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Abstract— This work investigates the applicability of
stiffness-based modelling in soft robotics manipulation. The
methodology is introduced and applied to model a soft robotics
manipulator as single 3d Timoshenko beam element. The
model is then utilized to solve the forward kinematics problem
for the manipulator. The algorithm is validated comparing
the simulated deflection with the deflection of the physical
manipulator for two defined pressure sequences. It is shown that
the model behaves in a highly similar fashion in comparison to
the manipulator. For both trajectories the maximum position
error is close to 6 mm while the error in orientation not
more than 18◦. The methodology as described in this work
reveals great applicability to the field of soft robots being
limited only by the stiffness matrix assembly for the given
system. Implementations of inverse kinematics and the effects
of external force applications are effectively integrable in the
described theory.

I. INTRODUCTION

Despite large research effort in the field of soft robotics,
modelling and accurate controllability are still considered
a major challenge in recent investigations [1], [2]. Due to
highly individualised soft robotics designs resulting in diver-
se kinematics descriptions, a universal solution with general
applicability has not been found yet. The development of
models considering external forces can be difficult to inte-
grate and contradictory with assumptions made. To approach
the described issues we examine the implementation of a
highly flexible stiffness-based modelling approach which
can not only be utilized to solve the forward and inverse
kinematics problems based on actuation forces and moments
for a given soft robot, but also integrate external forces
which are applied to the structure. The model is validated
in a forward kinematics algorithm which is applied to a
soft robotics manipulator. The latter is developed employing
hydraulic actuators, while the modelling itself is similarly
applicable to other fluid-based actuation techniques. The tip
position and orientation of the robot are evaluated using an
implemented optical marker tracking system.

II. BACKGROUND

The modelling in soft robots requires the derivation and
solution of complex analytical formulations which are often
highly individualized to the given robot. In [3] and [4]
a mapping technique is derived and investigated to dis-
cretise the shape of a soft robot for describing it with
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Fig. 1. Serial soft robotics manipulator

the application of classical joints and the commonly used
Denavit-Hartenberg method in a similar fashion to hyper-
redundant robots. It has been found that the model accuracy
is then dependent on the number of discretised steps with a
computational demand proportional to the latter [5]. In [6]
a closed analytical description has been found to derive the
kinematics of a hyper-redundant elephant trunk manipulator
with applicability to soft robotics. An overview on soft
robotics kinematic modelling under the constant curvature
constraint in given in [7]. Fast computation is required for
kinematics or dynamics models to be efficiently applied in
soft robotics control. Therefore a balance between model
simplicity and accuracy has to be found. Current state-of-the-
art suggests that dynamics modelling, although it has been
shown be applicable in soft robots [8], is most likely to be
too computationally expensive for real-time control [2].

The manipulator as described in [9] is modelled in [10]
under the constant curvature assumptions to describe the tip
position and orientation based on its arc length and curvature.
The model is used to derive forward and inverse kinematics
of the manipulator. [11] follows a similar method by assu-
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Fig. 2. Soft robotics segment with cross-section

ming piecewise constant curvature. An algorithm is presented
defining the segment curvature of the manipulator which
is then used to calculate the forward kinematics equations.
To solve the inverse kinematics an iterative Jacobian trans-
pose method is employed. The cable-actuated manipulator
in [12] follows a similar model assuming virtual joints as
previously described in [3] and [4]. A mapping between
actuation, virtual joint and task space is then defined and
forward as well as inverse kinematics are solved by applying
the Denavit-Hartenberg method. In recent work, machine
learning is often utilized to find inverse kinematics equations
for a soft robot [13] or to validate the manipulator’s motion
gained from analytical modelling [9]. [14] employ a recurrent
neural network to learn the manipulator’s dynamics, which
shows efficient applicability. Highly diverse approaches to
soft manipulator modelling can be found in recent work.
While applications are shown in which the constant curvature
assumption is employed [9], [11], which does not hold for
external force applications. Other work discretises the con-
tinuous behaviour of soft robots to approximate it applying
virtual joints [12]. Machine learning is an alternative which
also shows promising results soft robot modelling. It can
be seen that the models derived for describing soft robotics
kinematics are individualized and based on a variety of
different principles. This work therefore examines a universal
approach based on Timoshenko beam theory which could be
flexibly utilized for different soft robotics setups.

III. SYSTEM DESIGN

A soft robotics manipulator, as presented in figure 2,
utilizing hydraulic actuation is developed to validate the
modelling approach. The manipulator consists of a silicone
rubber module as investigated in prior research [9]. Three
inflatable chambers are inserted into the cylindrical body
which contain threading to constrain lateral expansion upon
pressurization, a cross-section of the manipulator is shown
in figure 1. Upon pressurization, the chambers elongate
without expanding radially, causing, due to their off-centered

Fig. 3. Bent soft robotics segment with coloured optical markers &
actuators with control and driver units

placement inside the body, bending moments and elongation
in the tip. The segment comprises a diameter of 25mm and
a deflated length of approximately 45 mm.

A. Actuation

Stepper motor based actuators are developed to provide
hydrostatic pressure to the soft robotics structure. The con-
struction comprises a hydraulic syringe which is linked to the
fixed motor housing as well as a piston which is attached to
a travelling nut on the rotating lead-screw. The constraint in
rotation of the piston as well as the overall fixation of both
components allow a conversion from rotary screw motion
to linear piston displacement. The syringes are designed
to provide a maximum hydraulic fluid volume of 1.8ml
and are limited mechanically as well as electronically by
embedded contact switches. The stepper motors (Nema 17,
Polulu, USA) are driven by stepper motor drivers (2M542-
N, SainSmart, USA) which are controlled by an Arduino
Mega 2560 microcontroller. Individual steps are initiated
through a generated PWM signal while the direction of
the motor rotation is defined employing a digital output.
The contact switches are utilized to drive the motor in
an open loop control configuration. Upon system start-up
the actuators move towards the contact switches until the
latter are engaged to generate accurate initial actuator positi-
ons. During the following movements the displacements are
tracked on a software level which allows accurate positioning
in an open-loop configuration. The actuators are moved with
constant velocities. The pressure output as provided by the
hydraulic actuators with connected soft robotics segment is
measured using diaphragm- and strain-gauge-based pressure
transducers (NBP-4, Honeywell, USA) connected through an
instrumentation amplifier circuit to analogue inputs of the
Arduino microcontroller. The pressure is monitored over the
insertion of 1.8 ml into the segment, showing a mostly linear
pressure range from 0 kPa to 160 kPa with minor nonlineari-
ties occurring from minor undesired lateral expansion of the
inflation chambers. In the following, the pressure output of
the actuators is assumed to be in the described linear range.

B. Feedback

A visual marker tracking system is developed to determine
base and tip positions as well as orientations of the segment.



The segment’s base and tip are equipped with connective
elements comprising optical markers, which can be seen in
figure 3. Two cameras are utilized in a stereoscopic set-
up comprising perpendicular optical axes to determine the
projections of the markers in the x-z- and y-z-planes. A
computer vision algorithm is employed to find binary image
representations of the markers based on their colours, to
determine their centre locations in the image based on a
Hough circle transform and to track each marker utilizing
prior velocity and marker label information. The marker
tracking feedback is utilized to determine the tip displa-
cement as projections into the x-z- and y-z-planes in the
following experimental validation. The marker locations are
furthermore used to calculate the tip rotation angles.

IV. STIFFNESS MODELLING

Linear elastic beam theory describes the deformation of a
body under applied loading based on a linear relation bet-
ween occurring stresses and strains. Different theories have
been emerged on this basis, holding for specific assumptions
to the properties of the body. The most commonly applied
Euler-Bernoulli beam theory assumes a strictly perpendicular
orientation between central axis of the beam and its end plate.
This, however, neglects shear deformations occurring from
applied forces. While this assumption holds for long beams
with negligible diameter, shorter beams are not adequately
described. This work therefore utilizes Timoshenko beam
theory which has been shown to be more suitable for short
beams [15]. In beam theory the deflection of a 3d cantilever
beam can be related to the applied forces and moments by

T = K · X (1)

With the force and moment vector

T = [F,M]T = [Fx, Fy, Fz,Mx,My,Mz]
T

Describing the global forces Fi and Mi moments acting on
the free tip in direction i and

X = [δ,θ]T = [δx, δy, δz, θx, θy, θz]
T

Indicating the displacements in position (δi) and orientation
(θi) in i. The two vectors are related through the 6×6 element
matrix K, which is known as the stiffness matrix of the
beam. In this work we describe the developed soft robotics
manipulator as a single 3d Timoshenko beam element. Its
element stiffness matrix can be defined, as derived in [16],
by

K =

12EI
(1+φ)L3 0 0 0 6EI

(1+φ)L2 0

0 12EI
(1+φ)L3 0 − 6EI

(1+φ)L2 0 0

0 0 EA
L 0 0 0

0 − 6EI
(1+φ)L2 0 (4+φ)EI

(1+φ)L 0 0
6EI

(1+φ)L2 0 0 0 (4+φ)EI
(1+φ)L 0

0 0 0 0 0 GJ
L



With

φ =
12EI

G(Â/α)L2

Where G is the shear modulus of the beam, J is the torsion
constant and α the Timoshenko coefficient based on the
geometry of the beam and Â the beam’s cross section. E
refers to the Young’s modulus of the beam material, I to
it’s area moment of inertia and L to it’s length. This relation
allows the calculation of forces and moments required for
a specified deflection of the beam. Matrix K is invertible
which leads to

X = C · T (2)

Where C = K−1 is the analytically defined compliance
matrix of the system. The above derived equations offer two
possible applications in soft robotics manipulation

• The formulation of kinematics equations of the soft ro-
bot based on the applied actuation forces and moments.

• The calculation of deflection occurring from externally
applied forces and moments to the soft robot.

In the following, both points are addressed while the first is
experimentally validated employing the physical robot.

V. KINEMATICS MODELLING

As stated above, a first step in deriving the forward
kinematics of the system is to relate the actuation forces
and moments to the reference frame corresponding to the
stiffness matrix description. In the given case the latter
is expressed in regards to the manipulator tip. With the
actuation pressures already acting on the tip plane of the
manipulator a coordinate transformation is not required. The
force acting in chamber i of the soft robotics module is given
as

Fi = Pi ·A (3)

Where Pi is the pressure on end surface A of chamber i.
Due to the geometrical location of the inflation chambers the
forces are translated to moments about the respective axes.
With the given distance of the chambers from the central
axis, the corresponding moments can be determined by

Mi = di × Fi (4)

Where di is the direction vector from the central axis poin-
ting towards force vector Fi. For the soft robotics segment
the chambers are aligned in 7 mm distance towards the centre
with angles of 120◦ between one another. The placement
of the vertical chambers in the global frame are shown in
figure 2. For chamber 1 the position vector in the global
reference frame is given as

d1 = [x1, y1, z1]
T = [0mm, 7mm, 0mm]T

The position vectors of chambers 2 and 3 can be obtained
by rotating d1 about the z-axis using rotation matrices

d2 = Rz,120◦ · d1, d3 = Rz,120◦ · d2 (5)



with the rotation matrix around the global z-axis

Rz,120◦ =

cos(120◦) −sin(120◦) 0
sin(120◦) cos(120◦) 0

0 0 1


The forces, pointing along the positive z-axis, are transfor-
med and summed using the principle of superposition

[Mx,My,Mz]
T =M1 +M2 +M3 (6)

Which determines the tip moments required for the stiff-
ness matrix calculation in equations 1 and 2. The mapping
from input pressures to global bending moments can be
achieved in a compact matrix form as

Mact = Û · [F1, F2, F3]
T (7)

With the 2× 3 matrix

Û =

[
d1,y d2,y d3,y
0 d2,x d3,x

]
Relating the three force vectors to moments using linear
algebra. With the achieved mapping the input pressures can
now be related to the manipulator’s tip deflection through the
actuating bending moments Mact as well as external forces
Fext and moment Mext can be determined as

X = C ·

 Fext[
Mact

0

]
+Mext

 (8)

Which can be written as δ

θ

 =

C11 C12

C21 C22

 ·


FextMact

0

+Mext


Where the displacement δ and the rotation θ of the manipu-
lator tip can be formulated as

δ = C11 · Fext +C12 · (
[
Mact

0

]
+Mext) (9)

θ = C21 · Fext +C22 · (
[
Mact

0

]
+Mext) (10)

Where Fext = [Fx, Fy, Fz]
T are the externally applied

forces, Mext = [Mx,My,Mz]
T the external moments and

Mact the actuation moments as stated above. This relation
therefore provides efficiently the possibility to be applied in
static force scenarios where external loading is added to the
manipulator tip.

Beam theory applied with a single Timoshenko beam
element comprises two limitations for the given application:

• The elongation of the segment resulting from applied
pressures is not considered due to the formulation as
bending moments.

• Deflection along the z-axis is also not defined for
occurring bending moments.

In the following sections both limitations are addressed.

A. Elongation compensation

The elongation of a beam through longitudinal loading can
be described as

dL =
L

EÂ
· Fel (11)

Where dL is the contraction or extension of the beam, L its
unloaded length, Â its cross-section and Fel the elongating
force. In the given manipulator it can be approximated that

Fel = A · P1 + P2 + P3

3
(12)

The determined elongation is applied to the deflected tip in
form of a translation in the tip direction in an additional
iteration step. Based on equation 2 and the analytically found
compliance matrix of the system, the rotation of the tip
caused by the actuation pressures can be found with

[θx, θy]
T =

[
0 − L2

2·EI
L2

2·EI 0

]
· Û ·A · [P1, P2, P3]

T (13)

The rotations θx and θy can then be employed to determine
the tip direction vector

Otip = (Rx,θx +Ry,θy ) · uz (14)

where Otip = [Otip,x, Otip,y, Otip,z]
T is the tip orientation

vector, uz the unit vector in z-direction and Rx,θx and
Ry,θy the rotation matrices around x- and y-axis. The
deflected tip with applied elongation is then calculated as

δ+ = δ +
Otip

|Otip|
· dL (15)

B. Deflection along the z-axis

To determine the z-deflection of the beam its curvature κ
is determined in x-z- and y-z-plane by

κi =
Mi

EI
=
Mact,i +Mext,i

EI
for i = {x, y} (16)

Based on the determined curvatures, the z-coordinate can be
calculated as

δ+z =
1

κ
· sin(κ · (L+ dL)) + δz (17)

Where δz is previously defined by the externally applied
forces. In the following section the algorithm is validated
utilizing the previously described soft robotics manipulator
without external loading. The z-deflection is determined
based on the curvature in the x-z-plane.

VI. EXPERIMENT

The forward kinematics algorithm is experimentally vali-
dated by calculating the model deflection for two different
actuation pressure sequences and applying the latter to the
physical manipulator without external loading. Both results
are then compared in regards to their displacement in x-,y-
and z-axis as well as in their rotation about x- and y-axis. The
first motion, as shown in figure 4(a) comprises an inflation of
chamber one from 0 kPa to 160 kPa followed by a deflation
from 160 kPa to 0 kPa while maintaining a constant pressure
in both of the unused chambers. The second trajectory,
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Fig. 4. Experimental results for first trajectory with (a) Trajectory visualization, deflection in x- (b), y- (c) and z-axis (d) as well as rotation around x-
(e) and y-axis (f)
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Fig. 5. Experimental results for second trajectory with (a) Trajectory visualization, deflection in x- (b), y- (c) and z-axis (d) as well as rotation around
x- (e) and y-axis (f)

which is shown in figure 5(a), comprises a sequential motion
beginning with an idle, deflated configuration. Chamber one
is inflated from 0 kPa to 80 kPa, followed by an inflation of
chamber two and chamber three in the same pressure range
before the three chambers are deflated simultaneously. For
trajectories are evaluated in unloaded states. The deflections
and rotations during the trajectory executions are presented
in figures 4 and 5. The maximum errors in position and

orientation are summarized in table I.

A. First trajectory

The validation results of the first trajectory are presented
in figure 4. It can be seen that for the displacement in
x-direction and the rotation about y-axis both model ex-
periment coincide at 0 mm and 0◦ respectively. For the
deflection in y- and z-axis and the rotation about x-axis
deviations can be observed particularly at the point of



TABLE I
MAXIMUM ERROR IN POSITION AND ORIENTATION

Direction Trajectory 1 Trajectory 2

δx 0 mm 6 mm
δy 6 mm 5 mm
δz 4 mm 6 mm
θx 18◦ 15◦

θy 2◦ 10◦

maximum inflation (6 s), with maximum errors of 6 mm,
4 mm and 18◦ respectively. The latter could be explained by
linearization of the modelling, which becomes less accurate
for larger deflections. The deflection of the y-axis also shows
a continuing error during the deflation phase (6 s to 12 s)
which could occur due to hysteresis in the silicone rubber of
the manipulator body.

B. Second trajectory

The experimental results of the second trajectory are
shown in figure 5. For the deflections in x- and y-axis it
can be seen that the simulated and real trajectories coincide
with maximum errors of 6 mm and 5 mm. The experimental
trajectory reveals non-linear behaviour during the inflation
of chambers 2 and 3 (3 s to 9 s). The occurrence of non-
linearities could be explained by the simultaneous inflation
of multiple chambers, which might result in an amplification
of the non-linear material effects. The deflection in z shows
deviations with a maximum error of 6 mm in the first half
of the trajectory (0 s to 6 s) and matches closely for the
second half. For the rotations about x- and y-axis it can
be observed that a maximum error occurs at the maximum
deflection angle (3 s for the rotation about x- and 6 s for the
rotation about the y-axis respectively). The maximum errors
are 15◦ for the rotation about x- and 10◦ for the rotation
about the y-axis. The latter could be, similarly to the first
trajectory, caused by the large deflection angle.

VII. CONCLUSION

A methodology is presented to derive analytically kinema-
tics equations and effects of external forces and moments of
a soft robotics manipulator according to Timoshenko beam
theory. The experimental validation of the method shows
good accordance between model and physical manipulator
for most parts of the verified trajectories. Deviations between
the two can be observed particularly upon large deflections
of the manipulator tip. The limitation could be overcome by
introducing an adaptation of the model for large deflections.
The method shows great potential to be universally applied to
beam-like serial or parallel soft robotics manipulators based
on a stiffness matrix derivation which is highly applicable
to multi-segment soft robots. Furthermore, the method could
be beneficial for real-time applications as the computational
work to solve the kinematic equations is minimal. Future
work involves model improvements for large deflections, the
derivation of inverse kinematics and as well as static force
applications.
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