverting A has merely been reduced to a combinatorial problem which is more

difficult. The point here is again that if A and w are sparse, or if there is different combinatorial

structure implying small circuits, this combinatorial problem has a comparably simple solution

in practical settings. For example, if not much is known about A, but it has small circuits that are

well-dispersed, one can attempt to find circuits via ℓ1-minimization, e.g., by solving the convex

program

min‖λ‖ subject to λ⊤ · A[D] = 0,

where D is is a randomly chosen subset of a number of columns which is likely to contain a circuit.

On the other hand, if the rows of A and/or w have a specific combinatorial structure, for example

related to properties of graphs, this can open up the problem to efficient algorithms which scale
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with the problem’s sparsity instead of its size. One can regard the matrix completion algorithm

from [8] as a proof of concept for this, since the computation of the graph homology may be

done in a local neighborhood around the missing entry whose size is constant, we will explain

this in more detail in section 4.6. We will also list more examples with different combinatorial

features that can be treated in this way.

4.6. Example Cases

The algorithms outlined in section 2 provide a fast and stable way of computing the evaluation

once enough circuits have been identified. One main advantage of our strategy is that for each

matrix A, the circuits need to be computed only once, and can be applied for different signals x .

Furthermore, if the sparse matrix A (or its dual A′) is highly structured - as it frequently occurs

when analyzing network structure - then so are the circuits, in which case they can be obtained

by combinatorial algebraic methods. We list some basic examples for demonstration purposes.

The Sample Mean and Linear Regression Both sample mean and ordinary least squares re-

gression can be recovered as special cases of matroid regression. The sample mean is obtained

for setting A to be an N -vector of ones, w = 1 and Σ the identity matrix - regression circuits con-

sist of exactly one element, with the circuit vector being the corresponding standard basis vector.

Least squares regression is obtained for setting Σ to be the identity and estimating evaluations

for w = ei, 1≤ i ≤ n with ei being an orthonormal system for Kn.

Multiple Observations A behavior related to sample mean can be observed if multiple copies of

the same row occur in A. In this case, a regression circuit will contain exactly one of those, and

there will be a special regression circuit of the same type for each of the copies. Furthermore, for

each pair of copies, a general circuit will appear containing exactly that pair. In order to prevent

multiplicative growth of the number of circuits, it is suggested to pool multiple observations in a

single one by taking the covariance-weighted mean.

Denoising A related case is if A contains w as a row. Here, that row will occur as a special

regression circuit with only one element. Applying matroid regression in this case will trade

off the noise in that single observation through the relations with other rows, therefore can be

interpreted as a denoising of that observation. Even w occurs multiple times as a row of A,

matroid regression will in general improve over merely taking the covariance-weighted sample

mean of those rows’ observations.

Measuring Potentials We consider the case where x corresponds to a potential, and differences

are measured. In this case the rows of A take the form ei − e j with ei the standard basis for Kn;

assume that w = ek− eℓ is of the same form. Let G be the oriented graph with n nodes which has

an edge (i, j) if and only if A has a row ei− e j . Then the following characterization for regression

circuits and general circuits can be shown: a set of edges is a special regression circuit if and only

if it forms a path from k to ℓ contained in G - including possibly the edge (k,ℓ) itself in case w

occurs as a row of A. The corresponding circuit vector consists of ones. A set of edges is a general

circuit if and only if it is a cycle contained in G. Small circuits can therefore be efficiently found

by finding elements in the first graph homology of G around the edge (k,ℓ).
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Sparse Sums The case where the rows of A are of form ei + e j, and w = ek + eℓ is very similar.

Let G be the (simple) graph with n vertices and the same edge assignment as above. In this case,

the special regression circuits will be exactly paths of odd length from k to ℓ contained in G, with

circuit vectors being alternatingly −1 and 1, starting with −1. General circuits will be cycles of

even length, with circuit vectors alternatingly 1 and −1. As in the potentials case, a search of the

first graph homology will provide cycles near (k,ℓ) efficiently.

Low-Rank Matrix Completion By taking logarithms, compare the general strategy in [8], the

rank one matrix completion problem can be transformed to the following linear problem: write

the true rank 1 matrix X ∈ Rm×n (X = the A from the cited paper) as X = uv⊤ with u ∈ Rm and

v ∈ Rn. Then, x is an (m+ n)-vector that is concatenation of component-wise logu and log v.

The rows of the matrix A consist of concatenations (ei , e′j) of standard basis vectors ei ∈ R
m and

e′
j
∈ Rn, being present if the entry (i, j) is observed; w is of the same form, corresponding to the

unobserved entry (k,ℓ). This exposes rank one matrix completion as a sub-case of the “sparse

sums” scenario discussed above. Note that the graph G is always bipartite due to how A was

constructed, and that the missing entry of the matrix can be completed from a local neighborhood

of entries by the same principles applying to the search of the graph homology.

With this reduction, [8, Theorem 3.10] is directly implied by Theorem 5.4 from Section 5.3

below.

Furthermore, the theory for matrices of arbitrary rank outlined in [9] can be interpreted as

a non-linear generalization; furthermore, it indicates that matroid regression is also a viable tool

for solving systems of equations carrying a structure of non-linear matroid.

Measuring Matrices and Phase Recognition As the low-rank matrix completion scenario in-

dicates, the linear techniques can also be used if the signal x is in reality a matrix X , and each

row of A is the vectorization a matrix Zi of the same format, for example Zi = ui v
∗
i
, in which

case bi = Tr(X Zi) + ǫi = v∗
i
X ui + ǫ. Phase recognition is a special case of this example where

ui = vi for every i, and X - is a Hermitian rank one matrix. If one of ui, vi is always a standard

basis vector ei, and the other is ek ± eℓ, this is a special subcase of the potentials or sparse sums

scenario. If both are of the form ek − eℓ, the circuits correspond to the first syzygies of the rank

one determinantal variety. In general, there is no easy way in which the circuits of the Zi relate

to those of ui and vi, but this is an interesting question to ask, in particular for the highly regular

measurement designs employed in phase recognition.

The case where X is a symmetric, non-symmetric or partially symmetric tensor of higher

degree, and where Zi are outer products, can be seen as a generalization.

Low-Rank A In case the matrix A is of rank r and otherwise non-degenerate, matroid regres-

sion suggests an algorithm for inversion of A which includes inversions of (r × n) matrices only.

Namely, any r rows will form a general regression circuit; if A is split into N/r disjoint row-blocks

Ai of size r, then the estimator in Proposition 4.4 will be a weighted sum of estimates of the form

w⊤A−1
i

b, which is of lower complexity than inversion of A since matrix inversion scales with an

exponent at least 2 in the size. This can be seen as an arbitrary rank generalization of the sample

mean scenario, where the rank is 1.
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5. Properties of the Matroid Regression Estimator

This section shows some key properties of the matroid regression estimator. Summarizing,

we how that bγ(L) is the best linear unbiased estimator (BLUE) for any noise model, and the

minimum variance unbiased estimator (MVUE) as well if the noise is Gaussian (homo- or het-

eroscedastic) - among all estimators that use only information in rows related to the particular

system L. Furthermore, we show a monotonicity result, showing that the variance of the esti-

mator bγ(L) drops as L is enlarged. These results do not only show that the estimator bγ(L) is

optimal, but also that Algorithm 3 computes a tight lower bound on the estimation error without

actually estimating the evaluation 〈w, x〉, therefore provides a lower error bound for any method

that is employed.

5.1. Monotonicity and Complexity-Accuracy-Tradeoff

The first important property of the estimator bγ(L) is being monotone with respect to inclusion of

L; that is, adding more circuits will only improve the estimator:

Theorem 5.1. Let L,L′ be particular systems with L⊆ L
′. Then, Var
�
bγ(L′)
�
≤ Var
�
bγ(L)
�

.

Proof. This follows from Theorem 4.1 (iii).

Theorem 5.1 can be interpreted as a complexity-accuracy-tradeoff incurred by the amount

of locality. More specifically, making the particular system L smaller will make Algorithm 1 run

faster, but leads to an increased expected error in the estimate. Conversely, adding circuits and

this enlarging L will make the estimate more accurate, but the algorithmic computation more

expensive.

5.2. Optimality Amongst Linear Unbiased Estimators

The estimator bγ(L) has already been shown to be variance minimizing for choice of D in the

particular system L in Theorem 4.1 (iii); we will make a similar statement relating it to using

different entries of the vector b.

Definition 5.1. Let L be a particular/general system of divisors. The support of L is the inclusion-

wise maximal set I ⊆ [N] such that L contains all particular/general circuits contained in I .

Conversely, for I ⊆ [N], denote L(I) := aff{C : C ∈ Cp(w|A), C ⊆ I} or, equivalently, L(I) :=

Cp + {C : C ∈ Cc(w|A), C ⊆ I} for some particular circuit Cp ⊆ I .

Theorem 5.2. Let I ⊆ [N], and let bγ′ be any unbiased estimator for 〈w, x〉 linear in the entries

bi, i ∈ I , with coefficients depending only on A and w. Let L = L(I). Then, Var
�
bγ(L)
�
≤ Var
�
bγ′
�
.

Proof. This is implied by Proposition 4.1 which states that any estimator, linear in bi and unbi-

ased, is of the form bγ(D) for some divisor D ∈ L(I). The statement is then implied by Theo-

rem 5.1.

Theorem 5.2, together with the characterization of estimators linear in b in Proposition 4.1,

implies that bγ is the best linear unbiased estimator (BLUE) for 〈w, x〉, and is an analogue of the

Gauss-Markov theorem in our case.
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5.3. Universal Variance Minimization

In this section, we will show that our estimator bγ is optimal in two further ways: first, for

Gaussian noise, bγ is a sufficient and complete statistic, and thus the minimum variance unbiased

estimator (MVUE); second for general centered noise, bγ has minimum variance among unbiased

estimators independent of x and ǫ. This “noise optimality” implies that lower-variance estimators

need to use additional information about either the unknown signal x or the distribution of the

noise.

We first prove optimality for Gaussian noise:

Theorem 5.3. Let L be a particular system. Assume that the noise ǫ is multivariate Gaussian. Then,

the estimator bγ(L) is

(i) a complete statistic with respect to the parameter 〈w, x〉 and observations bi, i ∈ suppL.

(ii) a sufficient statistic with respect to the parameter 〈w, x〉 and observations bi, i ∈ suppL.

(iii) the minimum variance unbiased estimator for the parameter 〈w, x〉 and observations bi, i ∈

suppL.

Proof. (i) and (ii): Without loss of generality, we can assume that suppL is all rows, otherwise,

we remove the rows from A not contained in suppL.

Let D1, . . . , Dk be a basis for L, and let Λ be the (k× N) matrix whose columns are the λDi
.

Then, by definition, it holds that

〈Λ, b〉 = 〈w, x〉 · 1+ 〈Λ,ǫ〉.

If we know that 〈Λ, b〉 is a complete and sufficient statistic for 〈w, x〉, we are done by virtue of

the following argument: having reduced the original problem to linear regression, we observe

that the BLUE of the latter is exactly bγ(D) with D minimizing k(D, D), which is also known to be

a complete and sufficient statistic and thus the MVUE, see e.g. [3, section 8.3, example 8.3] (for

homoscedastic noise, the case of heteroscedastic noise follows from applying an appropriate lin-

ear transform). By Theorem 4.1, the estimator bγ(D) is the same as bγ(L), proving the statement.

We now prove the remaining claim: 〈Λ, b〉 is a complete and sufficient statistic for 〈w, x〉. To

prove this, we observe that we can write x as an orthogonal decomposition x = xw + x⊥w where

xw =
x〈w,x〉

〈w,x〉2
is the orthogonal projection of x on span w, thus 〈w, x〉 = 〈w, xw〉 and ΛAx = ΛAxw.

Since the columns of Λ are a basis of L, the matrix ΛA acts, by definition, bijectively on xw, which

proves claim 1.

(iii) follows from (i) and (ii) via the Lehmann–Scheffé-Theorem.

It is straightforward to extend the proof to other suitable members of the exponential fam-

ily. By the Pitman-Koopman-Darmois theorem, it is unreasonable though to expect sufficiency

for non-exponential distributions. However, we can prove a similar conclusion which relies on

replacing sufficiency by universality with respect to the underlying signal:

Theorem 5.4. Let L be a particular system. Let bγ′ be an estimator for 〈w, x〉 which is unbiased for

all choices of x, of the form bγ′ = f (b, b ∈ suppL) with some f ∈ L2(Kn). Then, Var
�
bγ(L)
�
≥

Var
�
bγ′
�

for any choice of noise ǫ.
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The proof of Theorem will be split in several statements. It will be immediately implied by

Theorem 5.5 below, which states that an universally unbiased estimator always has the form

bγ(α), and Proposition 4.4.

Lemma 5.2. Let f ∈ L2(Kn). If E( f (X )) = 0 for all random variables X ∈ Kn for which this

expectation is finite, then f = 0.

Proof. By definition, the statement is equivalent to: Let f ∈ L2(Kn) be a smooth function. If

〈 f , p〉 =

∫

Kn

f (x)p(x) d x = 0

for all smooth functions p :Kn→ K that fulfill 〈p, 1〉 = 1 and p(x)≥ 0 for all x ∈Kn, then f = 0.

Now if 〈 f , p〉 = 0 for all smooth functions p : Kn → R that fulfill
∫
Kn p(x) d x = 1 and

p(x)≥ 0, then 〈 f , g〉 = 0 for all functions g ∈ L2(Kn), since the span of all such square-integrable

p (which includes the simple functions) is dense in L2(Kn). This implies 〈 f , f 〉 = ‖ f ‖2 = 0,

therefore f = 0.

Lemma 5.3. Let f ∈ L2(Kn). If E( f (X )) = 0 for all centered random variables X ∈ Kn for which

this expectation is finite, then f is linear in X , i.e., of the form f : x 7→ 〈λ, x〉 with λ ∈Kn.

Proof. Denote φi :Kn→ K, x 7→ x i, and denote

G = {g ∈ L2(Kn) : 〈φi , g〉 <∞ for all 1≤ i ≤ n}.

Note that G is a K-vector space. Further denote

H = G ∩ span{p ∈ L2(Kn) : 〈1, p〉 = 1, 〈φi , p ≥ 0, p smooth}.

Since the square-integrable probability distributions span L2(Kn), it follows that

H = {g ∈ G : 〈φi , g〉 = 0 for all 1≤ i ≤ n}.

Therefore, H is the kernel of the linear map

ϕ : G→ Kn, g 7→ (〈φ1, g〉, . . . , 〈φn, g〉).

This map is surjective, since e.g. all Gaussians are in G. By Lemma 5.2, G⊥ = {0}, therefore H⊥

is contained in a vector space isomorphic to Kn. Since the n-dimensional K-vector space (Kn)∨

is contained in H⊥, it follows that H⊥ = (Kn)∨. From this, the statement follows.

An application yields the following statement:

Proposition 5.4. Let f ∈ L2(Kn), let β ∈ Kn. If E( f (X )) = 〈β ,E(X )〉 for all Kn-valued random

variables X for which the expectation E( f (X )) is finite, then f is of the form f : x 7→ 〈β , x〉.

Proof. Applying Lemma 5.3 for the function f − 〈β , .〉 and the random variable X − E(X ) yields

that f is of the form

f : x 7→ 〈β ,E(X )〉+ 〈λ, x −E(X )〉.

Since f is only a function of x and not of E(X ) which can vary, the coefficient of E(X ), which is

equal to β −λ, must vanish, thus β = λ. Substituting yields the claim.
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Theorem 5.5. Let A ∈ KN×n and x ∈ Kn. Let ǫ be a centered and Kn-valued random variable, let

b = Ax + ǫ. For c ∈ span A, let bγ be an estimator for 〈w, x〉 of the form bγ = f (b) with f ∈ L2(Kn).

If E(bγ) = 〈w, x〉 for all choices of x, and all choices of ǫ for which this expectation is finite, then bγ is

of the form bγ(D), as described in Proposition 4.1.

Proof. Since w ∈ span A, there exists β ∈ KN such that β⊤AX = 〈w, x〉. Linearity of expectation

implies E(〈β , b〉) = 〈w, x〉. Taking X = b and this β in Proposition 5.4 yields the claim.
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