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Abstract 

With the increasing prevalence of end stage renal disease there is a growing need for 

hemodialysis. Arteriovenous fistulae (AVF) are the preferred type of vascular access for 

hemodialysis but maturation and failure continue to present significant barriers to successful 

fistula use. AVF maturation integrates outward remodeling with vessel wall thickening in 

response to drastic hemodynamic changes, in the setting of uremia, systemic inflammation, 

oxidative stress and preexistent vascular pathology. AVF can fail due to both failure to 

mature adequately to support hemodialysis, as well as development of neointimal hyperplasia 

(NIH) that narrows the AVF lumen, typically near the fistula anastomosis. Failure due to NIH 

involves vascular cell activation and migration and extracellular matrix remodeling with 

complex interactions of growth factors, adhesion molecules, inflammatory mediators, and 

chemokines, all of which result in maladaptive remodeling. 

Different strategies have been proposed to prevent and treat AVF failure, based on current 

understanding of the modes and pathology of access failure; these approaches range from 

appropriate patient selection and use of alternative surgical strategies for fistula creation, to 

the use of novel interventional techniques or drugs to treat failing fistulae.  Effective 

treatments to prevent or treat AVF failure requires a multidisciplinary approach involving 

nephrologists, vascular surgeons and interventional radiologists, allowing careful patient 

selection and the use of tailored systemic or localized interventions to improve 

patient-specific outcomes. This review provides contemporary information on the underlying 

mechanisms of AVF maturation and failure and discusses the broad spectrum of options that 

can be tailored for specific therapy. 
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Introduction 

 

1. The prevalence of ESRD is increasing 

Chronic kidney disease (CKD) is increasing in incidence worldwide, and with an 

estimated prevalence of 8%–16%, contributes significantly to the global burden of disease [1, 

2]. The global prevalence of diabetes in adults is 9.1% (415 million people) according to a 

report published in 2015 by the International Diabetes Federation, rising beyond 10.4% (642 

million people) by 2040 [3], largely due to the global increase in type 2 diabetes and obesity, 

especially in China, India and some developing countries in Africa [4-6]. This increase in the 

number of people developing diabetes has had a major impact on the development of diabetic 

kidney disease (DKD). DKD and an aging population have become the two challenges in 

managing end-stage renal disease (ESRD) worldwide. DKD is the leading cause of ESRD, 

accounting for approximately 50% of cases in the developed world. Although overall 

incidence rates for ESRD attributable to DKD have recently stabilized in the USA, these rates 

continue to rise in high-risk groups such as middle-aged African Americans, Native 

Americans, and Hispanics. The elderly population constitutes the fastest growing sector of 

the ESRD population and have unique needs by virtue of their high prevalence of comorbid 

conditions, slower progression of renal disease, and reduced survival; in the Medicare 

population alone, DKD-related expenditure among the elderly was nearly $25 billion in 2011 

[7, 8]. With the increasing prevalence of ESRD, there is a growing need for renal replacement 

therapies (RRT). 
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2. AVF is the preferred form of RRT but is far from optimal 

RRTs are the lifeline for ESRD patients. Modes of RRT include peritoneal dialysis 

(6.4%), renal transplant (29.3%), and hemodialysis (HD) (64.2%) [9, 10]. In 2010, 64.7% of 

patients in the United States with ESRD were treated with HD with either arteriovenous 

fistula (AVF), arteriovenous grafts (AVG), or tunneled and non-tunneled central venous 

catheters [11]. 

The National Kidney Foundation Kidney Disease Outcomes Quality Initiative 

(NKF-KDOQI) guidelines and the Fistula First Breakthrough Initiative prefer AVF as the 

optimal access for HD [12], as they have superior patency rates, fewer complications and 

lower health care costs [11, 13-15]. Additionally, a recent systematic review and 

meta-analysis on outcomes of vascular access for hemodialysis remains in support of 

autogenous access as the best approach when feasible: AVF were associated with the best 

patency and lowest infection and mortality outcomes, followed by AVG and catheters [16, 

17]. AVF have also been recommended in the pediatric population [18].  

However, AVF are not immediately available for use as an access for HD as they must 

mature, e.g. dilate and thicken. Unfortunately, AVF have a high rate of primary maturation 

failure with up to 60% not suitable for HD by 5 months after creation [19-22]. Furthermore, a 

recent systematic review and meta-analysis reported that the primary patency rates of AVF 

were 60% at 1 year and 51% at 2 years, with secondary patency rates of 71% at 1 year and 64% 

at 2 years, clearly suboptimal for a permanent treatment [23].  Although there are conflicting 
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results regarding sex influence on AVF failure, most studies demonstrated that women have 

prolonged maturation time and decreased patency rate [17, 24, 25]; early thrombosis was also 

associated more frequently with women [26]. Controversially, AVF may not be favored for 

HD access in older patients [27-29]. Olsha et al demonstrated that 88% of their patients who 

were older than 80 years had vasculature suitable for autogenous access construction, with 

patency and complications similar to those of their younger counterparts, with adequate 

preoperative planning and postoperative maintenance [29]. However, elderly patients with 

ESRD frequently have a high prevalence of comorbidities, short life expectancy, and poor 

reported quality of life that is associated with lack of AVF maturation and diminished 

primary and cumulative AVF patency [28]; in these patients AVG placement might be more 

beneficial [27, 28, 30]. 

 

3. Lack of well-established clinical criteria to define AVF maturation or failure 

AVF maturation is considered clinically successful if 6 weeks after surgery the fistula 

supports a flow of 600 mL/min, is located at a maximum of 6 mm from the skin surface and 

has a diameter of >6 mm [12], but this definition is difficult for clinical use. The North 

American Vascular Access Consortium definition may be more useful: a fistula is mature if it 

can be successfully used for dialysis with two-needle cannulation for two-thirds or more of 

all dialysis runs for 1 month and if it delivers the prescribed dialysis within the prescribed 

time frame [31]. 

Although there are some clinical criteria to define successful AVF maturation, the 

clinical definition of AVF failure is less clear, with frequent confusion between various types 
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and stages of failure. Based on previous criteria and recent multicenter research [12, 26, 31], 

we have defined the 3 types of AVF failure as: early thrombosis, failure to mature, and late 

failure (Table 1). 

Many variables contribute to successful AVF maturation or AVF failure: patient age, sex, 

presence of diabetes, obesity, vessel characteristics, surgical technique and surgeon 

experience, preoperative planning and mapping [32-34]. Successful access surgeons 

frequently adhere to the dictum that a successful AVF should be performed in the right 

patient at the right time in the right circumstances based upon comprehensive understanding 

of the mechanisms contributing to AVF maturation and AVF failure. The goal of this review 

paper is to give a basic understanding of the adaptive changes of AVF maturation as a 

framework to understand the mechanisms of AVF failure as well as subsequent treatments. 

 

Mechanisms contributing to AVF maturation and failure 

 

Mechanisms of AVF maturation 

 

1. AVF maturation integrates outward remodeling and wall thickening 

After AVF creation, the vein is exposed to a high flow, high shear stress, high pressure, 

and oxygen-rich arterial environment, leading to “maturation” of both the arterial inflow limb 

as well as venous outflow limb. Adaptation of the vein to the increased flow and shear stress 

of the arterial environment requires dilation by outward remodeling of the venous wall, 

(Poiseuille’s law), whereas increases in pressure and tensile stress result in wall thickening, 

(Laplace’s law). During this adaptive remodeling, hemodynamic changes are translated into 
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endothelial and adventitial signaling, inducing structural changes in cells and the extracellular 

matrix (ECM); inflammation, growth factors and cell adhesion molecules in all three layers 

of the venous wall are involved with the process inducing remodeling (Figure 1). 

1.1 Hemodynamic flow  

Blood flow in the cephalic vein is normally approximately 28 ± 14 ml/min [35]. 

Successful radial-cephalic AVF have flow rates averaging between 600-1000 ml/min with 

higher peak flows in the larger diameter brachial-cephalic AVF. Dixon et al. reported that 90% 

of forearm AVF have flows between 500-2000 ml/min, whereas 90% of upper arm AVF have 

flows between 500-3000 ml/min [36]. Shear stress in the cephalic limb of a brachial-cephalic 

fistula increases from preoperative venous magnitudes of 5-10 dyne/cm
2
 to 24.5 dyne/cm

2
 

after one week, which then normalizes to 10.4 dyne/cm
2
 over 3 months [37].  With these 

high magnitudes of flow in the AVF, the character of the flow may be disturbed, e.g. 

non-laminar and disordered, possibly even turbulent [38-41]. 

 

1.2 Outward remodeling and wall thickening  

AVF maturation is the product of both vessel wall outward remodeling and thickening 

and is thought to be an adaptive process to the increased pressure, shear stress, and oxygen 

tension from the arterial inflow that is no longer attenuated by resistive forces of the 

arterioles and the capillary bed. Different from vein grafts, AVF adapt mainly via outward 

dilation and wall thickening with less intimal thickening [42]. Schwartz et al. confirmed this 

behavior using a rabbit model, showing that AVF are exposed to higher flow than vein grafts 

(AVF: 82 ± 17 ml/min; vein grafts: 16 ± 4 ml/min) as well as increased shear stress (AVF: 71 
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± 50 dyne/cm
2
; VG: 0.96 ± 0.38 dyne/cm

2
). AVF showed increased dilation (AVF: 194%; VG: 

no change), whereas vein grafts were exposed to higher pressure (VG: 62 ± 3 mmHg; AVF: 6 

± 2 mmHg) and had increased myointimal area (VG: 4.72 ± 0.83 mm
2
; AVF: 1.9 ± 0.55 

mm
2
)[43]. 

Outward remodeling is thought to be mediated by the venous endothelium and adventitia 

that sense hemodynamic forces and integrates these forces to allow successful adaption 

without loss of luminal area and vessel patency [21, 24, 44, 45]. Venous diameter expansion 

is a critical element of outward remodeling and predicts clinical success for both AVF and 

vein grafts [46-48]. Several studies examining venous dilation in AVF reported mean 

diameter increases from 2.3-3.2 to 5.8-6.6 mm by 3 months after fistula creation. These 

values reflect a 45%-86% increase within the first month and an increase of up to 179% after 

3 months, corresponding to an average cross-sectional area of approximately 10-12 mm
2
, to 

normalize the shear stress [49, 50].  

Wall thickening is the adaptation of the vessel wall to increased pressure. This process 

involves expansion of all the vessel layers via both ECM deposition and cell proliferation and 

migration [44, 45, 51]. Several types of cells are involved in wall thickening, including 

smooth muscle cells, adventitial fibroblasts, and bone marrow derived progenitor cells [45, 

52-54].  The adventitial myofibroblast is critical during venous adaptation to arterial flow 

and helps maintain venous wall integrity and hemostasis after surgical creation of the AVF 

[45]. Myofibroblast precursors residing in the venous adventitia sense the abrupt mechanical 

forces produced by arterial flow to rapidly adjust their genomic expression program to help 

increase vascular resistance. This adaptive response includes the formation of bundles of 
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contractile microfilaments and extensive cell-to-matrix attachment sites as well as the 

secretion of MMPs, collagen, and ECM proteins that strengthen the fistula wall [45, 55]. 

Targeting the adventitia to treat NIH is a newer strategy to prevent AVF venous stenosis [56]. 

 

1.3 Endothelial Signaling 

Molecular signaling within the maturing AVF is of vital importance to understand and 

control the normal adaptive response of fistula maturation and the abnormal maladaptive 

response of fistula failure. The release of chemotactic and inflammatory mediators from the 

endothelium during surgical manipulation and hemodynamic variation are important during 

the initial phase of adaptation. Directly after AVF creation, high magnitudes of arterial flow 

result both in passive vascular distention and nitric oxide (NO) synthesis by endothelial cells 

with subsequent vascular smooth muscle cell (VSMC) relaxation, resulting in acute 

vasodilation [57-59]. NO is produced by endothelial nitric oxide synthase (eNOS), and is a 

potent vasodilator and signaling molecule with anti-inflammatory and anti-platelet properties 

[51, 59, 60]. eNOS may contribute to adaptive vein wall remodeling both through its 

anti-inflammatory and anti-thrombotic properties as well as through its anti-proliferative 

properties. Both eNOS and inducible nitric oxide synthase (iNOS) are upregulated in the 

AVF and may mediate adaptation; inhibition of eNOS results in increased MCP-1 and IL-8, 

leading to NIH [54, 61].  Endothelin-1 (ET-1) is an inflammatory mediator of 

vasoconstriction and endothelial proliferation. ET-1 expression is upregulated in the venous 

wall and within areas of NIH in AVF as well as in the plasma of patients with chronic renal 
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failure and hemodialysis; ET-1 may mediate wall thickening in response to localized 

hemodynamic forces [62-64]. 

 

1.4 Matrix remodeling 

Venous adaptation of AVF also depends on coordinated synthesis, secretion, and 

degradation of ECM [42]. The matrix metalloproteinase (MMP) family regulates ECM 

remodeling and allows cell migration through degradation of collagen and elastin.  MMP 

activity is stimulated by a variety of factors present during vein graft adaptation including 

flow, stretch, mechanical injury, inflammation, and oxidative stress [65-69]. In AVF, MMP-2 

and MMP-9 expression are upregulated, and a high serum ratio of MMP-2 to TIMP predicts 

AVF maturation [61, 65, 66, 68]. 

During AVF venous limb maturation, the process of ECM expression, synthesis, 

secretion, and deposition occurs in distinct temporal phases (Figure 2) [70]. Initial ECM 

degradation occurs early after AVF creation, coincident with early increased expression of 

MMP and tissue inhibitor of metalloproteinase 1 (TIMP-1). By day 7 there is increased 

expression of many collagen subunits as well as changing patterns of MMP expression. By 

day 21, a later phase is characterized by reduced MMP expression and increased expression 

of larger structural and non-collagenous matrix proteins. 

Matrix degradation is regulated by MMP whereas matrix deposition is regulated by 

transforming growth factor-β (TGF-β); TGF-β is produced by a variety of cell types present 

in the venous wall, including endothelial, smooth muscle, and inflammatory cells, potentially 

contributing significantly to intimal and medial thickening [63, 71, 72]. TGF-β is upregulated 
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at both early and later time points after AVF formation, depending on the model, and this 

expression correlates with ECM accumulation [61, 71, 73, 74]. 

 

1.5 Adventitia and perivascular cells 

With growing recognition of the importance of the adventitia and perivascular cells to 

vascular remodeling, the role of adventitial fibroblasts has gained attention. Recent data 

suggests that NIH consists of smooth muscle alpha-actin-positive, vimentin-positive and 

desmin-negative myofibroblasts that have probably migrated from the adventitial layer [52, 

75]. AVF failure is associated with an increased adventitial fibrosis, myofibroblast activation 

and capillary rarefaction [76].  

Molecular signals originating from the adventitia and perivascular cells play essential 

roles in regulation of vascular development, physiology, vascular wall remodeling, immune 

surveillance, and vascular disease. The adventitia contains many different interacting cell 

types including fibroblasts, microvascular endothelium, nerves, resident macrophages, T cells, 

B cells, mast cells, and dendritic cells; the adventitia is also the home to resident vascular 

progenitor cells [77]. Perivascular adipose tissue (PVAT) plays multiple roles in vascular 

physiology and remodeling including production of vasorelaxing and anticontractile factors 

[78, 79]. One important component of this adipose tissue–derived anticontractile activity is 

adiponectin. Adiponectin is an adipocyte-derived 244 amino acid long peptide hormone that 

regulates metabolic processes such as fatty acid oxidation, and also mediates vasorelaxation. 

Adiponectin receptors on VSMC activate calcium-sensitive potassium channels (BKca) 

leading to stimulation of eNOS activity and production of NO [80]. A similar pathway exists 
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in endothelial cells. Together, the production of NO from endothelial cells and SMC mediates 

the anticontractile effects of PVAT-derived adiponectin [79].  

 

Mechanisms of AVF failure 

  

1. Early thrombosis 

Blood, flow and the vessel wall, components of Virchow’s triad, are traditionally 

considered to be the three critical components of thrombosis [81].  Patients with ESRD 

show both a bleeding risk and an increased risk of thrombosis. The bleeding episodes involve 

platelet dysfunction, impaired platelet–vessel wall interactions and anemia [82-84], in 

addition to the use of anticoagulants during hemodialysis.  Several clinical trials have also 

shown increased risk of both spontaneous venous and arterial thrombosis along the entire 

spectrum of CKD, beginning from CKD stage 2 to stage 5 patients [85-87].  

ESRD is characterized by a number of metabolic abnormalities that alter the balance of 

pro- and anti-thrombotic factors that affect both thrombosis and hemostasis [88]. This is 

likely to be an important contributor to the increased risk of thrombosis in patients with 

ESRD. Several pro-thrombotic hemostatic mediators are elevated in CKD patients, including 

fibrinogen, which directly contributes to a hypercoagulable state [89], soluble 

thrombomodulin [90], soluble tissue factor (TF), thrombin-anti-thrombin (TAT) [91], von 

Willebrand factor (vWF) [91], factor VIII and C-reactive protein (CRP) [91, 92]. The 

generalized inflammatory state, endothelial dysfunction and possibly poor clearance of some 

of the thrombotic mediators may account for this metabolic derangement [89]. CKD and 
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ESRD patients have a disrupted endothelial glycocalyx, which also contributes to the 

increased risk of thrombosis [93, 94]. The endothelial cells of uremic patients express 

elevated levels of tissue factor, a crucial procoagulant activating the extrinsic coagulation 

cascade [95, 96]. Uremic endothelial cells also release small extracellular vesicles, called 

microparticles, loaded with TF to augment thrombosis.[96-98]. 

In addition, hypercoagulable states also predispose to an increased risk of early 

thrombosis. Factor V Leiden polymorphism has been inconsistently implicated [99, 100]. 

High levels of phospholipid antibodies, probably due to the uremic state and high levels of 

low density lipoprotein have similarly shown an association [101, 102]. 

In the setting of the pro-thrombotic state of ESRD, lack of surgical experience and 

insufficient preoperative vessel mapping can result in early thrombosis. A study from the 

Hemodialysis Fistula Maturation Study group showed that factors that contribute to early 

thrombosis include: female sex, use of forearm AVF, smaller arterial size, draining vein 

diameter of 2 to 3 mm, and protamine use [26]. Patient selection, sufficient preoperative 

mapping and an appropriately experienced surgical team are important to prevent early 

thrombosis. 

 

2. AVF failure to mature 

Effects of Hemodynamic Flow and Shear Stress 

In response to the hemodynamic changes after AVF creation, an AVF will undergo 

adaptive remodeling with outward remodeling and increased wall thickness. But in the setting 

of pre-existent vasculopathy and systemic abnormalities, an AVF will fail to mature either 
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because of aggressive NIH or impaired outward remodeling, or both. Although most research 

on the pathophysiology of AVF maturation failure focuses on NIH, the role of vascular 

outward remodeling should be also highlighted [103]. 

The increased hemodynamics of arterial flow that increases vessel wall shear stress 

(WSS) is likely to be a critical event after AVF creation that promotes AVF adaptation 

[104-106].  In a patient-specific side-to-end fistula, image-based computational fluid 

dynamics studies showed laminar flow within the arterial limbs and a complex 

multidirectional and reciprocating flow field on the inner side of the swing segment in the 

proximal venous limb [106]. NIH is predisposed to occur in the inner wall of the venous 

segment near the anastomosis, and has a strong inverse correlation with magnitudes of shear 

stress, but is also related to flow patterns [107].  

In contrast, disturbed flow, with low and reciprocating WSS, induces selective 

expression of atherogenic and thrombogenic genes (pro-oxidant, proinflammatory, 

procoagulant, and proapoptotic) in endothelial cells [108]. Dai et al. compared the effects of 

two different atheroprone and atheroprotective shear stress patterns in vitro and demonstrated 

an important effect of low and oscillating WSS on the EC cytoskeleton, interleukin 

production, and nuclear translocation of transcription factor NF-κB to enhance expression of 

adhesion molecules [109]. Disturbed flow promotes an inflammatory and thrombotic 

phenotype in arterial ECs, increasing binding of monocyte chemotactic protein-1 (MCP-1) to 

the cysteine-cysteine receptor and stimulating SMC migration and proliferation, all of which 

may enhance NIH [110, 111]. 
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Using pulsatile computational fluid dynamics simulation with idealized models of AVF, 

Ene-Iordache et al found that despite the high flow rate after AVF creation, WSS in the areas 

of the juxta-anastomotic vein was low and oscillating, both in end-to-side and end-to-end 

anastomosis configurations [39]. Due to the pulsatility of flow during the cardiac cycle, 

recirculation and reattachment flow with low velocity develops near the wall, inducing 

disturbed flow with low and reciprocating WSS on the inner surface of the juxta-anastomotic 

segment and on the distal artery. In a parametric idealized model of end-to-side AVF, 

Ene-Iordache et al further studied whether the anastomosis angle influences the pattern of 

disturbed flow. Quantification of these areas showed that the smaller the angle, the smaller 

the area of low and oscillating WSS, as quantified by the relative residence time. These 

results suggest that an acute anastomosis angle (30º) should be preferred to minimize the risk 

of NIH in the juxta-anastomotic vein [112]. They also demonstrated that in hemodialysis 

patients, the peak shear stress rather than the average shear stress, is the key factor in driving 

vessel dilatation to increase blood volume flow [113]. 

Bharat et al. performed a clinical study in patients undergoing radiocephalic AVF 

comparing three different anastomotic techniques. A novel technique of vascular anastomosis, 

the piggyback straight-line onlay technique, was characterized by a very small anastomosis 

angle and resulted in very few juxta-anastomotic stenoses compared to the traditional 

end-to-side and side-to-side techniques [114]. By using the piggyback straight-line onlay 

technique, disturbed flow is reduced due to the acute angle and the venous wall injury 

produced by the traditional torsion of the juxta-anastomotic vein is minimized [114]. 

Recently, Sadaghianloo et al reported that radial-cephalic fistulae with angles <30 º have 
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reduced primary and secondary patency and increased numbers of interventions, suggesting 

that, if possible, surgeons should avoid an anastomotic angle of <30 º when creating 

radial-cephalic fistulae [115]. Chemla et al reported that AVF created with the VasQ™, an 

external support device, showed a high unassisted maturation and patency rate, possibly by 

minimizing flow disturbance around the area of anastomosis [116]. All of these data suggest 

that research based on anastomotic geometry may optimize the flow state and potentially be 

used for preoperative surgical planning. 

Responses to injury 

Endothelial and vascular injury results in the activation, proliferation and migration of 

fibroblasts, smooth muscle cells, and myofibroblasts from the media and/or adventitia to the 

intima; complex interactions of adhesion molecules, inflammatory mediators and chemokines 

results in venous NIH [117]. During this process, inflammation, oxidative stress, cellular 

phenotype change and migration of vascular cells and ECM remodeling play important roles.  

 

Inflammation  

In the inflammatory state of the uremic environment, the injury of AVF creation and 

local hypoxia is characterized by the presence of CD68-positive macrophages and 

CD3-positive lymphocytes. This infiltration is more significant in the setting of CKD [118]. 

Some inflammatory cytokines are upregulated such as IL-6, IL-8, MCP-1, and PAI-1 [61, 63, 

119], and these mediators are associated with fistula failure [120]. IL-6 and TNF-α are more 

highly expressed in thrombosed AVF, and both CRP and fibrinogen are associated with AVF 

failure [121, 122].  
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CD68- and CD3- positive cells have been found in increased numbers in stenotic vessels. 

Macrophage migration inhibitory factor (MMIF) is hypothesized to play an important role in 

this local inflammatory response, potentiating neointimal thickening by driving inflammatory 

cells toward the neointima and leading to the proliferation of medial and intimal cells [123, 

124]. MMIF has been identified in clinical and experimental models of vascular access. 

MMIF acts through the CD74 receptor, chemokine receptor 2, and chemokine receptor 4 

[123]. These in turn act through extracellular signal-regulated and p38 mitogen-activated 

protein kinase pathways that up-regulate vascular endothelial growth factor (VEGF)-A, 

interleukin (IL)-8, and monocyte chemotactic protein-1 (MCP-1) [124].  

MCP-1 is a potent chemokine that plays an important role in atherosclerosis and other 

vascular diseases through promoting chemotaxis of monocytes and macrophages, activation 

and migration of endothelial cells, proliferation and migration of smooth muscle cells, and 

induction of procoagulant mediators [125-128].  Expression of MCP-1 increased 1 week 

after AVF creation in mice, and was localized within the endothelium, smooth muscle cells, 

and leukocytes in a rodent AVF model. The MCP-1 knockout mouse model showed reduced 

NIH [129]. Moreover, in the murine model of CKD with AVF, there is an increase in gene 

expression of arginase-1, a marker for proinflammatory macrophages, followed by an 

increase in inducible nitric oxide, a marker for reparative macrophages [130].  Thus, MCP-1 

appears to be upregulated very early after AVF creation and serves as a mediator for AVF 

dysfunction and failure. 
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Oxidative stress 

Patients with ESRD have systemic inflammation and oxidative stress; the hemodynamic 

changes and local injury of the AVF procedure may further increase oxidative stress in the 

AVF wall.  Oxidative stress and injury stimulates synthesis and secretion of ROS that in 

turn stimulate numerous signaling pathways, regulating diverse processes such as smooth 

muscle cell migration and proliferation as well as activating latent MMP, potentially 

mediating many aspects of venous remodeling [64, 131]. For example, superoxide can 

deplete NO, resulting in disruption of numerous pathways with resultant endothelial cell and 

general vascular dysfunction. 

Recent investigations have shown that heme oxygenase (HO) production is related to 

AVF function [132-136].  HO is a cytoprotective and rate-limiting enzyme responsible for 

heme degradation, generating free iron, biliverdin, and carbon monoxide; biliverdin is 

subsequently converted to bilirubin by biliverdin reductase, and free iron is rapidly 

sequestered by ferritin [134]. Bilirubin is a free radical scavenger that blocks lipid 

peroxidation [137]. Carbon monoxide is a physiologically important vasodilator, 

acting via cyclic guanosine monophosphate (cGMP) [138]. HO exerts antioxidant, 

anti-inflammatory, antiapoptotic, and angiogenic functions through its reactive products [134, 

137, 138]. HO-1 is the inducible isoform, whereas HO-2 is expressed constitutively.  

Patients with HO-1 gene polymorphisms characterized by long GT repeats, resulting in less 

HO-1 production, were more likely to have worse AVF patency [132, 133]. In murine AVF, 

HO-1 gene expression is markedly induced in the vascular smooth muscle cells; HO-1 
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knockout mice how reduced patency with thinner vein walls and increased luminal area, as 

well as increased expression of proinflammatory and pro-oxidant mediators such as MCP-1, 

MMP-2 and MMP-9 [139].  A functional AVF also requires HO-2 [135]. Shear stress can 

regulate HO-1 activity, with high flow inducing HO-1 to generate NO and 

mitochondria-derived hydrogen peroxide; low flow induces lower levels of HO-1 that lead to 

macrophage infiltration and superoxide production within the vessel wall, suggesting an 

important role for HO in promoting outward remodeling and preventing NIH [140]. 

 

Cellular phenotype change and migration of vascular cells 

The development of NIH is a complex process that requires activation, phenotype change 

and migration of vascular cells; NIH that forms at the venous anastomosis of a dialysis access 

graft or fistula is comprised primarily of smooth muscle alpha-actin-positive, synthetic 

VSMC phenotype or vimentin-positive and desmin-negative myofibroblasts that probably 

migrated from the media or adventitia layers in response to vascular injury [52, 75]. Other 

studies have suggested that bone marrow–derived cells are capable of differentiation into 

smooth muscle cells and may be another potential origin of neointimal cells [54, 141].  

Interestingly, VSMC from the proximal artery may contribute substantially to venous intimal 

hyperplasia; in a murine AVF model increased Notch signaling can drive migration of these 

cells to the venous outflow tract [142]. 

 In addition to increased cell numbers, there is synthesis of new ECM within the intima 

to form the lesion of NIH [21, 103, 117]. VSMC also become resistant to NO, decreasing 
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SMC relaxation and preventing AVF maturation by reducing the ability to successfully 

outward remodel [143]. 

These data show that the entire vessel wall is involved in the processes that lead to access 

failure, and suggest additional targets for potential therapy; recent studies have demonstrated 

the potential to target and treat the adventitial space to prevent the adventitial response to 

injury and prevent AVF failure [56, 144, 145]. 

 

Growth Factors and Cell Adhesion Molecules 

Numerous growth factors and cytokines play roles during AVF maturation, particularly 

by regulating pathways that control ECM synthesis, secretion, and degradation, as well as 

through control of cell proliferation and migration [42].  

Local inflammation with monocyte infiltration into the AVF increases expression of 

TGF-β1 and insulin-like growth factor-1 (IGF-1) [74]. TGF-β1, despite its classically having 

anti-inflammatory properties, leads to ECM deposition, potentially causing thrombosis [74]. 

Differences in TGF-β1 polymorphisms, result in differing levels of TGF-β1 production, have 

been correlated with AVF patency [71]. TGF-β is expressed within stenotic AVF, and 

correlates with areas of ECM deposition; TGF-β1 also activates the fibroblast transition to the 

myofibroblast phenotype [146]; myofibroblasts are the major cellular component found in 

AVF stenoses, producing ECM proteins and MMP [52].  Sustained TGF-β expression 

abolishes myofibroblast disappearance and leads to NIH [63]. In toto, increased expression of 

TGF-β is associated with decreased AVF patency, likely due to increased deposition of ECM 

[73, 74].  
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Other growth factors participate in AVF maturation. IGF-1 also induces ECM synthesis, 

smooth muscle proliferation and migration, and inhibits apoptosis [74]. Platelet-derived 

growth factor (PDGF) and basic fibroblast growth factor (bFGF) also play significant roles in 

stimulating cell proliferation and migration. Both PDGF-α/β and IGF-1 expression are 

upregulated in AVF [61, 64].  Vascular endothelial growth factor (VEGF) plays several 

roles in vascular remodeling, including stimulation of endothelial proliferation and 

differentiation, modulation of smooth muscle cell proliferation and migration, angiogenesis, 

ECM deposition, and modulation of the inflammatory response. VEGF may also play an 

inhibitory role in AVF adaptation, since overexpression of VEGF-A contributes to negative 

remodeling and NIH, whereas inhibition of VEGF-A is associated with increased lumen area 

and decreased inward remodeling [56].  

Selectins facilitate leukocyte adhesion. P-selectin is present on endothelial cells and 

platelets, and E-selectin is present on endothelial cells; ICAM and VCAM facilitate 

additional binding and migration [147]. P-selectin and E-selectin expression are both 

upregulated early after AVF creation, followed by decreased P-selectin expression after 1 

month [61]. VCAM-1, but not ICAM-1, is highly expressed in thrombosed and stenotic AVF 

[121]. β-catenin and c-Myc expression are increased 1 week after AVF creation, correlating 

with decreased N-cadherin and associated with smooth muscle cell proliferation [148]. 

 

ECM remodeling  

ECM remodeling involves coordinated synthesis, secretion, and degradation of ECM, 

which plays an important role both in normal AVF maturation as well as in the development 
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of neointima and AVF failure [20, 21, 149]. ECM degradation occurs early after AVF 

creation, coincident with early increased expression of MMP and TIMP-1 [70]. Outward 

remodeling in response to the increased arterial flow requires early expression of MMP-2 and 

MMP-9 to degrade cell basement membranes and the internal elastic lamina, allowing vessel 

enlargement [150]. A high serum ratio of MMP-2 to TIMP predicts AVF maturation [65, 66, 

68]. Other elastases such as cathepsin S and cathepsin K are also upregulated in the AVF and 

may be associated with degradation of the internal elastic lamina [66].  Diminished 

elastin results in enhanced outward remodeling, suggesting that elastin degradation might be 

an option to improve AVF maturation [151]. 

However, the disruption of the elastic lamina and loss of integrity of this structural 

barrier may allow migration of medial VSMC or adventitial fibroblasts into the intima. 

Moreover, elastin degradation products can act as chemo-attractants for VSMC. MMP-2 and 

MMP-9 are also elevated in AVF stenoses and may play a role in thrombosis. Decreased 

expression of MMP-1, MMP-3, and MMP-9 have been linked to increased AVF failure and 

stenosis secondary to accumulation of ECM and impaired wall remodeling [152]. Although 

the role of TIMP is not clear [65-67], an unbalance of MMP and TIMP may contribute to the 

failure of AVF maturation.  ADAMTS-1 is a matrix metalloproteinase that is expressed 

during AVF maturation and plays a role similar to MMP-2 and MMP-9; reducing ADAMTS1 

expression leads to positive vascular remodeling [144]. 
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3. Late failure in the mature AVF 

Although a mature AVF can support HD, in the setting of uremia and other systemic 

abnormalities, compounded with local injury due to the anastomotic configuration as well as 

repeated needle puncture, even the mature AVF is predisposed to eventual failure.  NIH 

worsens with time, typically leading to stenosis of the AVF venous limb. This later failure 

usually requires interventional treatment or surgical revision to maintain the access for 

functional HD. 

 

3.1 Systemic abnormalities 

ESRD patients have systemic abnormalities, such as uremia, systemic inflammation, 

endothelial dysfunction, lipid abnormalities, hyperparathyroidism, hyperphosphatemia and 

hypercalcemia [21, 153-155]. These abnormalities may predispose the vessel wall to inward 

remodeling and stenoses after AVF creation. 

Uremia 

The inherent uremia of ESRD increases inflammation and oxidative stress [154, 155]. 

This oxidative stress is further increased by HD, which causes activation of phagocytes, 

release of oxygen radicals, peroxidation of lipids and ultimately depletion of the patient’s 

antioxidant protectants [154, 156]. Certain cytokines implicated in the formation of NIH, 

such as IL-6, TGF-β and TNF-α, are elevated in uremia [120]. Uremia adversely affects 

endothelial function resulting in a prothrombotic state, increasing the tendency for calcific 

uremic arteriopathy (CUA)
 

[88, 157]. CUA is associated with multiple histologic 

abnormalities that collectively result in medial calcification, stenoses, fibrosis, 
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proinflammatory and prothrombogenic arterioles that are compatible with a calcific 

obliterative vasculopathy. The mechanism is thought to be initiated by the interaction of 

uremic hyperphosphatemia, multiple uremic toxins, and reactive oxygen species (ROS) with 

decreased local vascular calcification inhibitory proteins such as Matrix Gla protein (MGP) 

and the systemic globulin: fetuin-A—(a2-Heremans-Schmid glycoprotein) AHSG [158]. 

 

Systemic inflammation 

Inflammation is a typical prominent feature of ESRD and contributes to the uremic 

phenotype in advanced stages of CKD [155]. Systemic concentrations of both pro- and 

anti-inflammatory cytokines are often several fold higher than in healthy individuals
.
[159, 

160]. Persistent inflammation is also a major cause of vascular aging and vascular 

calcification [159, 161]. 

 

Endothelial cell dysfunction 

Due to the negative impacts of uremia and oxidative stress on the endothelial cells, 

flow-mediated, endothelium-dependent vasodilation is markedly reduced in uremic patients 

compared with normal control patients [162, 163]. The reasons for this endothelial 

dysfunction include increased oxidative stress, the presence of NO inhibitors such as 

asymmetric dimethylargine (AMDA) and a reduced number and function of endothelial 

progenitor cells [164]. AMDA accumulates with progressive CKD, and high levels are 

associated with aggressive restenosis after angioplasty [165].  AMDA and glycation end 
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products (AGE) lead to decreased NO bioavailability, impairing arterial dilation as well as 

impairing NO-related signaling [166]. 

 

Other abnormalities 

Dyslipidemia is a well-established traditional risk factor for atherosclerosis in the general 

population in addition to patients with CKD and may actively participate in the increased 

cardiovascular morbidity [153]. Hyperphosphatemia and hypercalcemia, typical features of 

advanced CKD, are often accompanied by dysregulation of parathyroid hormone (PTH), 

contributing to the inflammatory state [167]. They also induce vascular calcification and 

stiffness [161].  

3.2 Pre-existent vascular pathology 

The role of pre-existent arterial and venous vasculopathy in uremic patients has been 

gathering increased attention. Vessel morphology and function seen with preoperative duplex 

ultrasound mapping correlate with AVF maturation and patency [168]. The systemic 

abnormalities in ESRD patients induce accelerated atherosclerosis, vessel thickening, 

vascular calcification and stiffness [166, 169]. Whereas atherosclerosis is associated with 

intimal calcification, calcification of the media occurs independently of atherosclerotic 

plaque formation and is commonly observed in all-diameter arteries in CKD patients [170]. 

This arterial vasculopathy impairs the vessels ability to expand upon exposure to high-flow.  

The detrimental effects of CKD on the arterial system may affect veins in a similar 

manner [171]. Marked pre-existing segmental venous disease is frequently present in patients 

with ESRD prior to vascular access surgery [172, 173].  Lee et al. reported extensive 



26 
 

calcification in the intima and media of venous segments that were harvested at the time of 

vascular access surgery [173].  Venous calcification is likely to reduce venous compliance, 

as it does in arteries, potentially limiting the ability of the vein to dilate and outward remodel 

for successful AVF maturation. 

Although minimum vein diameter (MVD) has been reported as a unique clinical factor 

associated with both AVF maturation and long-term patency [174], other studies suggest that 

forearm venous distensibility is a better predictor of successful AVF maturation [175], which 

is consistent with the increased outward remodeling of the venous AVF limb compared with 

the feeding artery [37]. Additional studies are needed to determine the impact of pre-existing 

venous calcification on AVF maturation failure and whether this is a potentially modifiable 

factor for clinical treatment [168]. 

 

 

Future Approaches to Treatment 

With only 26-58% of arteriovenous fistulae functional at 1 year various therapies have 

been pursued to treat access failure and improve long-term patency.  Many medical 

treatments using different drugs aimed at decreasing access failure and improving patency 

have been examined in patients using an AVF or AVG for HD.  A recent systematic review 

and meta-analysis reported the effects of aspirin, ticlopidine, dipyridamole, dipyridamole plus 

aspirin, warfarin, fish oil, clopidogrel, and sulfinpyrazone. The study showed that three trials 

compared the platelet aggregation inhibitor ticlopidine versus placebo and favored active 

treatment (OR 0.45, 95% CI 0.25 to 0.82; p = 0.009); three RCT assessed aspirin versus 
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placebo and did not show a statistical benefit (OR 0.40, 95% CI 0.07-2.25; p = 0.30); two 

trials compared clopidogrel with placebo and did not favor treatment (OR 0.40, 95% CI 0.13 

to 1.19; p = 0.10); two RCT assessed fish oil and did not favor treatment (OR 0.24, 95% CI 

0.03-1.95; p = 0.18); and single trials comparing dipyridamole alone, dipyridamole plus 

aspirin, and sulfinpyrazone against placebo favored active treatment but a meta-analysis 

could not be undertaken; a single trial of warfarin versus placebo found warfarin resulted in 

increased bleeding complications and worse patency rates [176].  Despite the overall quality 

of evidence being low with short follow-up, this systematic review showed that there 

currently is no adjuvant treatment showing increased AVF or graft long term patency [176]. 

Table 2 summarizes the most popular current approaches to treatment of the failing AVF, 

as well as some treatments that may become more popular in the future.  Despite surgical 

revision having traditionally been the most effective treatment of local disease, the current 

standard treatment for arteriovenous stenosis is percutaneous transluminal angioplasty (PTA) 

[177] [12].  Although PTA can improve patency and function in some cases of thrombosis 

and stenosis, PTA is not the optimal treatment for many lesions including resistant or 

recurrent stenosis [178].  This section of the review focuses on treatment of AVF access 

failures, broadly dividing them into stimulatory and inhibitory treatments, with further 

division into endovascular approaches, perivascular approaches and internal/external support 

devices.  
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Stimulatory Treatments 

Stimulatory treatments recapitulate AVF maturation by promoting dilation and/or wall 

thickening, encouraging the cells of the intima, media or adventitia to proliferate or 

differentiate into useful phenotypes that will allow the fistula to mature or become usable 

after stenosis or occlusion. The two commonly used stimulatory endovascular approaches are 

currently balloon-assisted maturation (BAM) and angioplasty with stent placement. Cutting 

balloon angioplasty remains popular as well. 

 

Balloon Assisted Maturation 

The BAM technique uses repeated balloon angioplasty to disrupt the venous wall and 

sequentially dilate the vein to a larger diameter useable fistula; with this technique, it is 

possible to use even smaller diameter veins for access [179, 180].  However, the concern 

with this technique lies in its very nature; angioplasty injures the intima and media to produce 

NIH [181].  Although balloon injury has been described most commonly in the context of 

arteries, it is likely that veins show a similar response to angioplasty, especially in the uremic 

environment of renal failure. Diabetes, the most common etiology for renal failure, is also 

implicated in endothelial dysfunction. The clinical question is how to modulate the NIH 

response to allow this technique to achieve long term durability and successful use of the 

access site. 

Although there is a relative paucity of randomized data on this technique, there are 

several positive short term studies. One report of 53 patients showed 85% secondary patency 

at 1 year; complications did include occlusion, conversion to a graft, and ligation due to steal 
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[179].  Another report of 42 fistulae with maturation failure treated with 1.45 ± 0.57 balloon 

angioplasties showed a success rate of 46.2% at 1 year; however, there was no significant 

difference in AVF flow ratio between the successful and failure groups [182]. Miller et al 

matured 118 out of 122 fistulae requiring 1.5 interventions per access year with a secondary 

patency of 75% at 1 year; however 14 patients with upper arm fistulae required stents in the 

cephalic arch to maintain patency [183]. Gallagher et al performed 185 BAM in 45 patients 

(mean 3.7 procedures per patient); all cases except one were successfully dilated but 7 

patients failed to mature due to cephalic arch and subclavian vein stenosis, with maturation 

after angioplasty of the venous outflow [184]. 

Interestingly, BAM is frequently complicated by vessel rupture but rupture does not 

necessarily cause fistula failure. Derderian et al performed 139 BAM in 30 patients with 74 

hematomas post procedure but still noted a statistically significant increase in flow [185].  

Although BAM has appeal and early reports suggest that it might be a useful procedure, as 

yet no blinded randomized clinical trial exists to allow for conclusions on its clinical use. 

 

Cutting Balloon Angioplasty 

Cutting balloon angioplasty is used to dilate stenoses, and like BAM, creates trauma to 

the vessel wall, but attempts to limit the trauma; longitudinal incisions along the stenosis are 

made in a controlled fashion, at lower pressures than the conventional balloon, potentially 

also reducing risk of vessel rupture. 3 or 4 blades are mounted longitudinally on a 

non-compliant balloon that after inflation create incisions and release hoop pressure; the 

lower pressure and decreased force is thought to reduce the risk of a neoproliferative response 
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and restenosis [186], and may limit dissection [187]. Several studies have reported improved 

patency at up to 6 months [188-192]. Prospective randomized trials have had heterogeneous 

data but not conclusively shown long term durability [193-195]. 

 

Stenting 

Angioplasty with stenting of failing fistulae is another tool to treat resistant stenoses; 

multiple studies have reported higher primary and secondary patency rates after stent 

placement, in both fistulae and grafts.  One prospective multicenter randomized trial tested 

self-expanding nitinol stents covered with PTFE and showed a higher 6-month patency rate 

in the stent graft group compared to balloon angioplasty alone (51% vs. 23%, p<0.001); there 

was also greater freedom from subsequent interventions (32% vs. 16%, p=0.03) and less 

restenosis (28% vs. 78%, p<0.001) [196].  A meta-analysis of 10 studies suggested there 

was improved primary patency at 6 months in those treated with nitinol stents compared to 

angioplasty; however, bare metal stents showed no significant increase in patency [197].  

Covered stents can also be used to treat pseudoaneurysms that develop within the access 

[198].  Other issues with stents include how to locate sites for needle cannulation of the 

access in relationship to the stent, as well as the potential for infection of the foreign body. 

 

Elastase Therapy 

Elastin within the vessel wall provides elastic recoil and resting vessel tone. In animal 

AVF models, delivery of recombinant human type 1 pancreatic elastase resulted in vessel 

dilation, inhibition of NIH and improved patency [199]. These findings suggest that use of 
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elastase in humans could improve AVF dilation and maturation; elastase must be delivered 

topically over the fistula adventitia as elastase is inactivated in blood. 

A randomized, double blinded, placebo controlled dose escalation study suggested 

improved primary patency at low doses [200]. A second double-blinded, randomized, placebo 

controlled trial suggested improved unassisted maturation but without increased primary 

patency [201, 202].  Without meeting the primary efficacy end point, it is not clear whether 

additional trials will be performed. 

 

Inhibitory Treatments 

Inhibitory treatments seek to inhibit NIH. Treatments can be applied primarily to prevent 

initial access failure and possibly promote maturation, or treatments can be applied 

secondarily, to directly treat a failed AVF or to prevent secondary restenosis associated with a 

stimulatory treatment such as angioplasty.  Several delivery strategies can be used including 

direct delivery to the endothelium, delivery to the adventitia, or delivery to the entire vessel 

wall; mechanical support devices have also been used. 

 

Drug Eluting Angioplasty 

Drug eluting angioplasty has shown encouraging results in the management of coronary 

artery in-stent restenosis and peripheral arterial stenosis; as such there has been recent interest 

to use this technique to treat failing AVF, with paclitaxel being the most commonly reported 

drug.  Katsanos et al treated 20 patients with failing arteriovenous fistula with paclitaxel 

coated balloon angioplasty; there was an overall statistically significant improvement in 
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primary patency at 6 months (70% vs 25%); however only 35% had autologous fistulae and 

in these cases there was a 45% device success rate with patients requiring high-pressure post 

procedure dilatation [203].  Lai et al treated radiocephalic fistulae with either plain balloon 

angioplasty or plain balloon angioplasty followed by paclitaxel-coated balloon; there was 

increased 6-month patency in the paclitaxel group, but not at 12 months [204].  Kitrou et al 

showed a numerical improvement with paclitaxel coated balloon angioplasty compared to 

plain angioplasty but there was no statistical significance in outcome; however, there were 

only 7 patients in each group [205]. A meta-analysis of 6 studies, 2 RCT and 4 cohort studies, 

reported encouraging 6-month patency with drug eluting balloon angioplasty (70-97% vs. 

0-26%), although in these studies the numbers of patients were small and heterogeneous 

[206]. Infection also remains a concern for paxlitaxel [207]. 

Dual antiplatelet therapy (DAPT) is beneficial and currently recommended for patients 

with coronary stenosis after placement of a DES [208], and also beneficial for patients with 

peripheral arterial diseases to reduce major adverse cardiovascular events and death [209], 

although a recent meta-analysis reported lack of evidence for DAPT after endovascular 

arterial procedures [210]. Although some studies used DAPT or clopidogrel after 

implantation a DES to treat AVF stenosis [203, 211], there is no study of DAPT on the 

outcome of AVF patency after DES treatment. 

 

Cryoplasty 

Cryoplasty uses liquid nitrous oxide to fill the balloon during inflation, cooling the vessel 

wall to -10 degrees Celsius, with the goal of inducing smooth muscle cell apoptosis.  
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Subzero temperatures induce ice crystal nucleation in the vessel wall extracellular fluid to 

produce a hypertonic environment, since ice does not incorporate solutes, resulting in osmotic 

dehydration; upon removal of the cold source, the extracellular fluid thaws and osmolality 

returns to normal resulting in rehydration of the smooth muscle cells and induction of 

apoptosis. Cell survival is dependent on the rate of freezing and thawing cycles, the lowest 

temperature reached and the length of time at subzero temperature. 

In porcine PTFE grafts there was no significant difference in intimal hyperplasia but a 

significant difference in media to intima thickness ratio at 4 weeks [212]. Rifkin et al treated 

5 patients with perianastamotic PTFE graft-vein stenoses after 3 failed balloon angioplasty; 3 

patients had no recurrence of stenosis at 12 weeks [213]. Gray et al treated 20 patients (AVG 

18 patients; AVF 2 patients), with 80% needing immediate post cryotherapy angioplasty to 

achieve anatomical success; 3-month patency rates were equivocal at 3 months but only 16 

and 25% at 6 months. Cryotherapy was also more painful than angioplasty [214]. 

Brachytherapy 

Endovascular brachytherapy delivers beta radiation to the vessel wall, typically using 

either high doses over a short period of time or low doses over a long period using 

beta-particle emitting stents. Brachytherapy decreases vascular smooth muscle cell 

proliferation and migration [215]. 

In a canine PTFE graft model, brachytherapy was associated with reduced NIH at up to 9 

months [216]. An early study treating 5 patients with restenosis showed only 2 patients with a 

clinically patent fistula at 6 months [217].  Waksman et al treated 18 grafts with restenosis 

with 11 sites remaining patent at 44 weeks [218]. The BRAVO 2 trial aimed to randomize 
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patients into brachytherapy or sham treatment after the promising results of the BRAVO pilot, 

but this trial was halted preliminarily [219, 220]. 

 

Adventitial Wraps 

The role of adventitial wraps to deliver sirolimus or paclitaxel has been extensively 

investigated; rat, pig, dog and sheep models using paclitaxel wraps showed decreased NIH 

[207, 221-224]. A significant concern with perivascular delivery however, is leak of the 

impregnated drug to surrounding tissues; a clinical trial was stopped early due to a 25% 

increase in infections [207]. This trial, however, used mesh for delivery to PTFE grafts. 

Sanders et al used a non-porous polymer barrier laminated with a drug loaded hydrogel 

to allow unidirectional release towards the target area. In a porcine model there was no 

detection of the drug within any surrounding tissues; addition of a polylactide-co-glycolide 

wrap showed acceptable degradation over time and was undetectable by day 35 [224]. 

An interesting study described a sirolimus-eluting collagen membrane (Coll-R). In a 

small clinical trial of 12 patients, there was minimal toxicity and primary patency rates were 

76% and 38% at 12 and 24 months respectively [225]. A phase 3 trial is currently in progress. 

 

Mechanical Support Devices 

Mechanical support devices can be used to optimize the geometry of the fistula 

anastomosis to prevent or delay NIH. The Optiflow
TM 

device has been the most studied; in a 

human pilot study safety and technical success were achieved in 10 patients [226]. A follow 

up study of 41 patients showed unassisted patency of 78% at 90 days with no device related 
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adverse events [227]. Similarly, the VasQ
TM

 device provides an external support to control the 

geometry and flow, with a small study reporting maturation rates of 74% at 6 months [116]. 

 

Gene Therapy 

Gene therapy continues to be of interest, with research directed towards understanding 

what patient risk factors predispose to access failure and thus might be suitable for 

appropriate targeted gene therapy. Several polymorphisms have been associated with vascular 

access thrombosis including methylenetetrahydrofolate (MTHFR), HO-1, factor V, TGFβ-1 

and klotho (KL) [71, 133, 177, 228-230].  Polymorphisms of NOS have also been 

implicated in arterial restenosis [231].  Single nucleotide polymorphisms in the gene for 

Factor V were significantly associated with increased risk of access failure despite treatment 

with antiplatelet agents [232]. 

Gene therapy can alter luminal area and stenosis in large animal PTFE graft models. 

Rotmans et al used C-Natriuretic Peptide to increase lumen area and the intima/media ratio 

[233]. Luo et al. showed reduced NIH with beta-adrenergic receptor kinase C-terminus [234]. 

Gene therapy targeting VEGF-A may be promising. VEGF-A is necessary at low 

concentrations to promote endothelial cell health, nitric oxide and prostacyclin production, 

vasodilatation, antithrombosis and suppression of smooth muscle cell proliferation; at high 

concentrations VEGF-A promotes angiogenesis and vasculogenesis. Systemic VEGF receptor 

gene transfer in rats decreased carotid artery restenosis, suggesting the utility of targeting this 

pathway [235]. Increased VEGF expression is associated with early AVF thrombosis in 

human patients [236], and patients with the VEGF-936C/C gene polymorphism have a 5.54 
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increased risk of fistula thrombosis [237]. Lentivirus inhibiting adventitial VEGF-A 

expression decreased cellular proliferation and constrictive remodeling and increased patency 

in a mouse model [56]. However, a human trial administering VEGF-D was stopped early 

due to poor recruitment[238]. 

 

Future Directions 

Successful hemodialysis requires a strong collagen tube that can be punctured 

repetitively to support the high flows necessary for efficient dialysis exchange. Veins are 

typically preferred, as arterial use can lead to ischemia and prosthetics have reduced patency 

and increased infection.  However, the thin walled veins must successfully adapt to the 

arterial environment with a combination of diameter expansion and wall thickening.  Failure 

to mature successfully is an important mechanism of access failure, just as NIH is an 

important mechanism of late failure. Accordingly, therapy to promote maturation, e.g. 

diameter expansion and wall thickening, is an important component of providing successful 

access; however, promoting wall thickening for strength, without exuberant thickening and 

NIH, is a current challenge. 

The role of hemodynamics such as shear stress in the development of NIH is recognized, 

especially in the pathogenesis of juxta-anastomotic stenosis that frequently develops along 

the inner wall of the swing segment. Both pharmacological as well as mechanical approaches 

may be applicable for therapy. The new RADAR technique to create AVF, e.g. minimizing 

venous handling and potential for wall ischemia, alters hemodynamics and may be a simple 

and low-cost method to improve access patency [239]. 
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An interesting alternative that may obviate fistulae is the use of tissue engineered blood 

vessels.  Although still in development and trials, tissue engineered grafts can resist high 

pressures, providing an endothelial-lined tube that supports dialysis [240, 241]. Continued 

advances in tissue engineering and 3D printing may show that tissue engineered vessels 

might replace the current gold standard fistula.  
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Figure Legends 

 

Figure 1. Schematic representation of the venous wall structural changes that occur after 

AVF creation. AVF successful maturation integrates wall thickening and outward remodeling. 

A failed AVF can be due to early failure to mature, with failure to develop outward 

remodeling or wall thickening, or may be due to later development of neointimal hyperplasia 

and impaired outward remodeling in a previously functional conduit. 

 

Figure 2. Diagram depicting the 3 phases of ECM changes during the adaptive process of 

AVF maturation. There is an early phase of ECM breakdown from MMP degradation. A 

transition phase follows with collagen and elastin reorganization of the venous scaffold. A 

later rebuilding phase strengthens the matrix of the AVF with larger non-collagenous and 

glycoproteins. TIMP-1, osteopontin and thrombospondin-2 (TSP-2) are highly expressed 

throughout AVF maturation suggesting regulatory roles for these proteins. 
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Table 1.  Types of AVF failure. 

 

AVF failure type Time Definition Pathophysiology 

Early thrombosis < 3 weeks thrombosis of the access Hypercoaguability 

Failure to mature < 6 months Patent access but not suitable 

for cannulation or high 

efficiency hemodialysis 

Inability to remodel 

outwardly 

Late failure > 3 months a mature AVF used for at 

least 3 months that 

subsequently develops a 

problem requiring 

intervention 

Neointimal 

hyperplasia 
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Table 2. Current and future approaches to treatment of the failing AVF. 

 

Gold Standard: percutaneous transluminal angioplasty (PTA) or surgical revision 

Stimulatory Approaches: promote dilation and/or wall thickening 

 Application  Limitation 

Balloon Assisted 

Maturation 

Promotes maturation in an AVF with 

limited outward remodeling 

Injures intima and media, 

increasing likelihood of NIH and 

recurrent stenosis; vessel rupture 

Cutting Balloon 

Angioplasty 

Dilate stenoses with reduced wall 

trauma 

Some wall trauma; long term 

durability 

Angioplasty with Stent Dilate stenoses Optimal stent type and design not 

established; long term durability 

Elastase Therapy Facilitate vessel dilation Dose and efficacy not established; 

requires topical delivery 

Inhibitory Approaches: prevent or inhibit NIH 

Drug Eluting 

Angioplasty 

Inhibit VSMC proliferation Optimal drug and dose not 

established; single treatment 

Cryoplasty Induce VSMC apoptosis Variability in cell survival after 

freeze-thaw; more painful than 

angioplasty 

Brachytherapy Inhibit VSMC proliferation and 

migration 

Dose and efficacy not established 

Adventitial Wraps Inhibit VSMC proliferation Wrap design and toxicity; optimal 

drug and dose not established 

Mechanical Support 

Devices 

Optimize AVF geometry Limited data 

Gene Therapy Identifiable patient risk factors Optimal targets not established; 

ethical considerations for human 

trials 

 

PTA, percutaneous transluminal angioplasty; AVF, arteriovenous fistula; BAM, balloon assisted maturation; NIH, 

neointimal hyperplasia; VSMC, vascular smooth muscle cell 
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