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Abstract 

 

The extracellular matrix (ECM) undergoes progressive age-related stiffening 

and loss of proteolytic digestibility due to an increase in concentration of 

advanced glycation end products (AGEs). Detrimental collagen stiffening 

properties are believed to play a significant role in several age-related diseases 

such as osteoporosis and cardiovascular disease. Currently little is known of the 

potential location of covalently cross-linked AGEs formation within collagen 

molecules; neither are there reports on how the respective cross-link sites affect 

the physical and biochemical properties of collagen. Using fully atomistic 

molecular dynamics simulations (MD) we have identified preferential sites for 

exothermic formation of two lysine-arginine derived AGEs, glucosepane and 

DOGDIC. Identification of these favourable sites enables us to align collagen 

cross-linking with experimentally observed changes to the ECM. For example, 

formation of both AGEs were found to be energetically favourable within close 

proximity of the Matrix Metalloproteinase-1 (MMP1) binding site, which could 

potentially disrupt collagen degradation. With the aid of a number of dynamic 

analysis techniques we have provided an explanation for the site specificity of 

the two AGE cross-links. The mechanical properties of collagen were also 

investigated through the use of steered MD to determine the effect of the cross-

links presence. Additionally the effect of the sequence on the collagen 

mechanical properties was also investigated, owing to the heterogeneous 

response of collagen to an applied load.  

A homology model for the Homo sapiens sequence was developed from the 

crystal structure of the Rattus norvegicus structure that was shown to produce 

stable simulations. Through the use of the homology model and implementation 

of a novel simulation technique we attempted to ascertain the orientations of the 

collagen molecules within a fibril, that is currently below the resolution limit of 

experimental techniques.  
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Chapter 1 Introduction 

1.1 Collagen 

The name “Collagen” is used as a generic term for a family of proteins which 

typically have functions in tissue assembly or maintenance and form the 

characteristic triple helix of three polypeptide chains. The family of proteins, 

currently contains 28 different human collagen types (1), with a number of 

closely related structures considered to be part of the collagen superfamily, 

such as, acetyl cholinesterase, adiponectin and C1q. Distinguishing between 

“collagen” and “collagen-like” proteins is non-trivial as there are proteins with 

triple helical domains that are not considered to be collagen. The collagen 

family can be subdivided further into a number of groups based on structure 

and role, these include; fibril forming collagens, FACIT (Fibril Associated 

Collagens with Interrupted Triple Helices), network forming collagens, 

transmembrane collagens, basement membrane collagens and unclassified 

collagens. The most abundant subgroup of collagens are the fibril forming 

collagens, which constitute approximately 90% of total collagen types (2). The 

majority of collagen proteins are homotrimers, containing three identical 

polypeptide chains, for example collagen II. However there are also collagens 

that are heterotrimeric containing different polypeptide chains, for example type 

I collagen, which contains two identical α1 chains and one α2 chain. 

 

1.1.1 Biosynthesis of Collagen 

Collagen biosynthesis is a complex multistep process, from gene transcription 

within the nucleus to aggregation of collagen heterotrimers into large fibrils (2, 

3). It had long been believed that the organisation of the collagen was a “self-
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assembly” process; secreted collagen molecules are ejected into the inter-

cellular space to self assemble. However this is no longer fully supported (4, 5).  

It is believed that genes are transcribed in the nucleus of the eukaryotic cells, 

before the translation of the ribosome-bound mRNA into pre-procollagen 

molecules which protrude into the lumen of the rough endoplasmic reticulum. 

After removal of a signal peptide by a signal peptidase, the pro-collagen then 

undergoes a number of post-translational modifications. The main post-

translational modifications are the hydroxylation of the proline and lysine 

residues by the enzymes prolyl 3-hydroxylase, prolyl 4-hydroxylase and lysyl 

hydroxylase. The presence of 4-hydroxyproline is essential for the formation of 

stabilising intramolecular hydrogen bonds whilst hydoxylysine residues are 

required to form mature enzymatic intermolecular cross-linking of the collagen 

molecules into the fibrils (6). The extent of lysine hydroxylation varies 

depending on the organism and the tissue type (7). The next stage is the 

assembly of the three-polypeptide chains into the triple helical structure. The 

formation of the triple helical region from the C- to the N- terminus begins with 

the alignment of the C-terminal domains of the three-polypeptide chains.  

For efficient folding and formation of the pro-collagen to occur, the presence of 

several enzymes is required, for example peptidyl-prolyl cis-trans-isomerase (8) 

and collagen specific chaperones like Heat Shock Protein – 47 (9). Globular 

propeptides are essential during this process as they ensure association 

between monomeric pro-collagen chains and provide stability through 

disulphide bonds in the C-terminal pro-peptides. After forming the triple helical 

pro-collagen structure and post-translational modifications, the pro-collagen is 

transported via the Golgi complex; they are packaged into secretory vesicles, 
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called Golgi to plasma membrane carriers and finally passed into the 

extracellular space. Once secreted into the extracellular space the pro-collagen 

is processed, with cleavage of the C- and N-propeptides by Zn2+ dependent 

metalloproteinases procollagen C-proteinase and pro-collagen N-proteinase, 

respectively (10). Some argue that some processing may be done in the carrier 

during secretion, as the N- and C-proteinases have been identified in the Golgi 

network (11). However it is still believed that the majority of procollagen 

processing is performed in the extracellular space. Upon completion of the pro-

collagen to collagen fibril formation, collagens, including type I collagen, 

spontaneously aggregate into ordered fibrillar structures in vivo to form long thin 

fibrils in a process known as fibrillogenesis (12), (although the exact mechanism 

is still not known). These fibrils then bundle further, in various orientations 

depending on the tissue type. For example, in tendon collagen fibrils align 

parallel to each other and form fibres whereas in the skin, the orientation is 

more random, forming a complex network of interlaced fibrils. Fibril diameter 

can be modulated by the binding of small leucine rich proteoglycans such as 

decorin, which inhibits lateral growth of the fibril once bound (13, 14). The 

molecular arrangement of collagen molecules is further stabilised by enzymatic 

covalent cross-links, which we will discuss in more detail in the section 1.1.2.3. 

The fibrils then bundle together further to form tissues, for example in tendon, 

the fibrils bundle to form fibres, which then further associate to form a fascile, 

which then group to form the tendon.  
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1.1.2 Type I Collagen 

Type I collagen is the most abundant protein in animals, playing an important 

structural role in the extracellular matrix (ECM) of all vertebrates and accounting 

for over a quarter of the dry mass of the human body (15, 16). The fibril-forming 

type I collagen dominates in organs and tissues that require tensile strength, 

such as tendon, ligament, bone and the dermis. The precise way in which type I 

collagen molecules are organized and chemically linked into collagen fibrils 

provides these tissues with the specific mechanical properties required for 

efficient biological function (17). 

 

1.1.2.1 Structure 

The tropocollagen (a collagen molecule) is the basic structural unit of all 

collagen types; it is a rope-like macromolecule comprised of three polypeptides 

strands twisted into a continuous triple helix, with a right-handed supercoil of the 

polypeptide chains with a one residue stagger between the chains (18). It is 

approximately 300 nm in length and 1.5 nm in diameter, and is flanked at both 

ends by a non-helical telopeptides domain. These collagen molecules are 

secreted by human cells into the extracellular matrix, whereupon they 

spontaneously bundle tightly together to form hydrated collagen fibrils which 

typically have diameters of 20-500 nm (12). This process is called 

fibrillogenesis. Collagen microfibrils are made up of the high-aspect ratio 

collagen molecules arranged in a staggered configuration. According to the 

Hodge-Pertruska model, the fibrils are deposited side-by-side and parallel but 

also staggered with respect to each other (19), in a quasi-hexagonal packing 

(20). This structure creates an observable periodicity known as the D-band, 

where D=67 nm (21). This is made up of an overlap “region” which has a higher 
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protein density, in addition to a gap between two consecutive collagen 

molecules known as the “gap region”, which measures 0.54 D or 36 nm, as 

seen in Figure 1 (19).  

 

Figure 1: Schematic of (A) a single collagen protein; (B) and (C) are schematics 
showing the supramolecular arrangement of the collagen proteins in a collagen 
fibril. Specifically (B) shows the staggered axial alignment in the fibril, with each 
collagen molecule represented as a straight rod. (C) Cross section through a 
fibril in the overlap region, showing the quasi-hexagonal packing, with each 
collagen molecule represented as a circle. In both (B) and (C) the number 
represent the five possible axial alignments of the proteins. 
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Collagen fibrils are formed through the bundling of several microfibrils, these 

vary in length and diameter dependent on the organism and location of the 

tissue. Collagen fibrils within tendon typically have diameters ranging between 

20 and 150 nm and a length on the millimetre scale. For example, in human 

Achilles tendon, average fibril diameters of 50 – 90 nm have been measured. In 

the flexors and extensors of the fingers diameters are 20 - 60 nm (22, 23). 

Ramachandaran initially proposed the concept of the triple helical structure for 

collagen over 60 years ago, by employing fibre diffraction theory with stereo-

chemical consideration (24). Collagen-like peptides have backbone torsional 

angles φ and ψ which fall in the region of -76°, 127° in the Ramachandaran plot 

(25). Since then a significant number of studies have been conducted to better 

understand the structure of type I collagen. However, given the large size, 

insolubility, complex hierarchical structure and repetitive sequence most 

conventional biochemical analysis techniques are unable to obtain atomic level 

structural information.  

These challenges have resulted in a large number of studies that utilise 

collagen-like peptides (26–31). For example Berman et al., confirmed the 

existence of inter-chain hydrogen bonds between N-H(Gly)---O=C(Xxx) and Cα-

H---O=C(Xxx/Gly) through the use of high resolution crystallography of a 

collagen-like peptide (26, 32). In addition to these inter-strand hydrogen 

bonding, there is also water-mediated hydrogen bridging, where a water 

molecule simultaneously forms hydrogen-bonding interactions with two residues 

on different molecules or strands, as seen in Figure 2. Experimental studies 

have previously hypothesised that these water mediated hydrogen bridges 
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could be the driving force for fibrillogenesis and a major component to collagen 

fibril stability (33–35).  

  

Figure 2: Image showing two different types of hydrogen bonding interactions 
(A) A direct inter-protein hydrogen bond (B) A water mediated hydrogen 
bonding interaction, using the bridging water molecule. 

 

The collagen molecules are initially only stabilised by the non-covalent 

interactions immediately after fibrillogenesis. As the fibrils mature, the tissue is 

stabilised further by an enzyme-mediated cross-link forming within the 

telopeptide region of the molecules (6). Collagen arranged and cross-linked in 

this way results in tissues with high tensile strength (36).  

In addition to a mechanical contribution, the precise arrangement of collagen 

molecules within the fibril governs important interactions with other matrix 
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macromolecules and cellular component of the tissue. For example, decorin, a 

small leucine-rich proteoglycan (SLRP), binds to fibrillar collagen at specific 

sites, where sufficient space is available to accommodate the protein core (13). 

The binding of decorin plays a role in regulating the collagen fibril diameter by 

inhibiting lateral growth of the fibril (14). Collagen also contains cell interaction 

domains, which enable binding to integrins on the cell surface. This cell matrix 

interaction is important for mechanotransduction and other cell signaling events 

(37).  

 

1.1.2.2 Sequence dependencies 

The primary sequence is vitally important in the generation of the collagen 

structure. The presence of a glycine residue in the third position of the 

polypeptide chain is essential for formation of the triple helix (2). The amino acid 

triplet sequences occurring in type I collagen were characterized by Heidemen 

and Roth, where typically Gly-X-Hyp and Gly-Pro-Y appear approximately 25% 

of the time each in the primary sequence and the other 50% is typically Gly-X-Y 

in native type I collagen (38). The presence of glycine in the third position 

enables the polypeptide chains to arrange to form a helical structure, with the 

glycine residues typically on the inside of the helix, owing to its small size, and 

the bulkier residues being located on the outer positions, maximizing the 

creation of Van der Waals interactions. Furthermore, glycine plays a significant 

role in the formation of inter-strand hydrogen bonds, adding further to the 

structure’s stability. The results of an amino acid single point substitution of 

glycine to bulkier residues are considered to be some of the most damaging 

mutations to collagen genes, and have been found to play a role in the 
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pathogenicity of a number of genetic disorders such as Osteogenesis 

Imperfecta (or brittle bone disease) (39). Bella et al., have shown that a simple 

glycine to alanine substitution in a collagen-like peptide resulted in a triple 

helical molecule with an partially untwisted or “bulge” region at the site of the 

substitution (26). This was a result of a disruption to both the packing and the 

hydrogen bonding network. 

Proline and its post-translational modified variant, hydroxyproline are also 

abundant in type I collagen, accounting for 28% and 38% of the total number of 

amino acids respectively (40). Raines et al suggested that this is due to their 

significant contribution to the structural stability of collagen from the inductive 

effects of the pyrrolidine ring (41–43). Proline residues in the Yyy position of the 

triplet are modified enzymatically by polyl 4-hydroxylase, which hydroxylates the 

4(R) position of the proline ring to form a hydroxyproline residue (7, 44). It is 

well known that electron withdrawing substituents at 4(R) position on the proline 

ring, such as is present in hydroxyproline, stabilize the helix at the Yyy position, 

as it reduces the conformational freedom of the proline ring and constrains the 

dihedral angles of the backbone (45–47). The same was not found when the 

hydroxyl group was added in the 4S configuration (48), or for hydroxyprolines 

present in the Xxx position (49). Hydroxyproline is also considered to be a 

significant contributor to the water mediated hydrogen bridges between collagen 

molecules acting, as the water bridge donor for 21.2% of the inter-protein 

interactions, owing to its abundance and high polarity (35).  

When the Xxx and Yyy positions are not occupied by proline or hydroxyproline 

respectively, it could potentially be populated by any amino acid, giving rise to 

over 441 possible triplet sequences. However some amino acids are found to 
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destabilise the triple helical structure. Brodsky et al., conducted an exhaustive 

study using a collagen-like protein with the sequence 

(ProHypGly)5(XxxYyyGly)(ProHypGly)5, where they varied Xxx and Yyy with all 

possible variations of the 20 standard amino acids (40, 50). Their study showed 

a strong correlation between the residue’s contribution to triple helical stability 

as a function of its propensity to adopt a left handed polyproline II-type helical 

conformation. Some residues confer greater stability. For example, an arginine 

or a lysine residue in the Yyy position contributes greatly to triple helical stability 

(51, 52). Conversely the aromatic amino acid residues, tryptophan, 

phenylalanine and tyrosine are strongly destabilising. 

Given the strong influence of the primary sequence on the stability of the triple 

helix, variations to a wild type collagen sequence can lead to disastrous 

phenotypic consequences such as Osteogenesis Imperfecta, as previously 

mentioned. However, even more subtle point mutations, which do not alter the 

size of the amino acid significantly, can yield detrimental effects with an 

arginine(Xxx) to cysteine mutation, causing Ehlers-Danlos syndrome through the 

generation of disulphide bonds (53). More recently abnormal activity of collagen 

hydroxyproline has been linked to lung cancer (54, 55).  

 

1.1.2.3 Enzymatic Mature Cross-links 

After fibrillogenesis a number of “maturing” processes occur, with the molecules 

only initially being aggregated through the inter-molecular interactions. However 

this is relatively weak and, to provide the mechanical properties required of 

collagenous tissues, covalent cross-linking is necessary. The formation of the 

enzymatic cross-links depends on the presence of specific enzymes, amino 
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acid sequences and quaternary structure. The first stage in the generation of 

the enzymatic cross-links is aldehyde formation from lysine and hydroxylysine 

residues in the telopeptide regions, catalysed by the copper-dependent lysyl 

oxidase. The aldehydes then go on to spontaneously react further to form 

intermediate cross-links, with the lysyl-aldehydes reacting with lysines on 

neighbouring residues to form intermediate cross-links called Schiff bases. 

Hydroxylysyl-aldehydes react to form ketoimine bonds, generating 

hydroxylysino-keto-norleucine (HLKNL). Further maturation converts the 

intermediate cross-links into the non-reducible mature products; the Schiff 

Bases are converted to non-reducible histidin adducts, predominately histidino-

hydroxylysinonor-leucine (HHL) (6). Maturation of the hydoxylysine residue 

product HLKNL with a hydroxylysine-aldehyde or a second ketoimine can form 

a pyridinium cross-link (56). Alternatively HLKNL can react with a lysyl-aldehyde 

to form the hydroxylysyl-pyrrole (57). The structures of these cross-links can be 

seen in Figure 3. 

The main determinant of the type of cross-link formed is whether the post-

translational enzymatic hydroxylation of the lysine residues by lysyl hydroxylase 

has taken place (58). The proportion of hydroxylysine varies depending on the 

collagen type and location. For example, in the skin, the levels of hydroxylysine 

are much lower than in the bone, which accounts partly for the difference in the 

biomechanical properties of the tissue (58). The mature enzymatic cross-links 

are predominantly located in the overlap region of the fibril, with the cross-links 

occurring between the telopeptide regions of neighbouring molecules (36). In 

cases of copper deficiency, lysyl-oxidase activity is reduced and thus the 

number of cross-links is found to be much lower, with the tissues exhibiting 
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greater fragility, further highlighting the role of cross-links in the biomechanics of 

collagenous tissues.  

 

 

Figure 3: Schematic representation of the three main enzymatic cross-links, 
histidino-hydroxylysinonor-leucine, hydroxylysyl-pyridinoline and hydroxylylsyl-
pyrrole. 

 

1.1.3 Mechanical Properties of Type I Collagen 

With collagen making up a significant proportion of connective tissues, 

approximately 90% in some cases, its biomechanical and energy storage 

properties are of utmost importance. The mechanical functions of the 
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supramolecular structure in collagenous tissues are optimised for the direction 

and magnitude of load. Tendons have unidirectional tensile strength, a 

consequence of fibre alignment of thick bundles parallel to the long axis of the 

tendon (59). In skin, the fibres form an isotropic network capable of managing 

multidirectional forces (15). Forces experienced by the collagenous tissues vary 

greatly in magnitude and direction. Applied force can be sporadic, sustained or 

repetitive. For example, a runner’s Achilles tendon can experience peak forces 

of 11.4 times their body weight (60), experiencing over 2000 cyclic loading 

events during a 5 km run (61). 

The mechanical properties of collagenous tissues can be broken down into a 

number of different scales; the molecular scale, the response of the collagen 

molecule to strain; the fibrillar level with the response of fibrils to an applied 

load; moving into the microscale, which incorporates the response of a collagen 

fibre; and finally the macroscale, in which the mechanics of the whole 

collagenous tissue are considered. At the lowest scale, a number of atomistic 

and coarse grained molecular dynamic simulations have been conducted to the 

response of the molecule to an applied load (62–64), with a small number of 

experimental studies even claiming to be probing single molecule responses to 

a load (65, 66). At the microfibril and fibril level the amount of experimentally 

determined data increases, with experiments using a wide variety of techniques 

now possible (67–71). As the hierarchical scale increases, it has been observed 

that the Young’s modulus decreases significantly with the molecular level 

ranging from 2-9 Gpa. On the tissue scale the modulus varies between 0.001-1 

Gpa depending on the tissue type (72). The most likely reason for this is the 

inter-fibrillar sliding that occurs on a macroscopic scale; in addition to the 

straightening and reorientation of the fibrils/fibres (73).  
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1.1.4 Computational Modelling of Collagen 

Since the proposal of the helical structure for collagen by Ramachandran and 

Kartha in 1955 (74), a huge number of computational studies have been 

conducted to elucidate the structure further, from the early simulation of the 

1970’s, using simple techniques on very small peptide sequences (75, 76), to 

the more complex and sophisticated simulations of the full collagen molecule 

developed over the past decade (77, 78). Despite huge advances being made 

in the software development and the capability of hardware, simulations of a 

solvated full collagen fibre are still beyond current capabilities, with simulations 

of the collagen molecule pushing the limits of what is realistically achievable. It 

is for this reason that a lot of research has gone into developing novel 

techniques to be able to probe the structural properties of fibrillar collagen 

molecules, all with the intention of reducing the computational expense of the 

calculations by reducing either the timescale (79), number of atoms (77, 78), 

complexity of the system (80), the variety of properties able to be studied (81, 

82), or a combination of these. What follows is a short summary of some 

successful computational studies used to probe a variety of structural, electronic 

or dynamic properties of fibrillar collagen molecules. 

Some dynamic events, particularly of large molecules, are often not observable 

by the use of conventional MD techniques, such as the folding of proteins, 

owing to the timescale at which these events occur. Folding of coiled-coil 

structures normally occurs on millisecond to second timescales (83, 84), and 

collagen is thought to fold on a timescale of minutes to hours (85). Both are 

beyond current computational capabilities. To overcome long time scale events, 

Stultz developed a method to promote folding within a shorter period of time, 

enabling the observation of a folding event during a short MD trajectory (79). In 
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this approach, a gentle bias is introduced during MD simulations to favour the 

formation of the pre-specified conformation. This is done by 1) selecting 

movements in the simulation which take the system closer to the target, 2) a 

small energetic penalty is applied to movements that take the system away from 

the target (86–88). The trajectory starts with three unfolded polypeptides and 

the target is the triple helical conformation.  

After application of the bias approach, it was observed that most of the progress 

in folding occurs within the first 3.7 ns of the simulation. Despite the mechanism 

observed being consistent with previous experimental folding studies by Boudko 

et al (89), there are still two limitations to this approach. Firstly, the target 

structure must be known. Secondly, artifacts can be introduced into the 

trajectory as a result of the biasing potential. However this approach remains a 

useful technique to probe slow dynamics on computationally achievable 

timescales.  

Another approach to increase the timescale achievable through simulation is to 

increase the simulation integration time step used. One study that utilized this 

approach is the work of Gautieri et al., with their coarse grained (CG) model of 

collagen using the Martini force-field (77). Coarse grained models allow the 

study of larger systems, up to micrometre dimension and millisecond duration, 

which would allow access to many materials phenomena, such as tissue 

deformation and failure, which require large samples and occur on long 

timescales (90). CG models work by reducing the number of degrees of 

freedom through grouping of atoms into pseudo-atoms referred to as beads 

(91–93). The MARTINI force-field model assigns atoms into individual beads, 

retaining information about the amino acid sequence. For example, a particular 
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single bead type will represent amine or methyl groups, or saturated carbon 

atoms (94). This significantly reduces the number of atoms, and therefore the 

degrees of freedom. The number of beads used to represent an amino acid is 

dependent on the size of the side chain, with small residues like glycine being 

described by just one bead, whilst large amino acids such as tyrosine are 

modelled with up to five beads (95). The MARTINI model also takes into 

account the polarity of each bead described by a letter (P, polar; C, apolar; N, 

non-polar; and Q, charged) and a number (from 1, low polarity, to 5, high 

polarity), as well as characterizing the beads’ hydrogen bonding capabilities. 

Validation of a short 8 nm collagen-like peptide showed a good correlation in 

root-mean-square deviation (RMSD) relative to an all atom simulation, which 

allowed an expansion to a full -length CG molecule in solution. This approach 

has the benefit of having significantly lower computational costs from fewer 

degrees of freedom, relative to a corresponding fully atomistic simulation, 

allowing much large molecules to be constructed. However this comes at the 

cost of a reduction in structural detail, as CG models cannot undergo a change 

to their secondary structure. Recent shape based CG simulation studies have 

been able to access collagen fibrils in the micrometre scales, yielding 

macroscopic structural properties of collagen fibrils (96).  

The exploitation of periodic boundary conditions can be used to reduce the 

number of explicitly defined protein and water molecules. This replicates the 

regularly repeating densely packed collagen protein and solvent. The first such 

study to exploit the D-periodicity of collagen in MD simulations was Streeter and 

de Leeuw (78). The dense fibrillar environment of collagen was replicated whilst 

using only one fifth of the amount of water compared to the fully solvated 

system, in addition to creating a more realistic model of collagen within a fibril 
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(35). Validation of the method was conducted by comparison of alpha carbon 

positions to those of an experimental crystal structure (21), with agreement to 

within 2.48 Å. This study is the most realistic simulation of the fibrillar collagen 

at present to utilize atomic resolution detail, whilst minimizing the computational 

cost. However this approach does have the limitation that, due to the period 

boundary conditions, it is less amenable to studying low concentration point 

mutations within its primary sequence. 

Whilst MD simulations are excellent for studying structural properties of 

collagen, their basis in Newtonian physics means the electronic structure is not 

considered beyond the coulombic interaction of point charges. Hence to probe 

the electronic properties of collagenous systems density functional theory (DFT) 

techniques are needed, although due to the significantly greater computational 

cost of such methods the size of the systems studied is much smaller. The 

results identify trends, which can be applied to the wider structure. One such 

example is the use of ab initio and DFT techniques to study the role of various 

collagen triplets on the stability of collagen (80). Through the use of these 

simulations to calculate chemical hardness and solvation free energies, Madhan 

et al., were able to probe the stability and solvation effect of amino acids within 

various triplets present in collagen. The models were run using a relatively small 

amount of atoms, approximately 50 atoms, using the widely distributed 

Gaussian98 package. However this study does suffer from the drawback that 

only triplets were studied and, so making statements about the entire collagen 

triple helix is not possible, although it does allow us to comment on the local-

helix stability.  
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Machine learning algorithms are a branch of artificial intelligence that allows us 

to hypothesize structure and relationships based on work that is currently 

known experimentally or theoretically from conventional methods. It has a huge 

potential in bioinformatic projects based on the complex nature of modelling 

such large structures. Z. Yang applied machine learning techniques to predict 

collagen hydroxyproline sites using support vector machines  (SVM) (81). This 

requires a well-defined proper kernel function, dealing with the sequence 

homology alignment. There are two simple metrics to score the similarity or 

distance between two sequences; 1) the Needleman-Wunsch score, and 2) 

Dayhoff score as well as its variants (97–99). The Needleman-Wunsch score is 

binary, while the Dayhoff score is based on a probability estimation. This 

enables two different kernels to be derived using SVM. An odd size-sliding 

window is used to scan the whole collagen sequence to generate peptides with 

a proline in the middle residue, because hydroxyproline always requires a 

proline to form, the middle residue is therefore removed for computational 

efficiency. The generated peptides are based on thirty-seven hydroxyproline-

annotated collagen-like sequences collected from the NCBI (National Center for 

Biotechnology Information). From the generated peptides the training set is 

created by mixing 80% of the annotated peptides with 80% of the non-

annotated peptides. The remaining 20% from each forms the testing set. This 

process is repeated five times for fivefold cross-validation. Despite the method 

being able to predict, on small amounts of computational resources, the high 

frequency of glycine sites within the model peptides at high sensitivity (85%). A 

large number of misclassifications for the less abundant hydroxyproline sites 

was observed, making this method unreliable especially for prediction of less 

abundant amino acids. The use of both kernel SVM models ensured no 
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hydroxyproline sites were completely missed, with no sites missed by both 

kernels. Yang et al. concluded that the study could be improved had they used 

a greater number of training sets instead of restricting to thirty-seven collagen-

like protein sequences. 

Whilst no single methodology is currently available to fully model every 

structural property of collagen, the adoption of a number of techniques can yield 

a better picture of the structure, function and dynamics of collagen. Currently 

MD provides the most promising methodology for modelling full size collagen 

peptides, although the results are limited by the quality of the force-field. DFT 

methods, however, are capable of probing electronic effects and bond breaking 

or forming, but are limited to smaller peptides due to the associated 

computational cost. Machine learning algorithms show potential for the 

prediction in trends of local stability despite their limitations probing physical 

perturbations to the system. However these techniques require large data 

training sets to give reliable results. 

 

1.2 Advanced Glycation End Products 

Whilst enzyme-mediated cross-linking described previously is physiological and 

provides functionality to tissues, glycation-mediated cross-linking is considered 

to be pathological and is thought to jeopardize the functionality of the 

musculoskeletal system (100, 101). Advanced Glycation End products (AGEs) 

have additionally been linked to the pathogenesis of a number of chronic 

diseases from neurodegenerative diseases to cancer metasis (102, 103). AGEs 

are formed by a series of successive chemical reactions between a reducing 

sugar, such as glucose (an aldose) or fructose (a ketose), and a protein or lipid. 
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When no enzyme is present to catalyse the reaction, the non-enzymatic 

glycation is called the Maillard reaction (104). Formation of AGEs and cross-

links are site-specific processes influenced by steric constraints and the amino 

acid side chains (105). The protein side chain functional groups exert a strong 

influence on the reactivity of amino groups with glucose and also on the kinetics 

and products of subsequent Maillard reactions (106). Amino acids on the 

surface of the protein will also be easily glycated, owing to the availability of 

their exposed amino acid side chains to glycation.  

 

The main external influence on the rate of AGEs formation is the equilibrium 

between the sugars open-chain and cyclic form. This is because only an open-

chain sugar molecule can react with an amino acid residue, as the cyclic form 

does not contain a reactive aldehyde or ketone group (107), as seen in Figure 

4. Aldoses are more reactive than ketoses, owing to the fact that the terminal 

aldehyde group is more accessible and electrophilic than the ketone group 

Figure 4: Open and closed cyclic structural forms of 1) fructose 2) D-
glucose. 
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(107). However, for most sugars, the cyclic form is thermodynamically favoured, 

owing to the bond enthalpy of two C-O bonds in the cyclic form being lower in 

energy than the C=O bond enthalpy present in the linear form. Hence for 

glucose only 0.002% of molecules exist in the reactive open-chain form in vivo, 

with galactose and fructose having 0.02% and 0.7% in the open-chain form 

respectively. Despite this strong preference for glucose to be in the cyclic form 

its role in protein cross-linking is significant, owing to the fact that glucose is the 

most abundant sugar in vivo, with a concentration in the blood plasma of 5 

mmol/L. Fructose on the other hand has a concentration of only 35 µmol/L 

(108). However in some tissues glucose can be converted to fructose by the 

polyol pathways, although the activity of this pathway is low in healthy patients. 

Conversely in diabetic patients this pathway is very active and leads to levels of 

fructose in lenses and nerves that exceed that of glucose (101).  

 

 

Figure 5: Schematic Image of the common AGE cross-links, R1=Lysine 
R2=Arginine 
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Only a few cross-linking AGEs have so far been detected in vivo. There are two 

main sets of AGEs, distinguished depending on the bound amino acids; lysine-

lysine AGEs and lysine-arginine AGEs. The lysine-lysine AGES are MOLD and 

GOLD, two imidazolium compounds which form from methyl glyoxal and glyoxal 

(101). There are four main lysine-arginine AGEs; glucosepane, DOGDIC, 

MODIC and GODIC, seen in Figure 5. MODIC and GODIC also form via 

reaction of the lysine and arginine residues with methyl glyoxal and glyoxal. 

However DOGDIC and glucosepane form by different mechanisms via the 

open-chain sugar. A 2002 study by Biemel et al quantified the levels of these 

AGEs in human lens protein and found concentrations of 132.3-241.7 pmol/mg 

of protein, 1.3-8.0 pmol/mg of protein, 40.7-97.2 pmol/mg of protein and 

concentrations below the quantifiable level of the instrument respectively (101).  

Glucosepane was first identified, by Lederer et al., through model reactions of 

protected lysine and arginine residues with D-glucose (109). The structure of 

glucosepane consists of a seven membered ring made from glucose, with a 

molecular weight of 647 Da. A number of chemical properties have made 

glucosepane difficult to study via common experimental techniques. For 

example the cross-link only absorbs UV light at very short wavelengths, making 

HPLC with UV detection not possible. Also glucosepane is labile to acid 

hydrolysis, which means it can only be quantified after enzymatic digestion and 

not in intact tissue (110).   

The first stage in the formation of glucosepane is the binding of an open 

chained D-glucose molecule to an amino group of a lysine residue to form a 

Schiff base. However, this structure is unstable and will undergo a 

rearrangement to form a more stable fructosamine called the Amadori product. 
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Through a series of carbonyl shifts that takes several weeks, the Amadori 

product produces a dideoxyosone, sometimes referred to as Lederer’s 

glucosone (111, 112). The dideoxyosone then undergoes cyclisation to form a 

cyclic aldimine that reacts with the guanidine group of the arginine residue to 

form glucosepane. This simplified reaction mechanism can be seen in Figure 6.  

Reihl et al., have also shown that the additional hexose sugars, such as, D-

galactose and D-mannose can generate the dideoxyosone (112). One theory to 

explain the abundance of glucosepane is that the final carbonyl rearrangement 

from the Amadori product undergoes a non-reversible dehydration step that 

ultimately leads to an accumulation of glucosepane, whereas other AGEs are 

formed reversibly (113). 

   

Figure 6: Schematic representation of the abbreviated glucosepane formation 
mechanism from glucose 
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Less is currently known about DOGDIC owing to its lower abundance within 

tissues, which has resulted in studies focusing more on the abundant 

glucosepane cross-link. However its significance should not be underestimated, 

as the position of the cross-linking sites may have biological significance, or its 

presence may impede other lysine-arginine AGEs from forming. DOGDIC, 

standing for deoxyglucosone-derived imidazoline cross-link, consists of a five 

membered ring cross-linking a lysine and arginine residue with a 4-carbon 

hydroxylated aliphatic chain extending from the ring, as seen in Figure 5, with a 

molecular weight of 664 Da. Currently the exact mechanism of formation is not 

known. However it has been shown that it too proceeds via the Amadori product 

(114), as opposed to the glucose degradation products. 

 

1.2.1 Impact of Advanced Glycation End Products 

As mentioned previously in 1.2, it has been shown that the polyol pathway is 

more active in patients with diabetes mellitus (108). Combined with the lack of 

insulin, human diabetic patients can develop an increase of glucosepane cross-

link concentration, in skin reaching levels of 4500 pmol/mg (100), resulting in 1 

in 2 collagen molecules being cross-linked. In healthy human skin glucosepane 

levels reach concentrations of 2000 pmol/mg, with on average 20% of the 

collagen molecules being cross-linked by glucosepane. This is significantly less 

than the 50% cross-linked collagen molecules found for diabetic patients, which 

is not surprising considering that serum glucose concentration levels are 

significantly higher than in non-diabetic patients (100). A 2012 audit by Diabetes 

UK found 2.9 million people were diagnosed with diabetes mellitus within the 

UK (115). This value is predicted to double by 2025, such that 10% of the 
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population will be diagnosed with diabetes. For this reason an understanding of 

the complications affecting diabetes sufferers is essential.  

Over the past 30 years there has been a widespread adoption of high fructose 

corn syrup (HFCS) as a replacement for sucrose in the food industry. As a 

result, we will see blood fructose concentration increase and insulin sensitivity 

decrease in consumers of large quantities of products containing HFCS (116, 

117). Both the increase in patients diagnosed with diabetes mellitus, as well as 

the widespread adoption of HFCS in the food industry, means that now an 

understanding of AGEs formation and effect on the body is essential. 

AGEs have been linked to the pathogenesis of several chronic diseases from 

neurodegenerative diseases to cancer (102, 103). Stiffening of the lung ECM 

from the build up of AGEs is likely to contribute to age associated changes in 

lung function, such as loss of elastic recoil and subsequently reduced lung 

capacity (118). So far only pentosidines presence has been proven, although 

the study measured cross-links using fluorescence measurements which will 

not show the presence of other AGEs within the lung tissue, most other AGEs 

not being fluorescence active (118). Several studies have proposed that AGEs, 

through collagen cross-linking, play a role in increasing myocardial and vascular 

stiffness, accumulating in heart and vascular tissue, as well as promoting the 

development of cardiac hypertrophy (119–122). 

It is also widely known that AGEs are responsible for age-related increase in 

stiffness of many collagen-rich tissues (100). The functionality of the 

musculoskeletal system is believed to be strongly reduced by the build-up of 

glucosepane cross-links and other AGEs within its tissues; a long-lived protein 

collagen is particularly vulnerable to AGE cross-linking (123). For example, in 
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tendon a half-life of up to 200 years was calculated for the collagenous 

component based on aspartic acid racemization (124). Components that make 

up the musculoskeletal system tend to have longer half-lives compared to other 

collagenous tissues such as skin (123). Accumulation of reducible sugars in 

bone tissue leads to increased levels of cross-linking of collagen, which has 

been cited as an important contributing factor to the age-related deterioration of 

bone density, potentially leading to osteoporosis (125). A previous study by 

Reddy et al., found that in vitro incubation of rabbit Achilles tendon in ribose 

increased levels of the AGE pentosidine and increases Young's modulus by 

159% from 24.89 ± 1.52 MPa to 65.087 ± 14.41 MPa. This suggests that the 

presence of AGE cross-links increased stiffness of soft tissue (126). This 

decrease in functionality of the musculoskeletal tissues predominantly affects 

the elderly, causing infirmity, and reducing mobility in these generations. By 

gaining a better understanding of the processes that occur within the tissue it 

may be possible to achieve a more active life for the older members of the 

population. This could in turn have huge socio-economic implications. By 2025 

it is predicted that half of the population of the UK will be over the age of 50. A 

better understanding of this aging mechanism could help reduce the pressure 

on public healthcare and the benefits and pension costs that the UK will face.  

In recent years there has been a surge in the use of artificial tissues; created by 

combining cultured cells and a polymer scaffold. Collagen is an ideal scaffold, 

primarily due to it being permissive to host remodelling, as well as the fact it is a 

natural cell substrate conducive to the critical events of cell migration 

(spreading), and its ability to bind to a large number of ECM components (127–

129). It is via this application of collagen as a cell scaffold in tissue engineering 

that we see an advantageous benefit of AGEs presence. The main limitation of 
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the use of collagen in tissue equivalents, particularly in load bearing 

applications, has been the insufficient stiffness and poor strength of the implant, 

which can result in terrible shape retention. A new approach to overcome this 

was the use of cross-linking. However all conventional cross-linking methods 

use chemical and thermal treatment that makes them unsuitable for tissue 

engineering applications, given that such treatments kill cells (130–133). The 

targeted use of non-enzymatic glycation during the fabrication phase of tissue 

constructs, could be utilised to stiffen and strengthen the tissue equivalents 

without damaging the cells within (134, 135). 

 

1.2.2 Treatment of Advanced Glycation End Products 

Due to how little is presently known about cross-linking by AGEs within the body 

there are currently no clinically licensed treatments. Focus has been placed on 

finding methods to slow down, stop or even reverse formation of AGEs. Dietary 

control of glucose consumption alone is not sufficient to prevent cross-links from 

forming, as the serum glucose levels necessary for inhibition would result in 

severe hypoglycaemia and malnutrition (136–139). However, having lower 

serum glucose concentrations through dietary control, would slow down the rate 

of formation.  

The second approach is to find ways of preventing binding to amino acid 

residues. Aspirin has been proven to acetylate the µ-amino residues in many 

proteins including collagen. Pyridoxal-5’-phosphate is also able to protect the 

amino acid by forming a Schiff base with them (140–142). However aspirin and 

Pyridoxal-5’-phosphate’s clinical importance is only minor, owing to the 

abundance of lysine and arginine residues within the body, and thus it would be 



Introduction 
 

- 28 - 

impossible to block every single amino acid residue within the human body. 

Additionally, modification through binding to the amino acid residue will likely 

alter the secondary structure of the protein and may itself introduce detrimental 

effects on function (143).  

Another potential method is to break down the intermediates before the cross-

links form. The human body already produces some enzymes that can remove 

through conversion certain intermediates such as glyoxal, methylglyoxal, 3-

deoxyglucosone and Amadori products (144–146), to less reactive species. 

One example of such an enzyme is Fructosamine-3-kinase, which can convert 

the intermediate Amadori product back to 3-deoxyglucosone and the unglycated 

protein (147). Current research focuses on identifying all of the intermediates, to 

allow further development of treatments by mimicking the role of these natural 

enzymes within the body.  

Cross-link breakers are the most promising field of treatment currently being 

researched; AGEs are very different to any functional chemical structure within 

the body reducing the effect of complications (148). However development of 

cross-link breakers is very complicated, owing to the need to cleave between 

two to four covalent bonds, depending on the AGE. The most promising 

example of these cross-link breakers is alagebrium chloride (ALT-711), 

developed by the Alteon Corporation, which went into phase II clinical trials in 

2005 (149, 150). Unfortunately the promising results seen in the animal model 

were not replicated within the human body, highlighting the need to fully 

understand the processes surrounding AGE formation, its preference for 

binding within the collagen molecule and the role of surrounding molecules 

(151). 
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1.2.3  Previous Studies on Advanced Glycation End Products 

To date few studies have been conducted on AGEs owing to their complexity in 

study both experimentally and computationally. One of the main barriers to 

experimental studies is the long time scale over which these cross-links form, 

with collagen gel integrity decreasing over time; a faster synthesis approach is 

necessary to isolate the effects of cross-linking from those of gel degradation. 

One method adopted was to use more reactive species to generate non-specific 

AGE cross-links for investigation of the mechanical properties. The species 

used were typically glyoxal or ribose based. However for studies of the impact 

of glucosepane cross-links specifically this time factor was still a problem until 

recently, when work by Spiegel et al. produced a new rapid one-pot approach 

for glucosepane synthesis (152). It is hoped that, with the development of this 

new synthesis technique the number of experimental studies probing 

glucosepane will increase.  

Computational studies on advanced glycation end products are also limited, 

owing to the large size of the collagen molecule, with the main focus on the 

formation mechanisms of the cross-links (153, 154). Even the mechanistic 

studies previously conducted have had to make significant compromises in their 

approach. For example, Nasiri et al. conducted a QM study on the mechanism 

of formation of glucosepane, excluding the effect of water and instead using a 

polarisable continuum model, as well as reducing the lysine and arginine 

residues down to be represented by just methyl guanidine and methyl amine, 

thus removing the effect of the remainder of the side-chains on the energetics 

(153).  
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1.3 Hypothesis 

This work will aim to address the general hypothesis that the accumulation of 

AGE cross-links within the collagenous matrix of tendon, ligament and bone is 

detrimental to the tissue’s mechanical and biological function. This hypothesis 

can be broken down further into three main hypotheses: 

1. AGE cross-linking is site specific. 

2.  The presence of glucosepane cross-link has a detrimental effect on the 

biological function of the tissue, specifically on the tissues susceptibility 

to enzymatic degradation. 

3. Determine to what extent the position and quantity of glucosepane cross-

links affects the elastic properties of collagenous tissues. 
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Chapter 2 Methodology 

Molecular modelling is the general term used to simulate the behaviour and 

features of molecular systems and encompasses many different theoretical 

methods and computational techniques. Modelling techniques can be applied 

across a wide range of scales, from small chemical compounds, to large 

biomolecules and across many different fields, including physics, chemistry, 

biology and materials science. The level of detail also varies depending on the 

techniques applied. For example, in quantum mechanical simulations, electrons 

are considered explicitly, whereas in coarse-grained molecular dynamics 

simulations, whole amino acids are the smallest level of detail. The current 

chapter aims to introduce principal components of the simulation techniques 

employed in this thesis. A broader overview of computational techniques can be 

found in many accessible resources (155–158).  

 

2.1 Interaction Potentials 

In force-field methods the lowest unit treated explicitly is atoms meaning 

electrons are not treated explicitly and thus the bonding information must be 

provided rather then it being the result of solving the electronic Schrödinger’s 

equation. A force-field is composed of the bonded and non-bonded interaction 

potentials along with some associated parameters, such as polarisability. The 

sum of the bonded and non-bonded interactions for a single particle yields the 

total energy, with the negative differential of that total energy with respect to 

particle position returning the force on that particle.  
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2.1.1 Bonded Terms 

The bonded portion of a typical interaction Hamiltonian can be seen in Eq.1. 

The first term Ub(rij) gives the potential energy for the stretching of the bond 

between two atoms (i and j). The second term the potential energy function 

Ua(θijk) of the angle bending between three atoms (i, j and k). The third term is 

the potential energy function Uid(ϕijkl) for keeping the chirality and planar 

structure of carbon rings through improper dihedrals and the last the potential 

energy Ua(θijkl)  associated with bond rotation. 

𝑈!"#$%$,! =   𝑈! 𝑟!" +   𝑈! 𝜃!"# +   𝑈!" 𝜙!"#$ +   𝑈!(𝜃!"#$) (Eq. 1) 

Each of the four contributing terms to the total potential energy of the molecule 

are explained in more detail below. 

 

2.1.1.1 Two Body Harmonic Bond Stretching Potential 

A simple harmonic oscillator approximation can be applied when considering 

the bond between two particles, such that the potential energy of bond 

stretching is given by Eq.2 

𝑈!(𝑟) =   
!
!
𝑘!(𝑟 − 𝑟!)!    (Eq. 2) 

where kb is a spring constant between the two particles and where r is the bond 

length and r0 is an ideal bond length such that (r-r0)2 is the squared distance of 

bond length from the ideal value. The contribution to the force from particle i is 

given by Eq.3 and takes the form: 

 𝐹! 𝑟 =   −  𝑘! 𝑟 − 𝑟!      (Eq. 3) 



Methodology 
 

- 33 - 

The simple harmonic bond stretching potential is the method implemented 

within the AMBER force-field, owing to its simplicity and thus greater efficiency. 

However a number of different bond stretching potentials exist; they typically 

take the form of anharmonic bond stretching potentials such as the cubic bond 

stretching potential (159) and the Morse potential (160). With the later being 

capable of explicitly including the effects of bond breaking, such as the 

existence of unbound states, at the cost of a greater complexity and reduced 

computational efficiency. 

 

2.1.1.2 Three Body Harmonic Angle Potential 

The three body angular bond potential, represented by Eq. 4, describes the 

angular vibrational motion occurring between three atoms (i,j,k), and is 

implemented much like the harmonic bond stretching potential.  

𝑈!(𝜃) =   
!
!
𝑘!(𝜃 − 𝜃!)!    (Eq. 4) 

where ka is the harmonic spring constant, the current angle θ and θ0 is an 

idealised angle such that potential energy increases as the angle deviates 

greater from the ideal value. The contribution to the force on each particle within 

the angle can be seen from the three equations below (Eq. 5 -  Eq.7): 

𝐹! =   −   
!!!(!!"#)

!!!
    (Eq. 5) 

𝐹! =   −   
!!!(!!"#)

!!!
     (Eq. 6) 

𝐹! =   −𝐹! − 𝐹!     (Eq. 7) 
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This simple potential can be extended to the Urey-Bradley potential (161) (Eq. 

8), as implemented in the CHARMM force field by inclusion of a second term, 

which is used to describe a covalent spring between the outer atoms (i and k), 

where rik gives the distance between the two atoms, and where rUB is the 

equilibrium distance, kUB is a constant which activates the Urey-Bradley term 

when it is non zero. 

𝑈! 𝜃 =    !
!

𝑘! 𝜃 − 𝜃! ! + 𝑘!"(𝑟!" − 𝑟!")!!"#$%&       (Eq. 8) 

However its use has not been adopted in AMBER, owing to its additional 

parameter that needs fitting when determining the optimal parameters for a 

simulation, also resulting in a reduction in the transferability. Additionally the 

gains from inclusion of this term only produces relatively minor beneficial 

subtleties in the vibrational spectra. For this purpose it is not necessary for 

inclusion in the studies we conduct. 

 

2.1.1.3 Four Body Improper Dihedral Angle Potential 

Improper dihedral angles are designed to ensure that planar groups such as 

carbon rings remain planar and the ring structures do not pucker or flip. The 

improper dihedral angle is defined by four atoms not bonded successively to 

one another, for example; the carboxylate carbon in aspartic acid where the 

improper dihedral is defined by CG-CB-OD1-OD2. The improper dihedral terms 

are implemented typically using a harmonic potential, which takes the form 

shown in Eq. 9, where ϕ is the dihedral angle and ϕ0 is the equilibrium dihedral 

angle between four atoms (i,j,k and l).  

𝑈!" 𝜙!"#$ =    !
!
𝑘!(𝜙 − 𝜙!)!    (Eq. 9) 
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2.1.1.4 Four Body Proper Dihedral Angle Potential 

As the harmonic description is valid only for small deformations, some force 

fields account for the anharmonic effects by adding higher order terms in the 

potential function. For the torsional potential (1,4 interactions) a periodic 

function provides a better description, which can be shown mathematically by a 

Fourier expansion as shown in Eq. 10 

𝑈!(𝜙!"#$) =   
!
!
𝑘![1+ cos 𝑛𝜙 − 𝛿 ]   (Eq. 10) 

where kϕ is a force constant proportional to the barrier to rotation, n is the 

periodicity, indicating the number of minima in the function and δ is a phase 

angle that determines which torsional angle ϕ that corresponds to an minima 

(optimum value).  

 

2.1.2 Non-Bonded Terms 

The interactions discussed in 2.1.1 refer to the bonded interactions, defined by 

the connectivity of the molecule. Conversely the non-bonded terms are not 

defined by the connectivity and are instead distance-dependent, calculated as 

the sum over all atoms with a 4 atom or greater separation. These interactions 

can be considered to consist of two main factors, firstly the Van der Waals 

interactions and secondly the electrostatic or Coulombic interactions. 

 

2.1.2.1 Van der Waals Interactions 

The Van der Waals interactions consist of a repulsion and a attraction term, 

which can be described by a simple Lennard-Jones (162), Buckingham (163) or 

Born-Mayer (164) potential, to name just a few. Despite many functional forms 
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existing, the relatively simple 6-12 Lennard Jones (L-J) potential is most 

frequently employed. Its relative simplicity is due to the absence of the need for 

calculating large number of square roots and exponentials, as is the case in 

more sophisticated potentials such as the Buckingham potential. The general 

form of the L-J potential is given by Eq. 11 below: 

𝑈!" 𝑟!" =   𝜀  
!!"
!"

!!"

!"

−   2
!!"
!"

!!"

!

    (Eq. 11) 

where ε is the energy well depth and 𝑟!"
!" is the inter-atomic separation for the 

which the energy is a minimum. The contributing force, with respect to the 

distance between particle i and j, can be obtained by differentiation of the above 

equation, such that the force is given by Eq. 12, where C is a constant. 

𝐹! 𝑟!" =    12
!!"
!"

!!"
!" −   6

!!"
!

!!"
!     (Eq. 12) 

In the Lennard-Jones potential the short-range repulsions are accounted for by 

the r-12 term, whereas the London dispersion-attraction terms are mediated by 

the r-6 term, hence at short distances the repulsive term dominates. The L-J 

potential goes to zero as rij increases, so typically cut-off distances are used to 

truncate the potential to zero more rapidly, increasing the computational 

efficiency.  

 

2.1.2.2 Electrostatic Interactions 

The electrostatic interactions are typically calculated using partial charges at the 

atom centres with the energy being calculated by using Coulomb’s law. 

𝑈!" =   
!!!!
!!"

     (Eq. 13) 
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where qi and qj are the charges separated by a distance rij. This electrostatic 

term becomes less accurate for highly polarizable groups or ions, where 

polarisable force-fields need be employed. However, for organic systems such 

as in proteins, the Coulombic approach is sufficient.  

 

2.1.3 Amber Force-Field 

The basic force-field equation implemented in AMBER has the form presented 

below in Eq. 14. This is the simplest functional form that preserves the essential 

nature of molecular interactions in a condensed phase at an optimum efficiency.  

𝑈 𝑟 =    𝑘! 𝑟 − 𝑟! !
!"#$% + 𝑘! 𝜃 − 𝜃! !

!"#$%& +    !!
!!"!!"#$%& 1+ cos 𝑛∅−

𝛿 +    𝜀  
!!"
!"

!!"

!"

−   2
!!"
!"

!!"

!

+   !!!!
!!"
  !"!#      (Eq. 14) 

 

2.2 Molecular Dynamics Theory 

Molecular dynamics simulation is a computational technique originally 

developed to simulate liquids by modelling them as hard spheres (165). It was 

later adapted in 1977 to be capable of modelling biological molecules, with 

McCammon simulating the bovine pancreatic trypsin inhibitor (157). Albeit a 

very small system of ~500 atoms in vacuum for only 9.2 ps, this simulation was 

fundamental in showing the dynamic nature of proteins. It was not until 1978 

that the first microsecond simulation of a protein in explicit water was conducted 

(166). Since then advances in both methodology and technology have allowed 

MD to grow from a complementary tool to a field in its own right (167). With 

increasing advances in technologies, the capabilities of MD simulations will 
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continue to grow, for example the use of graphical processing units (GPUs) 

developed in the past 10 years has resulted in a 3600% speed-up compared to 

an equivalent number of CPUs (168). 

The basic underlying principles of molecular dynamics are fairly simple and are 

the same regardless of the software package used. Commonly used molecular 

dynamics software packages such as CHARMM (169), AMBER (170), NAMD 

(171),  DLPOLY and GROMACS (172, 173). All employ the same central 

physical principle; that the nuclei are heavy enough that the Newton’s second 

law of motion (Eq. 15), which relates the force F experienced by a mass m in 

motion to its acceleration (rate of change in momentum) applies. With the vector 

r containing the coordinates of the atoms in Cartesian coordinates such that it is 

a vector of length 3Natom.  

𝐹 = 𝑚𝑎 = 𝑚 !!!
!!!

           (Eq. 15) 

Newton’s equations of motion relate the force (F) to the changes in atomic 

positions as a function of time. The evolution of the atomic coordinates can be 

calculated by integrating Newton’s equation of motions simultaneously in small 

time steps. The force is considered constant during that time step and equal to 

the negative derivatives of a potential energy function U(r1,r2,….,rN) (Eq. 16).  

𝐹! = − !"
!!!

      (Eq. 16) 

For i = 1,2,…..N, and where the potential U is the sum of the contributions to the 

potential energy from both bonded and non-bonded interactions. Through 

combining Eq. 15 and Eq. 16 we obtain Eq. 17, which relates the change in 

position of the atom with the derivative of the potential energy.  
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− !"
!!!

=   𝑚!
!!!!
!!!

    (Eq. 17) 

Given the initial coordinates and velocities, the forces on the atoms determine 

the new positions and velocities at the subsequent time step, through 

integration of Newton’s 2nd equation of motion. 

𝑣 =    !!!
!"!

!!∆!
! =    !

!
!!  ∆!
!

!"
!"
𝛿𝑟   (Eq. 18) 

As the force on the atom depends on the position of all of the other atoms in the 

system, an analytical solution even for the smallest system is not possible. 

Instead, a solution must be found through the use of a time integration 

algorithms.  

 

2.2.1 Time Integration Algorithm 

A number of numerical time integration algorithms have been developed for 

integrating the equations of motion. There are three main elements that need to 

be considered when choosing which integration algorithm to use; the algorithm 

should be computationally efficient; as well as preserving the energy and 

momentum of the system; and allow the adoption of adequately long time steps 

for integration. It is important that the use of the time integration algorithm gives 

a true trajectory. A true trajectory is theoretically possible, however, due to the 

implementation of the mathematics a number of sources of error are introduced. 

For example, round off errors as a result of the finite size of the floating-point 

arithmetic on current computers and the errors introduced from the truncation of 

Taylor expansions. Through careful selection of a time step, the error can be 

minimised such that the trajectory approximates the true trajectory. Although as 

the aim of MD is to obtain average behaviour as opposed to absolute system 
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configurations, this approximate true trajectory following is sufficient as long as 

a good initial configuration is given.  

All the integration algorithms assume the positions; velocities and accelerations 

can be approximated by a Taylor series expansion. The most commonly used 

time integration algorithm is the Verlet algorithm (174), of which there are now 

several variations (175, 176). The basic idea is to write two third order Taylor 

expansions for the positions r(t), one forward (Eq. 19) and one backward in time 

(Eq. 20).  

𝑟 𝑡 + ∆𝑡 =   𝑟 𝑡 + 𝑣 𝑡 ∆𝑡 + !
!
𝑎 𝑡 ∆𝑡! + !

!
𝑏 𝑡 ∆𝑡! + 𝒪(∆𝑡!) (Eq. 19) 

𝑟 𝑡 − ∆𝑡 =   𝑟 𝑡 − 𝑣 𝑡 ∆𝑡 + !
!
𝑎 𝑡 ∆𝑡! − !

!
𝑏 𝑡 ∆𝑡! + 𝒪(∆𝑡!) (Eq. 20) 

Where v is velocities, a the accelerations and b the third derivatives of r with 

respect to t. Adding the two expressions (Eq. 19 and Eq. 20) gives:  

𝑟 𝑡 + ∆𝑡 =   2𝑟 𝑡 − 𝑟(𝑡 − ∆𝑡)+ 𝑎 𝑡 ∆𝑡! + 𝒪(∆𝑡!)  (Eq. 21) 

𝑣 𝑡 =    ! !!∆! !!(!!∆!)
!∆!

   (Eq. 22) 

this is the simplest form of the Verlet algorithm, which uses the positions from 

time (t – Δt) to calculate the new positions at (t + Δt). One problem with this 

form is that the velocities are not directly generated. Although the velocity is not 

needed for the time evolution, it is necessary for computing the kinetic and total 

energy of the system, and hence it has to be computed via a different equation 

(Eq. 22). More recent iterations of the time integration algorithms reproduce the 

same trajectory as this method, but their computation of the velocities is more 

straightforward.  
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The most widely adopted time integration algorithm and the one of most interest 

to us, owing to its implementation within Amber12, is the leap frog algorithm. In 

this method the velocities are first calculated at time (t + 1/2Δt). This is then 

used to calculate the positions at time (t + Δt); hence the velocities leap over the 

positions and then the positions leap over the velocities resulting in the name 

the leap frog algorithm. The velocities are calculated at half integer time steps: 

𝑣 𝑡 − ∆!
!

=    ! ! !!(!!∆!)
∆!

    (Eq. 23) 

where r(t– Δt) is defined as 

𝑟 𝑡 − ∆𝑡 =   𝑟 𝑡 − 𝑣 𝑡 ∆𝑡 + ! !
!!

∆𝑡! −   𝑟(∆𝑡!)+   𝒪(∆𝑡!)  (Eq. 24) 

and  

𝑣 𝑡 + ∆!
!

=    ! !!∆! !!(!)
∆!

   (Eq. 25) 

where r(t + Δt) is defined as  

𝑟 𝑡 + ∆𝑡 =   𝑟 𝑡 + 𝑣 𝑡 ∆𝑡 + ! !
!!

∆𝑡! +   𝑟(∆𝑡!)+   𝒪(∆𝑡!)  (Eq. 26) 

From these equations we are able to obtain an expression for the new position 

at (t + Δt) based on the old position and the velocities:  

𝑟 𝑡 + ∆𝑡 =   𝑟 𝑡 + 𝑣 𝑡 + !
!
∆𝑡 ∆𝑡   (Eq. 27) 

With the update in the velocities occurring at half integer time steps given by: 

𝑣 𝑡 + ∆!
!

= 𝑣 𝑡 − ∆!
!
+ ∆𝑡   !(!)

!
   (Eq. 28) 

The leap frog algorithm will produce a trajectory identical to that produced by 

the above Verlet scheme. However as the velocities are calculated at half 
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integer time points, and not at the same time as position, then the kinetic and 

potential energies are not calculated at the same time, making it impossible to 

obtain the total energy of the system at the current time step. Instead the total 

energy comes from an average value over a given time interval.  

 

2.2.2 Canonical Ensemble 

In the canonical ensemble, more commonly referred to as the NVT ensemble, 

the amount of substance N, volume V, and temperature T are conserved. In the 

NVT ensemble the temperature T can be calculated by Eq. 29, where Nf equals 

the number of degrees of freedom and kb is the Boltzmann constant. The 

energy of endothermic or exothermic processes are exchanged with a 

thermostat, which adds or removes energy to the system to maintain the 

temperature around an average. There have been a number of thermostats 

developed; velocity scaling (177), the Andersen thermostat (178), the Nosé-

Hoover thermostat (179), the Langevin thermostat (180) and the coloured-noise 

Langevin thermostat (181). Below we discuss in greater detail the Langevin 

thermostat and the Berendsen thermostat, which were used in our studies.  

𝑇 ∆𝑡 =    !!!!
!(∆!)

!!!!
!
!!!     Eq. 29 

 

2.2.2.1 Berendsen Thermostat 

The Berendsen thermostat maintains the temperature of the system by coupling 

the system to a thermal bath, which gradually scales the velocities 

proportionally to the differences between the system temperature and that of 
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the thermal bath. Mathematically the change in temperature is illustrated in Eq. 

30. 

!"(!)
!"

=    !
!
𝑇! − 𝑇(𝑡)      (Eq. 30) 

where τ is the coupling parameter between the heat bath and the system, T(t) is 

the actual temperature at time t, and T0 is the desired temperature. At the limit 

where τ equals infinity, the system replicates exactly the isokinetic canonical 

ensemble although, as τ never reaches infinity, the system only approximates 

the canonical ensemble. However its relative stability, seen by the absence of 

large oscillations during its function, makes it an ideal thermostat for early 

equilibration steps, as the thermostat exponentially decays to equilibrium.   

 

2.2.2.2 Langevin Thermostat 

The Langevin is based on the principle that the motion of a large molecule 

through a continuum of smaller particles, such as a protein through a water 

environment, will be altered. The water alters the dynamics of the protein, via 

random collisions and by imposing a frictional drag force on the protein.  

For each time step, Δt, the Langevin thermostat changes the equation of motion 

by introduction of a dampening factor, so that the change in momentum is given 

by:  

∆𝑝! =   𝐹! −   𝛾!𝑝! + 𝑓! Δ𝑡      (Eq. 31) 

where γi is a friction coefficient, with γpi damping the momenta and fi is a random 

force with dispersion σi related to the friction coefficient γi  via (Eq. 32) : 

𝜎! = 2𝑚!𝛾!𝑘!𝑇/Δ𝑡    (Eq. 32) 
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where mi is the mass, kb the Boltzman constant, T temperature and Δt being the 

time step used in the time integration algorithm. This random fluctuating force 

represents the thermal fluctuations from the small particles. The random force 

and the friction coefficient combine to create the correct canonical ensemble. 

 

2.2.3 Isothermal–Isobaric Ensemble 

The isothermal-isobaric (NPT) ensemble is a constant pressure extension to the 

canonical ensemble. In this ensemble, temperature, pressure and number of 

particles are all kept as a constant. This is the most commonly employed 

ensemble, as chemical reactions are typically carried out under constant 

pressure conditions. The ensemble is typically maintained by one of two 

methods; a weak coupling to an external pressure bath Berendsen barostat 

(182); or via addition of an extra degree of freedom to the Hamiltonian, 

Parinello-Rahman barostat (183). 

 

2.2.3.1 Berendsen Barostat 

The Berendsen barostat (182) maintains the pressure of the system by a weak 

coupling of the system to an external pressure bath using the principle of least 

local perturbation. The coordinates and box vectors are rescaled by a 

coordinate rescaling factor µ at each MD time point using the relationship 

shown in Eq. 33: 

𝜇 = (1−   !∆!
!!

𝑃! − 𝑃 )
!
!    (Eq. 33) 

where P0 is the applied external pressure, Δt is the size of the MD time 

increment, β is isothermal compressibility, τp is a time constant and P is the 
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internal system pressure. Where the instantaneous internal system pressure P 

is given by Eq. 34, where V is the system volume and f(rij) is the force exerted 

on particle i by j. The change in pressure over time is proportional to a 

diminishing approximation of the pressure relative to a reference pressure P0, 

given by Eq. 35. 

𝑃 = 𝜌𝑇 +   
!(!!")!!! ∙  !!"

!!
    (Eq. 34)  

!"
!"
= !!!!

!!
     (Eq. 35) 

This relationship results in the phenomenon that the average pressure of the 

system is correct, however as τp never goes to infinity, the approach will never 

yield an exact isothermal-isobaric ensemble (183).  

 

2.2.3.2 Parrinello-Rahman Barostat 

The Parrinello-Rahman barostat (183) conversely does theoretically yield an 

exact isothermal isobaric ensemble, by allowing the volume and the shape of 

the cell to fluctuate, as well as through the extension of the Hamiltonian. The 

Hamiltonian (Eq. 36) is extended by inclusion of a thermal reservoir term s and 

a friction parameter γ: 

𝐻 = 𝐾 + 𝑈 + 𝐾! +   𝑈!   (Eq. 36) 

Where K is the kinetic energy and U the potential energy terms, with the 

equation of motion (Eq. 37) showing that the acceleration of an particle i is 

reduced by a factor given by 𝛾   !"
!"

. 

!!!!
!!!

=    !
!!
−   𝛾   !"

!"
      (Eq. 37) 
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2.2.4 Constraint Algorithm 

In an ideal scenario the time step used in the molecular dynamics simulations 

should be small enough to capture all of the intramolecular atomic interactions, 

including the higher frequency bond vibrations, especially those to the light 

elements. However, even for the simplest of molecular systems, this would be 

an excessive drain on computer resources.   

Often, in order to use longer time steps, the highest frequency motions, such as 

the bonds to light elements, need to be eliminated. The most common way to 

do this is to constrain the bond lengths to those elements, typically hydrogen, 

through the use of a number of different algorithms such as SHAKE (184), or 

linear constraint solver (LINCS) algorithm (185). The algorithms work by making 

a correction to the set of new atomistic positions for all atoms connected by the 

constrained bonds. Throughout our studies, all hydrogen – heavy atom bonds 

are constrained using the AMBER12 implementation of SHAKE. SHAKE works 

by making a modification to the Leapfrog time integration algorithm, the 

velocities are first generated for the unconstrained system, then are modified 

iteratively until the constraint is satisfied, with each iteration the velocities and 

positions are updated by adding a contribution due to the restoring forces.  

 

2.2.5 Periodic Boundary Conditions  

Another approach to minimise the computational cost of simulations of bulk 

periodic structures is the use of periodic boundary conditions. Periodic 

boundary conditions are applied to a finite particle system to mimic an infinite 

system. The simulation box is replicated though space to form an infinite lattice 

by rigid translation in all three Cartesian directions, completely filling space. 
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Such that each of the surrounding boxes are exact copies in every detail of the 

simulation box, including the velocities and concentrations of impurities. A 

consequence of this is that a particle moving out of the unit cell is replaced by 

an identical atom at the opposite face of the cell. The use of periodic boundary 

conditions has two additional effects; firstly the number of atoms within the cell 

is conserved; secondly that no atom feels surface forces, as the surface of the 

cells are removed by the presence of the periodic boundary conditions. During a 

molecular dynamics study an atom may interact with an atom in a neighbouring 

cell (which is an image of an atom within the simulation cell), as it is within the 

cut-off radius. It will then ignore the equivalent atom in the simulation cell, as it 

will be too far away, thus the interaction is always calculated with the closest 

image. This is known as the minimum image convention. For this reason, when 

choosing the cut-off radius for the simulation, it must be less than half the 

lowest dimension of the simulation cell.  

 

2.2.6 Solvent Models 

In computational modelling of biomolecules, a realistic representation of the 

local environment surrounding biomolecules is necessary, crucially an accurate 

model for the solvent-molecule interactions. There are two main approaches, 

which can be employed; explicit and implicit solvent models.  

In implicit solvent models, solvent effects are simulated as a perturbation to the 

gas-phase behaviour of the system (186). The introduction of additional 

equations to model the mean field effect of the solvent whilst simultaneously 

reducing the number of degrees of freedom that need to be simulated, resulting 

in greater computational efficiency. A variety of implicit solvent models have 
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been developed over the years, all with slight variations on the same key 

principles (187–191). One of the major drawbacks of implicit solvent models is 

their inability to reproduce the microscopic features of the solvent environment. 

Additionally, in the context of collagen modelling, we have seen in Chapter 1, 

the importance of solvent mediated hydrogen bonding in the stabilisation of the 

triple helical structure; it is for this reason that all of the simulations are 

conducted using an explicit solvent approach. 

Explicit solvent approaches include water molecules physically within the 

simulation cell. This allows for the solvent-solute interactions to be considered 

explicitly. Despite water being a small molecule, its inclusion within molecular 

dynamics simulations is not simple owing to its complex behaviour; it is for this 

reason that a number of water molecules have been developed over the years. 

The most commonly adopted water models include; Berendsen’s single point 

charge model (192); and Jorgensen’s TIP3P (193), TIP4P (193) and TIP5P 

(194) models. The TIP3P water model assumes a rigid geometry with three 

atom-centred partial charges, which are exactly balanced between the positive 

charge on the hydrogen atoms, and the negative charges on the oxygen atom. 

Additionally the TIP3P model contains only one Van der Waals interaction site, 

localised on the oxygen atom. The TIP4P model builds on this idea by still 

maintaining a rigid geometry but, instead of having the negative charge centred 

on the oxygen atom, it is instead at a point along the bisector of the HOH angle, 

closer to the hydrogen atoms. The TIP5P model localises the negative charges 

to the lone pairs on the oxygen atoms, resulting in 4 point charges and one Van 

der Waals interaction site being considered within the model, hence it’s name 

TIP5P. Explicit water molecules within the system increases the number of 

degrees of freedom and thus leads to a slower statistical convergence of 
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molecular properties. It was for this reason that we have chosen to use TIP3P 

water throughout our simulations owing to its simplicity, and its greater 

computational efficiency that makes it amenable to studies of larger systems. 

 

2.3 Optimisation Algorithms 

Optimisation is the general term used to describe the process of finding a 

stationary point of a function, which in most cases is a minimum with a first 

derivative of zero and values for the second derivative being positive. Potential 

energy surfaces are not always a simple function, but instead are multi-

dimensional functions, which may contain many points at which the first 

derivative is zero. Therefore the potential energy landscape can be made up of 

multiple minima. The lowest value is the global minimum with all the others 

referred to as local minima.  

The simplest reasonable approach to minimising a function is the simplex 

method, which uses function values to construct an irregular polyhedron in 

parameter space and then moving this polyhedron towards the minimum whilst 

allowing the size to fluctuate to improve the convergence (195). However it 

becomes too slow for multi-dimensional functions, so is not used for 

minimisation of the potential energy surface in MD studies, although it has been 

implemented in the refinement of force-field parameters in a number of studies 

(196, 197). 

Owing to the multivariate nature of modelling techniques, most methods 

assume that at least the first derivative of the function, with respect to all the 

other variables, the gradient g, can be calculated directly. Additionally the 

function and derivatives are calculated with a finite precision, which depends on 
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the computational implementation. Consequently, a stationary point cannot be 

located exactly but the gradient can be reduced to certain limits within the cut-

off value. Hence if the gradient is reduced to within certain limits, or if the 

difference in the values between two steps is less than a threshold tolerance, 

then it can be deemed that the optimisation has converged. First order methods 

use the energy gradient (steepest descent and conjugate gradient), while 

second order methods use the second derivatives (Newton Raphson). 

 

2.3.1 Steepest Descent Algorithm 

The steepest descent method is a first order method and uses the first 

derivative of the function to determine the direction towards the minimum. It is 

named steepest descent owing to the fact that the direction of the first 

minimisation is in the direction opposite to which the gradient vector g is largest. 

This can be defined as d = -g, where d is the direction vector for the line search. 

Once the function begins to increase an approximate minimum can be 

determined by interpolation between the two points. At this new point a new 

gradient is determined and the step repeated, with the d being orthogonal to the 

previous direction. 

The method is fast, easy to apply and, if the minimum exists, then the method is 

guaranteed, given an infinite number of iterations to find it. However there are a 

couple of drawbacks to the method. Firstly, as the line searches are always 

perpendicular to one another, if there is a gradient component along the 

previous search direction, which could further lower the function in that 

direction, it is ignored, hence the algorithm has a tendency for each iteration to 

partly spoil the function lowering from the previous step. Additionally the 
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algorithm begins with a reasonable convergence, but as the minimum is 

approached the rate of convergence slows down, with the line searches 

crawling toward it with an ever-decreasing speed. Therefore it is most 

commonly adopted as an initial method to relax a poor starting point, owing to 

the fact it is one of the few methods guaranteed to lower the function. However 

it is nearly always used in conjunction with another method, which can converge 

to the minimum in close proximity quicker.  

 

2.3.2 Conjugate Gradient Algorithm   

The conjugate gradient method is another first order method which tries to 

overcome some of the limitations present in the steepest descent method, 

namely the partial undoing of the previous step. The first step is performed in a 

the same manner as the steepest descent step. However the next stage 

incorporates a small portion of the previous direction in the next search to 

prevent the oscillating back and forth that can sometimes be present in the 

steepest descent approach. The direction vector of the conjugate gradient 

search vector can be defined by Eq. 38, where the value for β can be derived by 

a variety of methods. β defines the degree of weighting of the previous 

directions placed on the current direction. 

𝑑! = −𝑔! + 𝛽!𝑑!!!     (Eq. 38) 

This method allows a more rapid movement towards the minimum once in close 

proximity, giving greater convergence properties. Structures far away from the 

minimum the convergence is much slower, hence typically a combination is 

used in such circumstances.  
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2.4 Steered Molecular Dynamics 

Steered molecular dynamics (SMD) simulations apply an external force to the 

system, to a particular atom or group of atoms, to probe their mechanical 

properties or to accelerate processes that are otherwise too slow to model via 

conventional MD simulations, owing to the timescales on which they occur. 

SMD bears similarities to umbrella sampling techniques (198–200), which also 

aim to guide the system through an event that occurs on a long timescale. 

However SMD does not require equilibrium simulations. Instead perturbation of 

the system via a constant force result in simulations deviating far from 

equilibrium, and hence they must be analysed as such (201). The main principle 

behind SMD is to apply an external factor to guide the system from one state 

into another. There are two types of SMD; constant force pulling and constant 

velocity pulling. During constant force SMD, the selected atoms are subject to a 

fixed constant force in addition to the force generated from the force-field 

potential. Constant velocity pulling is of particular interest as it mimics the 

implementation of experimental techniques such as atomic force microscopy 

(AFM) and optical tweezers, giving complementary atomistic scale detail on the 

response of the system to an a mechanical load. It is for this reason that it is 

this implementation that will be used throughout our investigations. 

In constant velocity SMD the defined atom, or the centre of mass of a group of 

defined atoms of the protein, is harmonically restrained to a dummy atom (a 

point in space) via a virtual spring, with spring constant k, which is then moved 

along a given vector (𝑛) at a defined constant velocity (v)(171). The movement 

of the dummy atom results in the defined pulling group of atoms experiencing a 

resultant force that depends linearly on the distance between the dummy atom 

and pulling group. This may result in the pulling group following along the same 
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vector. The force can then be extracted from the output of simulations to be 

able to probe the mechanical properties with its relationship to the potential 

energy shown below in Eq. 40. 

𝐹!"# 𝑟 =   −∇𝑈!"#(𝑟)    (Eq. 39) 

𝑈!"# 𝑟 =    !
!
𝑘[𝑣𝑡 − 𝑟 − 𝑟! 𝑛]!    (Eq. 40) 

 

Analysis of the energetics of non equilibrium structures, is also possible using 

the Jarzynski relationship (202). This is based on the assumption that, when 

some external parameters of a system are changed infinitely slowly, then the 

total work done on a system is equal to the free energy difference between the 

initial and final states. 

 

2.5 Electronic Structure Methods 

Unlike the force-field approaches discussed above, electronic structure 

methods apply the laws of quantum mechanics to consider the electrons 

explicitly. The electronic and structural properties of a system, with M nuclei and 

N electrons, can be calculated by solving the Schrödinger’s equation. The time 

independent Schrödinger’s equation in its barest form is: 

𝐻Ψ = EΨ    (Eq. 41) 

where 𝐻 is the Hamiltonian, a differential operator which represents the total 

energy of the system, Ψ the wave function and E is the energy of the system. 

The non-relativistic Hamiltionian operator 𝐻 consists of the sum of the kinetic 

and potential energy operators of all of the particles within the system, both 
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electrons and nuclei. This is defined by Eq. 42:           

(Eq. 42) 
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  Ψ = 𝐸Ψ 

where the indices i  and j are electrons which run from 1 to N, while the indexes 

A and B, are nuclei enumerated from 1 to M. M and Z are the mass and the 

atomic number of the nucleus A and ria, rij and Rab, are distances which define 

the electron-nucleus, electron-electron and nucleus-nucleus separations 

respectively. ∇! represents the Laplacian operator, a differential operator, with 

  ∇!! and   ∇!!  involving the second derivative with respect to the coordinates of 

the ith electron and the Ath nuclei. The equation shows that the Hamiltonian is 

the sum of all of the contributions to the total energy including; the kinetic 

energy of all the electrons and nuclei (term 1 and 2); the Coulomb attraction 

between electrons and nuclei (term 3); the Coulomb repulsion between all 

unique electrons (term 4); and all unique pairs of nuclei (term 5). 

The Schrödinger’s equation can be solved exactly for hydrogen atoms and 

other one-electron systems. However for systems of two or more electrons 

approximations are required. The forces on both nuclei and electrons due to the 

electric charge are of the same order of magnitude, thus the change in 

momenta as a result of this force must also be equal. Hence it can be assumed 

that the momenta of both electrons and nuclei are of a similar magnitude, yet 

the mass of the nuclei is significantly larger than the mass of an electron (for 

hydrogen the mass ratio is larger than 1800), hence the nuclear motion must be 

much slower to be of similar momenta. Thus when solving the time independent 

Schrödinger equation, the nuclei can be considered as stationary and that the 
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electrons will relax to the instantaneous ground state. This approximation 

makes it possible to separate the electronic and nuclear coordinates in the 

many-body wavefunction, which reduces the problem to the solution of the 

dynamics of the electrons in some frozen configuration in the nuclei (the Born-

Oppenheimer approximation) (203). When the approximation is included, the 

wavefunction can be obtained by solving the electronic Schrödinger’s equation 

(Eq. 44), the kinetic energy of the nuclei and the coulomb repulsion term for the 

nuclei are now constant and hence are omitted from the Hamiltonian.  

𝐻!"!# =   −
!
!
∇!! −     

!
!!!

∇!!!
!!!

!
!!! −    !!

!!"
!
!!!

!
!!! +    !

!!"
!
!!!

!
!!!    (Eq. 43) 

The solution of the Schrödinger’s equation involving the electronic Hamiltonian 

then becomes:  

𝐻!"!#Ψ!"!# = E!"!#Ψ!"!#   (Eq. 44) 

where Ψ!"!# is the electronic wavefunction: 

  Ψ!"!# = Ψ!"!# 𝑋! ; 𝑅!     (Eq. 45) 

and E!"!# is the electronic energy, which depends parametrically on the nucleus 

coordinates: 

E!"!# = E!"!# 𝑅!     (Eq. 46) 

From solution of the electronic Schrödinger’s equation in a fixed nuclear 

configuration 𝑅! , we can obtain the potential generated by the electrons on 

the nuclei, which allows calculation of the forces acting on the nuclei. This force 

represents the basis of geometry optimisation and ab initio molecular dynamics. 

The surface defined by Eq. 46, is the Born Oppenheimer surface at which at 
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optimal geometry of a system the surface is at a minimum. Even with the use of 

the Born-Oppenhemier approximation, solving the electronic Schrödinger’s 

equation is still a difficult task, even for simple systems. 

 The main difficulty is the presence of the interaction term !
!!"

!
!!!

!
!!! . 

Reformulation of the multi-electron problem is possible, into a series of one 

electron problems, which define for each ith electron of the system an effective 

potential ℎ! associated with the presence of the other electrons this allows the 

N-electron Hamiltonian 𝐻!"!#, to be rewritten as the sum of N single-electron 

Hamiltonians ℎ! (Eq. 47) 

𝐻!"!# =    ℎ!!
!!!     (Eq. 47) 

There are two common approaches to reformulating the multi-electron problem, 

either Hartree Fock theory and Density Functional Theory 

 

2.5.1 Hartree Fock Theory 

The Hartree Fock (HF) theory uses the original multi-electron wavefunction for 

an atom as the product of one-electron orbitals Ψ! 𝑥  in the following way: 

Ψ   𝑥! ,… , 𝑥! =   Ψ! 𝑥! Ψ! 𝑥! …Ψ!(𝑥!)   (Eq. 48) 

The wave function of the system is also shared in one-electron functions Ψ! 𝑁  

called spin orbital, which is the product of a spatial orbital and a spin function. 

This function is called the Hartree product Ψ!"    𝑥! ,… , 𝑥! . Electronic 

wavefunctions are antisymmetric with respect to the exchange of labels, but the 

Hartree product does not satisfy this anti-symmetry principle. These defects 

were corrected by Slater (204), in the self-consistent-field-approach, in which 
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determinant functions are used to introduce the asymmetry of the wave 

function. 

Ψ!"    𝑥! ,… , 𝑥! =    !
!!
det

Ψ!(𝑥!) ⋯ Ψ!(𝑥!)
⋮ ⋱ ⋮

Ψ!(𝑥!) ⋯ Ψ!(𝑥!)
  (Eq. 49) 

This is the so called Slater determinant in Eq. 49, where 𝑥 ≡    𝑟,𝜎  is the set of 

all spatial and spin coordinates of one electron. This form is not arbitrary, it is 

the simplest form that holds the antisymmetry principle for the wavefunction: 

when the coordinates of two electrons are exchanged in the wavefunction, the 

result equals the original wavefunction but with the opposite sign. This principle 

is just a mathematical implementation of Pauli’s exclusion principle, which 

states that two electrons in a system cannot have identical quantum numbers.  

The corresponding energy of the wavefunction can then be calculated by: 

𝐸 =    ! ! !
! !

=    !∗  !!  !"
!∗  !  !"

   (Eq. 50) 

where Ψ∗ is the complex conjugate of Ψ, and the integration is with respect to 

the three spatial coordinates and the one spin coordinate for each electron. 

Additionally the variational principle states that the energy calculated from the 

above equation (Eq. 50) must be greater than or equal to the true ground state 

energy E0 (Eq. 51).  

𝐸 =    ! ! !
! !

  ≥ 𝐸! =   
!! ! !!
!! !!

   (Eq. 51) 

ψ can be chosen to be expressed using an orthonormal set owing to the fact 

that the value of the determinant is unchanged by any non-singular linear 

transformations. A Lagrange multiplier 𝜀! normalises the ψ.  
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!"
!!!

= 0    (Eq. 52) 

This reduces to a set of one-electron equations of the form: 

𝐹ψ! =    𝜀!ψ!    (Eq. 53) 

which is called the Hartree Fock equation, where the Fock operator 𝐹  is defined 

as: 

𝐹 =   −   !
!
∇! −      !!

!!!!
+ 𝑣!"   !

!!!       (Eq. 54) 

the Fock operator 𝐹, describes the effect of all particles, including the electrons, 

on the solution of a one electron from the system. The Fock operator consists of 

three key terms; the first term is the kinetic energy of the electron; the second is 

the interaction of the electron with the nuclei; the third is the exact-exchange 

operator 𝑣!"   representing the average potential experienced by the ith electron 

due to the presence of the other electrons. The exact-exchange operator is due 

to the interaction of the electron with the cloud of the rest of the electrons and 

the repulsion between electrons of like spin, which is a consequence of the 

antisymmetry principle. 

The Hartree Fock approximation describes the motion of one electron in the 

average field created by all other electrons of the system. The difference 

between the exact total energy and the total energy given by the HF method is 

generally called the correlation energy. Although the magnitude of the 

correlation is not always significant and can sometimes be neglected, in other 

systems it can play an important role and different post-HF methods have been 

developed to deal with this discrepancy, such as DFT.  
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2.5.2 Basis Sets 

Basis sets are used as an approximation to the true orbitals with mathematical 

functions. Larger basis sets approximate more accurately the orbitals by 

imposing fewer restrictions on the locations of electrons in space. With basis 

sets, assigning basis functions to each atom within a molecule to approximate 

its orbitals, with these basis functions themselves being composed of a linear 

combination of Gaussian functions. These basis functions are called contracted 

functions, with their component Gaussian functions referred to as primitives. 

These localised orbitals have a maximum concentrated on a nucleus and decay 

to zero at infinite distance. The mathematical form of the Gaussian type orbital 

is shown below in Eq. 55, where N is a normalisation constant, r,x,y,z are the 

Cartesian coordinates, and ξ is a parameter which determines the height of the 

exponential function. 

𝜒!"# 𝑥,𝑦, 𝑧 =   𝑁𝑥!!𝑦!!𝑧!!𝑒!!!!   (Eq. 55) 

A variety of different basis set types exist; minimal basis sets, split valence 

basis sets, polarised basis sets and basis sets with diffuse functions. Minimal 

basis sets contain the minimum number of basis functions that are needed for 

each atom. Split valence basis set uses more basis functions per atom. They 

can commonly be double zeta valence basis sets from the linear combination of 

two sets of functions per atomic valence orbital, or triple split valence basis sets 

which uses three sets of contracted function per valence orbital type. Polarised 

basis sets improve split valence basis sets by adding orbitals (of different 

shapes), with angular momentum greater than is required for a proper 

description of the ground state, such as adding d-functions to carbons atoms 

and p-functions to hydrogen atoms. Diffuse functions are added to basis sets 
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occupy a larger region of space, which is important for systems where electrons 

are far from the nucleus.   
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Chapter 3 Parameterisation of a Force Field for Glucosepane 

and DOGDIC 

 

3.1 Introduction 

The fundamental basis for force field methods is atoms, with electrons not 

considered as individual elements. This means that the bonding information 

must be provided explicitly in the form of a force field, rather than being the 

result of solving the electronic Schrödinger equation. It has long been 

recognised that the accuracy of the force field is fundamental to successful 

application of the computational methods. 

There are two main methods to derive the force field; either by fitting to 

quantum mechanical data or fitting to experimentally obtained data. If fitting to 

experimental data care has to be taken to fit the data to experiments, which 

reflect the kind of applications the force field will be used in. For example data 

on geometries of small molecules is best taken from gas phase structural 

studies, such as microwave or electron diffraction. Solution-based data, should 

be avoided owing to the unknown influence of the environment. Other sources 

of experimental data, such as spectroscopic data, can be used to provide 

information on rotational barriers and vibrational frequencies. Thermodynamic 

data, such as enthalpy of formation, can also be used although care must be 

taken to determine the group contributions. This approach requires having a 

suitable amount of experimental data to generate a reliable force field, which 

may not be possible for reactive/unstable compounds.  

Data from ab initio calculations can also provide data for fitting a force field to, 

which is useful when experimental data is inadequate or lacking. The obvious 
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limitation to this approach is the quality of the DFT method and basis set used 

in the calculations. However with significant amounts of computational 

resources this becomes less of a problem. Force constants can be calculated 

from diagonalisation of the quantum mechanical hessian obtained from 

frequency calculations on the optimized structure. If the intra-molecular portion 

of the force field is expressed in terms of bond, angle or dihedral (molecular 

internal coordinates) force constants, then a significant problem arises in 

ensuring invariance of the individual force constants with respect to the given 

internal coordinate, as a molecule can be described by a variety of sets of 

internal coordinates, all of which may give different values for the force 

constant. Two main methods have been developed to overcome this problem in 

the parameterisation; Seminario developed a method in 1996 that is fully 

invariant to the internal coordinates used (205) and hence allows full 

parameterisation direct from the results of the quantum mechanical calculation; 

Ayers et al. (206) developed a iterative program which uses a Molecular 

Mechanics Matrix based on the gaff force field (207) as well as the quantum 

mechanical hessian to derive intra-molecular force constants independent of the 

internal coordinate. In addition to the force constants and equilibrium term 

values, point charges are also required for a complete force field. To date there 

is still not a unified approach between the different published force fields. 

However the basic approach is to derive the charges from fitting to an 

electrostatic potential surrounding the molecule (208). 
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3.1.1 Amber Force Field 

The Amber force-fields are among the most widely used for biomolecular 

simulations; with the original 1984 article currently being the 10th most-cited in 

the history of the Journal of the American Chemical Society (209). The early 

Amber force field was initially derived for simulating the structures, 

conformational and interaction energies of proteins, nucleic acids and a small 

number of related organic molecules. Over proceeding years it has been 

extended to include force field terms for carbohydrates (GLYCAM force field) 

(210), and lipids (Lipid14) (211). The GLYCAM force field focussed, not only on 

development of the bonded terms, but optimisation of the terms for the 

glycosidic torsion angles as well as the non-bonded interactions. The initial 

motivation for the development of the Amber force field was to accurately 

describe structures in the condensed phase with a simple, transferable and 

general model. The Amber force fields all work by defining atom types and 

parameterising these for atoms that are both chemically and physically alike. 

The initial Amber force field, developed by Weiner et al., generated its bonded 

terms using microwave and X-ray data on compounds which corresponded to 

fragments of the amino acids they were being developed to model (209). The 

initial equilibrium bond lengths and angles were taken directly from this data 

and the initial force constants were generated through a linear interpolation 

algorithm between the pure single bond and pure double bond. These initial 

equilibrium lengths, angles and force constants were then adjusted as 

necessary to reproduce experimental normal mode frequencies. The 

electrostatic potential derived charges were computed at the HF/STO-3G level 

of theory, where STO-3g is a minimal basis set with 3 primitive Gaussian 

functions fitted to one slater type orbital. A decade on the Weiner et al. force 
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field was replaced by a second generation force field developed by Cornell et 

al., ff94 (208). The major change in this new, and subsequent iterations of the 

fixed charge force fields, were the restrained electrostatic potential (RESP) 

method for charge derivation at HF/6-31G* level of theory (212, 213). The use 

of the 6-31G* basis set alone (ESP-fit) leads to a uniformly overestimate of 

molecular polarity, however it gives excellent reproduction of condensed phase 

inter-molecular properties (214). The use of a 6-31G* ESP-fit does suffer from 

two drawbacks; there is considerable variation in charges depending on the 

conformation of the molecule, and less than ideal charges for “buried” atoms 

are given (208). Given these deficiencies, the RESP approach was 

implemented, via a two-stage process, using a least-squares fit of the charges 

to the molecular electrostatic potential (MEP), with the addition of hyperbolic 

restraints on non-hydrogen atoms, thus reducing the charge on interior atoms of 

the molecules which can be reduced to more reasonable values, such as buried 

carbons. The second stage is to fit methyl groups, which require equivalent 

charges on hydrogen atoms which are not symmetrically equivalent (212, 213). 

R.E.D. is a web-based server which conducts an automated implementation of 

the methodology for RESP charge derivation, as was conducted in the Cornell 

force field production, from a PDB structure (215, 216).  

As very few studies have been conducted on AGEs cross-links previously, 

especially computational investigations, there is a real need to create reliable 

parameters for these structures. Implementation within Amber should be 

efficient, owing to the organic nature of the cross-links. However we will opt to 

parameterise them using a similar approach to the ffXX force fields of Amber. 

This is owing to the fact the use of GAFF force field (207) for the AGE, would 

result in covalent bonds forming between the collagen and AGE which would be 
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described by two different force fields, which were generated using different 

philosophies, and hence may introduce inconsistencies into the system. The 

ff99SB force field was chosen owing to its reduced computational expense 

when compared to the polarisable Duan et al., ff03 force field (217, 218). We 

intend to use the collagen specific additional terms for hydroxyproline in our 

collagen simulations which are only implemented in ff99SB force field (219). 

Through the use of Gaussian09 (220) and R.E.D. tools (215, 216) we will 

generate reliable parameter files for the most abundant AGE glucosepane and 

another lysine-arginine derived cross-link DOGDIC. 

 

3.2 Methodology 

To generate the structural data for the creation of the parameters for the two 

AGE cross-links, we begin by loading a lysine and arginine residue, with their 

Cα atoms separated by 10 Å, into the molecular modelling and building software 

Avogadro (221). This is the starting point for the building of both of our AGE 

structures. The cross-links are then drawn between the two residues in 

Avogadro before a universal force field minimisation (UFF) is conducted to 

optimise the geometry of the drawn AGE, reducing the bond lengths to within a 

reasonable range (222). An acetyl group is added onto the backbone N-

terminus and a methyl amide group is added to the C-terminus of the amino 

acid residues. This is for generation of more accurate RESP charges for the 

backbone atoms, taking into account the peptide backbone. 

The two structures are then used in HF calculations, conducted using 

Gaussian09, to further optimise the geometries, as well as for computing the 

MEP around the optimised geometry. 
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3.2.1 Gaussian Methodology 

A tight convergence geometry optimisation of the two AGE models was 

performed, using the HF method with the 6-31G* basis set, implemented in 

Gaussian09 (223). The 6-31G* basis set is a split valence double zeta polarized 

basis set, which adds 6d functions to the first row elements, including orbitals 

with angular momentums greater than is required for a proper description of the 

ground state. The calculation was run with a charge equal to 0 and a multiplicity 

equal to one. Confirmation that a minimum for the energy of the optimised 

geometries had been reached was proven via the absence of imaginary modes 

in frequency calculations of the structure. 

 

3.2.2 PyRED Server 

The QM output files, in addition to the optimised geometry from the Gaussian 

calculations, are then uploaded to the R.E.D. Server in the form of a PDB file 

and P2N file (215, 216). This implements mode 2 of R.E.D. server in which no 

re-optimisation is performed and only the MEP computation and charge fitting 

steps are performed using the output from the previous Gaussian simulation. In 

the System.config file we specified for RESP-A1 charge fitting, which 

corresponds to the RESP fitting algorithm implemented by Cornell et al., as 

previously described in 3.1.1, with a weighting factor of 0.0005 and 0.0010 on 

non-hydrogen atoms. These settings are the same as were used for generation 

of all of the amber FF fixed charge force fields (208, 224–226), hence an 

additional term (FFPARM= AMBERFF99SB) is necessary to specify for output 

of the ff99SB atom types. R.E.D. server will then output the RESP charges, with 

the atom names being the same as those specified in the input PDB file. In 
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addition PyRED will make an assignment of the atom types based on the 

optimised structure before generating two frcmod files, one containing known 

parameters and one containing unknown.     

 

3.2.3 Integration into AMBER 

Manual verification of the PyRed assigned atom types is conducted to ensure 

the most suitable assignment has been made. If changes are made to the 

assigned atom types, then the parmchk script part of the AmberTools12 

package can be used to extract the minimum number of unknown suitable 

parameters (where connectivity between atom types is not present in the 

standard Amber libraries) in the ff99SB force field, for our systems. The bond 

and angle terms still missing from the force field are manually inserted into the 

frcmod file, using the equilibrium values for the bond or angle from the QM 

optimised geometry and a force constant, based on an analogous structure 

already present in, ideally, the ff99SB force field. However, if necessary, the 

force constant can be used from another fixed-point charge force field within the 

Amber group. After the frcmod, containing all of the additional bond, angle and 

dihedral data, is complete a library file is generated for the new residue. The 

library file is generated by loading in both the frcmod file and the mol2 file of the 

optimised geometry, which contains the atom types and RESP charges, into 

tleap. The library file contains a template of the new residue, including the 

geometry and connectivity data as well as the amber atom types and RESP 

charges.  

After identifying suitable values for the missing parameters for our models, 

these parameters were added into a force field modification file. The file was 
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then loaded into tleap to confirm that each of the systems could be successfully 

used to generate a corresponding input and topology file.  

 

3.3 Parameters Developed 

 

 

Figure 7: Schematic representation of (A) glucosepane and (B) DOGDIC with 
parameterised atoms labelled with atom names. 

 

When implementing the derivation of the library files, it was decided, for ease of 

use, that the AGE cross-linked system would be split across three residues; the 

cross-linked lysine, the cross-linked arginine and the sugar derived cross-link. 

For the glucosepane cross-linked system, the system is separated into three 

residues; Arc – cross-linked arginine; LYC – cross-linked lysine and ORG – 

Glucosepane, for DOGDIC the three residues are named ARD, LYD and DOG 

respectively. This would require the use of the cross-link command in LeaP, 

during the parameterisation, to ensure the cross-link is inputted correctly. 
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However it will lead to more logical implementation of these for inter-molecular 

cross-link studies, where the backbone-backbone separation might vary. Figure 

7 shows the structure of the two AGEs being parameterised, with the atom 

names shown in superscript. These names correspond to the atom entries in 

the library file, as shown in Figure 8. The full library files and frcmod files are 

available in the Appendix. What can be seen from the portion of the library file, 

shown in Figure 8, is the successful implementation of the RESP fitting, with the 

two asymmetrical hydrogen atoms HD2 and HD3 in the ARC residue exhibiting 

the same charge. Additionally the net charge on the cross-linked three residues 

sum to an integer value of 0.000, which is a requirement of an Amber force 

field. 

 

Figure 8: Figure depicting relevant section of the new library file generated for 
the glucosepane cross-link, which is split into three residues; ORG = 
Glucosepane, ARC= cross-linked arginine and LYC - cross-linked lysine. The 
columns from left to right contain; atom name, amber atom type. The next two 
columns are; unused, residue number, atom number in residue template, 
element, RESP charge. 
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Figure 9: Figure depicting relevant section of the new library file generated for 
the DOGDIC cross-link, which is split into three residues; DOG = DOGDIC, 
ARD= cross-linked arginine and LYD - cross-linked lysine. The columns from 
left to right contain; atom name, amber atom type, the next two columns are 
unused, residue number, atom number in residue template, element, RESP 
charge. 

Figure 9 gives a similar portion of the created library file for the DOGDIC cross-

link. It can be seen from comparing these figures, the geometry, and 

connectivity of an atom can have a significant effect on the calculated RESP 

charges. If we look at NZ in the LYC and LYD residues respectively, we see 

that the charge difference between the two is -0.4, which results from the 

difference in the bonding order of the atom. In DOGDIC, NZ is sp2 hybridised 

forming a double bond to C1. In glucosepane NZ is sp3 hybridised forming two 

covalent bonds to C1 and C6. This illustrates the need to have well optimised 

structures to ensure accurate charge derivation. It was also found that the Cc 

atoms on both lysine and arginine, for both AGES, had values very similar; 
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differing by less than 2%, to those present in their respective non-cross-linked 

residues. The Cb atoms had almost identical values to their respective atomic 

positions in the non-cross-linked residues, which will also ensure that there will 

be no artificial disruption to backbone formation.  

After assigning all of the atoms types, as seen in Figure 8 and Figure 9, 

parmchk was run to ensure there were no missing parameters still present. This 

resulted in a number of missing parameters arising for the N2, which is due to 

the fact that this atom type was designed for sp2 nitrogen atoms within the 

arginine residue. One of the bonding parameters that were missing is the N2-

CC. CC is the atom type for a sp2 carbon in a five membered ring, with one 

substituent next to a nitrogen. To find a force constant for such a bonding term 

we looked at the analogous, CA-N2 bonding term, where CA describes an sp2 

carbon atom in a 6 membered ring with one substituent, giving us a force 

constant of 481 kcal/(mol Å2). This analogy was chosen as it maintained the N2 

atom type, which is a fairly unique atom type, as well as combining it with a 

carbon atom with the correct hybridisation. A number of bond angles were also 

missing which tended to involve the CC and N2 atom types. One such example 

was the CC-CT-H1 bond angle. In this case we used a simple analogy with the 

non-polar HC atom type, such that the bond angle force constant of 50 

kcal/(mol rad2), is for the analogous CC-CT-HC term.  

 

3.4 Discussion 

The approach used to generate the bonded terms of the force field was 

analogous; a suitable force constant was chosen, from assigning an Amber 

atom type to the new atoms based on their bonded environment, and then using 
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the force constant data for bonds between similar atom types. This is the 

approach many force fields implemented within Amber have employed. Since 

initially parameterising the cross-links in 2013, Nash et al., have produced a 

purely quantum mechanically derived force-field for a range of AGEs at HF/6-

31G* level theory (227) using new software which employs the Seminario et al., 

method for force constant derivation (205). 

We decided to compare our force field to their new force field, to see if there 

were significant differences in the force constant values derived, which may 

indicate un-reliability in either of our methods. The CD upward portions of the 

side-chains were used for ease of comparison, between the two force fields. As 

can be seen in Table 1 below, the majority of the force-constants are within 

10% with only 35% of bonding force constants and 8% of bond angle force 

constants deviating by more than 5%. The results indicate that the analogous 

approach employed in the production of our force field is reliable. In addition 

any differences will be relatively minor, when considering the concentration of 

cross-links compared to the standard amber residues in collagen, 1 in 3000.  

 

 % of FCs 0 - 2% 
Different 

% of FCs 2 - 5% 
Different 

% of FCs 5 - 10% 
Different 

Bonds 40 15 35 

Angles 72 12 8 

Table 1: Percentage difference in the force constant (FCs) values for the bond 
and angle terms of the force field for glucosepane developed using the analogy 
method compared to those derived for glucosepane purely quantum 
mechanically by Nash et al. (227) 
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Despite the force field being largely reproducible by QM to 10% accuracy, we 

were interested to see where the large deviation in force constant terms was 

arising from. To do this we looked at the bonds with the largest deviation in the 

force constants, these were predominately the carbon-hydrogen bonds. What 

was apparent from our simulation is that the hydrogens bonded to the same 

carbon were assigned the same atom type, whereas looking at the QM data 

from Nash et al., this was frequently not the case. For example the CD-HD1 and 

CD-HD2 bonds in the QM force field have force constants of 345 kcal/(mol Å2) 

and 258 kcal/(mol Å2) respectively, compared to the value of 340 kcal/(mol Å2) 

used for both bonds as in our force field. The likely cause for this is the 

asymmetry of the hydrogen atoms around the carbon atom, which results in 

different stretching frequencies and subsequently slightly different force 

constant values. This asymmetry is neglected in our designation, owing to the 

same atom type being assigned to both of the hydrogen atoms. However the 

effect of this variation is minor overall, as the correct C-H bond lengths are 

maintained throughout MD simulation, using our force field. 

 

3.5 Summary 

Through the use of R.E.D. server, the web implementation of R.E.D. tools for 

RESP charge fitting, we have been able to develop two sets of force-fields for 

implementation in studies on AGE cross-linking within collagen. Missing force 

constant terms were derived by using the analogy approach. If the force 

constant is missing, a value is taken from a similar structure, and the 

distance/angle value is taken as the equilibrium value from the QM geometry 

optimisation. The set for glucosepane consists of three residues; ARC the 
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cross-linked arginine; LYC the cross-linked lysine; and finally, ORG the sugar 

derived portion of the glucosepane cross-link. For implementation in LeaP, the 

cross-link command should be used to join the residues. The DOGDIC set was 

produced with the same philosophy and contains three residues named; LYD, 

ARD and DOG. The force field generated in this approach gave good 

agreement with a recently developed wholly quantum mechanically derived 

force field for glucosepane. The development of a reliable force field for the two 

lysine arginine derived AGEs will enable a wide variety of computational studies 

to take place to probe a variety of properties. 
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Chapter 4 Intra-Molecular Lysine-Arginine AGE cross-linking of 

Type I Collagen 

4.1 Introduction  

 

Figure 10: Schematic image of Lysine (R1)-Arginine (R2) cross-linking AGES, 
A) Glucosepane B) DOGDIC, C) MODIC and D) GODIC. 

 

Although a series of AGE cross-links is possible, the lysine-arginine-glucose 

AGE cross-link glucosepane is the most abundant in collagen, with levels 100 to 

1000 times higher than all other currently known cross-links (228). The 

concentration of AGE cross-links are found to vary depending on the tissue  and 

AGE type, with glucosepane found in concentrations of 250 pmol/mg in human 

lens protein whereas MODIC and DOGDIC are found in much lower quantities, 

< 75 pmol/mg and < 5 pmol/mg, respectively (100). One theory to explain the 

abundance of glucosepane, is that the final carbonyl rearrangement from the 

Amadori product undergoes a non-reversible dehydration step, which ultimately 

leads to an accumulation of glucosepane. However AGEs formed by other 

glycation agents are formed reversibly (113). In this chapter we will focus on 

AGEs which form between lysine and arginine residues, more specifically the 

AGEs which form primarily from D-glucose products via the Schiff base, 

glucosepane and DOGDIC, as opposed to those that form via other methods 

including, glucose degradation products methylglyoxal and glyoxal.  
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Although the absolute levels of AGE cross-links are important, the exact 

position within the collagen molecules is critical in determining the impact that 

they have on the collagen properties. In this study we have used a fully 

atomistic model of an entire collagen molecule in a fibrillar environment to 

identify, based on energetics, the residues responsible for forming intra-

molecular glucosepane and DOGDIC cross-links. We discuss how the identified 

potential sites of glucosepane formation might cause disruption of the biological 

function of collagen, and give a structural rationale for their preference for 

particular sites within the collagen molecule. 

 

4.2 Methodology 

An all-atom model of a Rattus norvegicus type I collagen molecule, exploiting 

periodic boundary conditions to replicate the fibrillar environment, was used to 

study the energetics of AGE cross-link formation. 

 

4.2.1 Building the Model 

Our model based on the previous model of Streeter et al. (78), uses the amino 

acid sequence for Rattus norvegicus owing to the availability of the crystal 

structure and similarity to the Homo sapiens sequence, making it suitable for 

this study. A straight-chained structure of a collagen molecule, with the correct 

helical propensity, was generated using the Triple Helical Building Script 

(THeBuScr) (229). The primary sequences of the collagen peptide chains α1 

and α2, translated from the genes COL1A1 (P02454) and COL1A2 (P02466) 

(230), were the inputs. The primary sequences used included the post-

translational modified residues such as hydroxyproline and hydroxylysine, which 
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were present in the UniProt entries. A custom script was used to combine the 

output from THeBuScr and the fibrillar arrangement taken from Protein Data 

Bank entry 1Y0F (229, 231). The supramolecular structure in 1Y0F contains the 

Cα atomic coordinates of each amino acid as determined by low-resolution X-

ray diffraction experiments (21). The combined model had the helical propensity 

from the THeBuScr output and the supramolecular positions from the crystal 

structure. The linear telopeptides and side chain atoms were finally added using 

LeaP, part of the AMBER12 software package (232). 

 

 

Figure 11: Image depicting the collagen model used, with the water molecules 
highlighting the unit cell dimensions employed to model the D-period. 

 

The triclinic unit cell dimensions came from the low resolution X-ray diffraction 

experiment of the collagen molecule (21). The triclinic unit cell has dimensions 

39.97 Å, 26.95 Å and 677.90 Å for edges a, b, and c respectively, and 89.24°, 

94.59° and 105.58° for angles α, β and γ, respectively. The unit cell is long and 

thin with the value of the c lattice parameter representing the fibril’s D period. 

The length of the collagen molecule is approximately 300 nm in length, meaning 

the unit cell which describes the system’s periodicity is over four times smaller 

than the collagen molecule itself, this can be seen in Figure 11, by the presence 

of the water molecule highlighting the unit cell, with the whole image depicting 

the system explicitly studied. The system was solvated in LeaP by the addition 
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of 11,980 explicit water molecules into the interstitial gaps between 

neighbouring collagen molecules. This value is equal to that derived by Streeter 

et al., with the aim of preserving the crystallographic dimensions of the fibril 

during an isothermal-isobaric MD simulation (78), whilst remaining in good 

agreement with experimental values for the  intra-fibrillar water content of 0.75 g 

water g-1 of collagen (233). All amino acids were assumed to be in their 

standard protonation states for physiological pH, resulting in 268 cationic sites 

from the amino acids with acidic side-chains and 235 anionic sites from the 

amino acids with basic side-chains. The remaining +33 net charge was 

neutralised by 33 chloride ions per collagen molecule, resulting in an effective 

chloride concentration of 0.14 M, which is in general agreement with the 

experimentally observed concentration of 0.1 M sodium chloride (234, 235). 

Through adoption of this model in which we model a full-length single collagen 

molecule we are able to reproduce an infinite fibril of type I collagen, which has 

been proven to give good agreement with experimental structures (236). The 

model reproduces the D-periodicity experienced within the fibril, seen here in 

Figure 12, with each colour of the collagen molecule depicting a single unit cell 

of our collagen system.  
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Figure 12: Cross-sectional images of the collagen fibril taken from a molecular 
dynamics simulations, employing the same unit cell dimensions and MD set-up 
as our present study. A and B show all atoms within a 5 Å thick slice, including 
proteins (pink, orange, blue, yellow, and green) and water molecules (red and 
white). The collagen proteins lie perpendicular to the cross-sectional plane and 
therefore appear as small clusters of atoms. (a) “Overlap” region of the fibril in 
which five different collagen proteins pass through the cross section of the unit 
cell (white quadrangle). (b) “Gap” region of the fibril in which only four collagen 
proteins pass through the cross section. Image C (“Overlap” region) and D 
(“Gap” region) shows the longitudinal cross-section, with each image depicting 
three adjacent unit cells; each protein that passes through the unit cell has a 
different colour, with the water omitted for clarity. Reprinted adapted with 
permission from (78). Copyright 2010 American Chemical Society.  

 

A single cross-link was inserted into the collagen molecule between the 

residues identified during the distance-based criterion search (see 4.2.3), 
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totaling 24 unique models of collagen molecules with single cross-links for each 

cross-link type. A native collagen model without cross-links but with an unbound 

D-glucose; minus four water molecules and minus three water molecules for 

glucosepane and DOGDIC respectively; were also created to act as a reference 

for thermodynamic comparison to our covalently cross-linked collagen models. 

The reference models were generated such that the number of atoms within the 

system is conserved; this had the added benefit that the enthalpy contribution 

from forming the covalent bonds is kept very close to zero. This is necessary 

owing to the implementation of the bond stretching potential within the Amber 

force field, in which the bonding energy is only given by the energy related to 

strain away from an equilibrium bond length, such that at the equilibrium bond 

length the bonding energy contribution is zero. From calculation of the total 

change in the energetic contribution of the covalent bonds from bond 

dissociation enthalpy data (237) we were able to determine that the change in 

enthalpy as a result of the change in covalent bonding is – 2.39 kcal/mol and – 

0.72 kcal/mol for glucosepane and DOGDIC respectively.  

 

4.2.2 Modifications to the Amber12 Source Code 

A small modification was required to the AMBER12 source code, otherwise the 

MD algorithm will not progress beyond the first time step within the NPT 

ensemble, as detailed in the work by Streeter et al. (78). Such a problem did not 

occur in the NVT ensemble. The problem occurred during the resizing of the 

unit cell and the rescaling of the atomic coordinates, part of the Berendsen 

barostat algorithm for maintaining constant pressure (182). The problem is 
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believed to be the result of the unusually long molecule within a periodic unit 

cell, which is more than four times smaller.  

In the standard AMBER12 MD code for isotropic external pressure, the 

coordinate rescaling factor µ, is calculated after each time step as shown in 

equation 1. Where P0 is the applied external pressure, P is the internal system 

pressure, Δt is the size of the MD time increment, β is isothermal compressibility 

and τp is a time constant. 

𝜇 = (1−   !∆!
!!

𝑃! − 𝑃 )
!
!      (Eq. 1) 

The unit cell is normally rescaled after each MD time step so that a, b and c 

become µa, µb and µc; correspondingly each atom is repositioned from a 

position r to a position µr. To overcome the problem the code is modified so that 

the unit cell parameters a and b are rescaled by µ. C is not rescaled essentially 

making the calculation a constant pressure simulation, with respect to the x- 

and y-coordinates, and a constant volume simulation, with respect to the z-

coordinates, the periodic box angles not being allowed to deviate from the 

crystallographic values. 

As a result the internal system pressure also had to be calculated slightly 

differently. The instantaneous pressure in the system is a tensor, P, and it is 

calculated in the AMBER12 code from the kinetic energy and the forces acting 

upon each atom, shown in equation 2 

𝑃 = !
!

𝑚!𝑣!𝑣!!! +    𝑟!"𝐹!"!!!!    (Eq. 2) 

 

𝑃 =    !!!!  !!!!  !!!
!

      (Eq. 3) 
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Where V is the volume of the periodic box, m is an atomic mass, v is an atomic 

velocity vector and r is the vector between two atoms, and F is the force 

between two atoms. The superscript T represents the transpose of a column 

vector to a row vector, and the sum is over all the atoms in the unit cell. When 

the external pressure is isotropic, the internal pressure can also be 

approximated to be isotropic, and the scalar value for P can be estimated from 

the elements of the matrix P. In the unmodified AMBER12 code the internal 

system pressure is given by Equation 3, where the subscripts refer to the matrix 

elements of matrix P. Hence it can be said that, in the unmodified code, the 

scalar pressure can be described by the average of the main diagonal elements 

of the pressure tensor. However for my system, owing to the fact that the atomic 

coordinates are only rescaled in the x and y direction, the AMBER12 code is 

modified such that the scalar pressure can be described by the average of the 

Pxx and Pyy elements, as shown below in Equation 4:  

𝑃 =    !!!  !  !!!
!

         (Eq. 4) 
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4.2.3 Distance Based Criterion Search 

         

Figure 13: A schematic representation of the three points at which the distance 
was measured between the lysine and arginine during the distance based 
criterion search. Measurements are between: 1) arginine Nη and lysine Nζ, 2) 
arginine Nε and lysine Cε, and 3) arginine Cδ and lysine Cδ. 

 

A custom script was used to scan the triple helical portion of a low energy 

conformer of a collagen molecule for lysine and arginine residues, within a 5 Å 

cut-off across separate polypeptide chains, within the collagen molecule. The 

distance-based criterion of 5 Å was chosen based on two main factors. Firstly, 

previous studies have suggested that the two residues within proximity of 5 Å 

are a strong indicator for preferential glycation (238). Secondly, doubling the 

distance between the nitrogen atoms within glucosepane (approximately 2.5 Å 

and 3.7 Å) could reveal a reasonable number of potential sites where cross-

links are likely to form (238). The distance was calculated at three separate 

points along the residues’ side chains, as shown in Figure 13, namely between 

the three terminal nitrogen atoms lysine Nζ and arginine Nη; the lysine Cε and 
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the arginine Nε; and lysine Cδ and arginine Cδ. Any site where at least one 

distance criterion was met was considered for cross-linking. 

 

4.2.4 Molecular Dynamics Simulation Detail 

MD simulations were performed on all models using SANDER, part of the 

AMBER12 software package (232). Periodic boundary conditions were applied 

to the unit cell in order to simulate the densely packed fibrillar environment. The 

ff99SB force field was used for the parameterisation of the collagen molecule 

with additional terms based on published values for hydroxyproline (225). Water 

molecules were represented using the TIP3P model (219). The ff99SB force 

field was parameterised specifically for biological molecules and describes the 

non-bonded interactions by pairwise additive Lennard-Jones 6-12 potentials 

and pairwise additive coulombic potentials. Coulombic potentials were 

calculated using the Particle Mesh Ewald summation with a cut-off radius of 8.0 

Å (239). 

A time step of 2 fs was adopted for all MD simulations and hydrogen-bond 

lengths were constrained using the SHAKE algorithm (184). This time step was 

chosen, owing to it’s widespread usage in MD studies of collagen (68, 78). 

Constant temperature and pressure was maintained with the Berendsen 

algorithm (182), using a barostat time constant of 5.0 ps atm-1 and a thermostat 

time constant of 1.0 ps. As the periodic unit cell has a c lattice parameter much 

larger than a and b, it is more appropriate to use anisotropic coordinate 

rescaling than isotropic rescaling, for maintaining constant pressure. This was 

achieved by making a small modification to the AMBER code, the details of 

which are discussed in 4.2.2. To reduce instabilities in the starting structure, the 
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models underwent 5000 steps of steepest decent energy minimisation followed 

by a further 5000 steps of conjugate gradient minimisation. The system was 

heated to 310 K for 120 ps using the NVT ensemble followed by a further 320 

ps using the NPT ensemble. Production simulations ran for 60 ns at 310 K 

using the NPT ensemble. Analysis was performed over the final 25 ns of the 

production simulations, as this was found in our previous work to give stable 

energies (78) and a fibrillar arrangement, which is in good agreement with 

experimental values (21). The system density and the potential energy were 

monitored up to 35 ns at which point they were shown to converge.  

 

4.3 Results 

The distance-based criterion search identified 24 potential lysine-arginine cross-

link sites distributed along the length of the triple helical portion of the protein.  

 

4.3.1 Glucosepane Cross-linking 

The average binding enthalpies of the glucosepane cross-links were calculated 

using the total energy over the last 25 ns from each cross-linked collagen 

simulation, where the average total energy of the native reference collagen 

model was subtracted from the total energy over the last 25 ns for the cross-

linked collagen. The binding enthalpies are reported in Table 2. Residue 

numbering originates from the original Uniprot sequence data entries. The 

statistical error of the formation enthalpy was calculated using the standard 

error of the mean, which was found to be approximately 0.7 kcal mol-1 for all of 

the cross-linked simulations. Sites 1 and 23 were found to have strong steric 

clashes with neighbouring images of the collagen molecule. It was therefore 
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decided early on that these cross-links would not form within the fibrillar 

environment, and hence the simulations were not continued. 

 

Table 2: The difference in enthalpy formation of glucosepane for all 24 identified 
cross-link sites. The six energetically favourable sites were aligned to ECM 
binding sites of the human collagen type I sequence. Column 1 gives the site 
number, columns two to four highlight the cross-linked residue pair between two 
of the three polypeptide chains (labeled using the Uniprot residue number with 
the helical residue number shown in brackets) and the fifth column lists the 
change in enthalpy (kcal/mol). 

Cross-link Chain α1 (a) Chain α1 (b) Chain α2 ΔEnthalpy 

1 229ARG(62) 226LYS(59)  - 
2  257ARG(90) 183LYS(87) -13.572 
3  419LYS(252) 348ARG(252) +38.54 
4 458ARG(291)  386LYS(290) +7.883 
5  494LYS(327) 419ARG(323) +39.176 
6 509LYS(342)  438ARG(342) +4.357 
7 527LYS(360)  456ARG(360) -2.304 
8 587ARG(420)  516LYS(420) +43.326 
9 620ARG(453)  549LYS(453) +76.636 

10  646LYS(479) 579ARG(483) +4.076 
11 734ARG(567) 731LYS(564)  +23.157 
12 740LYS(573)  669ARG(573) +19.280 
13α 748LYS(581)  677ARG(581) -23.968 
14  770LYS(603) 699ARG(603) +73.645 
15 854ARG(687) 851LYS(684)  +92.728 
16 896LYS(729)  825ARG(729) +55.401 
17  958LYS(791) 956ARG(789)  -2.315 
18 958LYS(791)  884ARG(788) +65.516 
19 1025ARG(858) 1022LYS(855)  +16.130 
20 1055ARG(888)  980LYS(884) -34.501 
21 1085LYS(918) 1082ARG(915)  +21.912 
22  1094ARG(927)  1020LYS(924) -36.130 
23 1100ARG(933)  1029LYS(933) - 
24 1141LYS(974)  1073ARG(977) +90.852 
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Six potential sites yielded an exothermic enthalpy change on formation of the 

glucosepane cross-link between the two identified amino acids, all of which 

occur within regions which are thought to be of biological significance. The 

details of the biomolecule binding site overlaps for each favourable cross-link 

site are presented in Table 4.  Specifically, site 2 occurs at a position local to 

the interaction sites of heparan sulfate (HS), α1α1 and α2β1 integrins, and an 

enzymate mediated cross-link (240–243). Site 7 is within the binding sites of 

heat shock protein 47 (HSP-47) chaperone and the proteoglycan decorin (241, 

244). Site 13 was found within the binding region of phosphoryn, a protein of 

dentine which plays a role in bone mineralization (245). Site 17 occurs within 

the binding sites of α2β1 integrin, a HSP-47 chaperone, a fibrillogenesis 

inhibitor, and is also within close proximity of the binding site of the collagenase 

Matrix Metalloproteinase-1 (MMP-1) (244, 246). Site 20 is within the binding site 

of dermatan sulfate (DS) proteoglycan and the secreted protein factor 

interleukin 2 (IL-2) (241, 247, 248). Finally, site 22 is also within the IL-2 binding 

domain as well as the binding location of the anticoagulant heparin (243, 248). 

The remaining 18 sites were found to have energetically unfavourable changes 

in enthalpy upon cross-link formation. 

 

4.3.2 DOGDIC Cross-linking 

Using the same approach for DOGDIC as we used for glucosepane we have 

been able to determine six sites where DOGDIC formation is an energetically 

favourable process, the binding enthalpies for which are recorded in Table 3. 

The same residue numbering system is used, and the statistical error worked 

out using the standard error of the mean, is comparable at approximately 0.7 

kcal mol-1 for all of the cross-linked simulations. 
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Table 3: Difference in the enthalpy of formation for DOGDIC at all 24 identified 
cross-link sites. The six energetically favourable sites were aligned to ECM 
binding sites of the human collagen type I sequence. Column 1 gives the site 
number, columns two to four highlight the cross-linked residue pair between two 
of the three polypeptide chains (labelled using the UniProt residue number and 
the triple helical residue number shown in brackets) and the fifth column lists 
the change in enthalpy (kcal/mol). 

Cross-link Chain α1 (a) Chain α1 (b) Chain α2 ΔEnthalpy 

1 229ARG(62) 226LYS(59)  +85.78 
2  257ARG(90) 183LYS(87) +109.66 
3  419LYS(252) 348ARG(252) +50.08 
4 458ARG(291)  386LYS(290) -8.68 
5  494LYS(327) 419ARG(323) +20.21 
6 509LYS(342)  438ARG(342) +25.38 
7 527LYS(360)  456ARG(360) +11.61 
8 587ARG(420)  516LYS(420) +72.09 
9 620ARG(453)  549LYS(453) +55.07 

10  646LYS(479) 579ARG(483) +58.68 
11 734ARG(567) 731LYS(564)  -14.33 
12 740LYS(573)  669ARG(573) +1.03 
13α 748LYS(581)  677ARG(581) +9.03 
14  770LYS(603) 699ARG(603) +30.74 
15 854ARG(687) 851LYS(684)  +83.03 
16 896LYS(729)  825ARG(729) +23.38 
17  958LYS(791) 956ARG(789)  +53.69 
18 958LYS(791)  884ARG(788) -20.38 
19 1025ARG(858) 1022LYS(855)  -61.58 
20 1055ARG(888)  980LYS(884) -4.85 
21 1085LYS(918) 1082ARG(915)  -1.62 
22  1094ARG(927)  1020LYS(924) +28.15 
23 1100ARG(933)  1029LYS(933) +3.63 
24 1141LYS(974)  1073ARG(977) +32.15 

 

By transposing the energetically favourable formation sites onto the candidate 

cell and matrix interaction domain map, a number of overlaps with regions of 

biological significance were identified. The details of the biomolecule binding 

site overlaps for each favourable cross-link site are presented in Table 5.  Site 4 
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occurs at the interaction sites of α2β1 integrin, IL-2 and an HSP-47 chaperone 

(242, 244, 248). Site 11 is local to the binding sites of HSP-47 chaperone, 

phosphoryn and the proteoglycan keratan sulfate (KS) (241, 244, 245, 247). 

Site 18 is within the binding sites of α2β1 integrin, a HSP-47 chaperone, which 

is a fibrillogenesis inhibitor, and is also within close proximity of the binding site 

of the collagenase MMP-1 (5, 7, 9). Site 19 occurs within the binding site for IL-

2, HSP-47 chaperone and the proteoglycan DS (244, 247, 248). Site 20 is 

within the binding site of DS proteoglycan and IL-2 (247, 248). Finally, site 21 is 

within the IL-2 binding domain, as well as the binding location of the HSP-47 

chaperone (244, 248).  

The number of sites identified as being potential sites for DOGDIC formation 

equaled those identified for glucosepane formation, but only one site (site D20) 

overlapped, although at this site glucosepane formation is more exothermic. 

Additionally, despite the force field approach not taking into account covalent 

bond formation and dissociation explicitly, the use of a carefully selected 

reference system minimised the net contribution. With the contributions for both 

glucosepane and DOGDIC being exothermic at -2.39 kcal/mol and -0.72 

kcal/mol respectively. Hence the contribution from covalent bond formation will 

not alter the sign of any of the above identified formation sites. Additionally the 

lowest energy values for glucosepane formation were in general agreements 

with the enthalpy change of formation of glucosepane determined in the QM 

study conducted in the absence of a protein environment by Nasiri et al., for 

which they report values of – 33.3 kcal/mol (153). 
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4.4 Biological Implications 

It has long been assumed that the presence of AGEs in and between collagen 

molecules alters their physical properties, as well as increasing the lifetime of 

collagen molecules within the body. The presence of either a DOGDIC or a 

glucosepane cross-link at any of the sites identified in this study could result in 

an alteration in the physical properties of the collagen molecule. In addition, 

alteration to the collagen could potentially impede essential ECM function from 

the glycation of side chains in, or close to, binding sites for ECM biological 

molecules, such as heparin, proteoglycans or collagenases. Sweeney et al., 

created a descriptive map of human type I collagen with marked ECM 

interaction domains based on an earlier map and database (241, 249). 

 The amino acid sequence and structural information used in this study was that 

of Rattus norvegicus, owing to the availability of the experimental X-ray 

diffraction data and the strong biosimilarity between rat and human sequences, 

(92% and 91% similarity for α1 and α2 chains respectively). Sweeney et al., 

used the same crystallographic data to obtain a descriptive map and then 

localised functional domains of the human type I collagen onto the rat type I 

microfibril (241). By using a similar approach we have been able to directly map 

favourable and unfavourable cross-link sites onto the human sequence and 

compile a list of ECM interaction sites that may be impeded by cross-linking of 

collagen. Table 4 and Table 5 summarise the biomolecule binding sites that 

overlap with the location of the energetically favourable cross-linking sites for 

glucosepane and DOGDIC respectively.  
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Table 4: Biomolecule binding sites that overlap with the energetically favorable 
glucosepane cross-linking sites  

Cross-
link 

Aligned ECM Binding Sites Enthalpy 
(kcal/mol) 

2 Heat Shock Protein 47 (244), Heparan Sulfate (243), 

α1β1 integrin (242), α2β1 integrin (242), Enzyme 

Mediated mature cross-link(240) 

-13.572 

7 Heat Shock Protein 47 (244),  Guanidine extracted 

decorin(241) 

-2.304 

13 Phosphophoryn (245) -23.968 

17 α2β1 integrin (242), Heat Shock Protein 47 (244), Matrix 

Metalloproteinase 1 (246) 

-2.315 

20 Dermatan Sulfate (247), Interleukin-2 (248) -34.501 

22 Interleukin-2 (248), heparin (243), Amyloid precursor 

protein (241) 

-36.130 

 

 

Table 5: Biomolecule binding sites that overlap with the energetically favourable 
DOGDIC cross-linking sites. 

Cross-
link 

Aligned ECM Binding Sites Enthalpy 
(kcal/mol

) 
4 Heat Shock Protein 47 (244), Interleukin-2 (248), α2β1 

integrin (242)  
-8.68 

11 Heat Shock Protein 47 (244), Phosphophoryn (245), 
Keratan Sulfate PG (241, 250) 

-14.33 

18 Heat Shock Protein 47 (244), α2β1 integrin (242), Matrix 
Metalloproteinase 1 (246),  

-20.38 

19 α2β1 integrin (242), Heat Shock Protein 47 (244), Amyloid 
Precursor Protein, Interleukin-2 (248), Dermatan Sulfate 

(247) 

-61.58 

20 Dermatan Sulfate (247), Interleukin-2 (248), Amyloid 
Precursor Protein 

-4.85 

21 Interleukin-2 (248), heparin (243), Amyloid precursor 
protein (241) 

-1.62 
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An important part of forming mechanically competent collagen fibrils is the 

formation of chemical cross-links between collagen molecules. These cross-

links occur during fibrillogenesis and are mediated by the enzyme Lysyl 

oxidase. This enzymatic mediated cross-linking is thought to occur from a 

young age, between α1-254Lys (228, 240), and a lysine residue from a 

neighbouring molecule.  The α1-254Lys residues already involved in enzymatic 

cross-links are therefore unlikely to be available for glucosepane cross-linking. 

However the α1-254Lys not involved in the enzymatic cross-link is available for 

glycation. Another active enzyme in the ECM is lysyl hydroxylase, which 

hydroxylates lysine residues, producing hydroxylysine during post-translational 

modification of the collagen molecule. The hydroxylysine residues within our 

model were included in the distance based criterion search, owing to the 

availability of their amine group, which is needed to form the glucosepane 

cross-link (251). Our modelling approach presented in this chapter adopts a 

homotypic microfibril of type I collagen. However healthy tissue is heterotypic 

with tendon fibrils, although predominantly type I collagen, it still contains small 

amounts of other minor collagen types such as type III and type V. Given that 

our study focuses on intra-molecular cross-links, a heterotypic microfibril 

composition would have little effect if any on the predicted cross-links locations.   

A number of biomolecular interactions identified would remain unaffected by 

cross-linking, owing to the fact that the process in which they are involved 

occurs prior to secretion of the procollagen into the ECM. One particular 

example of this is HSP-47, an intracellular collagen-stress binding protein local 

to the endoplasmic reticulum and responsible for maturation of a number of 

types of collagen. HSP-47 binding site overlaps with potential cross-linking sites 

G2, G7, G17, D4, D11, D17 D19 and D21. However, as it acts within the cell 
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before glycation can occur, formation at these sites will have no impact on HSP-

47 binding.  

The energetically favoured cross-link site G13 and D11 may result in structural 

variation of the binding site of phosphophoryn. The binding of type I collagen to 

phosphophoryn, the major non-collagenous dentin protein, is believed to play 

an important part in the nucleation of the mineral phase within the dentin matrix 

(245). Phosphophoryn has a large number of Asp-Ser-Ser repeats interspersed 

throughout the molecule and Ser-Asp domains towards the C-terminal, both of 

which are readily phosphorylated (252). In cases where most of the available 

Asp-Ser-Ser and Ser-Asp motifs are phosphorylated, the molecule will have a 

strong negative charge and thus acts as a sink for binding calcium ions, 

potentially directing the location and moderating the speed of mineralisation 

within the dentin matrix (253). The effect of cross-link formation on 

phosphophoryn binding, and thus dentin mineralisation, is dependent on which 

of the two processes will occur first. The exact point in time at which 

mineralisation occurs is still unknown, although it is often suggested that 

biomineralisation will occur shortly after fibrillogenesis (254). This, combined 

with the fact that rate of formation of AGEs is in the order of weeks, we would 

expect mineralization to occur before AGEs could form. If this were the case we 

would not expect cross-links to form at these sites, as AGEs are unable to form 

in mineralized tissue. Also it has been hypothesized that, due to the much 

greater remodelling rate and larger abundance of mature enzymatic cross-links 

in bone, the biomechanical impact of the non-enzymatic AGEs will not be 

significant (58).  
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One potential area where the presence of AGEs may be significant is in pre-

glycated tissue engineered constructs for bone regeneration, where the 

presence of such cross-links like glucosepane and DOGDIC, might significantly 

reduce the extent of mineralization owing to their energetically favourable 

binding locations G13 and D11 within the phosphophoryn binding region.  

Glycosaminoglycans constitute a considerable fraction of the glycoconjugates 

found in the ECM of virtually all mammalian tissues, where they play a 

significant role in the biological function of the tissue. Heparan sulphate (HS) 

and DS serve as: key biological response modifiers by acting as stabilizers; 

cofactors, and co-receptors for growth factors and cytokines. HS and DS also 

act as regulators of enzyme activity; signalling molecules in response to cellular 

damage, such as wounding, infection, and carcinogenesis; and targets for 

bacterial, viral, and parasitic virulence factors for attachment and invasion (255–

257). KS acts as a hydration agent due to its distinct water binding properties, 

although its anti-adhesive character has also been suggested to play a role in 

cell migration. 

 Reigle et al. had observed that KS proteoglycans and heparin experience a 

reduced affinity for glycated collagen, whereas DS proteoglycans exhibit no 

change in affinity (250). Co-electrophoresis analysis of heparin’s affinity for 

collagen revealed that unglycated collagen had an appreciably stronger heparin 

binding (Kd of 100 nM) compared to glycated collagen (Kd of 250 nM). The 

same study found, through blocking fibrillogenesis by casting in agarose gel, 

that the defective heparin binding found in the glycated collagen is independent 

of the supramolecular state of the collagen. It is possible that intra-molecular 

glucosepane cross-link formation at G22 could reduce the concentration of 
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bound heparin. HS is a structural analogue of heparin which is therefore likely to 

have similar binding mechanism to the collagen. Therefore we could also 

expect disruption to HS binding at G2, by the presence of a glucosepane cross-

link. This is also supported by the work of Reigle et al., which showed that the 

HSPG also had a reduced affinity for glycated collagen. In addition they 

proposed that glycation of collagen weakens the KSPG-Collagen interactions in 

vivo, which could potentially be explained by the presence of a DOGDIC cross-

link within the KS binding region at site D11. The blocking of heparin or KS from 

binding due to the presence of AGEs, could happen in two ways; firstly, through 

steric blocking of the binding site; secondly, by altering the electrostatic 

potential after the occupation of the lysine side chain during cross-linking. 

Reigle et al. found no reduction in affinity between DS and glycated collagens, 

which they attributed to heparin and KS proteoglycans having significant 

electrostatic contributions towards binding, unlike other proteoglycans (250). A 

combination of a reduced electrostatic contribution to binding, in addition to only 

the arginine of the pair involved in the cross-link situated within the DS binding 

region at G20, D19 and D20, suggests that the presence of an AGE in this 

region would have little effect on the binding of DS. However additional 

investigation would be necessary to develop this suggestion further, for 

example through explicit modelling of the molecules and interactions. The 

presence of a DOGDIC cross-link within the KS binding region at site D11, may 

also help to explain the experimental observations of Reigle et al., that glycation 

of collagen may weaken the KSPG –Collagen interactions in vivo. 

The two major membrane-bound integrins α1β1 and α2β1 are in part 

responsible for eukaryotic cell-collagen (type I) interaction within the ECM. No 

favourable cross-linking sites are present in the key collagen-cell interaction 
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domain. However sites G2, G17, D4 and D18 occur at positions aligned with the 

cell interaction domain of a neighbouring collagen molecule. Integrins bind 

using their A-like domain, which contains a trench centred onto a metal ion-

dependent adhesion site (MIDAS), in the presence of Mg2+ or Mn2+. Upon 

binding, a glutamine residue becomes attracted to the metal ion in the MIDAS 

site (258, 259). Due to the size of the A-like domain there are some additional 

interaction between the integrin and residues in the neighbouring collagen 

molecules. The introduction of a cross-link into the collagen cross-link sites 

identified would therefore alter the polarity and structure of the additional 

interaction sites, potentially leading to a lower binding affinity. If that were the 

case, one might expect to observe a drop in integrin interactions.  

 

Figure 14: Crystal structure of the immunoregulatory cytokine InterLeukin-2 

Type I collagen acts as an extracellular store for bioactive interleukin 2 (IL-2) 

through reversible binding, thereby increasing the bioavailability of IL-2 in a 

spatial pattern dictated by the organisation of the collagen molecules (248). The 

binding of IL-2 has been shown to be very site-specific, with a Kd of 
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approximately 10-2 – 10-8 M and molar ratios of four to six IL-2 to one collagen 

molecule. IL-2 is an important stimulator and modulator of T-cell activation, 

adopting a key role in the pathophysiology of various immune-mediated 

diseases such as rheumatoid arthritis, multiple sclerosis and transplant 

rejection. Somasundaram et al., found that the binding of IL-2 was very 

sensitive to the collagen sequence and structure of the binding site, although 

the exact mechanism of attachment is unknown (248). The presence of a cross-

link at any of the four favourable formation sites G20, D20, D21 and G22 within 

an IL-2 binding region may therefore have a significant effect on IL-2 binding, 

potentially leading to disruption in the attachment of IL-2 to the collagen, which 

could decrease T-cell response time. 

 

Figure 15: Matrix Metalloproteinase 1 bound to type I collagen, the location of 
the cross-linking sites in relation to the active site is illustrated by the green box. 
Hameopexin domain on left closest to N-terminus, catalytic domain to right 
closest to C-terminus, Zinc ions green and Calcium ions in red. 

 

Another important implication of the findings presented here is the fact that 

favourable cross-link sites G17 and D18 involve a lysine residue that is only two 
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residues down from the proposed MMP1 binding site (241, 246), Figure 15. 

Inhibition of the MMP1 collagenase via collagen cross-linking may significantly 

affect the digestibility of the cross-linked tissue (260). Although the exact 

mechanism of action of the MMP1 enzyme has so far not been determined in 

significant detail, it is known that it operates by first uncoiling the three 

polypeptide chains before cleaving the peptide bond. Cross-links between 

polypeptide chains could potentially hinder this uncoiling process (246). By 

conducting a mutation (200Glu → 200Ala) of the 200Glu residue, which is essential 

for peptide hydrolysis, Chung et al., were able to observe the “unwinding” action 

of the MMP1 without bond cleavage. This allowed them to determine that 

“unwinder” MMP1 (E200A) preferentially interacts with the α2 (I) chain, whilst 

the α1 (I) chains were more exposed and susceptible to a cutter “proteinase” 

such as serine proteases. This may suggest that the presence of the cross-link 

would not completely hinder the uncoiling of the polypeptide chains in G17 but 

would reduce the turnover rate. However for D18 the cross-link forms between 

958Lys (α1a) and 885Arg (α2), thus potentially preventing MMP1 from uncoiling, 

thus having a direct impact on the ability of the enzyme to cleave the peptide 

bonds. However due to the low concentrations of DOGDIC cross-links within the 

body, the overall effect of the turnover rate of collagen would be small. In the 

same study by Chung et al., they showed, through the use of an active site-

directed synthetic MMP inhibitor GM6001X, that an unoccupied active site is 

necessary for unwinding to occur, which they assumed was due to the need to 

accommodate the α2(I) chain. This could suggest that the binding of MMP1 to 

collagen could be sensitive to the variation in the local structure at the binding 

site and thus the presence of the cross-link at either G17 or D18 could have a 

significant effect on the binding of MMP1 to collagen. Yet without an identified 
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mechanism for the binding of MMP1 and the uncoiling of the collagen substrate 

it is difficult to know to what extent the presence of a cross-link affects 

proteolysis. To determine the exact implications of the cross-linking at site G17 

and D18 further explicit modelling of the MMP1 with a glycated collagen would 

be necessary. 

 

4.5 Structural Implications 

A wide variety of structural analysis was conducted in an attempt to elucidate 

the reasoning why specific sites formed energetically favourable cross-links. 

Before discussing these in detail, we will discuss the new interactions 

introduced upon formation of the cross-link.  

The six favourable cross-link sites are presented in Figure 16, along with their 

neighbouring amino acids. It can be inferred that the major contribution to the 

decrease in enthalpy is an increase in the number of favourable side-chain to 

side-chain interactions or side-chain to backbone interactions, in addition to the 

contribution of glucosepane to protein interactions. Here we give an example 

using the average bond distances of these additional interactions, found after 

cross-link formation. A side-chain to side-chain interaction found within the 

immediate vicinity of position 20, is a potential hydrogen bonding interaction 

between 983Asn (α2) HD22 and 1055Arg (α1a) HE with an average bond length of 

2.16 Å, over the last 25ns of the simulation. However most of the additional 

interactions occurred between side chains and the backbone of the polypeptide. 

For example, after cross-linking at position 17, an additional hydrogen bonding 

interaction is formed with an average length of 2.00 Å between 956Arg (α1b) HE 

and the backbone carbonyl of 957Gly (α1b) O.  The formation of a cross-link 
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results in four additional carbon containing covalent bonds being present in the 

system, thus lowering the energy of the system. However, the overall enthalpy 

change between the bound and native models is a combination of the energy 

released by the formation of the covalent bonds, plus the additional energy 

contributions from the increased number of interactions, both favourable and 

unfavourable. In addition, cross-links potentially contribute additional 

electrostatic interactions with the surrounding residues. One example is the 

formation of two long-range electrostatic interactions with an average distance 

of 3.05 Å and 3.22 Å, between the cross-link hydroxyl groups and the carbonyl 

oxygen of 679Gly (α2) O at position 13.  
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Figure 16: Local environment around the favourable glucosepane cross-link 
sites a) Position 2, b) Position 7, c) Position 13, d) Position 17, e) Position 20 
and f) Position 22. (Residue colours: Ala – Blue; Asn - Tan; Asp – Red; Arg – 
Lime; Gln – Orange; Glu – Pink; Gly – Ice Blue; His – Violet; Hyp – Silver; Ile – 
Gray; Leu – Black; Lys – Yellow; Lyz - Yellow; Met – White; Phe – Purple; Pro – 
Ochre; Ser – Light Blue; Thr – Mauve; Tyr – Magenta; Val – Gold; glucosepane 
cross-link shown as sticks. 

The six favorable cross-link sites for DOGDIC are presented in Figure 17, along 

with their neighboring amino acids. It can be inferred that, like glucosepane, the 

major contribution to the decrease in enthalpy is an increase in the number of 

non-bonded interactions upon cross-link formation and rearrangement of the 

local environment. Noticeable non-bonded interactions are formed during the 

simulations, for example in between a backbone carboxyl group and a side-
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chain of the cross-linked residue at position 11, where a hydrogen-bonding 

interaction between 734Arg (α1a) HE and 733Gly (α1a) O with an average bond 

length of 2.07 Å is formed in the last 25 ns of the simulation. There are also 

side-chain to side-chain interactions, e.g. a potential hydrogen-bonding 

interaction at site 21, between 1084Asp (α1a) OD2 and 1082Arg (α1b) HH2, with 

an average bond distance of 1.75 Å.  

 

Figure 17: Local environment around the favourable DOGDIC cross-link sites a) 
Position 4, b) Position 11, c) Position 18, d) Position 19, e) Position 20 and f) 
Position 21. (Residue colours: Ala – Blue; Asn - Tan; Asp – Red; Arg – Lime; 
Gln – Orange; Glu – Pink; Gly – Ice Blue; His – Violet; Hyp – Silver; Ile – Gray; 
Leu – Black; Lys – Yellow; Lyz - Yellow; Met – White; Phe – Purple; Pro – 
Ochre; Ser – Light Blue; Thr – Mauve; Tyr – Magenta; Val – Gold; DOGDIC 
cross-link shown as sticks 
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The interactions observed for DOGDIC differ slightly from those observed for 

glucosepane in two ways. Firstly, there are non-bonded interactions at the 

DOGDIC sites, which are not observed at the sites for glucosepane, and occur 

between the side-chains of two cross-linking residues. For example at site 21 

where we see a potential hydrogen-bond between 1085Lys (α1a) O and 1082Arg 

(α1b), with an average separation of 2.16 Å. Secondly, there are noticeably 

fewer cross-link to side-chain or cross-link to backbone interactions. This can 

potentially be explained by two main differences between the two different 

cross-links; the first is the greater flexibility of the DOGDIC cross-link, in 

particular the four carbon aliphatic chain; the second is the greater polarity of 

the DOGDIC cross-link itself, which means that it is more likely to be involved in 

water-mediated hydrogen-bonding if not involved in direct hydrogen bonding. 

Eighteen of the potential 24 cross-link sites, for both glucosepane and DOGDIC, 

were found to be energetically unfavourable. There are three main reasons for 

the unfavourable formation enthalpies of some of these binding sites; the local 

structure of the collagen at the site; the configuration of the binding side-chains; 

and the presence of steric clashes and close contacts. Close contact can occur 

between residues within the same collagen molecule, as is the case at G19 

where the arginine Nη is within 3.5-5.0 Å of the Oδ of the neighbouring 1024Asp 

residue, or between residues on neighbouring collagen molecules within the 

fibril, e.g. at site G15 where there is a large number of close contacts of 1.5 - 

4.0 Å between several positions on 851Lys and 1085Lys on a neighbouring 

molecule. When a cross-link forms, a rotation of both side chains around their α-

carbon may be necessary, which causes the residues to adopt configurations 

not experienced in the native state. Upon cross-linking the 851Lys's movement is 

severely restricted and thus the presence of the nearby 1085Lys residue, which 



Intra-Molecular Lysine-Arginine AGE cross-linking of Type I Collagen 
 

- 104 - 

also has its movements limited by nearby residues from neighbouring 

molecules, causes an increase in energy as the two residues come into close 

contact. Smaller contributions to the energy arise from the local configuration of 

the linking side-chains, which arises when, upon cross-link formation, the 

number of degrees of freedom for the bound residues decreases. For example, 

in G8 we see a rotation of 180° around the Cβ – Cγ, thus adopting an eclipsed 

conformation with both the two larger groups located on the same position on 

their respective carbon atoms. The local structure of the collagen around the 

binding site dictates the extent to which the two previously described 

contributors to the energy occur, as the proximity and size of residues near the 

site can have a large impact on the ability of the residue to form a glucosepane 

cross-link.  

Gautieri et al. (261), identified potential sites on a homology model of the 

human sequence, based upon the amount of time the two potential cross-linking 

side chains were within 5 Å of one another. Our study builds on this work by 

conducting fully atomistic MD simulations of the actual cross-linked molecules 

to ascertain whether the structural rearrangement around the binding site is 

energetically favorable or not. Direct comparison between the sites identified in 

our study and those of the previous work is not possible. As the local structure 

will vary due to the different methods used to incorporate the human sequence 

and the fact that the explicit cross-links in our study influence the local 

environment.  

What we have found is that not a single analysis technique is able to fully 

explain the impact of these cross-links. However through the use of a variety of 

techniques we are able to build a more complete reasoning. Before going 
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further I want to discuss two concepts I will be using throughout my analysis; 

the first is the Root-Mean-Square-Deviation (RMSD), which measures the 

average displacement of the atomic positions relative to a reference, the 

reference typically being the position of a superimposed protein, or an initial 

structure. It can be used selectively to probe certain regions of the protein by 

applying the analysis to only certain atom types, for example, to analyze only 

the backbone atoms.  

 

Figure 18: The canonical Ramachandran plot from Ramachandran and 
Sasisekharan original work with outlines defining the core allowed (dark green 
lines), and extreme-limit allowed (light green lines) regions for an Ala dipeptide. 
The widely accepted locations of linear groups, are also shown for the α-helix 
(α), π-helix (π), left-handed α-helix (αl), polyproline-II (P), collagen (C), parallel 
β-sheet (↑↑), and anti-parallel β-sheet (↑↓).  
 

The second method is the Ramachandran plot which is a fundamental tool in 

structural biology research. Within a polypeptide the main chain N-Cα and Cα-C 

bonds are relatively free to rotate, these rotations are represented by the 

dihedral (torsional) angles ϕ and ψ. A Ramachandran plot graphically plots the 

dihedral angle ψ against ϕ of all the amino acid residues in protein structure. In 

doing so Ramachandran found areas of the plot where amino acid residues 

would frequently be located, dependent on their conformation. Figure 18b 
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outlines these, with the regions of most interest to us highlighted by the C and α 

symbols on the figure. Ramachandran identified these areas by treating the 

atoms as hard spheres with a radius equal to the Van der Waals radii. The core 

areas highlighted by the solid line are where the conformations cause no steric 

clashes, the dashed lines are where the radius of the sphere is allowed to be 

slightly less than the Van der Waals radii, and in doing so suffered no clashes 

(classical region). Areas outside these lines are where clashes occurred in both 

cases (262). The only exception would be glycine, which is frequently found in 

areas of the graph owing to its small side chain (R=H). Thus glycine is often 

found in the turns of proteins where other proteins would normally not be found 

due to steric clashes of their side chains.  

Proteins undergo dynamic fluctuations in structures, mostly from variations in 

side chain positions. To better understand the overall structure of the protein we 

also need to analyse the system dynamically. To do this specifically with the 

Ramachandran plots, we monitor the two dihedral angles ϕ and ψ over the 

whole analysis trajectory for the regions of interest and then plot these angles 

for both dihedral bonds in a frequency histogram, which then allows us to use 

the modal angle in further analysis. The use of frequency histograms also 

allows us to plot the dihedrals of two systems, i.e. cross-linked and native 

system, on the same plots, which allows us to see shifts in the dihedrals as a 

result of the cross-links introduction.  

Commonly the largest increases in energies for structural changes of proteins, 

specifically collagens, are from changes to the conformation of the backbone. 

The universal approach adopted is measuring the Root-Mean-Square-Deviation 

(RMSD) of the positions of the atoms, which constitute the protein’s backbone. 
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As can be seen in Figure 19, the RMSD for both the cross-link and the native 

system remain fairly equal compared to one another. This is especially clear in 

Figure 19B, where you can see that the presence of the cross-link does not 

significantly alter the position of the backbone or its ability to undergo 

fluctuations in atomic positions, with the RMSD observed occurring in a similar 

range for the cross-linked (Average RMSD – 1.68 Å) and native collagen 

models (average RMSD – 1.63 Å). What these RMSD plots clearly show is the 

dynamic nature of the proteins and hence the need to analyse them 

accordingly. This is seen by the fact that, for both the native and the cross-

linked systems, the RMSD for the whole backbone fluctuates by about 1.6 Å. 

These fluctuations in positions are just part of natural protein dynamics, as 

proteins are not static systems. 

 

Figure 19: RMSD of the protein backbones relative to their average structure for 
the native model (black) and the system with a glucosepane cross-link present 
at site 19 (red) for (A) the whole protein and (B) for 4 residues either side of the 
cross-linking site 

 

As we saw above, there was no significant deviation in the dynamics of the 

backbone relative to their dynamics of a native collagen molecule. One idea I 

believed warranted further investigation was that there could be a torsional 

tension introduced into the backbone upon introduction of a glucosepane cross-
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link into the system. To investigate this further I decided to select two potential 

cross-linking sites identified in the distance-based criterion search, one which 

had an unfavourable formation enthalpy G9, and one which had a favourable 

formation enthalpy G20, for cross-linking. At the end of the 60 ns simulation, we 

set-up two further simulations for each site. In one we ran the system as is for a 

further 4 ns and in the other we removed the cross-link from the system, 

running the simulation for a further 4 ns. What we would expect to observe if 

there was a build-up of torsional tension in the helix, is that upon removing the 

cross-link, there would be a significant shift in the positions of the atoms in the 

backbone. This would be shown as an initial large increase in the uncoiled 

RMSD, which gives a maximal difference in values between the cross-linked 

and uncross-linked system. The reference frame used for the RMSD is that of 

the last frame in the 60 ns trajectory, i.e. the point in time at which the cross-link 

is removed. The results of which are presented in Figure 20. 

 

Figure 20: RMSD of the uncoiling simulations for A) Site G9 b) Site G20, the red 
line showing the RMSD of the system with the cross-link removed relative to the 
same initial frame and the black line showing the RMSD of the system with the 
cross-link still present. 

  

What our results show in Figure 20 is that in site G9 we see a large increase in 

the RMSD upon removing the cross-link, suggesting the backbone is 
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undergoing a structural relaxation, before beginning to equilibrate. This can be 

seen by looking at the two systems at the 1ns time point, then as time increases 

we observe the difference in the RMSD between the two systems decreases. 

For the favourable G20 site we see little difference between the RMSD of the 

uncross-linked and cross-linked systems for the first 3 ns of the trajectory. We 

then see a difference in the RMSD for the two systems begin to develop. 

However the lines follow roughly the same pattern but with a varying magnitude. 

These results suggest that at an unfavourable cross-link site, like G9, we have 

an initial rapid relaxation from a strained system upon cross-link removal. This 

suggests a larger amount of torsional tension than in the favourable sites, like 

G20, where there is no initial rapid relaxation of the system. Upon looking at the 

corresponding dynamic dihedral plots (Appendix 2) for the residues around the 

cross-link site, for the uncross-linked and cross-linked systems on the same 

plots, we see no significant difference in the dihedrals for the two systems. At 

G9 we see a slight shift in the modal value for the ϕ for 623Gln (α1a), three 

residues down from the cross-linking 620Arg (α1a) residue. At G20 the only 

significant shift in the modal dihedral values is for the cross-linking 1055Arg (α1a) 

residue and 980Lys (α2) residue. This can easily be explained by the fact that 

the side-chains rotate around to form the cross-link, which upon removal of the 

cross-link, will adopt a state much similar to that in the native system.  
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Figure 21: Frequency histograms for the two dihedrals angles ϕ and ψ in the 
cross-linking residues A) Arginine and B) Lysine of site D20, for the native and 
the cross-linked systems. (Colours: ϕNat – Pink; ϕCross – Blue; ψNat – Purple; 
ψcross – Yellow) 

We have already looked at the effects of cross-links on the properties of the 

collagen’s backbone. Here we use the dynamic dihedral data for a number of 

different cross-link sites, G9, D9, G20, D20, G22 & D22, to compare the 

variance and shift in the modal dihedral values for cross-linked molecules, 

compared to the same positions in the native model, (Appendix 3). 

Unfortunately, from this data, no conclusive trends could be seen from the effect 

on the sites neighbouring the cross-link that would allow us to explain why some 

sites were exothermic and others endothermic for AGE formation. What this 

technique did allow us to see was the effect cross-linking had on the residues 

directly involved. We see two main possible changes; the first, as illustrated in 

Figure 21, is the shift in the values for the angle. This is a result of the need for 

the side-chains to rotate into a position at which they are able to form the cross-

link. The other change we see is a reduction in the distribution and a rise in the 

value for the highest frequency, seen by a narrowing and rise of the cross-link 

peak compared to the native model seen in Figure 21. This is a consequence of 

the cross-link creating a more constrained local environment where there is 

restricted movement of the cross-linked chain. This reduction in the number of 



Intra-Molecular Lysine-Arginine AGE cross-linking of Type I Collagen 
 

- 111 - 

possible angles able to be adopted is based on those energetically favoured, for 

example rotation outside of these regions could mean that the side-chain atoms 

needed to form the cross-link are further than is possible for them to covalently 

bond. Alternatively further rotation may bring the side-chains into close contact 

with neighbouring residues, resulting in the creation of energetically 

unfavourable interactions.  

 

Figure 22: Graphs of the relative energies of the A) Glucosepane cross-linked 
collagen molecules at site numbers given by the x-axis: then the same systems 
with the B) Cross-link removed C) Cross-link and solvent removed D) Solvent, 
cross-link and periodic boundary conditions removed using tloop. 

 

Another approach we adopted was to write an in-house script (“tloop”), which 

could be used to probe a number of properties over the whole duration of the 

trajectory. The in-house script worked by changing a variable, such as removing 

water or the periodic boundary conditions (PBC), then running a single point 

energy (SPE) on every single image of the trajectory without the variable 

present. We then calculated the mean total energy of the system with the varied 
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property from all the single snapshots. This approach does still have two 

limitations; the first is that the number of snapshots analysed is dependent on 

the printout frequency in the initial simulation trajectory, for this work this was 

every 1000 steps. Secondly, if studying the interactions introduced by the 

presence of the cross-link, hence removal of the cross-link and re-introduction 

of the hydrogens to the lysine and arginine side-chains, there are sometimes 

close contacts between these protons. Thus energies which are 200% higher 

than the median energy values are omitted when calculating the mean 

energies. Despite these limitations we were able to obtain a better 

understanding of a number of sites.  

We conducted further work on the glucosepane sites to ascertain the impact of 

three different aspects of the simulation; the PBC, the solvent and the physical 

presence of the cross-link, Figure 22. Upon removing the cross-link Figure 

22B), there are no quantitative conclusive trends in the energies, however 

qualitatively we can see a decrease in energies for the unfavourable formation 

sites upon removal of the cross-link, which suggests that there may be close 

contacts occurring between the cross-link and their neighbouring environment. 

The energy scale is distorted, particularly by the large peak at site G6 as a 

result of a large number of proton-proton clashes, which did not pass the 

threshold but result in this large increase in energy. Removal of solvent and the 

cross-link results in a large destabilisation of all the systems, as this removes 

the water mediated hydrogen bonding from the system. The biggest 

conclusions we took away from the use of the tloop script (Figure 22D) is that, 

upon removing the PBC, the trend in the relative energies (relative to the native 

system) of the glucosepane cross-linked system changed completely. This 

suggests that, in regions of higher protein density, the higher energy is likely the 
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result of close contacts with neighbouring collagen molecules. Site G5 and G15 

show the most significant changes in their relative energies when the PBC are 

removed, illustrated by their negative values compared to the native system 

under the same conditions. Upon further investigation we found that for G15 the 

arginine residue has to rotate into a position where it is capable of forming the 

cross-link, and in doing so the guanidinium group (and hence the five 

membered ring portion of glucosepane) comes into very close contact with a 

neighbouring collagen molecule, thus raising the energy significantly. Upon 

removing just the cross-link we see a small drop in energy as the carbons of the 

sugar moiety bound to the collagen are removed reducing the number of close 

contacts, a larger drop in energy is then seen on removing the PBC to 

completely remove the close contacts. 

A comparison between the number of favourable DOGDIC and glucosepane 

formation sites (105), reveals an equal propensity for each AGE cross-link 

formation although, of the six DOGDIC sites, only site 20 was identified in both 

studies. The most likely reason for this variation is the difference in the 

separation between the three terminal nitrogen atoms lysine Nζ and arginine Nη. 

In glucosepane these separations are 2.6 Å and 3.8 Å respectively. In DOGDIC 

the separation is smaller at 2.5 Å and 3.5 Å, which is potentially the determining 

factor as to whether cross-link formation will be favourable or not. Upon 

rearrangement of the side-chains the resulting configuration may impose close 

contacts of those side-chains with their neighbouring residues. The difference 

between the two sets of distances suggests that the structure of the residues at 

the same site for DOGDIC and glucosepane is not the same. In one structure 

there may be an unfavourable close-contact introduced or a favourable 

electrostatic interaction may be missing, depending on the cross-link formed. 
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Another possible explanation is the difference in the degree of polarity between 

the two cross-links, with glucosepane having two hydroxyl groups whilst 

DOGDIC has three. However, there is no net change in the polarity, leading us 

to believe that this is unlikely to be a significant contributor. The one common 

site, site 20, is seen in Figure 16 and Figure 17, to have fewer bulky amino acid 

residues surrounding the cross-link. This means that it is likely to have a greater 

flexibility in its movement and thus the ability to form the cross-link without the 

introduction of close-contacts or unfavourable interactions with the neighbouring 

residues. It is therefore found to be energetically favourable for both of the 

studied AGEs.   

Despite there being an equal number of favourable glucosepane and DOGDIC 

sites within the collagen molecule, other factors may affect the formation within 

the tissue, which will account for the difference in the reported ex vivo 

concentrations. The simulations conducted in this study do not take into account 

activation barriers for cross-link formation, nor do they take into account the 

kinetics of the reaction. It has previously been reported that the dehydration 

step in the glucosepane formation is non-reversible, whereas DOGDIC 

formation is reportedly reversible, potentially accounting for the difference in 

relative abundance ex vivo (101).  

  



Intra-Molecular Lysine-Arginine AGE cross-linking of Type I Collagen 
 

- 115 - 

 

Figure 23: Image depicting a single collagen molecule with A) the gap regions 
illustrated by the orange regions B) Favourable glucosepane sites highlighted 
by the green regions and the unfavourable regions highlighted by the red 
regions C) Favourable DOGDIC sites highlighted by the green regions and the 
unfavourable regions highlighted by the red regions. Labels denote the number 
of the site highlighted 

 

The location of the cross-links within the collagen molecule, as shown in Figure 

23, may play a role in whether the cross-link will be energetically favourable to 

form or not. It can be seen that the sites identified by the distance based criteria 

search are spread along the whole length of the collagen molecule. However 

there is a large region of the molecule between site 2 and 3 where no potential 

sites exist. One striking observation is that all but one of the cross-links for 

DOGDIC are located within the gap region of the collagen fibril, where the gap 

region is defined as the lower protein density region produced as a result of the 

D-periodicity of the Hodge Petruska packing model. Glucosepane shows a 

similar affinity for cross-link formation in the gap regions of the collagen (site G2 

and D4 are both in very close proximity to the gap region). There are two 

potential explanations for this observation. First, both AGEs are polar and 

hence capable of forming hydrogen-bonds to the intra-fibrillar water molecules; 

the number of water molecules per unit volume in the fibril is 20% higher in the 

gap region than in the overlap region (78, 263). Second, the overlap region has 
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a higher protein density (volume), which results in an increased likelihood of an 

unfavourable interaction occurring between the newly formed AGEs and the 

neighbouring collagen molecules. The influence of both of these factors can be 

seen in the conformations of the DOGDIC cross-link shown in Figure 17. The 

one cross-link not located in the gap region shows a configuration with the 

hydroxyl chain of the DOGDIC cross-link running flat (or parallel) to the 

backbone. Those cross-links in the gap region have the DOGDIC hydroxyl-

chains perpendicular to the backbone, thus maximizing the amount of 

hydrogen-bonds to the intra-fibrillar water molecules.  

  

4.6 Oxidized-DOGDIC 

The have been some reports of the literature in that DOGDIC can undergo 

further oxidation to form Ox-DOGDIC, changing the aliphatic chain into a six 

membered ring, although the exact mechanism of this is currently not known. 

To date few studies have been conducted into Ox-DOGDIC on its structure, 

function or impact on the body. This is most likely due to its low concentration 

within the body. Concentrations of Ox-DOGDIC are only 0.23% that of 

glucosepane in skin, with glucosepane having levels as high as 2000 pmol/mg 

compared to 7 pmol/mg for Ox-DOGDIC (100). From the few reports that have 

been constructed it has also been shown that the concentration of Ox-DOGDIC 

increases with age whilst DOGDIC showed a decrease in concentration with 

age, suggesting an enhanced oxidative process occurring in the skin, with direct 

conversion between the two AGEs (100).  
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Figure 24: Schematic diagram of Ox-DOGDIC, where R1= Lysine and R2 = 
Arginine. 

As DOGDIC is a precursor to Ox-DOGDIC, we used only the six identified in the 

previous investigation to be exothermic for DOGDIC formation, instead of the 24 

sites located in the distance based-criterion search to reduce the computational 

expense of the study. The DOGDIC cross-links were converted to Ox-DOGDIC 

at the six favourable sites, before running for a further 60 ns of simulation. The 

average relative formation energies for the Ox-DOGDIC cross-links were then 

calculated relative to their native collagen system, with the data being collected 

again from the stable final 25 ns of simulation, with the results shown in Table 6. 

Table 6: The Difference in enthalpy formation of Ox-DOGDIC for all the 6 
favourable DOGDIC cross-link sites, identified in the previous study. 

Cross-linking Site Relative Formation Enthalpy 
(kcal/mol) 

4 +60.30 

11 +3.96 

18 +21.96 

19 - 

20 +12.15 

21 -4.28 
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As can be seen in Table 6 the formation of Ox-DOGDIC is only energetically 

favourable at one of the six identified cross-link sites. Unfortunately site 19 

clashed (C5 specifically) with a neighbouring collagen molecule backbone upon 

forming the cross-link, which meant the energy was significantly higher than the 

others and certainly would not occur within the body in this arrangement. For all 

of the sites investigated we see an increase in their energy as a result of this 

further oxidation. This is most likely due to the fact that the structure is placed 

into a more constrained configuration upon formation of the six membered ring, 

Figure 24, and due to the fact that the separation between the three terminal 

nitrogen atoms is reduced even further to 2.35 Å and 3.53 Å in Ox-DOGDIC, 

from 2.5 Å and 3.5 Å in DOGDIC. Both of these changes mean that there will be 

increased steric constraints imposed and hence more likely to be close contacts 

between the rest of the side-chains in the cross-linking residues, or between the 

cross-linking residues and neighbouring residues. This increased constrained 

configuration is illustrated by the fact that the standard deviation (spread) in the 

values for the dihedral angles of the cross-linking reduces is decreased by 10-

20%, as shown in Figure 25. Figure 25 also shows a significant rotation around 

the alpha-carbon in the oxidation process, with the mean value of the phi angle 

in arginine changing from 156.61° to 8.88°, thus further illustrating the big 

differences in the structures of the two cross-links. 
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Figure 25: Dihederal angles for the cross-linked arginine (left) and lysine (right) 
residues for Ox-DOGDIC and DOGDIC at Site 20 

 

Site 21 gives a relative formation enthalpy (compared to the native model) that 

is slightly exothermic, - 4.28 kcal/mol, suggesting it may possibly form within the 

body. However the magnitude of the enthalpy, and the fact that there is only 

one potential intra-molecular formation site where Ox-DOGDIC is energetically 

favourable, may explain why the concentration of Ox-DOGDIC in the body is so 

low.  

 

4.7 Summary 

In conclusion, we have identified six sites each for DOGDIC and glucosepane 

where the intra-molecular formation of the cross-links in type I collagen is 

energetically favourable, with only one site being equivalent. We have then 

shown that the reduced N-N intra-distance in DOGDIC means that there is little 

competition for lysine arginine sites with glucosepane, as they form 

exothermically at different sites. Our results suggest that lower levels of 

DOGDIC in human lens tissue is most likely as a result of the differences in the 

availability of carbonyl metabolite, or the non-reversibility of the glucosepane 

formation mechanism. The positions of these cross-links are likely to have a 

significant impact on collagen properties, with some overlapping with key 
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collagen-biomolecule binding sites. Both AGEs studied show a preference to 

form energetically in the gap region, owing to its lower protein density and 

higher intra-fibrillar water content. This is owing to the fact that the local 

environment around a formation site is a key factor in the energetics of the 

process, with little deviation observed in backbone atom positions upon cross-

link formation. Additionally a single site for Ox-DOGDIC formation from 

DOGDIC under oxidative conditions was identified, although its significance 

within the body is likely to be small.  
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Chapter 5 Mechanical Properties of Collagen and the Impact of 

Cross-linking 

 
5.1 Introduction 

As was shown in 1.1.3 the mechanical properties of collagen are vital to its 

function as a material. Therefore a large number of experimental studies have 

focussed on investigating these properties (63, 65, 71, 264–269). However due 

to the size and complexity of collagen molecules, to date, very few 

computational investigations have been conducted. The first computational 

study to probe the mechanical properties of the collagen molecule was 

conducted by Lorenzo et al., in 2005, when they conducted a steered molecular 

dynamics approach, testing the molecular response of short 29-30 amino acid 

collagen like peptide, based on a two springs in series model (270). However 

this study only used a polarisable continuum model, which was later proven not 

to be sufficient by a 2007 study by Zhang et al., in which they looked at the 

extent to which structural water participates in carrying load (271). During this 

study they observed that water behaved as a weak lubricant during in plane 

axial stretching, but as a resisting factor during microfibril bending, suggesting 

that the absence of water would lead to inconsistent results with experiment. A 

couple of other studies have been conducted since looking at several elements 

such as how helical hierarchy controls collagen deformation (264), the role of 

the mature enzymatic cross-links (272) and even the viscoelastic (creep) 

behaviour of collagen micro fibrils (273).   

A number of previous studies have tried to combine the results of AFM single 

molecule pulling experiments with those obtained through fully atomistic steered 
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molecular dynamics. However limits in capabilities of both techniques, primarily 

the different time scales of the two techniques, prevent direct comparison 

between the two being possible (274, 275). Despite this a number of papers 

have been published using a combination of the two (276, 277) as, although 

direct comparison of absolute values of the two techniques is not possible, it is 

possible to generate qualitative results. These qualitative results can be used to 

correlate with trends in the other techniques to explain some of the trends 

observed.  

The major problem is that no consensus has come out of any of the studies to 

date for the absolute value of the Young’s modulus of collagen. Table 7 gives 

results from a number of both experimental and computational investigations 

using a variety of techniques and their respective values. There are a number of 

possible reasons for these inconsistencies from; the accumulation of uncertainty 

in the experiments; or probing the mechanics at different states of hydration 

(70).  

Authors Methodology Value for 

YM (GPa) 

Reference 

Harley et al., Brillouin light scattering 9.0 (278) 

Cusack et al., Brillouin light scattering 5.1 (279) 

Sasaki et al., X-ray Diffraction 2.9 ± 0.1 (280) 

Sun et al., Estimate from Persistence Length 0.35 – 12 (66) 

Lorenzo et al., Computational – SMD 4.8 ± 1.0 (270) 

Zhang et al., Computational – SMD 6.5 ± 0.5 (271) 

Gautieri et al., Computational – Coarse Graining 4  (77) 

Table 7: Values for the Young’s modulus of molecular type I collagen derived 
from a variety of techniques, illustrating the inconsistencies of the values 
produced from different methods. 
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If we focus solely on the computational techniques, we have identified three key 

reasons that may contribute to the inconsistent values for the Young’s modulus. 

Firstly there are a wide variety of values reported for the constant of the cross-

sectional area from 167 – 214 Å2. This of course leads to a wide variety of 

values being reported for the Young’s Modulus (270, 271, 281). Secondly there 

is no consistent value used for the pulling velocity, which may result in greater 

uncertainty in reported values, which may thus introduce variance in the 

reported absolute values. Finally the difference in the primary sequences of the 

collagen like peptides used in the studies, which it has been suggested, may 

alter the mechanical response of the collagen to an applied load. It is this last 

variable which we will investigate further in our study whilst trying to keep the 

influence of the other two factors to a minimum through careful experiment 

design. 

 

5.2 Steered Molecular Dynamics Methodology 

All of the steered molecular dynamics (SMD) calculations were conducted using 

NAMD version 2.11, owing to its excellent scalability and compatibility with the 

Amber force-field, such that the same force-field is able to be used, removing 

the need to re-parameterise the cross-links for a new force-field implementation.  

 

5.2.1 Tensile Modulus 

The terminal nitrogen atoms of each of the three strands are fixed at a position 

in space. The three carbon atoms at the other end of the three strands are 

defined as the SMD pulling group. The centre of mass of the three pulling atoms 

is attached to a dummy atom via a virtual spring of force constant 7 kcal/(mol 
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Å2). The dummy atom is then moved at a constant velocity of 0.1 Å /ps, along a 

vector defined between the centre of mass of the pulling and the fixed atoms, 

the resultant reactant force is printed out every 50 steps. The simulations are 

conducted for 80 ps at 310 K using the same ff99SB force field from our 

previous investigations. The resultant force displacement curve can then be 

used to obtain information on the stress strain relationship and even calculation 

of the Young’s modulus, as detailed in 5.2.3. 

 

5.2.2 Lateral Modulus  

The terminal carbon atoms, in addition to the terminal nitrogen atoms, of each 

of the three strands are fixed at a position in space. The SMD pulling group for 

the lateral investigation is defined as the alpha carbon atom of the central α1 

residue of a cross-linked chain (in the case of the cross-link forming between 

the two α1 chains the α1a chain is used). The centre of mass of the pulling 

atoms is attached to a dummy atom via a virtual spring of force constant 7 

kcal/(mol Å2). The dummy atom is moved at a constant velocity of 0.1 Å /ps, 

with the resultant reactant force again being printed out every 50 steps. The 

pulling vector in this case runs perpendicular to the principal axis and is defined 

by the centre of mass of the pulling atom and the alpha carbon atom of the 

residue below in the structure. The simulations are conducted for 50 ps at 310 K 

using the same ff99SB force field from our previous investigations.  
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Figure 26: Graphical representations of the two SMD protocols 
implemented for probing the mechanical properties of collagen, A) 
Tensile modulus and (B) Lateral Modulus 



Mechanical Properties of Collagen and the Impact of Cross-linking 
 

- 126 - 

5.2.3 Analysis of the Nano-mechanical Properties 

The force displacement data obtained from the SMD calculations can be 

converted into stress strain curves using the relationships given below.  

The stress applied to a material is the force per unit area applied to the material. 

Hence the stress inside the protein σ, can be calculated by the force exerted on 

the molecule F, divided by the cross-sectional area A. 

σ = !
!
       (Eq. 1) 

The strain ε of the protein is the unit less ratio of extension (L-L0) to original 

length L0.   

  ε   = !!!!
!!

      (Eq. 2) 

The Young’s modulus E, which gives a measure of the stiffness of the material, 

can then be calculated, under the elastic approximation, as the stress divided 

by the strain (gradient of a stress strain plot). 

𝐸 𝜀 = !
!
      (Eq. 3) 

 

5.3 Heterogeneous Response to Strain – Triplet Variance 

All but one of the molecular dynamics or AFM studies conducted to date have 

excluded looking at the effects of the amino acid sequence. The studies 

conducted on different types of collagen, or collagen like peptides, all exhibited 

a wide variety of moduli, suggesting that the variance in the sequence used 

could result in alteration to the mechanical behaviour. This difference in 

behaviour could be due to the differences in the way the side-chains move with 
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respect to one another; the cause could be influenced by a number of 

biochemical parameters such as polarity, charge and side-chain volumes. 

 Buehler et al., previously conducted the only investigation into the effect of the 

sequence of a collagen molecule on its response to an applied load (281). 

However, Buehler et al, only investigated four different sequences, which they 

considered to be the most abundant sequences in collagen, (GPO)3 (10.5%), 

(GAO)3 (3.4%), (GPA)3 (3.4%) and (GEQ)3(GEK) (2.0%) listed in decreasing 

abundance, with abundance in type I collagen in brackets. Although abundant, 

the four triplet sequences still only accounts for fewer than 20% of the whole 

collagen sequence (50), and thus a study using a larger number of the 

abundant sequences is required to gain a better understanding of the 

mechanical behaviour of the collagen molecule. What Buehler et al.’s study 

showed was that the nano-mechanical response varied for different sequences 

up until 25% strain, with the Young’s modulus varying by up to 50% between 

the four sequences. After 25% strain the backbone was stretched which they 

deemed to be independent of sequence, as moduli of the four sequences 

converged after this point. Additionally they showed the importance of hydrogen 

bonding in the response to an applied load, with the stiffness being related to 

the rate of hydrogen bond breaking. 

In our investigation we aim to quantify the effect of varying just a single residue 

in the central triplet of a homotrimeric collagen like peptide on its response to an 

applied load, whilst simultaneously investigating a wider variety of the triplets 

encountered within the full collagen molecule. To test this we ran an 

investigation on the triplets that make up just 28.1% of the sequence triplets of 
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the collagen molecule, which are the GlyProYyy triplets, by testing over 20 

different triplet compositions, based on varying the identity of the Yyy residue.  

To conduct this study we use a small collagen like peptide, which is shown to 

be capable of forming quasi-staggered packing in the crystal structure. First 

synthesised by Kramer et al., (28) in 2000, the peptide was initially used to 

investigate the effect of charged pairs in the centre of the triplet, we will use this 

central triplet to study the sequence dependent effect on the mechanical 

properties of collagen like polypeptides. The CLP we use in this study is 

homotrimeric with the sequence (ProHypGly)4YyyProGly(ProHypGly)4, the three 

polypeptide chains are staggered with a leading, middle and tailing chain. The 

presence of the repeating GlyProHyp triplets ensures that a triple helical 

structure is adopted. This was theorised by Brodsky et al., (32) who showed 

that the GlyProHyp triplet is the most stable for the triple helical conformation 

with substitutions of the Pro or Hyp, in the Xxx and Yyy, decreasing the melting 

temperature by destabilising the triple helix. Arginine in the Yyy is the only 

substitution that does not lower the melting temperature (282). However where 

Hyp in the Yyy promoted triple helix formation, arginine destabilised triple helix 

formation (51). 

 

5.3.1 Methodology – Building the Model 

The CLP we use in this study is homotrimeric, with the sequence 

(ProHypGly)4YyyProGly(ProHypGly)4, taken from the protein databank 

accession number: 1QSU (28). An in-house script was created to vary the 

identity of Yyy for each of the 20 naturally occurring amino acids plus 

hydroxyproline independently in the central GlyProYyy triplet. 
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Once the sequences have been defined they are transposed onto a PDB, which 

contains the coordinates of the backbone atoms from the crystallographic study. 

The PDB is then loaded into LeaP which adds in the missing side-chain atom 

coordinates, Cl- or Na+ ions to negate any overall charge from the charged 

amino acid residues and we finally solvate the CLP with a buffer of 30 Å of 

TIP3P water molecules in all directions. The models are then run for 5000 steps 

of minimisations (500 steepest descent followed by 4500 conjugate gradient), 

120 ps of heating before finally being run for 2 ns of NPT equilibration. 2 ns was 

chosen as we believe this is more than sufficient for a stable conformation to be 

formed. This was confirmed by checking the RMSD of ten random models all of 

which had an RMSD less than 2.5 Å. The pulling experiments were conducted 

using the above tensile SMD methodology outlined in 5.2.1, for five repeats 

taken at 0.1 ns increments for the final 0.5 ns of the simulation. The tensile 

Young’s modulus was calculated by Eq. 3 to determine whether the sequence 

has an effect on the mechanical properties of triple helical collagen-like 

peptides.  

 

5.3.2 Results 

Models were constructed and MD simulations were run for the 20 different 

sequences generated by varying the Yyy residue in the central triplet. 

Unfortunately the methionine based sequence continuously uncoiled upon 

running the simulations. The restraints necessary to force a triple helical 

confirmation were too high to be of relevance; therefore it was decided to omit 

methionine substitution from our study. The remaining 19 models then 

underwent the tensile modulus protocol outlined in 5.2.1, with the modulus 
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being calculated in the low strain domain. The choice of the low strain region, of 

up to 25% strain, was taken based on the observations of Buehler et al., who 

observed that changes to the structure in the higher strain regions were 

independent of sequence (281). The averaged results of the SMD simulations 

were then normalised against the most frequently occurring GlyProHyp triplet, 

so that they any resulting sequence dependence differences are easier to 

observe, the results of which are presented in Figure 27. The standard errors of 

the mean for these average values were no greater than 0.4%.   

 

Figure 27: Plot showing the change in the value of the Young’s modulus on 
varying the Yyy residue in the sequence (ProHypGly)4YyyProGly(ProHypGly)4, 
relative to the value of the most frequently occurring GlyProHyp triplet. 
Uncertainty in above values no greater than ±0.4%. 

 
What is immediately apparent from Figure 27, is not only that the hydroxyproline 

residue in the Yyy position is the most frequent, but it also yields the most 

compliant molecule of those tested, with all the other residues resulting in an 

increase in value for the Young’s modulus. The absolute value for the Young’s 

modulus, calculated for a hydroxyproline residue in the Yyy position, was 7.0 
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GPa which is in the upper range of values reported in Table 7, and close to the 

value reported by Zhang et al. (271), supporting the reliability of the results 

presented herein.   

As has been mentioned previously in 1.1.2, hydroxyproline plays a significant 

role in the stabilisation of the triple helix. Hydroxyproline does this in one of two 

ways; through water mediated hydrogen bridging interactions between collagen 

molecules or strands; or through the entropically favoured imino acid specific 

constraint of the backbone angles to optimum collagen values. If the imino 

specific constraint of the backbone angles were the reason for the higher 

elasticity then we would expect a GlyProPro triplet to exhibit a similar 

phenomenon. However proline in the Yyy position results in a value for the 

Young’s modulus which is 0.84% greater than that of hydroxyproline, yet 

significantly lower than for most other residues. So instead, if the hydrogen 

bonding properties played the dominant role, then we would expect similar 

values for other polar residues to be reported. Apart from arginine, which is a 

potential hydrogen-bonding source, this was not observed. Therefore it is likely 

that a combination of both effects, in addition to the inductive effects introduced 

by the hydroxyl group, are the reason for this elastic behaviour.  

Interestingly arginine also exhibits a value for the Young’s modulus that is much 

lower than for any other residue (excluding hydroxyproline). It has been shown 

previously in the work of Yang et al., that arginine in the Yyy position can exhibit 

a similar stability as hydroxyproline in the same position (51). Its stability was 

not thought to be a result of its charged group, something which we concur with 

given that the Young’s modulus for the lysine residue in the Yyy position is 

significantly greater than that of the arginine derived model. Yang et al. instead 
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hypothesised that it was the role of the guanidine group of arginine and its direct 

hydrogen bonding interactions with the protein backbone or water network that 

stabilised the structure, and its constrained position in the Yyy position that 

provided the optimum interaction network (283, 284).  

 

Figure 28: Bar plot showing the relative difference in Young’s modulus on 
varying the Yyy residue from hydroxyproline. With the red line plot showing the 
experimental melting temperature for each triplet, reported in the work of 
Brodsky et al., (30).  Uncertainty in above calculated YM values no greater than 
±0.4%. 

 

Given that both hydroxyproline and arginine exhibit similar stability in the Yyy 

positions of model peptides, we plotted in Figure 28 the relative Young’s 

modulus values, with an overlaid line plot of the experimentally derived melting 

temperature for the corresponding model sequences (30). What this shows is 

that if the model peptide is stabilised by inclusion of a particular residue, 

illustrated by a higher melting temperature, then the Young’s modulus will also 

decrease. Through looking at the classifications of amino acids, we can also 

see that the aromatic amino acids have significantly higher values for the 
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Young’s modulus then non-aromatic. Additionally, the charged residues, with 

the exception of arginine, will result in a 3% or greater increase in the Young’s 

modulus by their inclusion at the Yyy position. 

 

5.3.3 Discussion 

The sequence dependency of the mechanical properties will not only affect 

comparison of mechanical responses of different collagen or collagen like 

molecule, but will impact the deformation patterns within a single collagen 

molecule. The sequence of collagen, although having a common repeating 

pattern of GlyXxxYyy triplets, is still extremely heterogeneous and thus, as has 

been shown in this work, will respond in a non-uniform manner to an applied 

load. This may lead to localised strain and stress concentrations within the 

collagen molecule, owing to the different response of the varying sequences to 

a mechanical load. Sections of sequence which have been shown to be highly 

compliant may deform at a greater rate, potentially inducing micro unfolding at 

that region or inter-molecular sliding of the supramolecular structure.  

The impact of varying just one residue within the collagen molecule on the 

calculated value for the elastic modulus is significant, in some cases the 

Young’s modulus increasing by as much as 6.6%. For this reason it is no 

surprise that the numbers reported from different experimental and 

computational investigations differ so much, where sequences used can vary 

significantly.  However we do not believe that it will be a simple additive effect, 

as the interaction between the different possible Xxx and Yyy residues, and 

hence their stability and mechanical properties, will vary depending on their 

identity. Instead a more comprehensive study would require testing all possible 
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permutations of Xxx and Yyy to get a complete picture on the sequence 

dependency of the mechanical properties. What our study does highlight 

however is that, when comparing two sequences, the stability in the form of 

melting temperature can be a good indicator as to how they will respond to a 

mechanical load. Additionally this can be used to build up an estimate of the 

mechanical response of GlyProYyy triplet only containing triple helical peptides. 

In future work we aim to calculate the mechanical properties for the GlyXxxHyp 

triplets so that over 50% of the sequences of collagen have been calculated, 

thus allowing a better understanding of the elasticity and mechanical properties 

of collagen molecules. Ultimately we hope to obtain an understanding of the 

mechanical and energy storage properties of connective tissues such as 

tendons and ligaments. We hope the results presented here may form the basis 

of a data library, which could in future be added to such that the mechanical 

properties of a collagen molecule could be predicted based purely on sequence 

information. 

 

5.4 Impact of Intra-molecular AGEs Cross-linking on Mechanical 

Properties of a Collagen Molecule 

In this portion of our work we aimed to test whether the presence of AGEs 

within a collagen molecule will alter the mechanical properties of the collagen 

molecule. To test this theory we use constant velocity steered molecular 

dynamics simulations on short collagen sections extracted from the full collagen 

molecule. 
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5.4.1 Methodology  

 
5.4.1.1 – Building the Model 

Sections of the collagen were created by taking 5 or 7 residues either side of 

the cross-linking residues depending on the curvature of the molecule at that 

point. Care had to be taken to ensure that the ends of the collagen sections 

created were as straight as possible, so that the pulling and fixed groups were 

close to linear and that the principal axis of the collagen, for tensile modulus, 

was being probed. The sections were created for several different time points, 

37 ns, 41 ns, 45 ns, 49 ns, 53 ns and 57 ns, from our previous studies in which 

we identified the cross-linking sites, allowing a number of different starting 

configurations to be employed. As has been shown in 5.3 above, the 

heterogeneous nature of collagen means the absolute values will alter 

depending on the type of amino acid residues neighbouring the cross-linking 

site. It was decided to provide relative (percentage difference) values calculated 

between the same sites in native collagen and the cross-linked collagen, thus 

removing the effects of the sequence on the mechanical properties. 

 Once the smaller collagen sections had been created they were loaded into 

LeaP, where the Cl- and Na+ ions were added to negate the overall charge from 

the anionic and cationic amino acid residues. The models were then solvated 

with TIP3P water model with a buffer of 30 Å. Once the solvated models had 

been created they underwent 2500 steps of minimisations (500 steepest 

descent followed by 2000 conjugate gradient), 120 ps of heating to 310 K 

before finally being run for 1 ns of NPT equilibration. During the minimisation 

and heating stages, in addition to the first 500 ps, the whole protein was kept 

restrained. In the second 250 ps just the backbone was restrained. In the final 
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250 ps only the terminal residue’s backbone atoms were restrained, using a 

force constant of 75 kcal/(mol Å2).  

The equilibrated structures then underwent SMD calculations using the outlined 

SMD protocol (5.2) in both the tensile and lateral directions to probe the effect 

of the cross-link on the mechanical properties of the short collagen sections.  

 

5.4.1.2 Full Collagen Mechanics 

A structure for the collagen molecule is extracted from our previous simulation 

of the wild type collagen. The water molecules are stripped out of the structure 

using Ptraj, owing to the huge computational cost that would exist to model a 

fully solvated collagen molecule (approximately 2 million water molecules with a 

buffer value of 20 Å). To generate the cross-linked models, the cross-linked 

regions of the collagen molecules are inserted into the native model; such that 

two models are generated, one with all six favourable glucosepane cross-link 

sites and another with six favourable DOGDIC cross-link sites inserted. This is 

repeated for all 6 time points. Once the two models had been created they 

underwent 2500 steps of minimisations (500 steepest descent followed by 2000 

conjugate gradient) and 120 ps of heating before finally running a production 

simulation for 1 ns of NPT equilibration. During the minimisation and heating 

stages the backbone was restrained using a force constant of 75 kcal/(mol Å2).  

 

5.4.2 Results and Discussion 

As mentioned in 5.1, a major source for the variation in the absolute values in 

the Young’s modulus is the different pulling velocities used in the simulations. 
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We tested three different velocities for three of the cross-link sites and from the 

results illustrated in Figure 29, we can see that increasing the velocity 

decreases the calculated values for the Young’s modulus. This is owing to the 

larger perturbation of the structure per unit of time. However as we are using 

the relative differences between wild type and glycated peptides this will not 

change the results we are interested in. However, through the use of a 

consistent pulling velocity for all of the sequences, we are able to limit the 

uncertainty introduced owing to this. 

 

Figure 29: Figure showing the mechanical response of a collagen-like peptide 
(collagen region 4) to strain applied at varying velocities. A) Illustrates the length 
vs time plot and B) The effect of the velocity on the Young’s modulus calculated 
from N=6 repeats.  

 

Another source of variation for the absolute values for the Young’s modulus is 

the values used for the area in Eq. 1. It was for this reason, and due to the 

different sequences being investigated, that it was decided to measure the 

diameter at approximately 30-40 positions along each of the short collagen 

snippets, such that the cross-sectional area can be calculated for each of the 

snippets to give a more accurate value for their Young’s modulus. Even with 

this approach there will be some uncertainty introduced, owing to the 

assumption that the cross-section of the collagen is circular which, although a 
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good approximation, is still not entirely accurate. Given the six time points for 

each of the cross-link positions it was possible to reduce the uncertainty from 

values reported in previous simulations, ± 7.5 – 20 % (270, 271). However, at 

times this uncertainty could still be relatively large, up to ± 2.25 % for the tensile 

modulus and up to ± 4.1 % in the lateral modulus.  

Despite this uncertainty we were able to obtain results for the change in the 

mechanical properties. The resultant force displacement curve and stress-strain 

from our tensile modulus simulations, Figure 30, resembles those obtained in 

the work of Zhang et al. (271). The general overview of the curve shows an 

initial “toe-shaped” region that changes to a linear region of greatly increased 

gradient that would continue up until failure (285). The toe shaped region has 

been described previously for a tendon under axial stretching (265), where it 

was considered to be the low strain region necessary to remove small “crimps” 

in the collagen molecular structure. Hence the “toe-shaped” region in our curve 

is likely the low strain region where the removal of curvature from the collagen 

fragments occurs. In the low strain region there is also a maintained number of 

overall hydrogen bonded interactions between the chains, but as the structure 

becomes too strained the separation between the polypeptide chains increases 

as the chains straighten, and the total number of hydrogen bonded interactions 

decreases. 
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Figure 30: Illustrative stress vs. strain plot for a collagen like peptide (collagen 
region 4), showing the “toe shaped” curve region at low strain, followed by an 
linear region which would continue until fracture (fracture not possible with MD 
technique employed, instead simulation was run to 100% extension). 

 

For calculation of the Young’s modulus it was decided to use the linear medium 

strain region of the stress strain curve (strain 25 - 50%), for both the tensile and 

lateral modulus simulations, to obtain an optimum line fit. Absolute values 

calculated for the tensile Young’s modulus varied from 8-14 GPa, making them 

at the upper range of the previously published values. However, as we are 

looking at the relative differences between the cross-linked and wild type 

collagen peptides, owing to the different primary sequences and the 

heterogeneity of collagen, this slightly high value will have no influence.  
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Figure 31: Bar chart showing the percentage change in the tensile Young’s 
modulus upon the formation of a Glucosepane cross-link relative to the wild 
type collagen. The uncertainty in the calculated values is illustrated by the red 
error bars. 

 

 

Figure 32: Bar chart showing the percentage change in the tensile Young’s 
modulus upon the formation of a DOGDIC cross-link relative to the wild type 
collagen, the uncertainty in the calculated values is illustrated by the red error 
bars. 

 

As can be seen from Figure 31 and Figure 32, there is no statistically significant 

increase in the tensile Young’s modulus on introduction of a glucosepane or 
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DOGDIC cross-link respectively. Decreases in the values for the Young’s 

modulus is likely an artefact of inaccuracies in the values used for the cross-

sectional area of the peptide. As a result of this, no conclusions can be drawn 

from the data other than the fact that intra-molecular AGEs cross-linking has 

little effect on the tensile modulus of the collagen molecule, within the 

uncertainty limits of the method. 

 

 

Figure 33: Series of three images showing the glucosepane cross-linked at site 
20; the top image illustrating the starting structure, middle image depicting the 
structure at 20% strain and the final image showing the final structure at 50% 
strain. 

 

The most likely reason for no increase being observed is that in our simulation 

we assume the load is applied uniformly to all three chains through the dummy 
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atom attached to the centre of mass of the three-polypeptide chains. This 

results in an extension of the chains at an almost equal rate, as seen in Figure 

33, such that the separation of the two cross-linked amino acids occurs at a 

gradual rate such that it does not significantly increase beyond typical values 

until high strains, near the fracture region. Figure 34, shows this graphically, 

with the straining of the cross-link not occurring until above 25 Å extension, as 

illustrated by the 15% difference in Cα-Cα separation. Even in this region of 

increasing Cα-Cα separation, the N1-NZ and N2-NZ separation does not 

increase dramatically. Based on the data presented in Figure 34 and the final 

structure in Figure 33 it is my belief that region where the Young’s modulus 

would increase, as a result of intra-molecular AGE cross-linking, would not be 

accessible physiologically in a fully solvated state, as the strain required would 

likely result in protein fracture. 

 

Figure 34: Plots showing the percentage increase in the separation between (A) 
alpha carbon atoms in the backbone of the cross-linked lysine and arginine 
residues (B) the nitrogen atoms within glucosepane (N1 and N2 from arginine 
and NZ from the lysine residue). 

  

We then set out to calculate the lateral force-displacement ratio of the same 

collagen peptides to test whether this different loading mode is affected by the 

presence of the AGE cross-links. A force-displacement ratio was used instead 



Mechanical Properties of Collagen and the Impact of Cross-linking 
 

- 143 - 

of the YM owing to difficulties in defining the cross-sectional area for lateral 

pulling, however as we are using relative differences the results will be 

equivalent. The results are presented in Figure 35 and Figure 36; again as with 

the tensile modulus there is no statistically significant effect of cross-linking on 

the mechanical properties of the collagen peptides. Figure 37 shows again, that 

the cross-links themselves are not strained heavily until the strain applied to the 

collagen molecule is above 50%, as seen in the final image. 
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Figure 35: Bar chart showing the percentage change in the lateral force-
displacement ratio upon the formation of a glucosepane cross-link relative to the 
wild type collagen, the uncertainty in the calculated values is illustrated by the 
red error bars. 

 

 

Figure 36: Bar chart showing the percentage change in the lateral force-
displacement ratio upon the formation of a DOGDIC cross-link relative to the 
wild type collagen, the uncertainty in the calculated values is illustrated by the 
red error bars. 
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Figure 37: Series of four images showing the lateral pulling of DOGDIC cross-
linked at site 20; the top image illustrating the starting structure, second image 
depicting the structure at 10%, the third at 35% strain and the final image 
showing the final structure at 50% strain. 

 

It was decided to verify these results, to ensure that the null result is correct and 

not an artefact of the pulling methodology. Two further approaches were 

implemented to verify the effect of intra-molecular cross-linking; the first 

verification was conducted by comparing the results of a tensile SMD approach 

on the full collagen molecule that contained all 6 DOGDIC cross-links or all 6 

glucosepane cross-links or no cross-links. The second approach was to make a 

slight alteration in the SMD tensile methodology, assigning the pulling group to 
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be only the terminal C atom of one chain, thus only one polypeptide chain will 

be explicitly pulled in the simulations. The peptide generated at site 20 was 

used so that both cross-links could be considered. 

The whole collagen molecule models generated as described in 5.4.1.2 were 

subjected to the tensile modulus methodology to obtain results for the effect of 

cross-linking on the collagen molecules. The resulting force displacement and 

stress-strain curves obtained were significantly more complex than those for the 

solvated short collagen like peptides. The stress-strain curve, in Figure 38, 

exhibits the same initial “toe region” as shown for the collagen peptide in Figure 

30. However, instead of being followed by a linear region to fracture, what we 

observe for the full collagen molecule is that there is a short linear region up to 

the 18% strain region, followed by a region 18 – 35% strain region where the 

stress undulates with increasing strain. This is most likely the result of the 

removal of the macroscopic kinks within the collagen molecule, resulting in an 

temporary decrease in the stress of the system. We also calculated values for 

the tensile Young’s modulus of the three models, from the linear region of the 

stress-strain plot with the results shown in Figure 38. As can be seen the 

changes again are not statistically significant, supporting the previous results 

suggesting that intra-molecular AGE cross-linking has no effect on the Young’s 

modulus of molecular collagen.  
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Figure 38: Figure showing the tensile mechanical response of a whole collagen 
with either DOGDIC or glucosepane cross-links present at all of the favourable 
binding sites to an applied load. A) Illustrates the stress vs. strain plot and B) 
The percentage change in the tensile Young’s modulus upon the formation of all 
6 of the glucosepane or all 6 of the DOGDIC cross-link relative to the wild type 
collagen, the uncertainty in the calculated values is illustrated by the red error 
bars. 

 

To confirm this negative result we decided to conduct one more type of 

calculation using the peptide from site 20, allowing for testing of both cross-links 

effect. The calculations were repeated for all time points of the peptide model, 

so that a variety of different starting structures could be investigated. The single 

strand pulled, the α2 chain, was kept the same across the variety of cross-links 

and initial time-point simulations. The C-terminus end of the two other 

polypeptide chains were allowed to behave normally with no restraints present, 

whilst the N-terminus end of all three chains were fixed. Figure 39 shows the 

development of the simulations with time. Immediately from the force-

displacement plot, Figure 40, it was apparent that there was an effect from the 

cross-links presence, as seen by the separate lower stress-strain line of the wild 

type collagen, with the two AGEs showing similar stress-strain curves. In the 

low strain region all three models exhibit similar behaviour, with a “toe-like” 

region. However at intermediate strains (~20% strain) we see the curves 
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beginning to diverge. This is a result of the strain on the cross-link increasing, 

as can be seen in the middle structure in Figure 39 by the linearization of the 

cross-link structure when compared to the top image. As the strain increases 

further (>30% strain) we see the other cross-linked polypeptide chain 

experience a localised high strain in the region between the cross-link and the 

fixed N-terminus, as can be seen clearly by the kink in the polypeptide chain in 

Figure 39. Through fitting to the linear regions of the stress-strain graph (at 

intermediate strain rates) we were able to calculate the tensile Young’s modulus 

for this single chain pulling. Here we see a statistically significant increase in the 

Young’s modulus from the wild type to the AGE cross-linked, as seen in Figure 

40. This 8.8% increase in the Young’s modulus suggests that, if a load is not 

applied uniformly, i.e. all chains strained by the same amount, then this may 

result in an increase in the Young’s modulus. This increase from the single 

strand pulling also suggests that inter-molecular cross-linking will likely have a 

significant effect on the mechanical properties, unless all of the molecules 

respond uniformly to an applied load which, as shown from 5.3, is not the case.  
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Figure 39: Series of five images showing the tensile pulling of a single 
polypeptide chain of a glucosepane cross-linked polypeptide (Collagen region 
20); the top image illustrating the starting structure, second image depicting the 
structure at 10%, the third at 20% strain, the fourth at 30% strain and the final 
image showing the final structure at 50% strain. 

 

 

Figure 40: Figure showing the mechanical response of a tensile pulling of a 
single polypeptide chain of an AGEs cross-linked polypeptide (Collagen region 
20). A) Illustrates the resultant stress-strain plot and B) Bar chart showing the 
percentage change in the tensile Young’s modulus upon the formation of a 
DOGDIC cross-link relative to the wild type collagen, the uncertainty in the 
calculated values is illustrated by the red error bars, N=6. 
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This appears to be in contradiction to the macroscopic mechanics study 

conducted by Reddy et al., in which they measure a 158% increase in the 

Young’s modulus of ribosome cross-linked rabbits Achilles tendon (126). A 

possible reason for the discrepancy between their study and ours is the 

absence of the molecular environment in our study, with all of our calculation 

being conducted in a fully solvated system. Our decision was made to reduce 

the computational cost of the simulations. However in doing so we have 

removed the influence of neighbouring molecules on the mechanics of the 

pulled molecule, through intermolecular interactions. Another important factor 

that may account for the difference between our reported values and those from 

the macroscopic study of Reddy et al., is that the concentration of cross-links 

between our two samples may differ, with our study only employing a single 

cross-link whereas the experimental study was conducted with an abundance of 

ribose present, enabling multiple cross-links to form. 

 

5.5 Summary 

As was shown in 5.3, the mechanical properties of the collagen molecule, or 

collagen like peptide, exhibit a sequence dependency, with a change in a single 

residue resulting in up to a 6.6% change in the Young’s modulus. The more 

stable triplets, higher melting temperature triplets, exhibit a lower value for their 

elastic modulus. This has two main consequences; the first is that care must be 

taken in experiment design, as sequence variance will make experiments 

utilising different sequences incomparable. Secondly, the heterogeneity of the 

collagen sequence will likely lead to localised regions of high stress or strain, 

which could lead to micro-unfolding or axial sliding. We presented the 
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mechanical influence of 28% of the possible triplets present in collagen, which 

can be used to quantitatively predict mechanical properties.  

In the second part of this study, we aimed to probe the change in the 

mechanical properties upon AGEs cross-link formation, specifically 

glucosepane and DOGDIC, testing both the tensile and lateral modulus. After a 

comprehensive study of all 12 of the favourable cross-linking sites compared to 

the wild type, using six repeats, it was found that no significant changes 

occurred within the errors of the technique. Further testing utilising all of the 

cross-linking sites within a full-length collagen molecule equally resulted in no 

significant changes being observed. This was thought to be due to one of two 

things; either the absence of the fibrillar environment during the simulations or 

that only inter-molecular AGE cross-linking had an effect on the mechanical 

properties, as has been observed in macroscopic experimental studies 

previously (126).  
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Chapter 6 Constructing a Realistic Homo sapiens Homology 

Model 

 

6.1 Introduction 

Proteins are polymeric biomolecules built up of the 20 naturally occurring amino 

acid monomers coded for in DNA, in addition to the non-naturally occurring 

post-translational modified amino acids, such as hydroxyproline. The primary 

sequence alone gives no implication of the conformational structure of the 

protein; it is for this reason that, for successful computational studies of 

biomolecules, an experimentally derived structure for the protein is necessary, 

most commonly from X-ray diffraction studies. Despite advances in technology, 

the timescale for obtaining crystal structure data for a protein is still on the scale 

of a few months to a year, and therefore there are a huge number of identified 

proteins for which an experimental structure is still missing. Some proteins are 

too large for NMR analysis and cannot be crystallised for X-ray diffraction and 

thus experimental structures may never be known. It is for this purpose that 

computational modelling has a part to play, utilizing information from known 

structures and applying it to make valid sequence based predictions of the 

structure for unknown proteins. 

Homology modelling is based on two main principles; first that knowing the 

amino acid sequence should be sufficient to predict the structure, owing to the 

structure being uniquely determined by its amino acid sequence. The second is 

that the overall structure of a protein alters much slower during evolution than 

the associated primary sequences. Therefore proteins with a similar sequence 

are going to adopt an almost identical structure, and vaguely similar sequences 
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will adopt structures with similar conformation. With an abundance of structural 

and sequence information present in open access databases, such as the 

Protein Data Bank (286) and wwPDB (287), in the late 90s, Burkhard Rost, was 

able to determine  two zones of sequence alignments. One zone was called the 

“safe” zone, where the sequence is almost guaranteed to fold into the same 

structure. The second is known as  “twilight” zone, where the likelihood is 

completely random (288). The regions are defined based on the relationship 

between the sequence similarity and the number of aligned residues.  

Homology modelling for two sequences of the same length normally takes the 

form of a five-stage process, with the initial stage being the identification of a 

suitable template sequence from a database of known protein structures. This 

stage is followed by alignment of the sequences, based on the overlap of similar 

residues, initially using fast programs such as BLAST (99) or FASTA (289). 

Large dissimilar regions are filled in, with segments of other template proteins in 

a more refined alignment.  

Once the aligned sequence is determined, the backbone of the target sequence 

is built based on the coordinates of the template structure. If the template 

residue is the same as the target sequence, then the whole side-chain is added 

in at this stage. If not, the next stage is to add in the side-chains for the non-

overlapping residues. Two possible approaches are used; either add in the Cα 

and Cβ atoms, though this only works for high sequence identity structures, or a 

combinatorial approach is used, which places rotamers of the side-chains into 

the structure, based on libraries of common rotamers obtained from experiment, 

with an energy scoring function used to determine the best placement (290).  
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The fourth stage is model optimisation, through the use of predominately MD 

(occasionally DFT level theory) calculations, to minimise the structure to its low 

energy form. With sufficiently long simulations it is hoped that the trajectory will 

result in the complete folding to the true structure.  

The final stage is the validation of the model. With large sequence similarity 

structures, < 90% similarity, the results of the optimisation can be used to 

compare to the crystal structure of the template structure. Alternative methods 

of validation are; by monitoring the energies of the structure, RMSD, bond 

lengths, radial distribution functions and distributions of polar and apolar 

residues over the duration of the simulation. Sometimes inconsistencies in the 

model, such as misfolding, may not invalidate the model for its intended use, for 

example, if the inconsistency occurs at a position far away from the site of 

interest, whether it is an active site of the enzyme or a biomolecule-binding site.  

For disease modelling and determination of pathology and possible treatments 

it is the proteins present in the human body which are of most interest to 

researchers. However, so far, none of the structures for the 28 members of the 

collagen family have been determined for the Homo sapiens species. The 

largest portion of the native Homo sapiens structure determined to date is a 20 

triplet region of the type III collagen molecule (291). Determination of collagen 

structure is complicated owing to a number of factors, for example its large size 

prevents determination by NMR spectroscopy. Additionally, unlike crystals, X-

ray diffraction determination of biological fibres is complicated by the anisotropic 

resolution of the resultant electron density map, with a lower resolution in the 

axis perpendicular to the fibre axis making it hard to distinguish supramolecular 

structural features (236). Therefore a homology model of the fibrillar type I 



Constructing a Realistic Homo sapiens Homology Model 
 

- 155 - 

Homo sapiens structure is vital for a better understanding of the structural 

related changes and responses in collagen disease pathology.  

 

6.2 Methodology 

6.2.1 Identifying Template Structures - BLASTp 

The web portal version of Standard Protein BLAST, part of the blastp suite from 

the US National Center for Biotechnology Information, is used for database 

searching for the template sequence. The accession numbers for the human 

target sequence used are CO1A1_human (P02452) and CO2A1 (P08123), 

which includes all the hydroxyproline and hydroxylysine residues, as designated 

in the post-translational modification section of the entries. A number of 

databases were used for the search including the Protein Data Bank (231, 286, 

287), UniProt (230), SwissProt (292) and NCBI own libraries (293). For gene 

sequence data only, a manual search is conducted to identify if an available 

crystal or experimentally derived PDB file is obtainable.  

 

6.2.2 Transposing the system – BLAST 

Once a suitable reference model PDB has been identified, the next stage is 

alignment of the template and target sequences to look at the relative 

differences in residue types at the local positions within the primary sequence. 

Aligning the sequences, using BLAST, beginning from a point of strongest 

sequence similarity at the C-terminus, such that if the target and reference 

sequences are a similar length then they will align, with maximum coverage.  
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Once the sequences are aligned the positional co-ordinates of the side-chain 

atoms of the reference model are removed, leaving just the backbone intact. 

The sequence data of the target molecule is then transposed onto the positions 

of the reference protein’s backbone, giving a protein backbone with the 

sequence of the target molecule. The side chain positions are added to the 

backbone atoms through the use of Leap, which will add the atoms in based on 

its template structure. Chloride ions will then be added to negate the charge and 

the same periodic boundary conditions used in the initial model will be applied 

to this simulation.  

An initial MD simulation of 20 ns is run using the same MD conditions described 

previously for the simulations of the cross-linking within the Rattus norvegicus 

model (as described in detail in section 4.2). However initial restraints of 100 

kcal/(mol Angstrom2), were added during the minimisation. Firstly, all protein 

atoms were restrained for the first 5000 minimisation steps of steepest descent 

minimisation, to remove any overlap of the water or chloride ions. Then the 

restraints were removed from the light atoms, so that the heavy carbon, 

nitrogen and oxygen atoms were restrained for the next 5000 minimisation 

steps. The restraints were then lifted such that only the backbone was 

restrained for the following 5000 steps, before finally all of the restraints were 

removed for the final 5000 steps of minimisation. The restraints were briefly 

reintroduced onto the backbone atoms during the initial heating from 0 K to 100 

K at a heating rate of 0.5 K/ps. Finally unrestrained heating in the NVT 

ensemble was finished, taking the temperature of the simulation up from 100 K 

to 298 K, at a heating rate of 1 K/ps. A production run was then conducted in 

the NPT ensemble for a simulation time of 19.6 ns.  
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6.2.3 Determining the D-band periodicity  

Due to the difference in sequence between the target and reference sequence 

there may be increased or decreased diameter of the collagen triple helix, with 

the replacement of small residues such as glycine with bulkier residues such as 

tyrosine or vice versa. This introduction of the bulkier residues in the structure 

may result in an alteration of the packing of the collagen molecules within the 

fibril. To test if varying the packing will alter the stability, and thus the energetics 

of the new homology model, we have tried varying the dimensions of the 

periodic box by – 1.5% to + 1.5%, to expand or decrease the separation of the 

molecules within the fibrillar structure. 

The input for testing whether the packing may alter with the different sequence, 

is the final structure from the previous 20 ns simulation. In this investigation the 

dimensions of the periodic box is varied from – 1.5 % to + 1.5% in 0.5% 

increments, whilst maintaining the density of water in the simulation cell by 

adding or removing water based on the difference in volume. The seven models 

with varying dimensions are then run for 500 steps steepest descent 

minimisation, followed by 4500 steps of conjugate gradient minimisation, with 

heating under the NVT ensemble for 450 ps, followed by 30 ns of production at 

310 K. The RMSD and energy of the protein in the model is monitored over the 

final 10 ns of the simulation to determine the relative stability of the model to 

find the preferred d-period dimensions. 
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6.3 Results and Discussion 

Accession 

Number 
Description 

Max 

Score 

Query 

Coverage 

Sequence 

Similarity 

PDB 

Available 

NP_00100309

0.1 

Collagen1 α1 - Canis 

lupus familiaris 
2573 100% 97% NO 

NP_00102921

1.1 

Collagen1 α1 - Bos 

Taurus 
2570 100% 97% NO 

NP_00131070

8 

Collagen1 α1 - Equus 

Asinus 
2559 100% 97% NO 

P02454 
Collagen1 α1 - Rattus 

Norvegicus 
1683 100% 91% YES 

3HQV_A 
Low resolution 

Molecular Envelope 
939 76% 84% YES 

Table 8: Five highest scoring, reference sequences from the blastp search, of 
the alpha1 chain of the Homo sapiens collagen type I sequence. Column one 
gives the accession number for the corresponding database entry, column two 
describes where the sequence is from, column three is the BLAST max score, 
column four the overlap of two sequences, column five the sequence identity 
similarity based on the two sequences and finally the sixth column shows 
whether an experimentally derived structure is available for the reference 
sequence. 

Accession 

Number 
Description 

Max 

Score 

Query 

Coverage 

Sequence 

Similarity 

PDB 

Available 

P02466 
Collagen1 α2 - Rattus 

Norvegicus 
1984 100% 91% YES 

Q01149.2 Collagen1 α 2 – Mus 1927 100% 90% NO 

O46392 
Collagen1 α2 - Canis 

lupus familiaris 
1906 100% 94% NO 

P02465 
Collagen1 α2 - Bos 

Taurus 
1769 100% 92% NO 

3HQV_B 
Low resolution Molecular 

Envelope 
986 78% 85% YES 

Table 9: Five highest scoring, reference sequences from the blastp search, of 
the alpha2 chain of the Homo sapiens collagen type I sequence. Column one 
gives the accession number for the corresponding database entry, column two 
describes where the sequence is from, column three is the BLAST max score, 
column four the overlap of two sequences, column five the sequence identity 
similarity based on the two sequences and finally the sixth column shows 
whether an experimentally derived structure is available for the reference 
sequence. 
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Typically a scoring function program is used to determine the accuracy of the 

sequence template relative to the model sequence. This was conducted in this 

investigation through the use of the Blastp software suite. Table 8 and Table 9 

display the five highest scoring hits for both the α1 and α2 chain respectively, 

along with the respective percentage coverage and similarity to the target 

sequence.  

From the results of the blastp database search it is clear to see that the highest 

scoring sequence, for which an experimentally determined structure is known, is 

that of collagen α1 and α2 for the Rattus norvegicus, which had scores 1.8 and 

2 times larger than the next sequence with an experimentally determined 

structure 3HQV. It was decided to attempt to use the structure of the Rattus 

norvegicus sequence, which we had been using in our previous simulations, as 

the reference structure to generate the model structure for the Homo sapiens 

sequence. We hope this approach will generate a reliable method, owing to the 

strong sequence identity similarity of 91% between the two sequences, thus far 

exceeding the “safe” region threshold described by Rost et al. (288).  

Upon aligning the two sequences it was possible to see that they had a nearly 

equal number of residues; the α2 chains contained the same number of 

residues with the α1 chain containing one extra residue in the human sequence. 

However the additional residue is located in the non-helical telopeptide regions, 

such that the helical portions of both sequences consisted of exactly the same 

number of residues. For this reason we aligned the sequences from the 

beginning of the triple helical portion so that this had less of an influence. The 

side-chains of the Rattus norvegicus structure are removed in ptraj part of 

AmberTools14, leaving just the backbone atoms. The human sequence is then 
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transposed onto the backbone of the Rattus norvegicus sequence, with one 

amino acid added in the telopeptide region, before being loaded into LeaP to 

add in the missing side-chains of the amino acids. The structure produced had 

a number of local clashes between side-chains, owing to the different volume of 

the side-chains between the two sequences, and the fact that LeaP uses a 

template based approach to add in the missing side-chains, which does not 

take into account the neighbouring amino acids. These overlaps were overcome 

when the backbone-restrained minimisation was conducted. This produced a 

single collagen molecule with no local steric clashes. However it may not 

contain the optimum structure at this point, as this calculation was conducted 

assuming the same packing of the collagen molecules within the fibril, which 

may not be the case. Hence further MD runs to find the lower energy structures 

are required, which take into account the local environment around the collagen 

molecule within the fibril, as this environment will influence the conformations 

that the side-chains will adopt. 

Owing to the small variations in the sequences between the two species, there 

may be local regions where structural properties are altered. For example in the 

human α1 chains there are a number of proline substitutions in the 310-360 

region, which results in a tighter coiling of the three polypeptide chains. There 

are a number of small sequence variations between the two different 

organisms. However these predominately occur in the telopeptide regions of the 

collagen molecules and therefore will not have a significant effect on the 

structure. Focussing on the triple helical region of the collagen molecule; there 

are 34 amino acid differences in the α1 and 79 differences in the α2 chains, with 

17 and 27 of these differences changing the polarity of the residue from 

hydrophobic to polar or vice versa. Polarity is a big driver in protein folding, with 
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the hydrophobic residues clustering on the inside of the protein and the polar 

side-chains either on the outside, interacting with the water, or on the inside 

forming intra-strand hydrogen bonding. Hence these local differences in polarity 

between the two sequences may result in a different conformation of the 

collagen triple helix forming, with the potential for a slightly greater separation of 

the strands to accommodate the hydrophobic side-chain. The most significant 

difference between the two sequences is found in the α2 strand, with a 

645Glycine è 639Ser difference between the Rattus norvegicus and Homo 

sapiens sequences respectively which creates a slight “bulge” in the human 

structure compared to the rat structure. This phenomenon is well described by 

the previous studies of Bella et al, who reported a partial untwisting at the site of 

a glycine to alanine substitution (26). However the extent of separation is 

smaller in this case, owing to the fact that the glycine substitution in the rat to 

human sequence is an Yyy position glycine, as opposed to the Zzz position 

glycine that was subject of the Bella et al., study. Due to these small differences 

in the local structure, the packing of the collagen molecules may also be slightly 

altered, and it was decided that we would also investigate small variations to the 

crystallographic unit cell dimensions of the Rattus norvegicus values to obtain 

the model crystallographic unit cell dimensions for our Homo sapiens homology 

model.  

Seven different crystallographic unit cell dimensions were investigated for the 

homology modelling, with values used varying from -1.5 % to +1.5 % of the 

dimensions for the unit cell of the Rattus norvegicus. The water density was 

maintained in all of the different models by the subtraction or addition of TIP3P 

water molecules. The plot of the average energies of the models over the last 

10 ns of simulation, in Figure 41, shows a very clear U-shaped curve with a 
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clear minimum at the 0.0% crystallographic dimensions. This suggests that the 

use of the same dimensions, as have previously been described for the Rattus 

norvegicus sequence, would give on average the lowest energy structures, 

implying that the packing of the Homo sapiens collagen is very similar to the 

Rattus norvegicus sequence. The U-shaped curve of the graph in Figure 41 

shows a slight slant in its arms with a steeper gradient towards more negative 

values of variation. This would suggest that the homology model collagen is 

already close packed, and that further reduction in the separation of collagen 

molecules will lead to close contacts being introduced between molecules. This 

close packing may be the result of a wider average diameter of the Homo 

sapiens collagen sequence, owing to the above mentioned sequence 

differences. 

 

Figure 41: Plot showing the average scaled energies of the seven Homo 
sapiens homology models with varying cell dimensions over the last 10 ns of 
simulation. Energies are scaled to take into account the differing water content 
of the seven models. 
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In addition to looking at the average energies with varying cell dimensions, we 

also monitored the RMSD, as large fluctuations in the structure, after sufficient 

time for equilibration, would suggest instabilities introduced from sub-optimal 

cell parameters. A plot of the average RMSD of the backbone atoms is shown 

in Figure 42. The plot shows an M like shape, with a minimum RMSD value 

located at 0%. With increasing cell dimensions there is an initial increase, as the 

collagen molecule remains within the cut-off distance of the simulation. 

However, upon increasing the dimensions by 1.0% and above, the separation of 

the collagen molecules is large and the RMSD decreases as the molecule 

becomes more like an isolated molecule. With decreases in the cell dimensions 

we see an initial increase in the RMSD, as the protein undergoes large 

structural fluctuations to minimise the close contacts with neighbouring 

molecules. However, at the smallest values of the cell dimensions, there is a 

large number of close contacts with neighbouring molecules, which restricts the 

degree of movement of the molecules and thus resulting in a reduced average 

RMSD. 
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Figure 42: Plot showing the average root mean squared deviations of backbone 
atom positions for the seven Homo sapiens homology models with varying cell 
dimensions over the last 10 ns of simulation.  

 

It was also noted that, on moving from the NVT to the NTP ensemble, there 

were minor variations in the volume of the cells, both compressive and 

expansive. This was necessary to maintain the 1 atmosphere pressure within 

the system. These occurred in all but one of the models. However the variations 

were only very minor, less than 0.03%. For example the 0% cell dimensions 

encounter a 0.03% increase in the x and y dimensions that would further 

suggest that the Homo sapiens sequence results in a slight expansion of the 

average diameter of the molecule compared to the Rattus norvegicus structure. 

Given the results of the simulations into the investigation of the packing of our 

homology Homo sapiens molecule, relative to the template Rattus norvegicus 

structure, as summarised in Figure 41 and Figure 42, it was decided to use the 

values for the cell dimensions developed from the end of the template structure 
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simulation, as this gives the most stable simulation. Hence the unit cell 

dimensions used are 39.982 Å, 26.96 Å and 677.90 Å for edges a, b, and c 

respectively, and 89.24°, 94.59° and 105.58° for angles α, β and γ, 

respectively. The average structure for our homology model, using the chosen 

cell dimensions, is generated from the last 10 ns of the simulations. This will be 

the structure that will be used as a starting configuration for any future 

investigations upon fibrillar Homo sapiens type I collagen molecules.  

 

6.4 Validation 

To test that the homology model structure generated is reliable for use in future 

MD simulations, we conducted a comparison of a number of observables 

generated between two short MD simulations, one of our homology model and 

one of our well established model of fibrillar Rattus norvegicus type I collagen 

molecule as described in 4.2.1. A portion of 2 ns simulation of the equilibrated 

structures, tested by convergence of the potential energies, was used for the 

comparisons. Four main observables were monitored over this period; the 

density, system volume, temperature and the RMSD of the backbone atoms. 

The values for each of these observables, as a function of time, can be seen in 

Figure 43, with the red line representing the Rattus norvegicus model and the 

black line our Homo sapiens homology model. What can be seen in Figure 43A-

C is that the values are not equal at the same time, nor would we expect them 

to be. However the range of values for each of the three observables is equal 

for both the Homo sapiens and Rattus norvegicus model simulations. This 

equivalent range in the observables would suggest a similarity in the stability of 

the two simulations, meaning that our homology model could be considered to 
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give results with a reliability that is equivalent to those obtained from the 

simulation of the widely used model for the Rattus norvegicus structure (35, 68, 

78). The plot of the backbone RMSD in Figure 43D supports the conclusion of a 

reliable structure; with fluctuations being in a range consistent with the 

simulations from the Rattus norvegicus model simulations. 

 

Figure 43: Comparison of system observables of a 2 ns simulation of the Rattus 
norvegicus model (red line) against our newly developed homology model for 
the Homo sapiens sequence (black line). The observables plotted are A) 
System density, B) System volume, C) Temperature and D) Root mean squared 
deviation of the positions of the backbone atoms relative to the average 
structure for the respective model. 
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6.5 Summary 

Given the absence of a crystal structure for the structure of fibrillar Homo 

sapiens type I collagen, we developed a homology model using the crystal 

structure of the Rattus norvegicus sequence as a template structure. Owing to a 

number of variations in the sequence between the target and template, local 

variations in the structure were observed. An investigation varying the 

dimensions of the cell was conducted to explore whether the packing of the 

collagen molecules within the fibril varied. Through this investigation it was 

determined that no significant variation occurred to the packing, although the 

Homo sapiens structure did have a slightly larger average diameter which 

resulted in a 0.03% increase in the a and b dimensions. A number of 

observables were compared from a short 2 ns simulation of the equilibrated 

homology model to those of the established Rattus norvegicus model. The 

observables were found to be in a similar range and it was therefore inferred 

that the homology model for the Homo sapiens sequence produced a stable 

simulation.  
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Chapter 7 Relative Orientation of Collagen Molecules in a Fibril 

 

7.1 Introduction 

The packing in collagen networks has huge implications on how the tissue 

responds to a mechanical load. For example, in the skin the fibres form an 

anisotropic network to respond effectively to multidirectional forces, whereas in 

tendons the fibres align in one direction to maximise their effectiveness to 

respond to a uniaxial load. A lot of attention has previously been paid to 

investigating the way in which the collagen fibrils align and orientate within 

collagen fibres, as well as how collagen fibres align in fasicles. A variety of 

techniques have been employed to do this; scanning electron microscopy 

(SEM) (294), small angle X-ray scattering (295, 296), polarized light microscopy 

(297), infrared and polarized Raman spectroscopy (298–301). A major 

drawback of some of these techniques is the complex sample preparation. For 

example, in the SEM work conducted by Pannarale et al., the samples were 

dehydrated prior to scanning thus changing their structural properties (294). The 

use of small angle X-ray scattering allowed the sampling of larger hydrated 

histological sections of 1.5mm thick. However this technique is still unable to 

sample in vivo or below the fibril scale (295).  

Spectroscopic techniques offer the best chance of sampling in vivo collagen 

orientation, owing to their non-destructive, relatively simple, sample preparation. 

Non-invasive Raman Spectroscopy is even being used as a diagnostic tool to 

identify Osteogenesis Imperfecta (OI) type abnormalities in bone composition of 

patients (302). Spectroscopic techniques are possible owing to the IR and 

Raman active amide I (~1620-1700 cm-1), amide II (1600-1500 cm-1) and amide 
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III (1215-1300 cm-1) bond stretch frequencies. However the use of 

spectroscopic studies to determine the orientation of the collagen fibrils is only 

possible through the use of a polarised light source, relying on the anisotropic 

response of the amide bonds to the incidence beam. When the incidence of the 

light source is parallel “out of plane” to the principal axis of the molecule, an 

isotropic response is obtained, whereas a sinusoidal anisotropic response is 

obtained when the incidence of light is perpendicular “in plane” (299). In the 

anisotropic response for “out of plane” incidence of radiation, a minimum 

intensity response is obtained when the polarisation angle of the incident light is 

parallel to the plane of the amide bond, and is maximal when perpendicular. 

Fourier transform infrared imaging spectroscopy (FT-IRIS) on highly orientated 

tendon collagen was used by Bi et al., to generate spectral parameters based 

on the ratio of integrated areas of the amide I and amide II absorbance peaks, 

which they then used to determine collagen fibril orientation in various regions 

and types of cartilage (301). However FT-IRIS is limited to imaging the exposed 

surface fibres, owing to the strong adsorption of IR radiation by water, leading to 

low light penetration of the IR radiation in hydrated biological tissues (303). 

However the Raman spectrum of water is weaker and unobtrusive and thus 

Raman spectroscopy is often favoured for studying hydrated tissues. A number 

of studies have been conducted using Polarisable Raman Spectroscopic 

approaches to map fibril orientation within osteonal lamellae (298), tendon (299) 

and in the Haversian bone structure (304). 

It is worth noting that, although the spectroscopic techniques (Raman and FT-

IRIS) offer the closest to atomistic scale detail at present, the response of the 

amide I band is made up of contributions from all of the amide I scattering 

centres present in the structure, thus it will consist of multiple collagen 
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molecule’s responses to the incidence light. For this reason there is still a need 

to develop more advanced techniques and methodologies to be able to sample 

the orientation of the individual collagen molecules within the fibril.  

As previously demonstrated, the orientation and macroscopic structure of 

collagen fibrils plays a vital role in the function of the collagenous tissues. If we 

dive deeper into the structure of the fibril and begin to think about the role of the 

collagen molecule, we can see that it too has a significant role to play in the 

function. The alignment of the collagen molecules has been well studied, with 

the D-banding periodicity being the subject of countless research articles (15, 

21, 305–307). However, to the best of our knowledge, no study to date has 

looked at the orientation of the individual collagen molecules within the fibril. 

The orientation of the collagen molecules about their principal axis will 

determine mechanical properties owing to the different possible intermolecular 

forces, biological interactions owing to the accessibility of the biomolecule 

binding sites and finally, in the context of cross-linking, the different residues 

which will be available to form inter-molecular AGE cross-links.  

As mentioned previously, initially the collagen molecules aggregate based on 

the intermolecular forces, before later forming the covalent interactions via the 

mature enzymatic cross-link. This could therefore mean that the driver for the 

determination of the orientation of the collagen molecules will be to maximise 

the number of favourable inter-molecular interactions to form a low energy fibril. 

To investigate the lowest energy orientations of the collagen molecules we will 

use a novel two stage modelling approach. This new modelling approach takes 

inspiration from Adams et al., 1995 work on computational method development 

for the determination of conformation and rotation angles of the pentameric 
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transmembrane domain of phospholamban (308). Our approach begins by 

conducting a comprehensive single point energy search of all of the possible 

orientations at small rotation intervals of 6°. The results of the single point 

energy search are then used to conduct short molecular dynamics searches of 

the lowest 150 orientations, for further sampling of the potential energy 

landscape, to find the lowest energy orientations. 

 

7.2 Methodology 

The study can be divided into two sections, both using the same model system; 

firstly a rapid single point energy scan of the potential energy landscape, 

followed by a more in depth investigation of the low energy orientations. 

 

7.2.1 Building the Model 

The model was constructed using the amino acid sequence for Homo sapiens, 

as this is the species of most interest in collagen research. A straight-chained 

structure of a collagen molecule, with the correct helical propensity, was 

generated using the Triple Helical Building Script (THeBuScr) (229). The 

primary sequences of the collagen peptide chains α1 and α2, translated from 

the genes COL1A1_human (P02452) and COL1A2_human (P08123) (230), 

were the inputs. Once again proline residues present in the Yyy position of the 

triplets were considered to be hydroxyproline in the study. Additionally hydroxyl-

lysine residues stated in the modified residues of the UniProt entry were also 

included in the sequence, giving the same primary sequence as utilized in 

Chapter 6. To apply the rotation for the collagen molecule accurately, the 

assumption is made that the collagen molecule must be considered a straight 
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rod/cylinder, thus the straight molecule from the THeBuScr program was used 

directly. The next stage in the preparation was to align the principal axis (c-axis) 

of the collagen molecule to a Cartesian origin axis using the Orient script in 

VMD (309). In our case we aligned to the x-axis such that the backbone atoms 

had almost zero displacement in the y and z components.  

From this aligned straight collagen molecule two different strands are created. 

First the molecule is replicated along the x-axis, preceded by a 36 nm gap 

region. The strands are then generated by taking a box of length 360 nm and 

positioning the box at the beginning of the collagen molecule, so that the strand 

contains a full collagen molecule, a gap region and a short 110 residue triple 

helical and telopeptide section. The second strand is generated by placing the 

end of the box at the end of the collagen molecule, such that this strand also 

includes a short triple helical region, telopeptide, a gap region and a full 

collagen molecule as seen in Figure 44. Thus, we have two models aligned to 

the x-axis, one a collagen molecule followed by a short collagen snippet and the 

second a short collagen like snippet followed by a collagen molecule. 

Additionally I developed a Perl script that is capable of rotating a selection or all 

of a protein by a set number of degrees about a chosen axis; the script is also 

capable of translating a portion or the whole of a protein by a set number of 

angstroms along a chosen axis. Through an input of a PDB file the script reads 

the correct rows and columns for the selected atom’s coordinates, and will 

either multiply them by a rotation matrix, or will add the selected translation to 

the coordinates and generate the modified PDB file. Rotation must be 

conducted before translation, as the rotation occurs around the axis of the 

Cartesian system and not the principal axis of the molecule. However, as the 
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two strands principal axes are aligned with the Cartesian axis, then rotation is 

conducted accurately. It is from these two principally aligned strands that all of 

the subsequent models are generated from. Through translation we can build 

our complete model, which is two staggered collagen molecules, including the 

gap and overlap region at varying degrees of rotation. The reference model for 

our simulations is the 0° - 0°, two strands not rotated and then translated by 17 

Å. This orientation is the linear version of the orientation from the 2006 Orgel 

crystal structure in which the glycine of the alpha1 chain is above the first 

residues of the other two chains that lay almost in a horizontal plane parallel to 

the z axis. 

 

 

Figure 44: Schematic of the fibril (Top), with the red box (AC) and green box 
(BD), illustrating the regions of the collagen fibril used in the orientation study. 
After generation of the two strands, alignment to the x-axis, rotation about the x-
axis, followed by translation, we obtain the model illustrated at the bottom of this 
figure, with the AC strand on the bottom and the BD strand above. 
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7.2.2 Single Point Energy 

A bash script is used to generate 3600 different models for the two strands, 

orientated independently at 6° increments. The PDB files for all of the models 

are then fed through LeaP part of the AmberTools14 to generate the input files, 

during which the models are solvated using TIP3P water with a buffer of 8.0 Å 

and the charge of the system is negated by the addition of chloride ions. The 

models then undergo a very short 1000 step conjugate gradient minimization, 

during which all of the protein atoms are restrained using a force constant of 

1000 kcal/(mol Angstrom2). This is necessary to remove any high energy 

fluctuations caused by close contacts with the recently added water and Cl- 

ions. A further one step minimization was conducted to get a single point total 

energy for the system, which is then used to direct the search in the second 

stage of this investigation.  

 

7.2.3 Short MD runs 

A three dimensional plot of the total energy against the rotation angle in the two 

different strands is generated to show areas of low energy, which are strong 

indicators of possible favourable orientations. From the 3600 different models 

the 150 lowest energy structures are identified from the results of the single 

point energy determination. Owing to the large size of the models (~1.6 million 

atoms), and hence long computational times involved in the calculations, it was 

not possible, with the resources, to investigate any more than the lowest 4%. 

The lowest 150 structures then undergo short molecular dynamics simulations 

using a cut-off of 8.0 Å; this is to allow the models to relax further into their most 

favorable orientations. The models initially undergo 500 steps steepest descent 

and 2500 steps of conjugate gradient minimization; before a two stage heating 
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simulation of 20 ps from 0 K to 100 K and 30 ps for 100 K to 310 K with 200 

kcal/(mol Angstrom2) restraints applied up until this point on all the protein 

atoms being removed. Finally the model undergoes a further 100 ps simulation 

in the NPT ensemble at 1.0 atm pressure. The results of the 100 ps NPT 

simulation are used to determine the low energy orientations of the collagen 

molecules within the fibril. This is done in two ways, firstly through comparing 

the energies of the respective orientations and secondly through the use of 

another script, which calculates the orientations from the trajectories of the 

simulation, allowing us to monitor and compare the abundance of certain 

orientations. 

 The second Perl script uses ptraj, part of the AmberTools14 package, to 

remove the water ions and side-chain atoms. Then using 2D vector based 

mathematics about the x-axis we determine the relative orientations of each of 

the heavy atoms within the molecule relative to the 0°-0° model. More 

specifically the script calculates the angle of rotation from the dot product of the 

vector defined by the new position to a point on x-axis, relative to the position of 

the same atom in the 0°-0° configuration to a point on the x-axis. The results are 

then averaged over all the atoms to get the relative orientation of the whole 

molecule, and this is repeated for each of the time points within the trajectory. 

The scripts functionality and accuracy were tested on a test collection (N=30) of 

known rotated models of the same system, with results reported to within 

0.345% accuracy. 

 

7.3 Results 
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7.3.1 Single Point Energy 

3600 individual single point energy calculations were conducted rotating the two 

strands independently by 6° increments from 0° - 354°. The energies of these 

systems were then plotted, showing the energy as a function of its orientation in 

the AC and BD strands, which can be seen in Figure 45. For a small proportion, 

less than 2%, of the simulations there were close contacts or steric clashes 

between large side-chains on the collagen molecules, which resulted in a huge 

increase in energies, orders of magnitudes larger than the average energy. Due 

to the relatively low proportion of these high energy structures it was decided to 

omit these from the results of the simulations. These can be see by the bright 

yellow squares in Figure 45. 

What can be seen from Figure 45 is that there are several areas of higher 

energy illustrated by the red regions, and a large region of lower energy 

illustrated by the blue regions. Due to the scale of the energy, further 

differentiation within the blue region was not possible from Figure 45. However 

through changing the range plotted on the graph from -6.5E+6 - -7.0E+6 

kcal/mol to -6.85+6 - -6.91E+6 kcal/mol, it was possible to obtain good 

differentiation, as seen in Figure 46. This reduction in range plotted means that 

the red regions are now off of the scale and hence are represented by white 

(absent) regions. From Figure 46 we can see there is a wide distribution of 

energies throughout, with no significant clustering of low energy regions. 

However what can be seen in Figure 46, is that there are a large number of 

smaller regions of low energy configurations, illustrated by the dark blue 

regions. Through comparison of the energies of these regions we are able to 

identify the lowest 150 orientations from the single energy point scan. 
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Figure 45: Plot of the potential energy as a function of the orientation angle of 
the AC strand and the orientation of its corresponding BD strand. Potential 
energy is defined by the colour, on a sliding scale yellow - high energy to blue – 
low energy.  

 

Figure 46: A Plot of the potential energy as a function of the orientation angle of 
the AC strand and the orientation of its corresponding BD strand, with the scale 
plotted reduced, for increased resolution. Potential energy is defined by the 
colour, on a sliding scale yellow - high energy to blue – low energy, with white 
representing values significantly off of the scale. 
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Figure 47: Distribution of the 150 lowest energy orientations determined from 
the single point energy rotation search. 

 

Figure 48: Overlaid image of the 150 lowest energy orientations from the single 
point energy rotation search, green cross, on the potential energy plot. 
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The lowest 150 energy orientations have energies in the range of -6899382 to -

6909418 kcal/mol.; the values for these orientations can be seen in Figure 47. 

By overlaying Figure 47 on Figure 46 to produce Figure 48, we can begin to get 

an idea of the values that may be adopted by the collagen molecules in nature. 

The majority of the lowest energy orientations lie on dark blue, purple and a few 

on maroon regions of the energy profile. However, as the plots were generated 

using a 6° rotation increment, the resolution is not sufficient to be able to 

distinguish the most optimum orientations, as upon relaxation, a structure may 

find a more stable confirmation by a small rotation, for example by moving from 

0°-0° to 0°-6° there are 2160 integer orientations. However the resolution is 

sufficient to act as a guide for a more in depth investigation of the areas 

surrounding the lower energy orientations, hence short MD simulations were 

conducted according to the protocol outlined in 7.2.3. 

 

7.3.2 Short MD runs 

Beginning from the wide range of orientations defined by the lowest 150 

structures identified in the single point energy searching, short MD simulations 

were run to identify both the most abundant orientations in addition to the lowest 

energy orientations. During thermostated molecular dynamics simulations the 

free energy of a system tends to a minimum and hence the lower energy states 

are more probable, although random thermal fluctuations will introduce 

occasional higher energy states. This has two consequences for our 

investigation; the first is that a sub-optimal orientation will tend towards a 

thermodynamic equilibrium, therefore rotating into a state of optimal interaction 

with the second molecule. The second is that we can use the frequency of 
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orientations as a measure of the stability of that particular orientation. 

Therefore, as the simulations proceed, higher energy structures will move 

towards a lower energy state. This was observed as illustrated by an example 

for the 240°-84° initial orientation in Figure 49, where we see an change in the 

orientation observed until a relatively steady state is observed for the AC strand, 

in this case. The BD strand, in Figure 49, begins at an initial good 

approximation to the lower energy orientation, hence it remains at steady state. 

Hence after an initial relaxation period, which we exclude from our results, we 

are able to monitor the average orientation, to determine the most frequent 

orientations present. 

     

Figure 49: Figure depicting equilibration of the two collagen molecules from the 
initial 240°-84° orientation, AC strand in red moving to equilibration, and the BD 
strand in black, beginning at equilibrium.   

 

Through monitoring the frequency of particular orientations within the 100 ps 

MD simulations, we were able to collate orientation frequency data as shown in 

graphical form in Figure 50. The data was collated into bins such that only 
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integer values were used for the remainder of the study; this reduces the 

number of possible configurations to 129,600 possible discrete orientations, 

making the data more manageable and reliable within the limits of the 

calculated ±0.30° standard error of the mean. What can immediately be seen 

from Figure 50 is that a larger proportion of the possible orientations remain 

unpopulated. Instead there is a clustering of frequently populated orientations 

and an almost complete exclusion of states outside of these. Of particular note 

is the four key exclusion regions from the 340°-0° to 20°-359°, 160°-0° to 200°-

359°, 0°-340°- to 359°-20° and 0°-160° to 359°-200°, which leads to a cross 

shaped region through the plot. This observation supports the idea presented in 

Figure 49, that despite a large number of potential orientations being identified 

in the SPE scan, within that region, equilibration of the system results in the 

molecules rotating into a lower energy orientation, resulting in the frequency of 

orientations reducing to zero during the MD simulations. 

Within these high occurrence orientation clusters observed in Figure 50, we see 

a small number of very high occurrence orientations, or two very closely related 

orientations. To gain a better understanding of the favourable orientations that 

collagen molecules like to adopt, we identified the 30 most frequent 

orientations, which are presented in Figure 51, along with their accompanying 

frequency as a percentage of the total number of calculated orientations. 

Although the frequencies reported look relatively low, with the largest frequency 

being 0.21%, when you consider that nearly 42,000 orientations were calculated 

from the MD simulations in which a possible 129,600 orientations are possible 

the significance of these values becomes apparent. 
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Figure 50: 3D frequency histogram plot of the relative orientations of the two 
collagen model strands, with angle of the AC strand on the x axis, BD strand 
angle on the y axis and the frequency of the orientation on the z axis.  

 

Figure 51: Thirty most frequent orientations identified from the molecular 
dynamics simulations accompanied with their frequency as a percentage of the 
total calculated orientations. 
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Figure 52: Plot illustrating the angles of the AC and BD collagen strands for the 
thirty most frequent orientations identified from the molecular dynamics 
simulations, red squares and the 150 lowest energy orientations determined 
from the single point energy rotation search 

 

Upon extracting the most frequently occurring 30 orientations, we first wanted to 

look at the distribution of these orientations. The distribution of the thirty values 

can be seen in Figure 52, as red squares. Additionally we overlaid the position 

of the lowest 150 orientations output from the single point energy searches. 

What is apparent of the MD derived orientations is that they are located in four 

distinct regions of the orientation plot, with the same four exclusion regions as 

for the SPE identified orientations, slightly extended. This is of great interest as 

it indicates that the interaction of either the top and bottom surface (320° – 40° 

and 130° -240° regions) of the collagen molecule likely results in unfavourable 

interactions. Another feature of significance is that, although there are large 
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clusters relatively nearby to the thirty highest frequency orientations, the SPE 

investigation owing to its reduced resolution would not have found these lowest 

energy orientations. 

 

Figure 53: Figure showing the average potential energy difference of the thirty 
most frequent orientations identified from the molecular dynamics simulations, 
relative to the average potential energy of the 0°-0° orientation system. 

 

The final stage in identifying the preferential orientations of the collagen 

molecule for packing in a microfibril is to investigate its effect on the energetics 

of the system. To do this we calculated the potential energy for the thirty most 

frequently occurring orientations, for the duration of the 100 ps simulations 

relative to the 0°- 0° model energy, the results of which are presented in Figure 

53. What is immediately apparent is that all thirty of the most frequent 

orientations have lower energies than those calculated for the 0°-0° interaction 

model. Within these 30 frequent orientations we have three orientations; 106°-

258°; 110°-254°; 124°-302°. These have values 50% lower than the average 

values for the other 27 orientations, making them the optimum interaction 

surfaces. It is seen that the orientations with higher frequencies tend to have 
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lower energy, with a couple of exceptions. This is because a neighbouring 

orientation is also abundant, for example the 298°-268° orientations reports a 

very low energy but a relatively small frequency. However the frequency is low, 

owing to the 298°-264° orientation also exhibiting a high frequency, allowing 

fluctuations between the two structures. Considering this data, we can use the 

clusters of the thirty highest frequency sites to guide the likely most favourable 

interactions sites. If we transpose the clusters, consisting of the 30 most 

frequent orientations, onto a representative collagen molecule we see a bow 

shape of “favourable” values in Figure 54a. If we then do the same for the 15 

lowest energy orientations we see a narrowing of the left hand bow as seen 

Figure 54b. The red-regions being unfavourable orientations for interaction with 

any orientation of the neighbouring collagen molecules. 

 

Figure 54: Figures showing the calculated favourable interaction regions shown 
in green and unfavourable shown in red, based on A) frequency data and B) 
energetics data.  

To obtain the lowest energy packing of the collagen molecules, the system 

needs to consist of interactions between the collagen molecules based on the 

optimum orientations. As previously mentioned in 1.1.2.1 collagen molecules 

within a microfibril can pack in a quasi-hexagonal manner (20) as was seen in 
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Figure 1. The current implementation in collagen models, taken from the crystal 

structure for the Rattus norvegicus sequence (310), for the packing, results in 

12 interactions within the hexagonal arrangement; one 90°-70°, three 270°-90°, 

four 150°-330° and four 30°-210°. Four of these lie within the high frequency 

cluster range, whilst the remaining eight lie outside of this area. To obtain the 

optimum packing for our Homo sapiens sequence, rotation of the explicit 

collagen molecule needs to be conducted, so that the number of favourable 

interactions is optimised. Owing to the periodic nature of the arrangement of 

collagen molecules within the fibril, the rotation can only be applied to one 

molecule so that the periodicity is conserved. Rotation of the explicit collagen by 

26° in a clockwise direction results in a 50% reduction in the number of 

unfavourable orientation interactions and a subsequent 100% increase in the 

favourable orientation interactions. The angles of interaction now being one 64°-

244°, three 244°-64°; four 124°-304°; and four 4°-184° interactions within the 

hexagonal unit after the 26° rotation of the collagen molecules. The impact of 

such a rotation can be seen in Figure 55, by a doubling in the number of 

favourable (green) interactions, within the hexagonal close packed unit. In 

addition to increasing the number of favourable interactions by this 26° rotation, 

the rotation also had the added effect that the second lowest energy orientation 

could be adopted 124°-304°, thus having a significant stabilising effect on the 

fibril.  
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Figure 55: Image depicting the impact of a 26° clockwise rotation of the collagen 
molecules within a hexagonal closed packed unit. The red hexagonal unit 
showing the orientation present within the Rattus norvegicus unit cell and the 
green hexagonal unit showing the configuration after the clockwise rotation. 
Green and red areas on the collagen molecules illustrating the favourable and 
unfavourable interaction surfaces respectively, as previously described in 
Figure 54, with the dashed line similarly coloured showing the interaction 
orientation of the collagen molecules. 

 

7.4 Implications 

As was seen in 7.3, the current model used to simulate collagenous systems 

may not be the most accurate, given that we have shown that a mere 26° 

clockwise rotation of the explicit collagen molecule will result in a reduction in 

the energy. However there are a number of other factors which will also dictate 

the possible orientations within the fibril. For example, the mature enzymatic 

cross-links will likely reduce the number of possible orientations further. Taking 

this into account, what we are actually showing from this current study is the 
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possible orientations of the collagen molecules within a collagen gel or artificial 

construct, in the absence of mature cross-links. Further studies would be 

required, using a three strand model with explicit cross-links, to see how this 

would influence the possible orientations. This is beyond the capabilities of 

current computational resources. In addition, collagenous tissues are rarely 

homogeneous. Even tendons which consist of 65-80% (dry weight) collagen, 

which is predominately type I collagen, contain other ECM proteins such as 2% 

elastin which may alter the alignment of the collagen molecules (22, 311). 

Interactions of the type I collagen molecules with these other proteins will be 

different to those of the type I collagen - type I collagen interactions. However, if 

we consider the widespread used of collagen gels as tissue engineering 

scaffolds, then we can confidently say that the orientations exhibited in these 

samples, which have much lower concentrations of other proteins and absence 

of enzymatic cross-links, are likely to be those identified in this study. 

In conducting this study two assumptions were made about the model used. 

The first was that the collagen can be described as a straight rod. The second is 

that the rotation will occur uniformly over the whole length of the collagen. The 

assumption that collagen molecules is a straight rod is valid when considering 

the time point being probed here, which is shortly after secretion into the ECM 

and processing from the procollagen to collagen; as the collagen molecules are 

relatively straight until shortly after fibrillogenesis has occurred. Once this stage 

has past, crimping of the collagen molecule will occur, with “waves” in the 

molecule being introduced by translation into the lower protein density gap 

region. Once this has been done then the orientation of the system is fixed. 

Hence if MD simulation is conducted using the straight molecule then the 

optimum orientations of the molecule will be encountered given sufficient time. 
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However the crimping process occurs on longer time scales and hence it would 

be more beneficial for simulations to begin from the crimped structure to probe 

physiologically relevant phenomena. Hence, for this purpose, the simulations 

should begin from the optimum orientation.  

Also the second Perl script, that conducts the vector based mathematics to yield 

the orientation values from the MD trajectory of the model, calculates the 

angular displacement of the backbone atom’s position, relative to their 

respective position in the 0°-0° reference model, for each outputted time-step. In 

doing so it averages the orientation of each constituent atom, to report a single 

value for the orientation of the entire collagen molecule. However it is possible 

that a portion of the collagen molecule may rotate to a greater extent than the 

rest of the molecule, resulting in an inaccurate value being recorded for the 

orientation. To overcome this issue we verified using a random selection (N=10) 

of the orientations from the short MD runs, to calculate the standard error of the 

mean for the molecular orientation from its constituent atomic angular 

displacements. It was found that the standard error of the mean had an average 

value of ±0.30°, and therefore twisting of the molecule was not occurring to a 

great enough extent so as to influence the molecular orientation values 

reported.  

 

7.5 Summary 

The orientation of collagen molecules packed within a collagen fibril has 

significant implications on the fibrils mechanical and biological properties, as 

well as the accessible surface that will be capable of undergoing AGE cross-

linking. Through the use of a comprehensive single point energy scan of the 
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potential energy landscape, based on 6° rotation increment, we identified the 

150 lowest energy orientations to undergo a more comprehensive study. The 

150 orientations were then used as inputs for short MD simulations in which the 

molecules rotated towards a low energy state. There were four distinct clusters 

of highly frequent structures, with the 30 most frequent within these being used 

to predict the likely favourable interaction orientations. This was confirmed by 

comparing the average potential energy for these orientations relative to the 0°-

0° model and finding all of them had much lower energies. Using both the 

favourable orientation angles from the frequency and energetics data, we 

identified that the current model of 0° is not the most stable based, on inter-

molecular interactions. A 26° clockwise rotation, of the collagen molecule in the 

current model used (or crystal structure for Rattus norvegicus (310)), would half 

the number of unfavourable orientation angles and increase the number of 

favourable interactions by 100%. However this study did exclude some factors, 

such as tissue heterogeneity and enzymatic cross-link, which might result in a 

different result being obtained, although further study would be required to 

confirm this. However the 26° rotation would hold true for collagen tissue 

scaffolds used in tissue engineering applications, which may allow a better 

understanding of host-scaffold interaction and processes to be obtained.   
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Chapter 8 Conclusion 

8.1 Main Conclusions 

In Chapter 1 we gave a general introduction to all aspects of collagen, from 

biosynthesis to its mechanical properties, before introducing advanced glycation 

end products, their structure, their impact and their treatments. This was 

followed by a review of the computational techniques employed throughout this 

work, from molecular dynamics to Hartree-Fock electronic structure methods.  

Our modelling approach began with the development of reliable force fields to 

describe the AGEs of interest, for implementation in the wider AMBER ff99SB 

force field. Derivation was conducted using frequency calculations at HF/6-31G* 

level theory using Gaussian09 (220) and R.E.D. server, for RESP charge fitting 

(216). The terms developed were shown to be comparable to a later purely 

quantum mechanically derived force field (227), supporting the validity of results 

obtained by its use.  

In Chapter 4, we used these newly derived force field terms to identify 

preferential glucosepane and DOGDIC formation sites within the collagen 

molecule. A fully atomistic approach exploiting the D-banding periodicity was 

used to replicate the fibrillar environment of the collagen molecule under 

pseudo-physiological conditions. Six sites were found to be energetically 

favourable for the formation of each of the AGEs, with only one of these sites 

being equivalent. The formation of the AGEs at different sites was thought to be 

due to the reduced nitrogen atom separation in the different types of cross-link. 

We also showed a strong preference for the AGE cross-links to form within the 

gap region of the protein, owing to its reduced protein density. Finally by 

overlaying these preferential formation sites on known collagen-biomolecule 
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binding sites, we have identified a number of overlapping sites, which may 

impede the biological function of glycated collagenous tissues.  

Chapter 5 consists of two related steered molecular dynamics studies into the 

mechanical properties of collagen and the effect of collagen cross-linking on 

these. The first part of the study was to probe the heterogeneous response of a 

collagen molecule to an applied load, to identify if this is a sequence dependent 

consequence. We varied a single residue at the Yyy position of a homotrimeric 

collagen peptide (ProHypGly)4YyyProGly(ProHypGly)4 and measured the 

resulting change in the Young’s modulus of the molecule. The values obtained 

by changing just a single residue varied by as much as 6.6%. A relationship 

between stability and elasticity was also observed: peptides with higher melting 

temperatures reported lower values for the Young’s modulus. The second stage 

was to probe the impact on the mechanical properties of the collagen molecule 

due to the presence of an AGE cross-link. Using relative differences for the 

cross-linked model compared to a wild type model it was possible to mitigate 

the heterogeneous response, and to probe both the lateral and tensile moduli. It 

was observed that the presence of these favourable glucosepane cross-links 

and DOGDIC cross-links had no significant impact, within the uncertainty of the 

techniques, on the values of the tensile and lateral Young’s modulus. Even 

when all favourable cross-links were inserted into a full-length collagen 

molecule and the tensile modulus was calculated, again no significant 

difference was reported.  

So far, owing to the size of the collagen molecule, only the Rattus norvegicus 

structure has been crystallised and this is the sequence used in chapter four 

and five. However, for disease modelling and pathology studies the human 
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sequence is of greatest interest. It is for this reason that in Chapter 6, we 

derived a homology model of the Homo sapiens sequence of type I collagen. 

After using the blastP suite to score potential template sequences, we identified 

the Rattus norvegicus to be the highest scoring template sequence for which a 

crystal structure was available. After undergoing a standard homology 

modelling protocol we decided to consider whether the D-banding periodicity 

would increase as a result of the different primary sequence. Upon completion 

of a comparison of 7 alternative cell dimensions, it was found that no significant 

change (+0.03% change in a and b dimensions) occurred to the packing pattern 

of the Homo sapiens sequence. Through monitoring a number of system 

observables during two short (2 ns) MD simulations, one using our homology 

model and one of the well-established model for Rattus norvegicus, it was found 

that they remained within the same range, thus proving the stability of our 

homology model.   

The orientation of collagen molecules packed within a collagen fibril potentially 

has huge implications on the fibril’s mechanical and biological properties. 

However their determination remains below the resolution of current 

experimental techniques. In Chapter 7, we use a single point energy scan of 6° 

rotation increments of two staggered collagen strands (a full collagen molecule, 

a gap region and a short collagen peptide) to identify the lower energy 

interaction surfaces. The lowest energy orientations identified from this single 

point energy scan are then used as starting configurations for short MD 

simulations. The frequency of orientations and energies are computed over 

these MD simulations to determine the most favourable orientations. A 

clustering of low energy and high-frequency orientations were observed, such 

that the interactions were optimum within two small windows of orientation, 
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between 50° - 124° and 232° - 304°, with respect to the orientation given of the 

collagen molecule in the Orgel crystal structure (21). Given the hexagonal close 

packing of collagen molecules, we identified that a 26° clockwise rotation of the 

explicit collagen molecule in current models would result in an increased 

number of favourable interactions, including the second lowest energy 

orientation, and produce the likely orientation of collagen molecules within a 

human fibril.  

 

8.2  Limitations 

Owing to the large size of a collagen molecule, over 3000 amino acids residues, 

balancing the size of the system modelled and computational resources has 

been a challenge. However, through the use of periodic boundary conditions, 

this impact has been minimised. Despite this over 270 CPU years have been 

utilised to produce the results contained within this thesis. One potential study in 

which alteration of the model to reduce computational expense may have 

influenced the results, is in the mechanical properties studies, where fully 

solvated models of short collagen peptides were used instead of a fibrillar 

environment. Therefore further study is required to ascertain whether the 

environment has a significant effect on the results reported.  

Our modelling approach throughout adopts a homotypic model of type I 

collagen. Typically, healthy tissue, however, is heterotypic, with tendon fibrils, 

for example containing other minor collagen types and elastin. Although, as our 

investigations have predominantly focussed on intra-molecular interactions, the 

composition should have little effect if any on the results reported. The one 

study which did consider inter-molecular interactions was the orientations 
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investigation in Chapter 7, at which point we were probing the inter-molecular 

interactions between the type I collagen molecules so the heterogeneity will 

have no influence.  

 

8.3 Future Work 

Having developed a reliable homology model for the Homo sapiens sequence, it 

would be of interest to verify that the favourable glucosepane and DOGDIC 

cross-links form at the same preferential sites as they had for the Rattus 

norvegicus structure. After verifying the intra-molecular positions it would be 

extremely interesting to identify the location of favourable inter-molecular sites 

between two Homo sapiens collagen molecules.  

Another key topic we would like to expand upon is to probe the mechanical 

influence of varying a single residue within a wide variety of different triplets. 

Initially, we would like to extend the triplet mechanical properties library to 

include the GlyXxxHyp triplets, thus extending the known influences to over 

50% of the triplets present within collagen, making possible a quantitative 

approach to predict the mechanical properties from the biochemical sequence 

data.  

The last topic we would like to explore further is the key biomolecule collagen 

interactions disrupted by the presence of AGEs cross-links, as identified in 

Chapter 4. To do this we would like to conduct explicit modelling of the 

biomolecule–collagen interaction, with and without AGE cross-links present to 

determine the thermodynamic effect of their presence and the mechanism of 

interference.  
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Appendix 1 

9.1 Glucosepane Parameters 

!!index array str 
 "ARC" 
!entry.ARC.unit.atoms table  str name  str type  int typex  int resx  int flags  int seq  int elmnt  dbl 
chg 
 "N" "N" 0 1 131072 1 7 -0.347900 
 "H" "H" 0 1 131072 2 1 0.274700 
 "CA" "CT" 0 1 131072 3 6 -0.263700 
 "HA" "H1" 0 1 131072 4 1 0.156000 
 "CB" "CT" 0 1 131072 5 6 -0.000700 
 "HB2" "HC" 0 1 131072 6 1 0.032700 
 "HB3" "HC" 0 1 131072 7 1 0.032700 
 "CG" "CT" 0 1 131072 8 6 0.039000 
 "HG2" "HC" 0 1 131072 9 1 0.028500 
 "HG3" "HC" 0 1 131072 10 1 0.028500 
 "CD" "CT" 0 1 131072 11 6 0.048600 
 "HD2" "H1" 0 1 131072 12 1 0.068700 
 "HD3" "H1" 0 1 131072 13 1 0.068700 
 "NE" "N2" 0 1 131072 14 7 -0.529500 
 "HE" "H" 0 1 131072 15 1 0.345600 
 "CZ" "CA" 0 1 131072 16 6 0.77990 
 "NH1" "N2" 0 1 131072 17 7 -0.862700 
 "NH2" "N2" 0 1 131072 18 7 -0.862700 
 "C" "C" 0 1 131072 19 6 0.734100 
 "O" "O" 0 1 131072 20 8 -0.589400 
!entry.ARC.unit.atomspertinfo table  str pname  str ptype  int ptypex  int pelmnt  dbl pchg 
 "N" "N" 0 -1 0.0 
 "H" "H" 0 -1 0.0 
 "CA" "CT" 0 -1 0.0 
 "HA" "H1" 0 -1 0.0 
 "CB" "CT" 0 -1 0.0 
 "HB2" "HC" 0 -1 0.0 
 "HB3" "HC" 0 -1 0.0 
 "CG" "CT" 0 -1 0.0 
 "HG2" "HC" 0 -1 0.0 
 "HG3" "HC" 0 -1 0.0 
 "CD" "CT" 0 -1 0.0 
 "HD2" "H1" 0 -1 0.0 
 "HD3" "H1" 0 -1 0.0 
 "NE" "N2" 0 -1 0.0 
 "HE" "H" 0 -1 0.0 
 "CZ" "CA" 0 -1 0.0 
 "NH1" "N2" 0 -1 0.0 
 "NH2" "N2" 0 -1 0.0 
 "C" "C" 0 -1 0.0 
 "O" "O" 0 -1 0.0 
!entry.ARC.unit.boundbox array dbl 
 -1.000000 
 0.0 
 0.0 
 0.0 
 0.0 
!entry.ARC.unit.childsequence single int 
 2 
!entry.ARC.unit.connect array int 
 1 
 19 
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 17  
 18 
!entry.ARC.unit.connectivity table  int atom1x  int atom2x  int flags 
 1 2 1 
 1 3 1 
 3 4 1 
 3 5 1 
 3 19 1 
 5 6 1 
 5 7 1 
 5 8 1 
 8 9 1 
 8 10 1 
 8 11 1 
 11 12 1 
 11 13 1 
 11 14 1 
 14 15 1 
 14 16 1 
 16 17 2 
 16 18 1 
 19 20 1 
!entry.ARC.unit.hierarchy table  str abovetype  int abovex  str belowtype  int belowx 
 "U" 0 "R" 1 
 "R" 1 "A" 1 
 "R" 1 "A" 2 
 "R" 1 "A" 3 
 "R" 1 "A" 4 
 "R" 1 "A" 5 
 "R" 1 "A" 6 
 "R" 1 "A" 7 
 "R" 1 "A" 8 
 "R" 1 "A" 9 
 "R" 1 "A" 10 
 "R" 1 "A" 11 
 "R" 1 "A" 12 
 "R" 1 "A" 13 
 "R" 1 "A" 14 
 "R" 1 "A" 15 
 "R" 1 "A" 16 
 "R" 1 "A" 17 
 "R" 1 "A" 18 
 "R" 1 "A" 19 
 "R" 1 "A" 20 
!entry.ARC.unit.name single str 
 "ARC" 
!entry.ARC.unit.positions table  dbl x  dbl y  dbl z 
 3.325770 1.547909 -1.607204E-06 
 3.909407 0.723611 -2.739882E-06 
 3.970048 2.845795 -1.311163E-07 
 3.671663 3.400129 -0.889820 
 3.576965 3.653838 1.232143 
 2.496995 3.801075 1.241379 
 3.877484 3.115795 2.131197 
 4.274186 5.009602 1.194577 
 5.354271 4.863178 1.185788 
 3.973781 5.548460 0.295972 
 3.881105 5.817645 2.426721 
 2.801135 5.964881 2.435959 
 4.181626 5.279602 3.325774 
 4.540320 7.142723 2.424483 
 5.151805 7.375492 1.655065 
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 4.364284 8.040989 3.389382 
 3.575026 7.807606 4.434133 
 5.006254 9.201287 3.286991 
 5.485541 2.705207 -4.398755E-06 
 6.008824 1.593175 -8.449768E-06 
!entry.ARC.unit.residueconnect table  int c1x  int c2x  int c3x  int c4x  int c5x  int c6x 
 1 19 17 18 0 0 
!entry.ARC.unit.residues table  str name  int seq  int childseq  int startatomx  str restype  int 
imagingx 
 "ARC" 1 21 1 "p" 0 
!entry.ARC.unit.residuesPdbSequenceNumber array int 
 0 
!entry.ARC.unit.solventcap array dbl 
 -1.000000 
 0.0 
 0.0 
 0.0 
 0.0 
!entry.ARC.unit.velocities table  dbl x  dbl y  dbl z 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 

 

!!index array str 

 "LYC" 
!entry.LYC.unit.atoms table  str name  str type  int typex  int resx  int flags  int seq  int elmnt  dbl chg 
 "N" "N" 0 1 131072 1 7 -0.347900 
 "H" "H" 0 1 131072 2 1 0.274700 
 "CA" "CT" 0 1 131072 3 6 -0.240000 
 "HA" "H1" 0 1 131072 4 1 0.142600 
 "CB" "CT" 0 1 131072 5 6 -0.009400 
 "HB2" "HC" 0 1 131072 6 1 0.036200 
 "HB3" "HC" 0 1 131072 7 1 0.036200 
 "CG" "CT" 0 1 131072 8 6 0.018700 
 "HG2" "HC" 0 1 131072 9 1 0.010300 
 "HG3" "HC" 0 1 131072 10 1 0.010300 
 "CD" "CT" 0 1 131072 11 6 -0.047900 
 "HD2" "HC" 0 1 131072 12 1 0.062100 
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 "HD3" "HC" 0 1 131072 13 1 0.062100 
 "CE" "CT" 0 1 131072 14 6  0.154300 
 "HE2" "H1" 0 1 131072 15 1 0.113500 
 "HE3" "H1" 0 1 131072 16 1 0.113500 
 "NZ" "NT” 0 1 131072 17 7 -0.185400 
 "C" "C" 0 1 131072 18 6 0.734100 
 "O" "O" 0 1 131072 19 8 -0.589400 
!entry.LYC.unit.atomspertinfo table  str pname  str ptype  int ptypex  int pelmnt  dbl pchg 
 "N" "N" 0 -1 0.0 
 "H" "H" 0 -1 0.0 
 "CA" "CT" 0 -1 0.0 
 "HA" "H1" 0 -1 0.0 
 "CB" "CT" 0 -1 0.0 
 "HB2" "HC" 0 -1 0.0 
 "HB3" "HC" 0 -1 0.0 
 "CG" "CT" 0 -1 0.0 
 "HG2" "HC" 0 -1 0.0 
 "HG3" "HC" 0 -1 0.0 
 "CD" "CT" 0 -1 0.0 
 "HD2" "HC" 0 -1 0.0 
 "HD3" "HC" 0 -1 0.0 
 "CE" "CT" 0 -1 0.0 
 "HE2" "H1" 0 -1 0.0 
 "HE3" "H1" 0 -1 0.0 
 "NZ" "NT” 0 -1 0.0 
 "C" "C" 0 -1 0.0 
 "O" "O" 0 -1 0.0 
!entry.LYC.unit.boundbox array dbl 
 -1.000000 
 0.0 
 0.0 
 0.0 
 0.0 
!entry.LYC.unit.childsequence single int 
 2 
!entry.LYC.unit.connect array int 
 1 
 18 
 17 
!entry.LYC.unit.connectivity table  int atom1x  int atom2x  int flags 
 1 2 1 
 1 3 1 
 3 4 1 
 3 5 1 
 3 18 1 
 5 6 1 
 5 7 1 
 5 8 1 
 8 9 1 
 8 10 1 
 8 11 1 
 11 12 1 
 11 13 1 
 11 14 1 
 14 15 1 
 14 16 1 
 14 17 1 
 18 19 1 
!entry.LYC.unit.hierarchy table  str abovetype  int abovex  str belowtype  int belowx 
 "U" 0 "R" 1 
 "R" 1 "A" 1 
 "R" 1 "A" 2 
 "R" 1 "A" 3 
 "R" 1 "A" 4 
 "R" 1 "A" 5 
 "R" 1 "A" 6 
 "R" 1 "A" 7 
 "R" 1 "A" 8 
 "R" 1 "A" 9 
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 "R" 1 "A" 10 
 "R" 1 "A" 11 
 "R" 1 "A" 12 
 "R" 1 "A" 13 
 "R" 1 "A" 14 
 "R" 1 "A" 15 
 "R" 1 "A" 16 
 "R" 1 "A" 17 
 "R" 1 "A" 18 
 "R" 1 "A" 19 
!entry.LYC.unit.name single str 
 "LYC" 
!entry.LYC.unit.positions table  dbl x  dbl y  dbl z 
 3.325770 1.547909 -1.607204E-06 
 3.909407 0.723611 -2.739882E-06 
 3.970048 2.845795 -1.311163E-07 
 3.671663 3.400129 -0.889820 
 3.576965 3.653838 1.232143 
 2.496995 3.801075 1.241379 
 3.877484 3.115795 2.131197 
 4.274186 5.009602 1.194577 
 5.354271 4.863178 1.185788 
 3.973781 5.548460 0.295972 
 3.881105 5.817645 2.426721 
 2.801135 5.964881 2.435959 
 4.181626 5.279602 3.325774 
 4.578325 7.173410 2.389153 
 5.658410 7.026987 2.380363 
 4.277917 7.712267 1.490550 
 4.199422 7.952309 3.576860 
 5.485541 2.705207 -4.398755E-06 
 6.008824 1.593175 -8.449768E-06 
!entry.LYC.unit.residueconnect table  int c1x  int c2x  int c3x  int c4x  int c5x  int c6x 
 1 18 17 0 0 0 
!entry.LYC.unit.residues table  str name  int seq  int childseq  int startatomx  str restype  int imagingx 
 "LYC" 1 20 1 "p" 0 
!entry.LYC.unit.residuesPdbSequenceNumber array int 
 0 
!entry.LYC.unit.solventcap array dbl 
 -1.000000 
 0.0 
 0.0 
 0.0 
 0.0 
!entry.LYC.unit.velocities table  dbl x  dbl y  dbl z 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
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!!index array str 
 "ORG" 
!entry.ORG.unit.atoms table  str name  str type  int typex  int resx  int flags  int seq  int elmnt  dbl chg 
 "C1" "CC” 0 1 131072 1 6 0.64350 
 "C2" "CT" 0 1 131072 2 6 0.078300 
 "H2" "H1" 0 1 131072 3 1 0.038300 
 "H3" "H1" 0 1 131072 4 1 0.038200 
 "C3" "CT" 0 1 131072 5 6 0.080800 
 "C4" "CT" 0 1 131072 6 6 -0.024700 
 "C5" "CT" 0 1 131072 7 6  0.8421 
 "H8" "HC" 0 1 131072 8 1 0.029100 
 "H9" "HC" 0 1 131072 9 1 0.029100 
 "C6" "CT" 0 1 131072 10 6  0.89940 
 "H10" "H1" 0 1 131072 11 1 0.052600 
 "O1" "OH" 0 1 131072 12 8 -0.389500 
 "H4" "H1" 0 1 131072 13 1 0.061600 
 "H5" "HO" 0 1 131072 14 1 0.209900 
 "O2" "OH" 0 1 131072 15 8 -0.389300 
 "H6" "H1" 0 1 131072 16 1 0.061900 
 "H7" "HO" 0 1 131072 17 1 0.209900 
!entry.ORG.unit.atomspertinfo table  str pname  str ptype  int ptypex  int pelmnt  dbl pchg 
 "C1" "CC” 0 -1 0.0 
 "C2" "CT" 0 -1 0.0 
 "H2" "H1" 0 -1 0.0 
 "H3" "H1" 0 -1 0.0 
 "C3" "CT" 0 -1 0.0 
 "C4" "CT" 0 -1 0.0 
 "C5" "CT" 0 -1 0.0 
 "H8" "HC" 0 -1 0.0 
 "H9" "HC" 0 -1 0.0 
 "C6" "CA" 0 -1 0.0 
 "H10" "H1" 0 -1 0.0 
 "O1" "OH" 0 -1 0.0 
 "H4" "H1" 0 -1 0.0 
 "H5" "HO" 0 -1 0.0 
 "O2" "OH" 0 -1 0.0 
 "H6" "H1" 0 -1 0.0 
 "H7" "HO" 0 -1 0.0 
!entry.ORG.unit.boundbox array dbl 
 -1.000000 
 0.0 
 0.0 
 0.0 
 0.0 
!entry.ORG.unit.childsequence single int 
 2 
!entry.ORG.unit.connect array int 
 10 
 7 
 1 
!entry.ORG.unit.connectivity table  int atom1x  int atom2x  int flags 
 1 2 1 
 1 3 1 
 1 4 1 
 2 5 1 
 2 13 1 
 2 12 1 
 5 6 1 
 5 16 1 
 5 15 1 
 6 8 1 
 6 7 1 
 6 9 1 
 7 10 1 
 7 11 1 
 12 14 1 
 15 17 1 
!entry.ORG.unit.hierarchy table  str abovetype  int abovex  str belowtype  int belowx 
 "U" 0 "R" 1 



Appendix 1 
 

- 226 - 

 "R" 1 "A" 1 
 "R" 1 "A" 2 
 "R" 1 "A" 3 
 "R" 1 "A" 4 
 "R" 1 "A" 5 
 "R" 1 "A" 6 
 "R" 1 "A" 7 
 "R" 1 "A" 8 
 "R" 1 "A" 9 
 "R" 1 "A" 10 
 "R" 1 "A" 11 
 "R" 1 "A" 12 
 "R" 1 "A" 13 
 "R" 1 "A" 14 
 "R" 1 "A" 15 
 "R" 1 "A" 16 
 "R" 1 "A" 17 
!entry.ORG.unit.name single str 
 "ORG" 
!entry.ORG.unit.positions table  dbl x  dbl y  dbl z 
 170.712000 33.080000 1.510203E+03 
 170.801000 32.169000 1.511438E+03 
 170.476000 32.378000 1.509387E+03 
 169.804000 33.689000 1.510307E+03 
 171.239000 32.851000 1.512734E+03 
 172.722000 33.208000 1.512706E+03 
 172.904000 34.572000 1.512056E+03 
 173.303000 32.423000 1.512207E+03 
 173.105000 33.237000 1.513736E+03 
 172.405000 34.829000 1.510658E+03 
 172.391000 35.289000 1.512715E+03 
 169.468000 31.623000 1.511691E+03 
 171.435000 31.298000 1.511238E+03 
 168.853000 32.378000 1.511661E+03 
 170.966000 31.950000 1.513829E+03 
 170.614000 33.732000 1.512928E+03 
 170.149000 31.484000 1.513560E+03 
!entry.ORG.unit.residueconnect table  int c1x  int c2x  int c3x  int c4x  int c5x  int c6x 
 10 7 1 0 0 0 
!entry.ORG.unit.residues table  str name  int seq  int childseq  int startatomx  str restype  int imagingx 
 "ORG" 1 18 1 "p" 0 
!entry.ORG.unit.residuesPdbSequenceNumber array int 
 0 
!entry.ORG.unit.solventcap array dbl 
 -1.000000 
 0.0 
 0.0 
 0.0 
 0.0 
!entry.ORG.unit.velocities table  dbl x  dbl y  dbl z 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
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9.2 DOGDIC Parameters 

!!index array str 
 "ARD" 
!entry.ARD.unit.atoms table  str name  str type  int typex  int resx  int flags  int seq  int elmnt  dbl chg 
 "N" "N" 0 1 131072 1 7 -0.347900 
 "H" "H" 0 1 131072 2 1 0.274700 
 "CA" "CT" 0 1 131072 3 6 -0.263700 
 "HA" "H1" 0 1 131072 4 1 0.156000 
 "CB" "CT" 0 1 131072 5 6 -0.000700 
 "HB2" "HC" 0 1 131072 6 1 0.032700 
 "HB3" "HC" 0 1 131072 7 1 0.032700 
 "CG" "CT" 0 1 131072 8 6 0.039000 
 "HG2" "HC" 0 1 131072 9 1 0.028500 
 "HG3" "HC" 0 1 131072 10 1 0.028500 
 "CD" "CT" 0 1 131072 11 6 0.048600 
 "HD2" "H1" 0 1 131072 12 1 0.068700 
 "HD3" "H1" 0 1 131072 13 1 0.068700 
 "NE" "N2" 0 1 131072 14 7 -0.729500 
 "HE" "H" 0 1 131072 15 1 0.345600 
 "CZ" "CA" 0 1 131072 16 6 0.779900 
 "NH1" "N2" 0 1 131072 17 7 -0.69610 
 "NH2" "N2" 0 1 131072 18 7 -0.69610 
 "HH2" "H" 0 1 131072 19 1 0.457800 
 "C" "C" 0 1 131072 20 6 0.734100 
 "O" "O" 0 1 131072 21 8 -0.589400 
!entry.ARD.unit.atomspertinfo table  str pname  str ptype  int ptypex  int pelmnt  dbl pchg 
 "N" "N" 0 -1 0.0 
 "H" "H" 0 -1 0.0 
 "CA" "CT" 0 -1 0.0 
 "HA" "H1" 0 -1 0.0 
 "CB" "CT" 0 -1 0.0 
 "HB2" "HC" 0 -1 0.0 
 "HB3" "HC" 0 -1 0.0 
 "CG" "CT" 0 -1 0.0 
 "HG2" "HC" 0 -1 0.0 
 "HG3" "HC" 0 -1 0.0 
 "CD" "CT" 0 -1 0.0 
 "HD2" "H1" 0 -1 0.0 
 "HD3" "H1" 0 -1 0.0 
 "NE" "N2" 0 -1 0.0 
 "HE" "H" 0 -1 0.0 
 "CZ" "CA" 0 -1 0.0 
 "NH1" "N2" 0 -1 0.0 
 "NH2" "N2" 0 -1 0.0 
 "HH2" "H" 0 -1 0.0 
 "C" "C" 0 -1 0.0 
 "O" "O" 0 -1 0.0 
!entry.ARD.unit.boundbox array dbl 
 -1.000000 
 0.0 
 0.0 
 0.0 
 0.0 
!entry.ARD.unit.childsequence single int 
 2 
!entry.ARD.unit.connect array int 
 1 
 20 
 17 
 18 
!entry.ARD.unit.connectivity table  int atom1x  int atom2x  int flags 
 1 2 1 
 1 3 1 
 3 4 1 
 3 5 1 
 3 20 1 
 5 6 1 
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 5 7 1 
 5 8 1 
 8 9 1 
 8 10 1 
 8 11 1 
 11 12 1 
 11 13 1 
 11 14 1 
 14 15 1 
 14 16 1 
 16 17 1 
 16 18 1 
 18 19 1 
 20 21 2 
!entry.ARD.unit.hierarchy table  str abovetype  int abovex  str belowtype  int belowx 
 "U" 0 "R" 1 
 "R" 1 "A" 1 
 "R" 1 "A" 2 
 "R" 1 "A" 3 
 "R" 1 "A" 4 
 "R" 1 "A" 5 
 "R" 1 "A" 6 
 "R" 1 "A" 7 
 "R" 1 "A" 8 
 "R" 1 "A" 9 
 "R" 1 "A" 10 
 "R" 1 "A" 11 
 "R" 1 "A" 12 
 "R" 1 "A" 13 
 "R" 1 "A" 14 
 "R" 1 "A" 15 
 "R" 1 "A" 16 
 "R" 1 "A" 17 
 "R" 1 "A" 18 
 "R" 1 "A" 19 
 "R" 1 "A" 20 
 "R" 1 "A" 21 
!entry.ARD.unit.name single str 
 "ARD" 
!entry.ARD.unit.positions table  dbl x  dbl y  dbl z 
 175.243000 44.272000 1.630719E+03 
 175.388700 44.212300 1.629711E+03 
 176.383000 44.700000 1.631316E+03 
 176.631000 45.665000 1.630926E+03 
 177.747400 44.004900 1.631152E+03 
 178.141600 43.715300 1.632135E+03 
 178.446000 44.782300 1.630798E+03 
 177.889500 42.825400 1.630196E+03 
 177.439800 41.939000 1.630656E+03 
 177.346500 43.018700 1.629264E+03 
 179.388000 42.542200 1.629917E+03 
 179.616700 41.478000 1.630054E+03 
 180.000700 43.056600 1.630670E+03 
 179.825500 43.023500 1.628614E+03 
 180.798100 43.315700 1.628607E+03 
 179.675300 42.084900 1.627561E+03 
 178.617700 41.135000 1.627494E+03 
 180.613300 42.085500 1.626625E+03 
 181.263200 42.850100 1.626828E+03 
 176.276000 45.358000 1.632576E+03 
 176.211000 45.813000 1.633679E+03 
!entry.ARD.unit.residueconnect table  int c1x  int c2x  int c3x  int c4x  int c5x  int c6x 
 1 20 17 18 0 0 
!entry.ARD.unit.residues table  str name  int seq  int childseq  int startatomx  str restype  int imagingx 
 "ARD" 1 22 1 "?" 0 
!entry.ARD.unit.residuesPdbSequenceNumber array int 
 0 
!entry.ARD.unit.solventcap array dbl 
 -1.000000 
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 0.0 
 0.0 
 0.0 
 0.0 
!entry.ARD.unit.velocities table  dbl x  dbl y  dbl z 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 

 

!!index array str 
 "LYD” 
!entry.LYD.unit.atoms table  str name  str type  int typex  int resx  int flags  int seq  int elmnt  dbl chg 
 "N" "N" 0 1 131072 1 7 -0.347900 
 "H" "H" 0 1 131072 2 1 0.274700 
 "CA" "CT" 0 1 131072 3 6 -0.240000 
 "HA" "H1" 0 1 131072 4 1 0.142600 
 "CB" "CT" 0 1 131072 5 6 -0.009400 
 "HB2" "HC" 0 1 131072 6 1 0.036200 
 "HB3" "HC" 0 1 131072 7 1 0.036200 
 "CG" "CT" 0 1 131072 8 6 0.018700 
 "HG2" "HC" 0 1 131072 9 1 0.010300 
 "HG3" "HC" 0 1 131072 10 1 0.010300 
 "CD" "CT" 0 1 131072 11 6 -0.047900 
 "HD2" "HC" 0 1 131072 12 1 0.062100 
 "HD3" "HC" 0 1 131072 13 1 0.062100 
 "CE" "CT" 0 1 131072 14 6  0.154300 
 "HE2" "H1" 0 1 131072 15 1 0.113500 
 "HE3" "H1" 0 1 131072 16 1 0.113500 
 "NZ" "N2" 0 1 131072 17 7 -0.585400 
 "C" "C" 0 1 131072 18 6 0.734100 
 "O" "O" 0 1 131072 19 8 -0.589400 
!entry.LYD.unit.atomspertinfo table  str pname  str ptype  int ptypex  int pelmnt  dbl pchg 
 "N" "N" 0 -1 0.0 
 "H" "H" 0 -1 0.0 
 "CA" "CT" 0 -1 0.0 
 "HA" "H1" 0 -1 0.0 
 "CB" "CT" 0 -1 0.0 
 "HB2" "HC" 0 -1 0.0 
 "HB3" "HC" 0 -1 0.0 
 "CG" "CT" 0 -1 0.0 
 "HG2" "HC" 0 -1 0.0 
 "HG3" "HC" 0 -1 0.0 
 "CD" "CT" 0 -1 0.0 
 "HD2" "HC" 0 -1 0.0 
 "HD3" "HC" 0 -1 0.0 
 "CE" "CT" 0 -1 0.0 
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 "HE2" "H1" 0 -1 0.0 
 "HE3" "H1" 0 -1 0.0 
 "NZ" "N2" 0 -1 0.0 
 "C" "C" 0 -1 0.0 
 "O" "O" 0 -1 0.0 
!entry.LYD.unit.boundbox array dbl 
 -1.000000 
 0.0 
 0.0 
 0.0 
 0.0 
!entry.LYD.unit.childsequence single int 
 2 
!entry.LYD.unit.connect array int 
 1 
 18 
 17 
!entry.LYD.unit.connectivity table  int atom1x  int atom2x  int flags 
 1 2 1 
 1 3 1 
 3 4 1 
 3 5 1 
 3 18 1 
 5 6 1 
 5 7 1 
 5 8 1 
 8 9 1 
 8 10 1 
 8 11 1 
 11 12 1 
 11 13 1 
 11 14 1 
 14 15 1 
 14 16 1 
 14 17 1 
 18 19 1 
!entry.LYD.unit.hierarchy table  str abovetype  int abovex  str belowtype  int belowx 
 "U" 0 "R" 1 
 "R" 1 "A" 1 
 "R" 1 "A" 2 
 "R" 1 "A" 3 
 "R" 1 "A" 4 
 "R" 1 "A" 5 
 "R" 1 "A" 6 
 "R" 1 "A" 7 
 "R" 1 "A" 8 
 "R" 1 "A" 9 
 "R" 1 "A" 10 
 "R" 1 "A" 11 
 "R" 1 "A" 12 
 "R" 1 "A" 13 
 "R" 1 "A" 14 
 "R" 1 "A" 15 
 "R" 1 "A" 16 
 "R" 1 "A" 17 
 "R" 1 "A" 18 
 "R" 1 "A" 19 
!entry.LYD.unit.name single str 
 "LYD" 
!entry.LYD.unit.positions table  dbl x  dbl y  dbl z 
 3.325770 1.547909 -1.607204E-06 
 3.909407 0.723611 -2.739882E-06 
 3.970048 2.845795 -1.311163E-07 
 3.671663 3.400129 -0.889820 
 3.576965 3.653838 1.232143 
 2.496995 3.801075 1.241379 
 3.877484 3.115795 2.131197 
 4.274186 5.009602 1.194577 
 5.354271 4.863178 1.185788 
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 3.973781 5.548460 0.295972 
 3.881105 5.817645 2.426721 
 2.801135 5.964881 2.435959 
 4.181626 5.279602 3.325774 
 4.578325 7.173410 2.389153 
 5.658410 7.026987 2.380363 
 4.277917 7.712267 1.490550 
 4.199422 7.952309 3.576860 
 5.485541 2.705207 -4.398755E-06 
 6.008824 1.593175 -8.449768E-06 
!entry.LYD.unit.residueconnect table  int c1x  int c2x  int c3x  int c4x  int c5x  int c6x 
 1 18 17 0 0 0 
!entry.LYD.unit.residues table  str name  int seq  int childseq  int startatomx  str restype  int imagingx 
 "LYD" 1 20 1 "p" 0 
!entry.LYD.unit.residuesPdbSequenceNumber array int 
 0 
!entry.LYD.unit.solventcap array dbl 
 -1.000000 
 0.0 
 0.0 
 0.0 
 0.0 
!entry.LYD.unit.velocities table  dbl x  dbl y  dbl z 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 
 
 
!!index array str 
 "DOG" 
!entry.DOG.unit.atoms table  str name  str type  int typex  int resx  int flags  int seq  int elmnt  dbl chg 
 "C1" "CC” 0 1 131072 1 6 0.596400 
 "C2" "CT" 0 1 131072 2 6 0.467300 
 "C3" "CT" 0 1 131072 3 6 0.045500 
 "C4" "CT" 0 1 131072 4 6 0.070620 
 "H2" "HC" 0 1 131072 5 1 0.033200 
 "H3" "HC" 0 1 131072 6 1 0.033200 
 "C5" "CT" 0 1 131072 7 6 0.106100 
 "O1" "OH" 0 1 131072 8 8 -0.387700 
 "H4" "H1" 0 1 131072 9 1 0.062100 
 "C6" "CT" 0 1 131072 10 6 0.115600 
 "O2" "OH" 0 1 131072 11 8 -0.387000 
 "H6" "H1" 0 1 131072 12 1 0.064200 
 "H8" "H1" 0 1 131072 13 1 0.058800 
 "O3" "OH" 0 1 131072 14 8 -0.389400 
 "H9" "H1" 0 1 131072 15 1 0.058800 
 "H1" "H1" 0 1 131072 16 1 0.085900 
 "H5" "HO" 0 1 131072 17 1 0.210400 
 "H7" "HO" 0 1 131072 18 1 0.210800 
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 "H10" "HO" 0 1 131072 19 1 0.21000 
!entry.DOG.unit.atomspertinfo table  str pname  str ptype  int ptypex  int pelmnt  dbl pchg 
 "C1" "CC” 0 -1 0.0 
 "C2" "CT" 0 -1 0.0 
 "C3" "CT" 0 -1 0.0 
 "C4" "CT" 0 -1 0.0 
 "H2" "HC" 0 -1 0.0 
 "H3" "HC" 0 -1 0.0 
 "C5" "CT" 0 -1 0.0 
 "O1" "OH" 0 -1 0.0 
 "H4" "H1" 0 -1 0.0 
 "C6" "CT" 0 -1 0.0 
 "O2" "OH" 0 -1 0.0 
 "H6" "H1" 0 -1 0.0 
 "H8" "H1" 0 -1 0.0 
 "O3" "OH" 0 -1 0.0 
 "H9" "H1" 0 -1 0.0 
 "H1" "H1" 0 -1 0.0 
 "H5" "HO" 0 -1 0.0 
 "H7" "HO" 0 -1 0.0 
 "H10" "HO" 0 -1 0.0 
!entry.DOG.unit.boundbox array dbl 
 -1.000000 
 0.0 
 0.0 
 0.0 
 0.0 
!entry.DOG.unit.childsequence single int 
 2 
!entry.DOG.unit.connect array int 
 1 
 2 
!entry.DOG.unit.connectivity table  int atom1x  int atom2x  int flags 
 1 2 1 
 2 3 1 
 2 16 1 
 3 4 1 
 3 5 1 
 3 6 1 
 4 7 1 
 4 8 1 
 4 9 1 
 7 10 1 
 7 11 1 
 7 12 1 
 8 17 1 
 10 13 1 
 10 14 1 
 10 15 1 
 11 18 1 
 14 19 1 
!entry.DOG.unit.hierarchy table  str abovetype  int abovex  str belowtype  int belowx 
 "U" 0 "R" 1 
 "R" 1 "A" 1 
 "R" 1 "A" 2 
 "R" 1 "A" 3 
 "R" 1 "A" 4 
 "R" 1 "A" 5 
 "R" 1 "A" 6 
 "R" 1 "A" 7 
 "R" 1 "A" 8 
 "R" 1 "A" 9 
 "R" 1 "A" 10 
 "R" 1 "A" 11 
 "R" 1 "A" 12 
 "R" 1 "A" 13 
 "R" 1 "A" 14 
 "R" 1 "A" 15 
 "R" 1 "A" 16 
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 "R" 1 "A" 17 
 "R" 1 "A" 18 
 "R" 1 "A" 19 
!entry.DOG.unit.name single str 
 "DOG" 
!entry.DOG.unit.positions table  dbl x  dbl y  dbl z 
 -1.849500 -1.936100 0.221000 
 -1.057100 -0.683500 0.630000 
 0.316200 -0.621600 -0.033900 
 1.165800 0.524600 0.516000 
 0.210200 -0.518300 -1.121000 
 0.827800 -1.572800 0.151000 
 2.560200 0.625100 -0.128100 
 1.339800 0.346300 1.929700 
 0.643100 1.479500 0.382400 
 3.435700 -0.617300 0.084200 
 3.243000 1.740800 0.482600 
 2.479200 0.849600 -1.197600 
 3.533500 -0.858700 1.147300 
 4.750400 -0.331500 -0.408400 
 3.046200 -1.484300 -0.455900 
 -1.004500 -0.648000 1.723400 
 1.905800 1.100000 2.197500 
 4.174100 1.639200 0.193800 
 5.297700 -1.110700 -0.202100 
!entry.DOG.unit.residueconnect table  int c1x  int c2x  int c3x  int c4x  int c5x  int c6x 
 1 2 0 0 0 0 
!entry.DOG.unit.residues table  str name  int seq  int childseq  int startatomx  str restype  int imagingx 
 "DOG" 1 20 1 "?" 0 
!entry.DOG.unit.residuesPdbSequenceNumber array int 
 0 
!entry.DOG.unit.solventcap array dbl 
 -1.000000 
 0.0 
 0.0 
 0.0 
 0.0 
!entry.DOG.unit.velocities table  dbl x  dbl y  dbl z 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
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Appendix 2 

Frequency histograms for the two dihedrals angles ϕ and ψ in the cross-linking 

and surrounding residues, for the cross-link removed and the glucosepane 

cross-linked systems. (Colours: ϕRemoved – Pink; ϕCross – Blue; ψRemoved – Purple; 

ψcross – Yellow) 
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Appendix 3 

9.3 Glucosepane Dihedral Plot 

Frequency histograms for the two dihedrals angles ϕ and ψ in the cross-linking 

and surrounding residues, for the native and the glucosepane cross-linked 

systems. (Colours: ϕNat – Pink; ϕCross – Blue; ψNat – Purple; ψcross – Yellow) 
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9.4 DOGDIC Dihedral Plots 

Frequency histograms for the two dihedrals angles ϕ and ψ in the cross-linking 

and surrounding residues, for the native and the DOGDIC cross-linked systems. 

(Colours: ϕNat – Pink; ϕCross – Blue; ψNat – Purple; ψcross – Yellow) 
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