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Abstract:As a generalization of the standard phase retrieval problem,we seek to reconstruct symmetric rank-
1 matrices from inner products with subclasses of positive semide�nite matrices. For such subclasses, we
introduce random cubatures for spaces of multivariate polynomials based on moment conditions. The inner
productswith samples fromsu�ciently strong randomcubatures allow the reconstruction of symmetric rank-
1 matrices with a decent probability by solving the feasibility problem of a semide�nite program.

1 Introduction
Many signal processing problems in engineering such as X-ray crystallography and coherent di�raction imag-
ing require the reconstruction of symmetric rank-1matricies from inner productswith rank-1 projectors, often
called phase retrieval, cf. [4, 5, 12, 33, 34] and references therein. Signal recovery from inner products with
higher rankpositive semide�nitematrices is a suitablemodelwhendi�ractionpatterns areweighted averages
of k wave�elds, which occurs with incoherent di�raction [21].

Classical reconstruction algorithms for the rank-1 phase retrieval problem are based on iterated projec-
tion schemes [22, 24] but there is a lack of stringent mathematical recovery guarantees. Signal reconstruction
with high probability is guaranteed in [12, 14] by solving the feasibility problem of a semide�nite program
when su�ciently many rank-1 projectors are chosen in a uniformly distributed fashion, see also [38]. Simi-
larly, higher rank phase retrieval was solved in [2] by using uniformly distributed rank-k orthogonal projec-
tors.

In order to match the measurement process in optical physics more appropriately, the requirement of
uniform distribution must be relaxed. For k = 1, such an important relaxation was recently obtained in [26],
where random sampling rank-1 projectors from so-called spherical designs of strength t ≥ 3 has been ad-
dressed. Increasing t yields higher recovery probability and allows for fewer measurements. Asymptotic ex-
istence results of strong spherical designs were obtained in [9, 10]. Deriving actual constructions, however, is
a delicate issue. Recently, such issueswere overcome for k = 1 in [30] involving so-called cubatures (weighted
designs)with strength t ≥ 4,whose existence iswell-understood andmany linear algebra based constructions
are known [16].

Here, we shall generalize [26] to the range of positive semide�nite measurement matrices, and we do not
require designs but only so-called cubatures. In contrast to [30], we only need strength t ≥ 3. We address the
real setting and point out some specialities that are due to the higher rank, partially based on earlier observa-
tions in [1, 2]. To summarize, we generalize the results in [26] from rank-1 projectors to positive semide�nite
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matrices and at the same time provide signi�cant improvements for the rank-1 case because we only require
cubatures of strength t ≥ 3 and not designs. For cubatures of strength t ≥ 4, the rank-1 case is already covered
in [30].

The overall structure of our proofs related to the reconstruction of symmetric rank-1matricies from inner
products with positive semide�nitematricies is guided by the approach in [26]. Our generalizations are based
on the computation of tracemoments of matrix distributions induced by the Haarmeasure on the orthogonal
group. The use of zonal polynomials as discussed in [27, 28] enables us to compute all trace moments, and
we explicitly provide the �rst 3 of them. The remaining parts of the signal reconstruction proofs essentially
follow the approach in [26] with adjusted parameters and constants combined with our results on the �rst
three trace moments, cubatures [16], and random tight t-fusion frames [1, 18].

Outline

We introduce the general phase retrieval problem in Section 2, where we also state the result from [2] about
uniformly distributed rank-k-projectors. The �ndings in [26] for sampling spherical designs (hence the set-
ting of rank-1 projectors) are stated in Section 3. Deterministic conditions for signal recovery with positive
semide�nite measurement matrices through solving the feasibility problem of a semide�nite program are
veri�ed in Section 4 and are based on near isometry properties and a so-called approximate dual certi�cate.

Ourmain result on phase retrieval is stated in Section 5 and is based on randomcubatures. The remaining
part of the present paper is dedicated for providing its proof. We outline the structure of the proof in Section
6 that is based on trace moments. The trace moments are computed in Section 7, special moments in Section
7.1 and the general case is treated in Section 7.2. We compute the �rst 3 trace moments explicitly in Section
7.3, which are an important ingredient of the proof of our main result on phase retrieval. Most of the technical
details of the complete proof are contained in the appendix. Conclusions are given in Section 8.

2 Phase retrieval and uniform sampling
Let Hd denote the space of symmetric matrices in Rd×d endowed with the Hilbert-Schmidt inner product
〈X, Y〉 := trace(XY*), for X, Y ∈Hd. In our phase retrieval problem, we seek to recover some unknown signal
x ∈ Rd from the knowledge of n matrices {Pj}nj=1 ⊂Hd and the associated measurements

{〈xx*, Pj〉}nj=1.

Clearly, x can at best be recovered up to a global phase factor and so we simply aim to recover the rank-1
matrix xx*. Uniqueness of xx* was discussed in [3–5, 8] for rank-1 orthogonal projectors {Pj}nj=1 and in [2, 11]
for more general choices of {Pj}nj=1.

Besides injectivity, we also need an e�cient algorithm to eventually reconstruct the signal. We consider
the set of measurement matrices

Gλ,d := {ODλO* : O ∈ Od},

where Dλ = diag(λ1, . . . , λd) and λ = (λ1, . . . , λd)* is a �xed vector with

1 ≥ λ1 ≥ . . . ≥ λk > λk+1 = . . . , λd = 0.

Throughout the entire manuscript we make this assumption and without loss of generality we additionally
assume λ1 = 1, which can easily be achieved by rescaling.

To derive asymptotic recovery results, we shall later increase the dimension d while we keep k and
λ1, . . . , λk �xed. Note that Gλ,d is simply the set of all rank-k positive semide�nite matrices with nonzero
eigenvalues λ1, . . . , λk.

The Haar measure dO on the orthogonal group O(d) acts transitively on Gλ,d by de�nition and induces a
probability measure σλ,d on Gλ,d that is invariant under the orthogonal group. When λ1 = · · · = λk = 1, then
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Gλ,d can be identi�edwith the set of all k-dimensional linear subspaces inRd, known as the (real) Grassmann
space.

Choose {Pj}nj=1 ⊂ Gλ,d, and let us consider

�nd X ∈Hd , subject to 〈X, Pj〉 = 〈xx*, Pj〉, j = 1, . . . , n, X � 0, (1)

where X � 0 means that X is positive semide�nite. This is the feasibility problem of a semide�nite program
and e�cient algorithms based on interior point methods are available. For λ = (1, 0, . . . , 0)*, there is a con-
stant c > 0, such that the choice of n ≥ cd uniformly distributed subspaces yields that, with high probability,
xx* is the only feasible point of (1), cf. [13, 14, 17]. This result was generalized to rank-k orthogonal projectors
in [2]:

Theorem 2.1 ([2]). Let λ = (1, . . . , 1, 0, . . . , 0)*, where 1 is repeated k times. Then there are constants c1, c2 >
0 such that, if

n ≥ c1d

and {Pj}nj=1 ⊂ Gλ,d are chosen independently identically distributed according to the normalized Haar measure
σλ,d on Gλ,d, then, for all x ∈ Rd, the matrix xx* is the unique solution to (1) with probability at least 1 − e−c2n.

For rank-1 projectors, i.e., λ = e1 = (1, 0, . . . , 0)*, the sampling from the uniform measure σλ,d has been
relaxed in [26] , which is the topic of the subsequent section.

3 Signal reconstruction for rank-1 projectors
This section deals with λ = e1 only and before we cite some reconstruction results, we need to introduce
further concepts and notation. For x ∈ Sd−1 := {z ∈ Rd : ‖z‖ = 1}, we denote Px := xx*. A collection
{Pxj}nj=1 ⊂ Ge1 ,d is called a projective t-design if

1
n

n∑
j=1
〈Pxj , Px〉t =

∫
Ge1,d

〈P, Px〉tdσe1 ,d(P), for all x ∈ Sd−1. (2)

The latter is equivalent to

1
n

n∑
j=1
|〈xj , x〉|2t =

∫
Sd−1

|〈y, x〉|2tdy, for all x ∈ Sd−1,

where dy denotes, as usual, the canonical measure on the sphere that we additionally assume to be normal-
ized.

The reconstruction results in [26] were only derived for complex signals andmeasurements, but can also
be checked in the real case by analogous arguments. For consistency with the presentation here, we shall
therefore recall this result in the real setting. So, for x ∈ Rd and {Pj}nj=1 ⊂ Ge1 ,d, we consider the optimization
problem

arg min
X∈Hd , X�0

‖X‖*, s.t. trace(X) = ‖x‖2,
(
〈Pj , X〉

)n
j=1 =

(
〈Pj , xx*〉

)n
j=1, (3)

where ‖X‖* denotes the nuclear norm of X, i.e., the sum of the absolute values of its singular values, then [26]
yields:

Theorem 3.1 ([26]). Let x ∈ Rd be an unknown signal and suppose that ‖x‖2 is known. If {Pj}nj=1 ⊂ Ge1 ,d is
independently sampled in a uniform fashion from some projective design of strength t ≥ 3, then with probability
at least 1 − e−ω, the rank-one matrix xx* is the unique solution to (3) provided that

n ≥ c1ωtd1+2/t log2(d),

where ω ≥ 1 is an arbitrary parameter and c1 is a universal constant.
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Note that the above Theorem 3.1 is restricted to uniform sampling of a projective t-design. The latter is a rather
inconvenient restriction as shown in the following example:

Example 3.2. The classical phase retrieval problem stemming from optical physics involves Fourier mea-
surements, meaning that the rank-1 projectors Pj = xjx*j are generated by Fourier vectors

xj =
1√
d
(−e2πil1 j/m , . . . , e−2πild j/m)* ∈ Cd , (4)

where {li}di=1 ⊂ Z. Often, magnitude measurements in time are also available, expressed as additional mea-
surements {Pek}nk=1, where {ek}dk=1 is the canonical orthogonal basis ofCd. It turns out that the combination
of special Fourier vectors with time measurements yield a formula similar to (2), hence, yields almost a pro-
jective design. In fact, these ideas are inspired by [29, Proposition 4] and [35, Section 2.1.2], see also [20]: let
q be a prime and let d = qr + 1 for some r ∈ N. For m = d2 − d + 1, there exist integers 0 ≤ l1 < · · · < ld < m
such that all numbers 1, . . . ,m − 1 occur as residues mod m of the d(d − 1) di�erences (lk − l`), for k ≠ `,
cf. [29]. Then the following formula holds, for all x ∈ Cd with ‖x‖ = 1,

d
d3 + 1

d2−d+1∑
j=1
〈Pxj , Px〉2 +

1
d(d + 1)

d∑
k=1
〈Pek , Px〉2 =

∫
GC
e1,d

〈P, Px〉2dσCe1 ,d(P),

where GC
e1 ,d denotes the complex projective space and σCe1 ,d its normalized canonical measure induced by the

Haar measure on the unitary group. Thus, the combined Fourier and time measurements provide some sort
of weighted projective design.

Remark 3.3. Although our presentation is focused on the real case, we want to point out that all results can
be derived in the complex setting aswell, so that Example 3.2 can still guide us. It shows that the structural re-
quirement of a design in Theorem 3.1 is still too restrictive.We shall generalize Theorem 3.1 in several aspects.
First, it is restricted to λ = e1, and we shall address the general case λ. Moreover, we can handle weighted de-
signs, which is a signi�cant structural generalization, so that our results also yield signi�cant improvements
for λ = e1.

4 Deterministic conditions for signal reconstruction with general λ
This section is dedicated to consider phase retrieval when λ is arbitrary. To model the knowledge of ‖x‖2,
we make the convention that P0 = Id and, hence, 〈xx*, P0〉 = trace(xx*) = ‖x‖2 holds, and we consider the
problem

�nd X ∈Hd , such that
(
〈X, Pj〉

)n
j=0 =

(
‖Pjx‖2

)n
j=0, X � 0, (5)

where {Pj}nj=1 ⊂ Gλ,d. Note that (5) is the feasibility problem of a semide�nite programm. In comparison to
(3), the actual minimization is void. In fact, X � 0 yields ‖X‖* = trace(X), so that the minimization in (3) was
super�uous too.

To establish deterministic conditions that ensure solvability of (5), we use the notion of dual certi�cates
that require some preparation. For a �xed x ∈ Rd, we consider the subspace

Tx := {xz* + zx* : z ∈ Rd} ⊂Hd ,

which is the tangent space of the rank-one symmetric matrices at the point xx*. For some Y ∈ Hd, let YTx
denote the orthogonal projection of Y onto Tx and YT⊥

x
the orthogonal projection onto the orthogonal com-

plement of Tx. Moreover, let ‖ · ‖F denote the Frobenius norm and ‖ · ‖Op the spectral norm.

De�nition 4.1. For {Pj}nj=1 ⊂ Gλ,d, we call Y ∈ Hd a (γ, δ)-dual certi�cate with respect to x ∈ Rd if Y ∈
span{Id , P1, . . . , Pn} and

‖YTx − xx
*‖F ≤ γ and ‖YT⊥

x
‖Op ≤ δ. (6)

Brought to you by | UCL - University College London
Authenticated

Download Date | 3/31/17 5:13 PM



36 | Martin Ehler, Manuel Gräf, and Franz J. Király

For notational convenience, we introduce the mapping

An : Hd → Rn , X 7→
(
〈X, Pj〉

)n
j=1, (7)

for {Pj}nj=1 ⊂ Gλ,d.
Now, we can formulate deterministic recovery guarantees:

Theorem 4.2. Suppose that there are α, β > 0 and {Pj}nj=1 ⊂ Gλ,d satisfying

α‖X‖2F ≤
1
n ‖An(X)‖2 ≤ β‖X‖2F , (8)

where An is given by (7) and the lower inequality holds for all matrices 0 ≠ X ∈ Tx, and the upper one for all
X ∈Hd. If a (γ, δ)-dual certi�cate Y with respect to x exists and√

β
α < 1 − δ

γ
,

then xx* is the unique solution to (5).

Proof. We know that xx* solves (5). Suppose that X is another solution and put ∆ := X − xx*. As in [26], we
apply the pinching inequality, cf. [7, 26], to obtain

trace(X) = trace(xx* + ∆) ≥ trace(xx*) + trace(∆Tx ) + ‖∆T⊥
x
‖*.

Since trace(X) = trace(xx*) = ‖x‖2, we obtain

0 ≥ trace(∆Tx ) + ‖∆T⊥
x
‖*. (9)

If ∆Tx = 0, then we derive ∆T⊥
x
= 0, so that ∆ = 0 and hence X = xx*. If ∆Tx ≠ 0, then (8) implies

‖∆Tx‖F ≤
√

1
αn ‖An(∆Tx )‖ =

√
1
αn ‖An(∆T⊥

x
)‖ ≤

√
β
α ‖∆T⊥

x
‖F . (10)

Next, we observe that 〈xx*, ∆Tx 〉 = trace(∆Tx ) and obtain

0 = 〈Y , ∆〉 = 〈YTx − xx
*, ∆Tx 〉 + 〈xx

*, ∆Tx 〉 + 〈YT⊥
x
, ∆T⊥

x
〉

≤ ‖YTx − xx
*‖F‖∆Tx‖F + trace(∆Tx ) + ‖YT⊥

x
‖Op‖∆T⊥

x
‖*

≤ trace(∆Tx ) + ‖YTx − xx
*‖F

√
β
α ‖∆T⊥

x
‖F + δ‖∆T⊥

x
‖*

≤ trace(∆Tx ) + γ

√
β
α ‖∆T⊥

x
‖F + δ‖∆T⊥

x
‖*

≤ trace(∆Tx ) +
(
γ

√
β
α + δ

)
‖∆T⊥

x
‖*

≤ trace(∆Tx ) + ‖∆T⊥
x
‖*.

Since ∆Tx ≠ 0, the inequalities (10) yield ∆T⊥
x
≠ 0, so that the inequality of the last line is strict, which is a

contradiction to (9). Therefore, we have ∆ = 0 and hence X = xx*, so that xx* is the unique solution to (5).

5 Cubatures for phase retrieval with general λ
We aim to verify that certain random samples in Gλ,d satisfy the conditions of Theorem 4.2 with a decent
probability, so that signal recovery is guaranteed. To characterize the type of random distributions involved,
we need to de�ne some sort of weighted design on Gλ,d, for which we shall �rst introduce trace moments:
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De�nition 5.1. The t-th trace moments (or trace moments of degree t) of some randommatrix P ∈ Gλ,d are

µtP(X) := E
(
〈P, X〉t

)
, X ∈Hd .

The trace moments of P distributed according to σλ,d are denoted by

µtλ,d(X) :=
∫

Gλ,d

〈P, X〉tdσλ,d(P).

Similarly, for β ∈ Ns, we de�ne cross-moments by

µβ
P
(X1, . . . , Xs) = E

(
〈X1,P〉β1 · · · 〈Xs ,P〉βs

)
, X1, . . . , Xs ∈Hd

andmake use of the expression µβλ,d(X1, . . . , Xs), respectively. If β consists of ones only, then we simply write
µP(X1, . . . , Xs) and µλ,d(X1, . . . , Xs).

Next, we can introduce cubatures for Gλ,d:

De�nition 5.2. A Gλ,d-valued random variable P is called a random cubature of strength t (in Gλ,d) if its t-th
trace moments coincide with those of σλ,d, i.e.,

µtP(X) = µtλ,d(X), for all X ∈Hd . (11)

If P satis�es (11) at least for all X = xx*, x ∈ Rd, then it is called a random tight t-fusion frame.

Remark 5.3. In the literature, the term tight t-fusion frame usually refers to the case when the entries in λ
are ones and zeros, so that the measurement matrices are orthogonal projectors. Here, we use this term in a
slightly more general sense.

If λ = e1 holds, then any random tight t-fusion frame is already a random cubature of strength t. Still for
λ = e1, let us consider a random cubature P ∈ Ge1 ,d with �nite support, say {Pj}nj=1, and corresponding
weight distribution {ωj}nj=1. Then strength t implies that

n∑
j=1

ωj〈Pj , Px〉t = E(〈P, Px〉t) = µtP(Px) = µte1 ,d(Px) =
∫

Ge1,d

〈PV , Px〉tdσe1 ,d(V)

holds for all Px, which becomes formula (2) when the weights are constant. Thus, (random) cubatures are a
more �exible concept than designs.

The trace moments as functions on Gλ,d generate polynomial function spaces, and we de�ne

Polt(Gλ,d) := span{〈·, X1〉 · · · 〈·, Xt〉
∣∣
Gλ,d

: X1, . . . , Xt ∈Hd}. (12)

We also de�ne the subspace

Pol1t (Gλ,d) := span{〈·, Px〉t
∣∣
Gλ,d

: x ∈ Sd−1}. (13)

Existence of cubatures is quite well-understood, and the following results are based on �ndings in [16]. In
fact, the secondpart of the following proposition is completely contained in [16]. The �rst part is an analogous
proof, cf. [19]:

Proposition 5.4. There exists a random tight t-fusion frameP ∈ Gλ,d distributed according to some probability
measure ν such that

# supp(ν) ≤ dim(Pol1t (Gλ,d)) + 1.

There exists a random cubatureP ∈ Gλ,d of strength t distributed according to some probability measure ν such
that

# supp(ν) ≤ dim(Polt(Gλ,d)) − 1.
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It is noteworthy that the dimension of Polt(Gλ,d) can be bounded by the number of monomials of degree t in
1
2d(d + 1) variables, i.e.,

dim(Pol1t (Gλ,d)) ≤ dim(Polt(Gλ,d)) ≤
(

1
2d(d + 1) + t − 1

t

)
.

There is also a tighter bound for dim(Pol1t (Gλ,d)), i.e.,

dim(Pol1t (Gλ,d)) ≤
(
d + 2t − 1

2t

)
, (14)

which is a consequence of the following result showing that the dimension can be bounded by the dimension
of the homogeneous polynomials of degree 2t in d variables.

Lemma 5.5. For t ∈ N, we obtain

dim(Pol1t (Gλ,d)) = dim(span{‖P · ‖2t
∣∣
Sd−1 : P ∈ G√λ,d}),

where
√
λ = (

√
λ1, . . . ,

√
λd)*.

Proof. Let {xi}ni=1 ⊂ Sd−1 be such that 〈xix*i , ·〉t
∣∣
Gλ,d

, i = 1, . . . , n are linearly independent. By classical ar-
guments, there are {Pj}nj=1 ⊂ Gλ,d, such that the matrix (〈xix*i , Pj〉t)i,j is invertible. Therefore, the functions
‖P1/2j · ‖2t

∣∣
Sd−1 , j = 1, . . . , n, are linearly independent since ‖P1/2j x‖2t = 〈xx*, Pj〉t, for all x ∈ Sd−1. The same

arguments apply vice versa, which concludes the proof.

It should also be noted that existence of cubatures on the sphere when their support is �xed, i.e., designing
the mass distribution according to some �xed locations, have been investigated in [31], and we refer to [23]
for more general manifolds. However, general existence results for designs with speci�c bounds similar to
Proposition 5.4 are not known.

After having established existence of cubatures, we can now state our main result on phase retrieval,
which generalizes Theorem 3.1.

Theorem 5.6. Suppose that ‖x‖2 is known and that {Pj}nj=1 ⊂ Gλ,d are independently sampled from a random
cubature of strength 3, which is also a random tight t-fusion frame for some t ≥ 3. Then with probability at least
1 − e−ω, the rank-one matrix xx* is the unique solution to (5) provided that

n ≥ c1ωtd1+2/t log2(d), (15)

where ω ≥ 1 is an arbitrary parameter and c1 is a constant, which does not depend on d.

Few comments are in order. In contrast to Theorem 3.1, we allow random cubatures that are not uniformly
distributed on their support. Furthermore, we can separate the cubature condition of strength 3 from the
tight frame requirements for t > 3, which are indeed di�erent concepts when k is bigger than 1. Note that the
number of measurements n scales linearly in the ambient dimension d up to logarithmic factors if we choose
t = log(d) because then (15) yields n ≥ c1ωd log3(d).

6 General structure of the proof of Theorem 5.6
The proof of Theorem 5.6 is guided by the structure provided in [26] and based on the following two results
about near isometry properties and the existence of dual certi�cates as required by Theorem 4.2.
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Theorem 6.1. If {Pj}nj=1 ⊂ Gλ,d are independent and identical copies of a random matrix P ∈ Gλ,d that is a
random cubature of strength 3, then, for any su�ciently large constant C0, there is a constant c > 0 such that

1
C0d2

‖X‖2F ≤
1
n ‖An(X)‖2 (16)

holds for all matrices X ∈ Tx simultaneously with probability of failure at most d2e−c
n
d .

Note that the constant C0 will be used in the remaining part of the present paper.We still need an approximate
dual certi�cate though.

Theorem 6.2. Suppose that 0 ≠ x ∈ Rd, that ω ≥ 1, and that P ∈ Gλ,d is a random cubature of strength 3 and
a random tight t-fusion frame for some t ≥ 3. Then, for any su�ciently large constant c0, there is a constant
c > 0 such that if the number of measurements satis�es

n ≥ cωtd1+2/t log2(d), (17)

then with probability of failure at most 1
2 e
−ω, there exists a ( 1

c0d ,
1
c0 )-dual certi�cate with respect to x.

Note that the constant c0 is used in the remaining part of the present paper. Now, we have all ingredients for
the proof of our main result on phase retrieval:

Proof of Theorem 5.6. Guided by the structure provided in [26], we aim to apply Theorem 4.2, and the upper
bound in the near isometry property can easily be veri�ed. Indeed, for any collection {Pj}nj=1 ⊂ Gλ,d, the
Cauchy-Schwartz inequality and the assumptions on λ yield

1
n ‖An(X)‖2 =

1
n

n∑
j=1
〈X, Pj〉2 ≤

1
n

n∑
j=1
‖X‖2F‖Pj‖2F ≤ k‖X‖2F , for all X ∈Hd .

Hence, we can choose β := k. According to Theorem 6.1, we can select α = 1
C0d2 . By choosing γ := 1

c0d
and δ := 1

c0 with c0 >
√
kC0 + 1, Theorem 6.2 yields a (γ, δ)-dual certi�cate for the required number of

measurements, and we have the estimate√
β
α =

√
C0d
√
k < d(c0 − 1) =

1 − δ
γ

.

Thus, the assumptions in Theorem 4.2 are satis�ed. The corresponding probabilities work out nicely by ap-
plying d2e−c nd = 1

2 e
log(2)+2 log(d)−c nd and ω ≥ 1, which concludes the proof.

In order to complete the proof of Theorem 5.6, we must still verify Theorems 6.1 and 6.2. Their proofs require
the actual computation of t-th trace moments of P ∼ σλ,d for t = 1, 2, 3 that we shall discuss in the subse-
quent sections. In fact, we shall present a closed formula for the t-th trace moments for all t based on zonal
polynomials.

7 Computing trace moments

7.1 Some special trace moments

For special choices of λ and X, the trace moments of P ∼ σλ,d are already known. If λ = (1, . . . , 1, 0, . . . , 0)*,
where 1 is repeated k times, an explicit expression for themoments of rank-1matrices X = xx* can be derived,

µtλ,d(xx*) =
(k/2)t
(d/2)t

· ‖x‖2t , for all x ∈ Rd , (18)

where (a)t := a(a+ t) · · · (a+ t−1) denotes the Pochhammer symbol, cf. [1]. Recall that those are themoments
needed for the characterization of random tight t-fusion frames.
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Moreover, we further restrict λ to derive explicit formulas for more general moments. If P ∼ σe1 ,d and
{xi}di=1 is an orthonormal basis for Rd, then one can verify that the vector

(
〈P, x1x*1〉, . . . , 〈P, xdx*d〉

)* is
Dirichlet distributed with parameter vector (1/2, . . . , 1/2), [6]. The generalized moments of such Dirichlet
distributed random vectors are known [39], and, indeed, if β ∈ Nd, we obtain

µβe1 ,d(x1x
*
1, . . . , xdx*d) =

∏d
i=1(1/2)βi
(d/2)|β|

, (19)

where |β| =
∑d

i=1 βi. Since σe1 ,d is invariant under the orthogonal group, the terms in (19) do not depend on
the special choice of the orthonormal basis. Hence, the spectral decomposition of X ∈ Hd yields a closed
formula,

µte1 ,d(X) =
∑
β∈Nd
|β|=t

(
t
β

)
αβ
∏d
i=1(1/2)βi
(d/2)t

, for X ∈Hd , (20)

where α = (α1, . . . , αd) are the eigenvalues of X.

7.2 Trace moments for general λ, t, and X

Computing trace moments when λ is more general requires the theory of zonal polynomials as developed in
[27, 28], see also the textbooks [15, 32]. Zonal polynomials are homogeneous polynomials in Hd, which are
invariant under conjugation with respect to the orthogonal group. According to representation theory, those
polynomials Cπ are indexed by all partitions π of the natural numbers. Here, a partition of t are integer vectors
π = (π1, . . . , πt) with π1 ≥ . . . ≥ πt ≥ 0 and

∑t
i=1 πi = t. The number of parts of π is the number of nonzero

entries. The set of partitions of t with no more than d parts is denoted by Pt,d.
To compute cross-moments of a randommatrix P ∈ Gλ,d, we shall make use of the following combinato-

rial fact:

Lemma 7.1. For any integer t ≥ 1 and x1 . . . , xt ∈ R, we have

t!x1 · · · xt =
∑

J⊂{1,...,t}

(−1)t+#J
(∑
j∈J

xj
)t .

Proof. Consider the homogeneous and symmetric polynomials

S`t (x1, . . . , xt) :=
∑

J⊂{1,...,t}
#J=`

(∑
j∈J

xj
)t

of degree t. The coe�cient of the monomial xβ, for β ∈ Nt, |β| = t, in
(∑

j∈J xj
)t is{( t

β
)
, supp(β) ⊂ J,

0, otherwise,

where
( t
β
)
= t!
β1!···βt ! . Together with

#{J ⊂ {1, . . . , t} : #J = `, supp(β) ⊂ J} =
(
t − # supp(β)
` − # supp(β)

)
,

we can conclude

S`t (x1, . . . , xt) =
∑
β∈Nt
|β|=t

(
t
β

)(
t − # supp(β)
` − # supp(β)

)
xβ .
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This yields

∑
J⊂{1,...,t}

(−1)t+#J
(∑
j∈J

xj
)t = ∑

β∈Nt
|β|=t

(
t
β

)
xβ

t∑
`=# supp(β)

(−1)t+`
(
t − # supp(β)

t − `

)

=
∑
β∈Nt
|β|=t

(
t
β

)
xβ(−1)t+# supp(β)

t−# supp(β)∑
`=0

(−1)`
(
t − # supp(β)

`

)

=
∑
β∈Nt
|β|=t

(
t
β

)
xβ(−1)t+# supp(β)(1 − 1)t−# supp(β),

with 00 := 1, which concludes the proof.

The latter lemma enables us to actually compute trace moments:

Theorem 7.2. The cross-moments of any random matrix P ∈ Gλ,d satisfy

µP(X1, . . . , Xt) =
1
t!

∑
J⊂{1,...,t}

(−1)t+#JµtP(
∑
j∈J

Xj), X1, . . . , Xt ∈Hd . (21)

In particular, if P ∼ σλ,d, then (21) can be computed by

µtλ,d(X) =
∑

π∈Pt,d

Cπ(X)Cπ(Dλ)
Cπ(Id)

, for all X ∈Hd , (22)

where Dλ = diag(λ1, . . . , λd)*.

Proof. The formula (21) is a direct consequence of Lemma 7.1.
Equation (22) follows from properties of zonal polynomials, cf. [27], namely

trace(X)t =
∑
π∈Pt

Cπ(X),∫
O(d)

Cπ(XOYO*)dO = Cπ(X)Cπ(Y)Cπ(Id)
,

for all X, Y ∈Hd, and that σλ,d is induced by the Haar measure on the orthogonal group implying∫
Gλ,d

Cπ(XP)dσλ,d(P) =
∫

O(d)

Cπ(XODλO*)dO.

7.3 Explicit trace moments for t = 1, 2, 3

Tomake use of Theorem 7.2 enabling us to compute tracemoments of σλ,d for t = 1, 2, 3, we still need explicit
forms of the zonal polynomials. Indeed, they were computed in [27]:
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C(1)(X) = trace(X)

C(2)(X) =
1
3
(
trace2(X) + 2 trace(X2)

)
C(1,1)(X) =

2
3
(
trace2(X) − trace(X2)

)
C(3)(X) =

1
15
(
trace3(X) + 6 trace(X) trace(X2) + 8 trace(X3)

)
C(2,1)(X) =

3
5
(
trace3(X) + trace(X) trace(X2) − 2 trace(X3)

)
C(1,1,1)(X) =

1
3
(
trace3(X) − 3 trace(X) trace(X2) + 2 trace(X3)

)
We can now apply Theorem 7.2, which yields the trace moments for t = 1, 2, 3:

Theorem 7.3. For all d ≥ 3 and X1, X2, X3 ∈Hd, we have

µλ,d(X1) =
1
q1,d

α(1) trace(X1),

µλ,d(X1, X2) =
1
q2,d

(
α(1,1) trace(X1) trace(X2) + α(2) trace(X1X2)

)
,

µλ,d(X1, X2, X3) =
1
q3,d

(
α(1,1,1) trace(X1) trace(X2) trace(X3)+

α(2,1)
3 (trace(X1) trace(X2X3) + trace(X2) trace(X1X3) + trace(X3) trace(X1X2))

α(3) trace(X1X2X3)
)
,

where we set si := trace(Diλ) and

q1,d = d,
α(1) = s1,

q2,d = (d − 1)d(d + 2),
α(1,1) = (d + 1)s21 − 2s2
α(2) = −2s

2
1 + 2ds2,

q3,d = (d − 2)(d − 1)d(d + 2)(d + 4),
α(1,1,1) = (d2 + 3d − 2)s31 − 6(d + 2)s1s2 + 16s3,
α(2,1) = −6(d + 2)s

3
1 + 6(d2 + 2d + 4)s1s2 − 24ds3,

α(3) = 16s31 − 24ds1s2 + 8d2s3.

If we keep the last matrix argument undetermined, then we derive the following result, which is simply a
weak formulation of Theorem 7.3:

Corollary 7.4. Let a random matrix P ∈ Gλ,d be given. If P is a random cubature of strength 2, then, for d ≥ 2
and X ∈Hd,

a1E〈P, X〉P = X + a2 trace(X)Id , (23)

where a1 = d(d+2)(d−1)
−2s21+2ds2

and a2 = (d+1)s21−2s2
−2s21+2ds2

. Moreover, if P is a random cubature of strength 3, then, for d ≥ 3
and X1, X2 ∈Hd,

E〈P, X1〉〈P, X2〉P = 1
q3,d

(
α(1,1,1) trace(X1) trace(X2)Id +

α(2,1)
3 (trace(X1)X2 + trace(X2)X1 + trace(X1X2)Id)

α(3) trace(X1X2)Id
)
.
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Note that (23) has been derived for λ = (1, . . . , 1, 0, . . . , 0)* in [2]. It is also worth mentioning that a1 is on
the order of d2 when d tends to in�nity and a2 behaves like a constant that may depend on k. The coe�cients
α(2,1)
q3,d , α(3)q3,d , and

α(1,1,1)
q3,d behave like 1/d3 when d tends to in�nity.

We establish one more consequence:

Corollary 7.5. Suppose that d ≥ 2. If a random matrix P ∈ Gλ,d is a random cubature of strength 2, then

Sa1E(〈P, X〉P) = a1E(〈P, SX〉P) = X, for all X ∈Hd ,

where S : Hd →Hd, X 7→ X − a2
1+a2d trace(X)Id.

Note that S in Corollary 7.5 is a contraction, so that

I � S � 0, ‖S‖Op ≤ 1, (24)

where I denotes the identity map on Hd.

Remark 7.6. By using the theory of zonal polynomials, we have explicitly computed the t-th trace moments
for t = 1, 2, 3 to be able to verify the Theorems 6.1 and 6.2. Indeed, the trace moments are an essential in-
gredient in their proofs. We established the Corollaries 7.4 and 7.5 in our more general setting. Next, we can
essentially follow the lines in [26] with adjusted parameters and minor modi�cations to verify the Theorems
6.1 and 6.2, and their complete proofs are placed in Appendix A and B.

8 Conclusions
Our results generalize �ndings in [26] from 1-dimensional subspace measurements to the general setting of
rank-k positive semide�nite matrices. Moreover, we deal with cubatures in place of the required t-designs
in [26].

Our proofs were guided by the approach in [26]. In our general setting, we had to compute the trace
moments onGλ,d for t = 1, 2, 3 by applying zonal polynomials as discussed in [27]. Based on such�ndings,we
then followed the structure in [26]with adjusted parameters and constants in the appendix to verify the phase
retrieval results. We only explicitly addressed the real setting, but the theory of complex zonal polynomials
also works in complex space with adjusted coe�cients, but the asymptotics in d remain the same, so that our
approach can cover the complex phase retrieval setting as well.

A Near isometries: proof of Theorem 6.1
To prove Theorem 6.1, we shall make use of the following deviation bound that was also used in [26]:

Theorem A.1 ([36]). Let S =
∑n

j=1Mj be a sum of independently identically distributed d × d random matri-
ces with zero mean and smallest eigenvalue λmin ≥ −R almost surely. For σ2 = ‖

∑n
j=1 EM

2
j ‖Op, the smallest

eigenvalue Λmin of S satis�es, for all q ≥ 0,

Prob
(
Λmin ≤ −q

)
≤ d exp(− q2/2

σ2 + Rq/3 ) ≤ d
{
exp(−3q2/8σ2), q ≤ σ2/R,
exp(−3q/8R), q ≥ σ2/R.

Proof of Theorem 6.1. Wemake use of the mapping

R : Hd →Hd , X 7→ a1
n

n∑
j=1
〈X,Pj〉Pj , (25)
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where a1 is as in Corollary 7.4 and whose expectation was derived there too. Without loss of generality, we
can assume x ≠ 0. As in the proof of Proposition 9 in [26], we derive

1
a1
(
1 + Λmin

)
‖X‖2F ≤

1
n ‖An(x)‖2

where Λmin is the minimal eigenvalue of PTx (R − ER)PTx . Here, PTx is the orthogonal projector onto Tx, ex-
plicitly given by

PTx : Hd →Hd , X 7→ PxRX + XPxR − 〈X, PxR〉PxR, (26)

where PxR = 1
‖x‖2 xx

* is the orthogonal projector onto xR. Thus, we must �nd a lower bound on Λmin.
We now split

PTx (R − ER)PTx =
n∑
j=1

Mj − EMj , whereMj =
a1
n 〈PTx ·,Pj〉(Pj)Tx .

It is fairly easy to see that 〈XTx , Id〉ITx = 〈X, PxR〉PxR, which implies

−2n I � −
1
n I −

1
n 〈·, PxR〉PxR � PTx (Mj − EMj)PTx ,

so that
−2n ≤ λmin , (27)

where λmin is the minimal eigenvalue ofMj − EMj. We have

0 � E((Mj − EMj)2) � E(M2
j ) =

a21
n2E〈·, (Pj)Tx 〉〈(Pj)Tx , (Pj)Tx 〉(Pj)Tx

and according to 〈(Pj)Tx , (Pj)Tx 〉 = 〈Pj , (Pj)Tx 〉, we can use (26) to derive

〈(Pj)Tx , (Pj)Tx 〉 = trace(Pj(PxRPj + PjPxR − 〈Pj , PxR〉PxR) ≤ 2〈Pj , PxR〉,

so that

E((Mj − EMj)2) �
2a21
n2 PTxE〈PTx ,Pj〉〈Pj , PxR〉Pj .

Since we have a cubature of strength 3, we derive the estimates

E((Mj − EMj)2) �
2a21
n2 PTxE〈PTx ,Pj〉〈Pj , PxR〉Pj

= 2a21
n2 PTx

[
α1(PTx + trace(PTx ·)PxR + trace((PTx ·)PxR)I)

+ α2((PTx ·)PxR + PxRPTx ) + α3 trace(PTx ·)I
]

= 2a21
n2
[
α1(PTx + trace((PTx ·)PxR)PxR + trace((PTx ·)PxR)PxR)

+ α2((PTx ·)PxR + PxRPTx ) + α3 trace((PTx ·)PxR)PxR
]

= 2a21
n2
[
α1(PTx + trace((PTx ·)PxR)PxR + trace((PTx ·)PxR)PxR)

+ α2(PTx + PxR trace(PxRPTx ·)) + α3 trace((PTx ·)PxR)PxR
]
,

where we have used (26) twice and trace(PTx · PxR) = trace(PTx ·). Next, we apply αi ≤ c
d3 for su�ciently large

d and obtain

E((Mj − EMj)2) �
2ca21
n2d3

[
PTx + trace((PTx ·)PxR)PxR + trace((PTx ·)PxR)PxR

+ PTx + PxR trace(PxRPTx ·) + trace((PTx ·)PxR)PxR
]

= 2ca21
n2d3

[
4 trace((PTx ·)PxR)PxR + 2PTx

]
� 16ca21

n2d3 I.
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The rough estimate a1 ≤ c2d2 implies

E((Mj − EMj)2) �
16cc22d
n2 I.

Let σ2 := 16cc22d
n , so that Theorem A.1 yields with R = 2/n, see (27),

Prob
(
Λmin ≤ −ϵ

)
≤ d2 exp(− nϵ2/2

16cc22d + 2ϵ/3
)

≤ d2 exp(− nϵ2

32cc22d + 4ϵ/3
) ≤ d2 exp(− c3nϵ

2

d ),

for all 0 ≤ ϵ ≤ 1 ≤ 32cc22d = σ2/R.
So far, we have veri�ed that

1
a1
(
1 − ϵ

)
‖X‖2F ≤

1
n ‖An(X)‖2

holds with probability of failure at most d2 exp(− c3nϵ
2

d ). If we choose ϵ �xed such that ϵ ≤ 1 − a1
c2d2 , then we

can conclude the proof.

B Dual certifcate: proof of Theorem 6.2
We �rst derive a bound for µtλ,d(xx*):

Proposition B.1. If x ∈ Sd−1, then we have

µtλ,d(xx*) ≤
( kt
d
)t .

Proof. This bound has been derived in [2] for λ having k ones and d − k zeros. The general conditions on λ,
i.e., only k entries are nonzero and λi ≤ 1, imply the statement.

We shall now bound 〈P, xx*〉:

Proposition B.2. Suppose that x ∈ Sd−1. If P ∈ Gλ,d is a random tight t-fusion frame with t ≥ 1, then we have,
for all 0 < r ≤ 1 ≤ s,

〈P, xx*〉 ≤ (s + 1)tkd−r

with probability of failure at most s−td−t(1−r).

Proof. For s ≥ 1, we estimate

Prob
(
〈P, xx*〉 ≥ (s + 1)tkd−r

)
≤ Prob

(
〈P, xx*〉 − µP(xx*) ≥ (s + 1)tkd−r −

k
d
)

≤ Prob
(
〈P, xx*〉 − µP(xx*) ≥ stkd−r

)
,

where we have used Theorem 7.3 and trace(Dλ) ≤ k. Due to Proposition B.1, τt :=
(
µtP(xx*)

)1/t ≤ kt
d holds, so

that we obtain

Prob
(
〈P, xx*〉 ≥ (s + 1)tkd−r

)
≤ Prob

(∣∣〈P, xx*〉 − µP(xx*)∣∣ ≥ sd1−rτt).
We can conclude the proof by applying a generalized Chebyshev inequality that was used in the proof of
Lemma 13 in [26], i.e.,

Prob
(
|〈P, xx*〉 − µP(xx*)| ≥ uτt

)
≤ u−t

and by choosing u = sd1−r.
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To introduce a sampled truncation of the operator R de�ned in (25), we denote the event

Ej := {〈Pj , xx*〉 ≤ (s + 1)tkd−r}

where {Pj}nj=1 ⊂ Gλ,d are i.i.d. according to a random tight t-fusion frame. The number 0 < r ≤ 1 is referred to
as the truncation rate. We also decompose a �xed 0 ≠ Z ∈ Tx by Z = λ(xz* + zx*), where λ > 0 and z ∈ Sd−1.
For this z, we introduce the event

Gj := {〈Pj , zz*〉 ≤ (s + 1)tkd−r}

and de�ne

R : H →H , X 7→ a1
n

n∑
j=1
〈X,Pj〉Pj ,

where a1 is as in Corollary 7.4, which is the analogue of (25) with its truncated counterpart

RZ : H →H , X 7→ a1
n

n∑
j=1

1Ej1Gj 〈X,Pj〉Pj . (28)

It turns out that R and RZ are close to each other in expectation:

Proposition B.3. For x ∈ Rd, �x Z ∈ Tx and let RZ be as in (28), where {Pj}nj=1 ⊂ Gλ,d are i.i.d. according to a
random tight t-fusion frame with t ≥ 2. Then, for any su�ciently large constant c0, we have∥∥E(RZ −R)∥∥Op ≤ c0s−td2−t(1−r).
Proof. We �rst de�ne the auxiliar operator

Raux : H →H , X 7→ a1
n

n∑
j=1

1Ej 〈X,Pj〉Pj .

The triangular inequality yields∥∥E(RZ −R)∥∥Op ≤ ∥∥E(RZ −Raux)∥∥Op + ∥∥E(Raux −R)∥∥Op .
Since ‖〈X,Pj〉Pj‖ ≤ k‖X‖, we obtain with Proposition B.2

∥∥E(Raux −R)∥∥Op ≤ a1kn
n∑
j=1

Prob(Ecj )

≤ a1ks−td−t(1−r)

≤ c02 d
2s−td−t(1−r),

since a1 behaves like d2. The analogue estimates for
∥∥E(Raux −R)∥∥Op using c0/2 conclude the proof.

Let PTx : Hd → Tx be the orthogonal projector onto Tx, i.e., PTx (Y) = YTx , and PT⊥
x

the orthogonal projector
onto the orthogonal complement of T⊥x .

Proposition B.4. For x ∈ Rd, �x Z ∈ Tx and let RZ be as in (28), where {Vj}nj=1 ⊂ Gk,d are i.i.d. according to
a cubature of strength t ≥ 3, and the truncation rate is supposed to satisfy r ≤ 1 − 2/t. Then there is a constant
c1 > 0 such that, for 1/c0 ≤ A ≤ 1 and

√
2A ≤ B,∥∥PT⊥

x
SRZZ

∥∥
Op ≤ A‖Z‖F , (29)∥∥PTx (SRZ − I)Z∥∥F ≤ B‖Z‖F , (30)

hold with probability of failure at most d exp(−c1 nA
td2−r ).
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For the proof of the above proposition, we need the following concentration bound from [25, 37]

Theorem B.5 ([25, 37]). Consider a �nite sequence {Mj}nj=1 of independent, random self-adjoint operators on
Cd. Assume that EMj = 0 and ‖Mj‖Op ≤ R almost surely and let σ2 = ‖

∑n
j=1 EM

2
j ‖Op. Then we have, for all

q ≥ 0,

Prob
(
‖

n∑
j=1

Mj‖Op ≥ q
)
≤ d exp(− q2/2

σ2 + Rq/3 ) ≤
{
d exp(−3q2/8σ2), q ≤ σ2/R,
d exp(−3q/8R), q ≥ σ2/R.

Proof of Proposition B.4. Without loss of generality, we can assume that Z = q(zx* + xz*) with z ∈ Sd−1 and
0 < q ≤ 1.

As in [26], we have with (24) ‖S‖Op ≤ 1, and we can estimate with Proposition B.3∥∥PT⊥
x
SRZZ

∥∥
Op ≤

∥∥(RZ − ERZ)Z∥∥Op + c0s−td2−t(1−r)
≤
∥∥(RZ − ERZ)Z∥∥Op + c0s−3
≤
∥∥(RZ − ERZ)Z∥∥Op + 1/c20
≤
∥∥(RZ − ERZ)Z∥∥Op + A/c0,

where we have chosen s = c0. As in [26], we obtain in a similar fashion∥∥PTxS(RZ − I)Z∥∥F ≤ √2∥∥(RZ − ERZ)Z∥∥Op + A/c0,
We de�ne the event

E := {
∥∥(RZ − ERZ)Z∥∥Op ≤ A − A/c0},

so that A and B are chosen such that it boils down to bound the probability of Ec. As in [26], we de�ne

(RZ − ERZ)Z =
n∑
j=1

(Mj − EMj), where Mj =
a1
n 1Ej1Gj 〈Z,Pj〉Pj

and estimate analogously

‖Mj‖Op ≤
a1
n 1Ej1Gj |〈Z,Pj〉|

≤ a1n 1Ej1Gj2|x
*Pjz|

≤ a1n 1Ej1Gj2
√
〈Pj , xx*〉〈Pj , zz*〉|

≤ a1n 2(s + 1)tkd−r ,

where we have used the de�nitions of Ej and Gj. We �x s and knowing that a1 grows like d2, we can further
derive

‖Mj‖Op ≤
c3
n td

2−r =: R̃.

Next, we estimate with Corollary 7.4, trace(Z) ≤
√
2‖Z‖F, Z � Id, Z2 � ‖Z‖F Id, and ‖Z‖F ≤ 1,

E(Mj − EMj)2 � EM2
j

� a21
n2E〈Z,Pj〉

2Pj

� a21
n2
[
α1(2 trace(Z)Z + trace(Z2)Id) + 2α2Z2 + α3 trace(Z)2Id

]
� a21
n2
[
α1(2
√
2‖Z‖FZ + trace(Z2)Id) + 2α2‖Z‖F Id + α32‖Z‖2F Id

]
� a21
n2
[
α1(2
√
2Id + Id) + 2α2Id + α32Id

]
� cd
n2 Id ,
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where c > 0 is some constant independent of d and we used that a1 and αi can be estimated by a constant
times d2 and 1/d3, respectively. We can deduce that

∥∥ n∑
j=1

E(Mj − EM2
j )2
∥∥
Op ≤ n max

j=1,...,n
‖EM2

j ‖Op ≤
cd
n =: σ2.

Now, we can choose a su�ciently large constant c2 ≥ 1 such that the de�nition R := c2R̃ yields

σ2
R ≤ cd

r−1

c2c3t
≤ q̃A,

with some q̃ < 1. As in [26], an application of Theorem B.5 with q = q̃A concludes the proof.

We have now completed the preparations for the proof of Theorem 6.2:

Proof of Theorem 6.2. We construct the dual certi�cate in a recursivemanner and beginwith Y0 = 0. Suppose
that Yi is constructed, then we put Qi := xx* − (Yi)Tx ∈ Tx. We choose ni subspaces independently and
identically distributed according to the cubature V. Let RQi−1 be the operator de�ned in (28). We de�ne

A := 1/c0, B :=
√
2A

and check whether (29) and (30) are satis�ed. If so, let R(i)
Qi−1 := RQi−1 ,

Yi := SR(i)
Qi−1 (xx

* − Yi−1)Tx + Yi−1,

and we proceed to step i + 1. If one of the bounds (29) and (30) does not hold, then we repeat the i-th step
with a new batch of ni subspaces. We denote the probability of having to repeat the i-th step by pi and the
eventual number of repetitions by ri. For l := dlog1/B(d)e+2, we de�ne Y := Yl. Analogously to [26], we derive

‖YTx − xx
*‖F ≤

2
d A

2 = 2
c20d

,

‖YT⊥
x
‖Op ≤

A
1 −
√
2A

= c0
c0(c0 −

√
2)
≤ 1
c0 −

√
2
.

In order to estimate the probability that the total number of measurements
∑l

i=1 niri exceeds the bound in
(17), we �rst apply Proposition B.4 to obtain

pi ≤ d exp(−c1
niA
td2−r ) ≤ d exp(−c1

ni
c0td2−r

).

To get the exact point of contact with the proof in [26], we choose

ni = 3 c0c1
td2−r log(d),

which yields
pi ≤ e−3 ≤ 1/20.

This is the same bound as in [26]. The remaining part of the proof is based on a concentration bound for
binomial random variables and directly follows the lines in [26], so that we omit the details.
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