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Abstract Clinical electroencephalographic (EEG) record-Keywords Epilepsy- EEG - Mathematical modelling

ings of the transition into generalised epileptic seizgtesny ~ Spatio-temporal patternsSpike-wave Diffusion-tensor

a sudden onset of spike-wave dynamics from a low-amplitudmaging

irregular background. Additionally, non-trivial and valle

spatio-temporal dynamics are widely reported on scale of

the whole cortex. It is unknown whether these charactery |ntroduction

istics can be accounted for in a large scale mathematical

model with fixed heterogeneous long-range connectivitiesa defining feature of patients with epilepsy is the occur-

Here we develop a modelling framework with which to in- rence of seizures, which are accompanied on the electroen-

vestigate such EEG features. We show that a neural fielgephalogram (EEG) by specific changes in spatio-temporal

model composed of a few coupled compartments can sery@ythms. In this context, the background state of the EEG

as a low-dimensional prototype for the transition between i channels is temporally irregular and typically desynchro-

regular background dynamics and spike-wave activity. Thiiised. During periods of spontaneously occurring absence

prototype then serves as a node in a large scale network witleizures, the temporal waveform takes on the characteristi

long-range connectivities derived from human diffusiengor form of a spike-wave discharge (SWID) [53] and is accompa-

imaging data. We examine multivariate properties in 42-clin nied by increased global correlation [13| 3,23, 1]. Althbug

ical EEG seizure recordings from 10 patients diagnosed witfarge scale synaptic networks are implicated in these gen-

typical absence epilepsy and 50 simulated seizures from theralised seizure events [42/ 36, 7] it is unclear whether dy-

large scale model using 10 DTI connectivity sets from hunamical models incorporating such realistic, heterogeseo

mans. The model can reproduce the clinical feature of stereg@onnectivity will support transitions to epileptic stateih

typy where seizures are more similar within a patient thammore globally synchronised dynamics.

between patients. We propose the approach as a feasible Modelling seizure dynamics with SWD using dynamical

technique for the investigation of large scale epilepte-fe systems approaches at the macroscopic scale has received

tures in space and time. much recent attention [48, 10,135, 24| 49, 52]. These mod-
els have predominantly focussed on the temporal aspects
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of SWD seizures, although it has recently been shown that
small network extensions to such models can have profound
implications for the dynamics [24, 25]. Although each of the
frameworks employed supports a natural extension to large,
or whole brain models [47, 4] 8], these extensions have not
been used in the context of generalised epilepsy. Clearly an
important facet of the exploration of the mechanisms and
properties of absence epilepsy is the investigation of macr
scopic models of extended, large-scale brain networks.
Recent advances have brought to the forefront of clini-
cal neuroscience the relevance of large-scale brain nkesyor
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as revealed for example by diffusion tensor imaging (DTI)we propose a hierarchical large scale model based on the

which has, to some extent, been validated against expeimplest model which incorporates the above features and is

mental tract tracing studies [40] and against standardahbraiknown to produce epileptic SWD.

atlases [41]. Emerging alongside this data are modellag&- As an entry point to describe local cortical dynamics we

works with which to investigate the effect of network con- use an extended three layer version of the two layer model

nectivity on large scale dynamics [33,/ 19]. In incorporat-described by Amar([2]. We begin with a space independent

ing long-range connectivity into large-scale brain modelssystem containing one population of excitatory neurons and

one can distinguish two approaches. In the first of thesawo populations of inhibitory neurons that has previously

long range, or so-called heterogeneous connections are dpeen used to model SWD [49] and is described by the fol-

perposed onto a continuum formulation of propagating aclowing set of ordinary differential equations (eq. 1):

tivity in macroscopic neural fields [32]. A second approach

is to discretise the connectivity in a hierarchical apptmac

which then naturally supports the inclusion of adjacency maE(t) = ha — E+wi f[E] —wa f[l3] —ws f[l2]

trices [11/ 47, 4]. I1(t) = (hg— 11 +wy F[E])/T1 (1)
Here_ we introduce a Iarge-;cale hierarghical quel 9f2(t) = (ha— L +ws f[E])/ T

SWD seizures based on a previously described spatially in-

dependent model capable of producing SWD dynamics[49]. In this model, an excitatory populatioiE) is self ex-

In order to capture important properties of the transitiorciting and also drives two inhibitory populationis £). The

from background to SWD, each node at the macroscopithibitory populations operate at different time scales

scale is modelled by a sub-network of a small number ofind inhibit the excitatory population via negative feedbac

compartments. A macroscopic model is then formulated frohnput from one population to another is mediated by a fir-

anatomically derived adjacency matrices derived from DTling rate transfer functionf( multiplied by a connectivity

We show that the model based upon this complex and heparameterys . s). In place of the Heaviside step function

erogeneous connection scheme can support seizure statesed originally by Amari we incorporate a piecewise linear

The model output is then compared to clinical data. ThigPWL) transfer function as an approximation to the physi-

differs from previous approaches to epilepsy modelling noplogically plausiblel[20] sigmoid function. The PWL func-

only in terms of the spatial scale studied but also in thation is defined as follows:

former models of SWD assume either spatially independent

systems or spatially extended, yet homogeneously corthecte

systems. Here the heterogeneous connectivity in in the mode 0, v<-I
underpins its output. f(vy=4 (v+1)/2, —I<v<l 2)
1, v>I
2 Models/ Methods wherev = E, |1 or |y, andl > 0 determines the steepness of
the transition and is a parameter.
2.1 Space independent model Finally, additive constants » 3) are included as in the

original Amari model. Note that fows = 0 the system re-
Population level descriptions of epileptic rhythms haverbe q,ces to a two layer model since the subsysteft; be-
attempted at various scales. Neurophysiologically mgi¥a -omes independent ¢f. Equally, forws = 0, the equation
population models such as those based on [31, 10] were usgg} I, has a stable fixed point at solutibig/ T, that is inde-
to describe the temporal properties of epileptic seizure dypendent of theE /1, subsystem and, consequently, whgn

namics. A key problem when dealing with more detailedis at fixed point, it does not affect tHe/I; subsystem dy-
models is that the analysis and understanding of their progsamically.

erties becomes increasingly difficult. At a higher levellof a

straction, neural field models [2,/56] can be employed which

still retain many key properties such as firing rate transfep.2 Multiple coupled compartments: local connectivity

functions, different timescales and interactions between

citatory and inhibitory populations. Specifically, thesaf Starting from eq. 1 we therefore construct a discrete dpatia

tures have been shown to be important in the context afmodel of local dynamics using coupling between a small

epilepsy modelling [54, 10, 24, 49]. number of compartments with distance-dependent connec-
Spatial extensions to both sets of models exploring phydivity strengths. At the local level, these connectivit@ms

iologically relevant connectivity for cortical rhythm gera-  erate on three discrete levels, namely, self couplimg)(

tion have been explored [47,18,/19]. In order to investigataearest neighbour couplingug,), and coupling to distant

the relevance of these networks for generalised epilepsiempartmentsus):
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of nodes or edges in the adjacency matrix, comparisons be-
tween simulated outputs can be made using non-graph the-

Ws, [i—j[=0 oretical measures (as detailed in section 2.4).
dikj =4Q Wk, Ji—jl=1 (3 Connectivity is in the form of a static adjacency matrix
Wp, [i—j|>1 (C) with values indicating connection strengths between the

node on thdth row and themth column. The diagonals of
wherek = 1,2, 3 indexes the source of the connectiBrY  this matrix are set to zero as this represents self-to-self c
represents connections frof) k=2 represents connections nectivity which is already incorporated in the node as de-
from 1; andk=3 represents connections frdg), andi, j =  scribed in the previous section.
1,...,n, wherenis the number of local compartments. Through- As expanded upon in the results section, each nidjlis(
out this study we considev; =0 for simplicity, which means modelled by four underlying compartments with short-range
that local compartments are connected only to their nearekical coupling and periodic boundaries as per eg. 4 (section
neighbours. 2.2). Inthis framework, long range (inter-node) connettiv
The equations for the local system are then as follows: is included as follows: each compartment of a node receives
the same excitatory input from the average output of the four
compartments of each connected node. Thus, the hierarchi-

E =h—E+ zdilj f[Ej] (4)  cal connectivity scheme can be formalised as:
]
—5d?flqi .
% 1] E :hl_Ei'i‘%diljf[Ej]
— S A3 [l
2 Gtz -3l
Ii = (hp — I +waf[E
.1| ( 2 1 +Wg [ I])/Tl —Zdﬁf“g]]
loi = (h3—la +wsf[E])/T2 J
+0i
which is spatially homogeneous with periodic boundary conf,;  — (h, — Iy, +w, f[E]) /11
ditions. .
To study the influence of this additional coupling on the'? = (hs =12+ WsT[E])/ T2 ®)

dynamics of eq. 4, we investigate systems composed of a
small number of compartments. Specifically, we use twogi = Ypm;Cimf[L 3 Ej(t—T)]
three and four coupled compartments. J

whereN, is the number of nodes in the high level network
specified by the adjacency matriz, Realistic time delays
2.3 Large scale extension: long range connectivity (T) are included into the model and are linearly scaled with
Euclidian distance between nodes. Delays are grouped into 7
Now we suggest a method by which to extend the system Qfjns with a conduction velocity of 7m/s as il [8]. Equations
a small number of coupled oscillators into larger networksyere solved numerically using “dde23” in MATLAB. The

of connected nodes incorporating realistic cortical cowpl parameters for all figures are summarised in a table in the
schemes. To this end we use diffusion-weighted magnetig,pplementary online material.

resonance imaging and probabilistic tractography connec-

tivity information from the piconmat databaseThis data o ]

includes connectivity obtained from ten healthy human sub?-4 Quantitative comparison between datasets

jects. The tractography connection maps are between the ) . ) )
aparc+aseg regions defined by Freesd?jriﬁing the multi- The EEQ is thoughtto orlglnate m_alnly from c_ortu_:al sources
fibre Probabilistic Index of Connectivity (PICo) method[[39 with various factors playmg a role in the contribution saeh
and are based on data obtained using a 3T Philips AchievPU'c€ density, cortical folding, and skull structure agsin

scanner. All connection matrices were inferred using 1008thders. Thellocaflon of tTe ?A()urc]?s, relative ,to thg scaip-el
streamlines as described in_[45]. Individual streamlirres i trode can also piay a role. As a first approximation we con-

this context are fibre tracks determined by the PICo methocfs.'d,er the mean of Fhe exgltqtory variables in the DTI nodes
hich are closest in Euclidian space to the scalp electrode

By using the same number of streamlines for all subjects an b ve of th
not biasing the network by, for example, limiting the number'© P€ representative of the EEG output. N

We compare differences between seizures within and be-
1 http://piconmat.com tween patients both simulated and also using clinical ixcor

2 http://surfer.nmr.mgh.harvard.edu ings. To this end we use two measures of the spatiotemporal
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properties of the seizure, one linear (cross correlatioa, t
MATLAB ‘corr’ function) and one nonlinear (mutual infor-

(i1}
mation as inl[12], bin size 100 using base 2 bit). Each mea- 3 ©°° H
sure is applied to each seizure and results in a 19*19 sym- E 0
metric matrix which is a measure of correlation between 19 = _ . % NE
standard EEG channels. ‘ ‘ ‘ ‘ ‘

To calculate differences between seizures within and be- 4 -3 5 - 0
tween patients the sum of the absolute value of differenced

between the matrices was taken. This single value indicates 0.5¢

the variability in space and time between any two seizures. U: N H

Larger values indicate greater variability (greater défeces) g [P g 3

between seizures. < N NE
Our clinical data includes 10 patients with clinically di- = Sl

agnosed absence epilepsy from The Department of Neurol- 1 ~ —~ - s

ogy, University Hospital Schleswig-Holsten in Kiel, Ger- h

2
many and from The Department of Neurology, Inselspital,b)

Bern, Switzerland (mean 4.2 seizures per patient, range $g. 1: Bifurcation diagram of the one compartment model
7 seizures per patient). Our simulated data includes the ugeq. 1) using the piecewise linear function aslin [49] scan-
of DTI obtained from 10 healthy controls with 5 simulated ning parameteh,. a) ws = 0; Oscillations are bounded by
seizures per control. Hopf bifurcations (H) at-4 and 0. The stable focus value
next to the oscillatory region linearly increases (deczsas
before becoming a stable node on the left (right) side attpoin
NF. b) ws = 2. Transition from a node to a focus (NF) at
h, = 0.25 followed by a supercritical Hopf bifurcation (H)
athy = 0. Spike-wave oscillations occur betwdei~ —3.6
ndh, =~ —4 where there is an inflection point (IP) as de-

3 Results
3.1 Space independent model

We begin our investigation by considering the simplest ofANd
our models, namely the one compartment case, eq. 1, whidfribed byl[44].
represents local dynamics. To characterise its dynamics we
show two bifurcation diagrams of eq. 1 as a function of the
offset parameteh; in Fig. 1. In Fig. 1laws = 0, which re-
duces the system to two dimensions (41 subsystem)
with no influence from the slow inhibitory population. In
Fig. 1b we seiws = 2, which recovers the contribution of
the slowly activating inhibitory population to the excitay The system incorporating a third variable displays iden-
populationE. The values of the other parameters were chotical dynamics to the two dimensional system fe? < h,
sen following previous studies and include the possibdity as can be seen by comparing the right side of Figs. 1 a
spike-wave dynamics. and b. However, the limit cycle born for decreashgsus-

In Fig. 1a, for positive values df, > | (right side of the tains an increase in amplitude bg decreases untih, =~
figure) the system is encountered in a stable node. Decreas3.6. On the left side of the diagram, fer5 < hy < —4.1,
ing hy first leaves the node unaffected (between 0.51and there is a high amplitude oscillation with a frequency tisat i
and then leads to linearly increasing fixed point valueS.of considerably slower compared to the small-amplitude limit
In this linearly changing region the fixed point is a stable fo cycle described above. Bounded by these two simple peri-
cus. Ath, = 0 there is a supercritical Hopf bifurcation which odic oscillations there is a limit cycle with two maxima and
leaves the focus unstable and creates a limit cycle. This limtwo minima in the region-4 < h, < —3.6. In the context
cycle begins with fixed frequency and zero amplitude at thef bursting this phase space topology is classified by [30]
bifurcation point and its amplitude subsequently increaseas “fold/homoclinic bursting”. In this region, the wavefior
ash, decreases untl, ~ —1.5. A further decrease di,  closely resembles the spike-wave discharges of absermeagi
beyondh, ~ —2.5 leads to diminishing amplitudes until the [49]. Both the slow oscillations and the SWD are made pos-
limit cycle disappears in another supercritcal Hopf biaisrc  sible by the addition of the third layer with the slowly acti-
tion ath, = —4 leading to a stable focus solution. The limit vated inhibitory population. The information above prasd
cycle frequency changes in the oscillatory region, indreps  a starting point for the investigation of coupled systentsiwi
the closer it gets to the two bifurcation points. In the regio multiple compartments in order to study the spatio-temipora
h, < —4.1, there is again a single stable node solution. features of the local network model eq. 4.
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3.2 Multiple coupled compartments: local Connectivity 0111 Compartment 2 Compartments 3 Compartments 4 Compartments

0.18]
0.14] 0.3
0.16]

01 0.16]

0.12) 0.14 014

In principle one could use a single compartment eq. 1 as s o

a “node” to build up a large scale model. Transition from o 000 o o
baCkground to eplleptic dynamics WOUId then typica”y be o 50 100 150 200 25:0S 50 100 150 200 251‘]106 150 300 450 o 50 100 150 200 250
modelled by parameter changes from a limit cycle behaviour) Time

with small amplitude and faster frequency to the SWD with ‘ ‘, ‘
slower frequency and comparatively large amplitude (as in “
Fig. 1b when parametéw, switches from e.g. -3 to -3.5) or

directly from a fixed point to SWD (parameter set as e.g.
in [49]). However, employing a more detailed neural massb) ° 05 1 15 2

model it was argued recently that nearest neighbour IocaFI, > Back dd ics of th il ded
connectivity could induce plausible out-of phase osaliat Ig. 2: Background dynamics of the spatially extended cou-

behaviour deterministically to create an irregular rhyithim pled system eq. 4. &) Time series _Of the gxcitatory vqriables
background activity in the spatial averagel[24]. To modePf all compartments. From left to right: Simple periodic os-

the local transition to epileptic dynamics we therefore ap_clllatlonsm a single compartment; simple periodic, symeh

proximate background activity in the same spirit by a smalf!iSed oscillations in two coupled compartments; complex

set of coupled compartments periodic oscillations in three coupled compartments where

Wi der the third lavet bei . ; only two variables have identical waveforms; temporaly ir
e consider the third layer) as being a requiremen regular and spatially desynchronised activity in four cou-

for th_etSWD .aCtIIV‘I‘E/ tot_be ”preserr:t as tht|s enbablﬁs the ap|f)|ed compartments. b) Clinical ECoG recordings from four
propriate minimat “bursting” mechanism to robusty ger_]er'neighbouring electrodes during an inter-ictal state witho
ate spike-wave model discharges [49]. In order to investiga _ .~ .

. ) pileptiform features.
desynchronised background, one approach to take is to stugy
the model without the third layer, whilst keeping all param-
eters constant in spatially coupled systems. In addition, i oo [“
we seek to find a minimal model capable of producing the o5t
desired properties we can take the approach of sequentiall_ czozs

- T
W 4
o 13
Desynchrony S
, |

increasing the number of compartments. Fig. 2 shows time™ =7 | |} | o

series from systems of one, two, three and four coupled com o= ] e I [
partments wheré, = —3.7 andws = hz = 0 reverting the °"‘°5’§ Ve © opunnies S| = |
system to a two layer model (c.f. Fig. 1a). B T I Y o T T T T

Increasingly complex behaviour occurs up to four com-
partments. For only one compartment simple, regular osFig. 3: Results from the four coupled compartment system.
cillations occur. This is shown in Fig. 2a (left panel) andBifurcation diagram scanning, andws. Various regions
is essentially a time series from the bifurcation diagram irof activity can be observed with exemplary timeseries shown
Fig. 1a. Using two coupled compartments (Fig. 2a, seconih each.
panel) the model again produces simple regular oscillation
although with a slower frequency. The two oscillators are
phase synchronised and have identical waveforms in bothote the partial phase synchrony and irregular waveform
compartments. In three coupled compartments (Fig. 2al, thirin each contact and a tendency to wax and wane (compare
panel) we still observe phase synchrony, however, two ofhe right panel of Fig. 2a). It is important to note that no
the compartments have the same waveform and one do88ise or random term is added to the model in these sim-
not. This causes a more complex repeating waveform. Fulations. The deterministic model produces the important
nally, in four compartments (Fig. 2a, right panel) we ob-feature of temporally irregular waveforms combined with
tain irregular, non-identical oscillatory waveforms whiare ~ Spatial desynchrony. However, in contrast to previous mod-
present in all four compartments. In addition, changes irelling approaches which ignore the spatial component and
phase synchrony occur over time in the four compartmer&dd a random noise term, this now arises from the interac-
model (near the centre of the panel). Desynchrony and itions between the four compartments.
regular, seemingly random waveforms are features present We now include the third layer by using non-zero values
in inter-ictal EEG and ECoG. Fig. 2b shows an electrocorfor ws andhs, the results of which are shown in Fig. 3. Fig.
ticogram (ECoG) recording of neighbouring contacts. A sin-3 shows a two-dimensional bifurcation diagram and exem-
gle scalp EEG electrode is assumed to record the meaplary time series of the different types of activity proddce
field of an area the includes a number of ECoG contactdy the four compartment model using different parameter
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values of excitatory-excitatory coupling strengttn{) and

excitatory-slow inhibitory coupling strengthvg). -Elwmmmmmmmmwm
For values ofas < 0.5 the system reverts to the dynam- _EZWMWWWWWWW

ics of the two layer model. This is because= —0.5 and

whenws < |hz| the contribution of the third variable to the ‘E3Wmmmmwmmmwwmw“

excitatory variable is zero. When in the background state, _EAMWWWWMWWM

the activity depends on the excitatory coupling. For small 5

values ofwi, the desynchronised background activity dom- S " 1

inates. If the excitatory coupling is stronger the modelgyoe 0

to a fixed point solution (Fig. 3, second panel at the top). Oura)
model therefore allows us to describe background dynamics

by either a self-oscillating or a steady state dynamics. 'Elwmwmww
Increasing the strength uf; increases the amount of in- —EZM‘P\M’/\WWWW

put to the slow inhibitor from the excitatory location. Ifgh

strength of this input is greater than thg offset then the ‘E3WH\WW/\WW
slow inhibitor begins to influence the dynamics of the sys- —E4MWMWWMM

tem. With active participation of the third population laye 3

(usingws > |hg|) there are areas of poly-spike wave dynam- g0 2[  #77777777777mmmmmmmmmmmmm oy ' 1
ics (polySWD), simple SWD and slow waves. All are syn- e
chronised whemvy, is sufficiently large. Areas of polySWD  P)

and SWD are present for many valuesigh, meaning that i 4. pynamics of spatially extended four compartment
the model can describe transitions from either the f'XedtpO'nthree layer model. (a) Transition from low amplitude desyn-
or the oscillatory background state to SWD using a changgy, ,niseqd oscillations to highly synchronised high ampli-

of parameter. For smaller vqlues i the polySWD or tude SWD caused by a gradual ramping in the connectivity
SWD does not fully synchronise and the waveforms becomﬁarametem and back again whener, = 0.3. b) as in a)

phase shifted.
Due to the relationship betweew andhs, instead of
Ws one can also use the stimulus paramétgto take the
system from background activity to the synchronised SWOs ramped continuously and it occurs only after the parame-
(results not shown). ter has reached its final value. If the mean of all excitatory
The model is therefore capable of producing a desynvariables is considered (as will be used in the next section)
chronised background state using either two or three laythe transition occurs from highly irregular desynchrodise
ers. We have also demonstrated that the model is capable lofickground to strongly synchronised SWD in both cases.
producing highly synchronised spike-wave dynamics. Fur- The reported results qualitatively also hold true for large
thermore we have shown that there are possibilities for theystems with more complicated Gaussian distributed con-
model dynamics to change states by altering either the comectivity values (see supplementary figure 1 for an exam-
nectivity parametews or the stimulus parametdr;. Fig.  ple). Thus we consider the four compartment model to be
4 shows the time series of all four excitatory variables usa robust prototype to describe the transition from irregula
ing the four compartment model subject to a ramp in pabackground to synchronous SWD.
rameterws. In the Fig. 4awi, = 0.3 ensuring the back-
ground state has deterministic irregular desynchronised o
cillations. In Fig. 4b an alternative scenario is shown wher 3.3 Large scale extension: long range connectivity
ws = 0.45 and a noise term is added to all variables to model
the background activity. We can therefore account for bottgeizures were simulated in the large scale model by ramp-
approaches to the modelling of background activity in ouling the ws parameter globally from the background state
model. The first in agreement with [24], the second follow-to the seizure state and back again. Figure 5 demonstrates
ing the approach of [10]. the network topology of one of the DTI data sets used for
When changing thes parameter in both cases from a simulations. Random initial conditions were used for each
value in the area of background state in the bifurcation disimulation and the model was simulated in the background
agram to a value in the SWD state and back again we olstate until any transient activity had disappeared priany
serve the apparently immediate onset and offset of SWIparameter ramping. The initial conditions at the point of
that is similar to observations in clinical EEG recordings.seizure onset, whilst always in the background state, were
The sudden onset happens despite the fact that the paramdtegrefore different.

excepiwi, = 0.45 and with additive noise in all variables.
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Fig. 5: Visual representation of nodes (red spheres) i g l : I , 1 !
and edges (grey lines) used in the network obtained =2 & 4 s 8 7 8 9 10

Connectivity set

from DTI data from http://piconmat.com/ for connectiv-

Ity set 1. O_nly edges with strength greater than_0.75 arEig. 7: Comparisons of seizures using cross correlatidi. Di
shown for illustrative purposes. All edges are included

S . . ) . ference between two seizures from within the same patient
in simulations. Image generated using BrainNet viewer, . . . .
. ; ; . (red asterisks) and the difference with a seizure from aroth

(http://www.nitrc.org/projects/bnv/) Colour online. . . L .
patient (black circles). Larger values indicate the seigur

are more different. Upper pane : results using clinical data
In Fig. 6 we show an exemplary timeseries of the 19-ower pane: results using simulated seizures from differen

simulated EEG channels along with a topological profile offONnectivity sets. (Colour online)
activity in all spatial locations at= 2.49sinto the seizure.

SWD, polySWD and slow wave oscillations can be observed,

in all simulated channels. There is some degree of irreguIaF’Imllar than when the seizures are compared to other pa-

ity in the oscillations in both space and time with regard tolients. In analysis of simulated seizures the same is algo tr

waveform and amplitude. For example, the amplitude of théﬁlnd s shqwn in the lower pane of Fig 7. Similar results were
oscillations in channel Fz are of higher amplitude thanelehosaISO obtained using mutual information (Supplementary fig-
in channel T6. In the topological heatmap (right pane, Fig. eUre 3)-

a complex spatial activity profile can be observed. This spa-

tial heatmap varies over time, a movie of which can be seen

in supplementary online movie 1 (SOM1). During SOM1 4 Discussion

one can observe rapidly changing nontrivial spatiotempora

activitity in both the simulated seizure and in clinical @at In this study we presented a large scale, neural population

It is important to emphasise that the simulation is not in- : - . .
. o _ model for the investigation of spike-wave dynamics as seen
tended to reproduce the patient specific spatio-tempaaal fed . . . . . .
uring absence seizures in humans. In a discrete, hierarchi

tures, rather more generic features common to all absence R
. . _ cal network approach we demonstrated that a simplified lo-
seizures i.e. SWD, polySWD, slow waves, high synchron

. - . . Yeal model of four coupled compartments was sufficient to
large amplitude and complex, nontrivial spatial profiles. : . )
capture key spatio-temporal dynamics relating to the tran-

sition between a desynchronised background state and the

more highly correlated seizure state. Realistic long range
3.4 Quantitative comparisons between datasets connectivity derived from human data was then incorporated

into the model in order to extend to the larger spatial scale.
An important feature of clinical epilepsy is that seizuréeao We demonstrated that despite the inevitable heterogeneity
particular patient tend to evolve in stereotypical waysioth  of this anatomical network, transitions from background to
is a phenomenon known as stereotypy [46]. The interestingWD could still be modelled alongside non-trivial spatio-
question of whether the complex spatiotemporal patteras ohemporal dynamics. Beyond absence seizures, this expands
served in our large scale simulations can supportthisfeatuto other forms of generalised epilepsies and also to partial
was therefore investigated as follows. epilepsies that present specific spatio-temporal seiaure e

Cross correlation and mutual information were used tdution patterns. Whereas previous approaches to model SWD

study the impact of different connectivity structures odespreaftien made the assumption of spatial homogeneity [10, 35],
spike-wave activity. In the upper pane of Fig. 7 comparisonsnodelling large-scale dynamics of abnormal rhythms with
are made between clinical datasets within patients (red asieterogeneities in the connectivity might be crucial for un
terisks) and between patients (black circles) for each ®f thderstanding patient-specific spatio-temporal featuresaf
10 patients. In all cases the seizures within patients are moabsence epilepsy [23,17,/37, 5].
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Fig. 6: Simulation results large scale
model (eq. 5) with connectivity set
1, seizure 1. Left pane: Timeserie:
of all 19 simulated channels. Right
pane: Interpolated topological pro-
file at t=2.49s. Colour indicates
variable value. Image is a modifiec
still from supplementary movie 1.
Colour online. T T A S T R

Our initial studies of the space independent system demon-An alternative representation of the fluctuating EEG back-
strated that the inclusion of a third variable in the Amariground state can be given by a model with noise driven
oscillator, namely, the slowly activating inhibitory pdpu  steady states (e.@.[48,/10] in models of transitions toratese
tion, led to qualitative changes in the system dynamics. (Figike seizures). A limitation of this approach is that theurat
1). The three dimensional system Et]. 1 therefore supportsf correlations between noisy inputs to different compart-
a parameter driven transition from background oscillation ments is unknown. The approach of coupled asynchronous
to spike-wave dynamics via the modulation of a model pa®oscillators has been previously usedlby [24] and can produce
rameter. We demonstrated the specific case of this pararmregular time series on the mean field, as confirmed in the
eter being the strength of activation of an inhibitory pop-current study. However, the bifurcation scan Fig. 3 andtime
ulation. This is in line with previous models of parame- series Fig. 4 shows that our model is able to implement both
ter driven transitions to SWD in space independent modelmechanisms depending on the exact choice of parameters.

[35,110] and adds evidence to the importance of connectivity |n this study we have used the Amari oscillator as a ba-
between populations of excitatory and inhibitory neuransf sis for our work, however it is important to note that al-
transitions to seizure dynamics. In the current study wehavternative models could be used instead. For example, re-
shown that this feature is preserved in higher dimensionalent studies using purely phenomenological models showed
representations of large scale brain dynamics incorpmati functional network structure [6] and excitability_[26] can
realistic long range connectivity. play a role in seizures. At the more more physiologically
detailed level, neural mass models have been used [24, 25].
In extending the model spatially, several different pro-r€re we present a balance of physiological plausibility (eg
totypes for the number of compartments that could serve d3teracting excitatatory/inhibitory populations) and deb
representing local dynamics were considered. Borisyuk @bstractionto _enable be_tter understanding through thefuse
al. [d] used two coupled neural field oscillators in a sim-Only three variables. This approach has been used by other
ilar approach, and observed complex periodic and chaotiguthors in similar studies of large scale brain models [29,
dynamics resulting from the coupling. We ultimately useatel-
four coupled compartments showing complex, partly desyn- Modelling the spatio-temporal aspects of epileptiform
chronised oscillations which in addition showed waxing andEEG is a crucial step towards understanding the macroscopic
waning of the amplitudes consistent with ECoG recordingsmechanisms of epilepsy. In particular, even so-called “gen
This was chosen as a basis for further work and as a pr&ralised” seizures are not spatially homogeneous evets th
totype for further spatial expansion. Four compartments i§an be sufficiently characterised by the production of SWD
fitting with the original Amari model in that it is the small- rhythms alone. References [37] and [5], for example, re-
est possible configuration which allows both symmetricallyvealed distinct spatial characteristics of SWD in humans.
coupled and uncoupled neighbour(s) and is translationallffurthermore, [28] and [43] have reported non-trivial splati
invariant with periodic boundaries. This approach is comdistributions of EEG rhythms during generalised seizures.
patible with previous studies of small networks of neural  Our large scale simulations have provided an initial demon-
mass models to account for the dynamics of backgrounsitration that stereotypy [46] in generalised seizure &gtiv
rhythms [16] 177, 50]. could be a product of large scale networks. This result is in
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line with previous reports of patient-specific characterss 3.
e.g. [27]. One may intuitively expect this, however, due to
the highly nonlinear nature of the model this in not guar-
anteed to be the case. For example, if sensitivity to initial
conditions were greater than sensitivity to the connégtivi
used then our observations would be significantly different 4.
In future studies our model can be used for more detailed in-
vestigations of spatio-temporal dynamics and the undaglyi
connectivity patterns using various other network topolo- 5.
gies. This could include those from clinically diagnoseiliegp
tic patients. This may be important as some authors have re-
ported differences in large scale epileptic networks iniedes
temporal lobe epilepsy [21] and juvenile myoclonic epileps
[3€]. This preliminary study based on the extended Amari
oscillator could be used in future to quantitatively congpar 6.
clinical and simulated data similarly to other approaches
[15]. Such a model can also be used for the investigation
of the proposed focal cortical onset of generalised sefzure
[3€], spatially localised ‘focal’ (simple partial) seizs, or
secondary generalised seizures with a focal onset through
the use of heterogeneous parameter ramping. 7.
In the current study we formulated the large-scale frame-
work to study transitions to SWD comparing model output 8.
directly to clinical EEG. The present simplified model for
SWD can be substituted by more physiologically motivated
models of SWDI[10, 35, 24] in future studies. For general
future purposes this might be supplemented with a more re-9.
alistic conversion of model variables to EEG signals in ac-
cordance with|[55,!5]. Various approaches of such forward
models exist in the literature for population level mathema

ical models|[34] 47, 51, 14]. Additionally, comparisons to 10.

fMRI data can be made by including a model to account
for the haemodynamic responsel[22, 51]. It will be of inter-
est to infer features of functional connectivity and congpar
to underlying structural networks in the case of generdlise
seizures/[57].
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