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Abstract 

 
Cities have been treated as systems for fifty year but only in the last two decades has 
the focus changed from aggregate equilibrium systems to more evolving systems 
whose structure merges from the bottom up. We first outline the rudiments of the 
traditional approach focusing on equilibrium and then discuss how the paradigm has 
changed to one which treats cities as emergent phenomena generated through a 
combination of hierarchical levels of decision, driven in decentralized fashion. This is 
consistent with the complexity sciences which dominate the simulation of urban form 
and function. We begin however with a review of equilibrium models, particularly 
those based on spatial interaction, and we then explore how simple dynamic 
frameworks can be fashioned to generate more realistic models. In exploring 
dynamics, nonlinear systems which admit chaos and bifurcation have relevance but 
recently more pragmatic schemes of structuring urban models based on cellular 
automata and agent-based modeling principles have come to the fore. Most urban 
models deal with the city in terms of the location of its economic and demographic 
activities but there is also a move to link such models to urban morphologies which 
are clearly fractal in structure. Throughout this chapter, we show how key concepts in 
complexity such as scaling, self-similarity and far-from-equilibrium structures 
dominate our current treatment of cities, how we might simulate their functioning and 
how we might predict their futures. We conclude with the key problems that dominate 
the field and suggest how these might be tackled in future research. 

 

                                                 
†in The Encyclopedia of Complexity & System Science, Springer, Berlin, DE, forthcoming 
2008. Date of this paper: February 25, 2008. 
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Glossary 

 
 
Agent-Based Models: systems composed of individuals who act 

purposely in making locational/spatial decisions 
Bifurcation: a process whereby divergent paths are generated in a 

trajectory of change in an urban system 
City Size Distribution: a set of cities by size, usually population, 

often in rank order 
Emergent Patterns: land uses or economic activities which follow 

some spatial order 
Entropy Maximizing: the process of generating a spatial model by 

maximizing a measure of system complexity subject to constraints 
Equilibrium: a state of the urban system which is balanced and 

unchanging 
Exponential Growth: the process whereby an activity changes 

through positive feedback on itself 
Fast Dynamics: a process of frequent movement between locations, 

often daily 
Feedback: the process whereby a system variable influences another 

variable, either positively or negatively  
Fractal Structure: a pattern or arrangement of system elements that 

are self-similar at different spatial scales 
Land Use Transport Model: a model linking urban activities to 

transport interactions 
Life Cycle Effects: changes in spatial location which are motivated by 

aging of urban activities and populations 
Local Neighborhood: the space immediately around a zone or cell  
Logistic Growth: exponential growth capacitated so that some density 

limit is not exceeded 
Lognormal Distribution: a distribution which has fat and long tails 

which is normal when examined on a logarithmic scale  
Microsimulation: the process of generating synthetic populations 

from data which is collated from several sources 
Model Validation: the process of calibrating and testing a model 

against data so that its goodness of fit is optimized 
Multipliers: relationships which embody n’th order effects of one 

variable on another. 
Network Scaling: the in-degrees and out-degrees of a graph whose 

nodal link volumes follow a power law 
Population Density Profile: a distribution of populations which 

typically follows an exponential profile when arrayed against 
distance from some nodal point 

Power Laws: scaling laws that order a set of objects according to their 
size raised to some power 

Rank Size Rule: a power law that rank orders a set of objects 
Reaction-Diffusion: the process of generating changes as a 

consequence of a reaction to an existing state and interactions 
between states 
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Scale-free Networks: networks whose nodal volumes follow a power 
law 

Segregation Model: a model which generates extreme global 
segregation from weak assumptions about local segregation 

Simulation: the process of generating locational distributions 
according to a series of sub-model equations or rules 

Slow Dynamics: changes in the urban system that take place over 
years or decades 

Social Physics: the application of classical physical principles 
involving distance, force and mass to social situations, particularly 
to cities and their transport 

Spatial Interaction: the movement of activities between different 
locations ranging from traffic distributions to migration patterns 

Trip Distribution: the pattern of movement relating to trips made by 
the population, usually from home to work but also to other 
activities such as shopping 

Urban Hierarchy: a set of entities physically or spatially scaled in 
terms of their size and areal extent 

Urban Morphology: patterns of urban structure based on the way 
activities are ordered with respect to their locations 

Urban System: a city represented as a set if interacting subsystems or 
their elements 
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 Introduction: Cities as Systems 
 

Cities were first treated formally as systems when General System Theory and 

Cybernetics came to be applied to the softer social sciences in the 1950s. Ludwig von 

Bertalanffy (1969) in biology and Norbert Weiner (1948) in engineering gave 

enormous impetus to this emerging interdisciplinary field that thrust upon us the idea 

that phenomena of interest in many disciplines could be articulated in generic terms as 

‘systems’. Moreover the prospect that the systems approach could yield generic policy, 

control and management procedures applicable to many different areas, appeared 

enticing. The idea of a general systems theory was gradually fashioned from 

reflections on the way distinct entities which were clearly collections of lower order 

elements, organized into a coherent whole, displaying pattern and order which in the 

jargon of the mid-twentieth century was encapsulated in the phrase that “the whole is 

greater than the sum of the parts”. The movement began in biology in the 1920s, 

gradually eclipsing parts of engineering in the 1950s and spreading to the 

management and social sciences, particularly sociology and political science in the 

1960s. It was part of a wave of change in the social sciences which began in the late 

19th century as these fields began to emulate the physical sciences, espousing 

positivist methods which had appeared so successful in building applicable and robust 

theory. 

 

The focus then was on ways in which the elements comprising the system interacted 

with one another through structures that embodied feedbacks keeping the system 

sustainable within bounded limits. The notion that such systems have controllers to 

‘steer’ them to meet certain goals or targets is central to this early paradigm and the 

science of “…control and communication in the animal and the machine” was the 

definition taken up by Norbert Wiener (1948) in his exposition of the science of 

cybernetics. General system theory provided the generic logic for both the structure 

and behavior of such systems through various forms of feedback and hierarchical 

organization while cybernetics represents the ‘science of steersmanship’ which would 

enable such systems to move towards explicit goals or targets. Cities fit this 

characterization admirably and in the 1950s and 1960s, the traditional approach that 

articulated cities as structures that required physical and aesthetic organization, 
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quickly gave way to deeper notions that cities needed to be understood as general 

systems. Their control and planning thus required much more subtle interventions 

than anything that had occurred hitherto in the name of urban planning. 

 

Developments in several disciplines supported these early developments. Spatial 

analysis, as it is now called, began to develop within quantitative geography, linked to 

the emerging field of regional science which represented a synthesis of urban and 

regional economics in which location theory was central. In this sense, the economic 

structure of cities and regions was consistent with classical macro and micro 

economics and the various techniques and models that were developed within these 

domains had immediate applicability. Applications of physical analogies to social and 

city systems, particularly ideas about gravitation and potential, had been explored 

since the mid 19th century under the banner of ‘social physics’ and as transportation 

planning formally began in the 1950s, these ideas were quickly adopted as a basis for 

transport modeling. Softer approaches in sociology and political science also provided 

support for the idea of cities as organizational systems while the notion of cybernetics 

as the basis for management, policy and control of cities was adopted as an important 

analogy in their planning (Chadwick, 1971; McLoughlin, 1969).  

 

The key ideas defined cities as sets of elements or components tied together through 

sets of interactions. The archetypal structure was fashioned around land use activities 

with economic and functional linkages between them represented initially in terms of 

physical movement, traffic. The key idea of feedback, which is the dynamic that holds 

a general system together, was largely represented in terms of the volume and pattern 

of these interactions, at a single point in time. Longer term evolution of urban 

structure was not central to these early conceptions for the focus was largely on how 

cities functioned as equilibrium structures. The prime imperative was improving how 

interactions between component land uses might be made more efficient while also 

meeting goals involving social and spatial equity. Transportation and housing were of 

central importance in adopting the argument that cities should be treated as examples 

of general systems and steered according to the principles of cybernetics. 

 

Typical examples of such systemic principles in action involve transportation in large 

cities and these early ideas about systems theory hold as much sway in helping make 
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sense of current patterns as they did when they were first mooted fifty or more years 

ago. Different types of land use with different economic foci interact spatially with 

respect to how employees are linked to their housing locations, how goods are 

shipped between different locations to service the production and consumption that 

define these activities, how consumers purchase these economic activities which are 

channeled through retail and commercial centers, how information flows tie all these 

economies together, and so on: the list of linkages is endless. These activities are 

capacitated by upper limits on density and capacity. In Greater London for example, 

the traffic has reached saturation limits in the central city and with few new roads 

being constructed over the last 40 years, the focus has shifted to improving public 

transport and to road pricing.  

 

The essence of using a systems model of spatial interaction to test the impact of such 

changes on city structure is twofold: first such a model can show how people might 

shift mode of transport from road to rail and bus, even to walking and cycling, if 

differential pricing is applied to the road system. The congestion charge in central 

London imposed in 2003 led to a 30 percent reduction in the use of vehicles and this 

charge is set to increase massively for certain categories of polluting vehicles in the 

near future. Second the slightly longer term effects of reducing traffic are to increase 

densities of living, thus decreasing the length and cost of local work journeys, also 

enabling land use to respond by changing their locations to lower cost areas. All these 

effects ripple through the system with the city system models presented here designed 

to track and predict such n’th order effects which are rarely obvious. Our focus in this 

chapter is to sketch the state-of-the-art in these complex systems models showing how 

new developments in the methods of the complexity sciences are building on a basis 

that was established half century ago. 

 

Since early applications of general systems theory, the paradigm has changed 

fundamentally from a world where systems were viewed as being centrally organized, 

from the top down, and notions about hierarchy were predominant, to one where we 

now consider systems to be structured from the bottom up. The idea that one or the 

other – the centralized or the decentralized view – are mutually exclusive of each 

other is not entirely tenable of course but the balance has certainly changed. Theories 

have moved from structures and behaviors being organized according to some central 
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control to theories about how systems retain their own integrity from the bottom up, 

endorsing what Adam Smith over 300 years ago, called “the hidden hand”. This shift 

has brought onto the agenda the notion of equilibrium and dynamics which is now 

much more central to systems theory than it ever was hitherto. Systems such as cities 

are no longer considered to be equilibrium structures, notwithstanding that many 

systems models built around equilibrium are still eminently useful. The notion that 

city systems are more likely to be in disequilibrium, all the time, or even classed as 

far-from-equilibrium continually reinforcing the move away from equilibrium, are 

comparatively new but consistent with the speed of change and volatility in cities 

observed during the last fifty years.  

 

The notion too that change is nowhere smooth but discontinuous, often chaotic, has 

become significant. Equilibrium structures are renewed from within as unanticipated 

innovations, many technological but some social, change the way people make 

decisions about how they locate and move within cities. Historical change is 

important in that historical accidents often force the system onto a less than optimal 

path with such path dependence being crucial to an understanding of any current 

equilibria and the dynamic that is evolving. Part of this newly emerging paradigm is 

the idea that new structures and behaviors that emerge are often unanticipated and 

surprising. As we will show in this chapter, when we look at urban morphologies, 

they are messy but ordered, self-similar across many scales, but growing organically 

from the bottom up. Planned cities are always the exception rather than the rule and 

when directly planned, they only remain so for very short periods of time. 

 

The new complexity sciences are rewriting the theory of general systems but they are 

still founded on the rudiments of structures composed of elements, now often called 

actors or agents, linked through interactions which determine the processes of 

behavior which keep the system in equilibrium and/or move it to new states. Feedback 

is still central but recently has been more strongly focused on how system elements 

react to one another through time. The notion of an unchanging equilibrium supported 

by such feedbacks is no longer central; feedback is now largely seen as the way in 

which these structures are evolved to new states. In short, system theory has shifted to 

consider such feedbacks in positive rather than negative terms although both are 

essential. Relationships between the system elements in terms of their interactions are 
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being enriched using new ideas from networks and their dynamics (Newman, 

Barabasi, and Watts, 2006). Key notions of how the elements of systems scale relative 

to one another and relative to their system hierarchies have become useful in showing 

how local actions and interactions lead to global patterns which can only be predicted 

from the bottom up (Miller and Page, 2007). This new view is about how emergent 

patterns can be generated using models that grow the city from the bottom up (Epstein 

and Axtell, 1996), and we will discuss all these ideas in the catalogue of models that 

we present below. 

 

We begin by looking at models of cities in equilibrium where we illustrate how 

interactions between key system elements located in space follow certain scaling laws 

reflecting agglomeration economies and spatial competition. The network paradigm is 

closely linked to these ideas in structural terms. None of these models, still important 

for operational simulation modeling in a policy context, have an internal dynamic and 

thus we turn to examine dynamics in the next section. We then start with simple 

exponential growth, showing how it can be capacitated as logistic growth from which 

nonlinear behaviors can result as chaos and bifurcation. We show how these models 

might be linked to a faster dynamics built around equilibrium spatial interaction 

models but to progress these developments, we present much more disaggregate 

models based on agent simulation and cellular automata principles. These dynamics 

are then generalized as reaction-diffusion models. 

 

Our third section deals with how we assemble more integrated models built from 

these various equilibrium and dynamic components or sub-models. We look at large-

scale land use transport models which are equilibrium in focus. We then move to 

cellular automata models of land development, concluding our discussion with 

reference to the current development of fine scale agent-based models where each 

individual and trip maker in the city system is simulated. We sprinkle our presentation 

with various empirical applications, many based on data for Greater London showing 

how employment and population densities scale, how movement patterns are 

consistent with the underling infrastructure networks that support them, and how the 

city has grown through time. We show how the city can be modeled in terms of its 

structure and the way changes to it can be visualized. We then link these more 

abstract notions about how cities are structured in spatial-locational terms to their 
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physical or fractal morphology which is a direct expression of their scaling and 

complexity. We conclude with future directions, focusing on how such models can be 

validated and used in practical policy-making.  

 

 

Cities in Equilibrium 
 

Arrangements of Urban Activities 

 

Cities can usually be represented as a series of n  locations, each identified by i , and 

ordered from ni ...,,2,1= . These locations might be points or areas where urban 

activity takes place, pertaining either to the inter-urban scale where locations are 

places not necessarily adjacent to one another or at the intra-urban scale where a city 

is exhaustively partitioned into a set of areas. We will use both representations here 

but begin with a generic formulation which does not depend on these differences per 

se.  

 

It is useful to consider the distribution of locations as places where differing amounts 

of urban activity can take place, using a framework which shows how different 

arrangements of activity can be consistently derived. Different arrangements of course 

imply different physical forms of city. Assume there is N  amount of activity to be 

distributed in n  locations as ...,, 21 NN . Beginning with 1N , there are 

)!(!/[! 11 NNNN −  allocations of 1N , )!(!/[)!( 2121 NNNNNN −−−  allocations of 

2N , )!(!/[)!( 321321 NNNNNNNN −−−−−  of 3N  and so on. To find the total 

number of arrangements W , we multiply each of these quantities together where the 

product is 

 

 
∏

=

i
iN

NW
!

!   .      (1) 

 

This might be considered a measure of complexity of the system in that it clearly 

varies systematically for different allocations. If all N  activity were to be allocated to 
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the first location, then 1=W  while if an equal amount of activity were to be allocated 

to each location, then W would vary according to the size of N  and the number of 

locations n . It can be argued that the most likely arrangement of activities would be 

the one which would give the greatest possibility of distinct individual activities being 

allocated to locations and such an arrangement could be found by maximizing W  (or 

the logarithm of W  which leads to the same). Such maximizations however might be 

subject to different constraints on the arrangements which imply different 

conservation laws that the system must meet. This would enable different types of 

urban form to be examined under different conditions related to density, compactness, 

sprawl and so on, all of which might be formalized in this way. 

 

To show how this is possible, consider the case where we now maximize the 

logarithm of W  subject to meaningful constraints. The logarithm of equation (1) is 

 

∑−=
i

iNNW )!ln()!(lnln       (2) 

 

which using Stirling’s formula, simplifies to 

  

 ∑−+≈
i

ii NNNNW ln)!(lnln   .   (3) 

 

iN  which is the number of units of urban activity allocated to location i , is a 

frequency that can be normalized into a probability as NNp ii = . Substituting for 

ii pNN =  in equation (3) and dropping the constant terms leads to 

 

HppW
i

ii =−∝ ∑ lnln       (4) 

 

where it is now clear that the formula for the number of arrangements is proportional 

to Shannon’s entropy H . Thus the process of maximizing Wln  is the well-known 

process of maximizing entropy subject to relevant constraints and this leads to many 

standard probability distributions (Tribus, 1969). Analogies between city and other 

social systems with statistical thermodynamics and information theory were 
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developed in the 1960s and represented one of the first formal approaches to the 

derivation of models for simulating the interaction between locations and the amount 

of activity attracted to different locations in city, regional and transport systems. As 

such, it has become a basis on which to build many different varieties of urban model 

(Wilson, 1970) 

 

Although information or entropy has been long regarded as a measure of system 

complexity, we will not take this any further here except to show how it is useful in 

deriving different probability distributions of urban activity. Readers are however 

referred to the mainstream literature for both philosophic and technical expositions of 

the relationship between entropy and complexity (for example see Gell-Man, 1994) 

The measure H  in equation (4) is at a maximum when the activity is distributed 

evenly across locations, that is when npi 1=  and nH ln=  while it is at a minimum 

when jinjpp ji ≠=== ,...,,2,1,0and1 , and 0=H . It is clear too that H  

varies with n ; that is as the number of locations increases, the complexity or entropy 

of the system also increases. However what is of more import here is the kind of 

distribution that maximizing entropy generates when H is maximized subject to 

appropriate constraints. We demonstrate this as follows for a simple but relevant case 

where the key constraint is to ensure that the system reproduces the mean value of an 

attribute of interest. Let ip  be the probability of finding a place i  which has iP  

population residing there. Then we maximize the entropy  

 

 ∑−=
i

ii ppH ln   ,     (5) 

 

subject to a normalization constraint on the probabilities 

 

∑ =
i

ip 1   ,     (6) 

 

and a constraint on the mean population of places P  in the system, that is 

 

∑ =
i

ii PPp   .      (7) 
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The standard method of maximizing equation (5) subject to constraint equations (6) 

and (7) is to form a Langrangian L – a composite of the entropy and the constraints 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−= ∑∑∑

i
ii

i
i

i
ii PPppppL ϑβ 1ln    (8) 

 

where β  and ϑ  are multipliers designed to ensure that the constraints are met. 

Maximizing (8) with respect to ip  gives  

 

 01ln =−−−=
∂
∂

ii
i

Pp
p
L ϑβ       (9) 

  

leading directly to a form for ip  which is 

 

)exp()exp()1exp( iii PKPp ϑλβ −=−−−=   .  (10) 

 

K  is the composite constant of proportionality which ensures that the probabilities 

sum to 1. Note also that the sign of the parameters is determined from data through 

the constraints. If we substitute the probability in equation (10) into the Shannon 

entropy, the measure of complexity of this system which is at a maximum for the 

given set of constraints, simplifies to PH ϑβ ++= 1 . There are various 

interpretations of this entropy with respect to dispersion of activities in the system 

although these represent a trade-off between the form of the distribution, in this case, 

the negative exponential, and the number of events or objects n  which characterize 

the system. 

 

Distributions and Densities of Population 

 

The model we have derived can be regarded as an approximation to the distribution of 

population densities over a set of n  spatial zones as long as each zone is the same size 

(area), that is, ii AA ∀= ,  where An  is the total size (area) of the system. A more 
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general form of entropy takes this area into account by maximizing the expected value 

of the logarithm of the density, not distribution, where the ‘spatial’ entropy is defined 

as  

 

∑−=
i i

i
i A

p
pS ln   ,     (11) 

 

with the probability density as ii Ap / . Using this formula, the procedure simply 

generalizes the maximization to densities rather than distributions (Batty, 1974) and 

the model we have derived simply determines these densities with respect to an 

average population size P . If we order populations over the zones of a city or even 

take their averages over many cities in a region or nation, then they are likely to be 

distributed in this fashion; that is, we would expect there to be many fewer zones or 

cities of high density than zones or cities of low density, due to competition through 

growth.  

 

However the way this method of entropy-maximizing has been used to generate 

population densities in cities is to define rather more specific constraints that relate to 

space. Since the rise of the industrial city in the 19th century, we have known that 

population densities tend to decline monotonically with distance from the centre of 

the city. More than 50 years ago, Clark (1951) demonstrated quite clearly that 

population densities declined exponentially with distance from the centre of large 

cities and in the 1960s with the application of micro-economic theory to urban 

location theory following von Thunen’s (1826) model, a range of urban attributes 

such as rents, land values, trip densities, and population densities were shown to be 

consistent with such negative exponential distributions (Alonso, 1964). Many of these 

models can also be generated using utility maximizing which under certain rather 

weak constraints can be seen as equivalent to entropy-maximizing (Anas, 1983). 

However it is random utility theory that has been much more widely applied to 

generate spatial interaction models with a similar form to the models that we generate 

below using entropy-maximizing (Ben Akiva and Lerman, 1985; Helbing and Nagel, 

2004). 
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We will show how these typical micro-economic urban density distributions can be 

derived using entropy-maximizing in the following way. Maximizing S  in equation 

(11) or H  in equation (5) where we henceforth assume that the probability ip  is now 

the population density, we invoke the usual normalization constraint in equation (6) 

and a constraint on the average travel cost C  incurred by the population given as 

∑ =i ii Ccp  where ic  is the generalized travel cost/distance from the central 

business district (CBD) to a zone i . This maximization leads to  

 

)exp( ii cKp μ−=        (12) 

 

where μ  is the parameter controlling the rate of decay of the exponential function, 

sometimes called the ‘friction’ of distance or travel cost.  

 

Gravitational Models of Spatial Interaction 

 

It is a simple matter to generalize this framework to generate arrangements of urban 

activities that deal with interaction patterns, that is movements or linkages between 

pairs of zones. This involves extending entropy to deal with two rather than one 

dimensional systems where the focus of interest is on the interaction between an 

origin zone called Iii ...,,2,1, =  and a destination zone Jjj ...,,2,1, =  where there 

are now a total of JI  interactions in the system. These kinds of model can be used to 

simulate routine trips from home to work, for example, or to shop, longer term 

migrations in search of jobs, moves between residential locations in the housing 

market, as well as trade flows between countries and regions. The particular 

application depends on context as the generic framework is independent of scale. 

 

Let us now define a two-dimensional entropy as  

 

∑∑−=
i j

ijij ppH ln   .     (13) 
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ijp  is the probability of interaction between origin i  and destination j  where the 

same distinctions between distribution and density noted above apply. Without loss of 

generality, we will assume in the sequel that these variables ijp  covary with density 

in that the origin and destination zones all have the same area. The most constrained 

system is where we assume that all the interactions originating from any zone i  must 

sum to the probability ip  of originating in that zone, and all interactions destined for 

zone j  must sum to the probability jp  of being attracted to that destination zone. 

There is an implicit constraint that these origin and destination probabilities sum to 1, 

that is 

 

∑∑ ∑ ∑ ===
i j i j

jiij ppp 1 ,    (14) 

 

but equation (14) is redundant with respect to the origin and destination normalization 

constraints which are stated explicitly as 

 

⎪
⎭

⎪
⎬

⎫

=

=

∑

∑

i
jij

j
iij

pp

pp

  .     (15) 

 

There is also a constraint on the average distance or cost traveled given as  

 

∑∑ =
i j

ijij Ccp   .     (16) 

 

The model that is derived from the maximization of equation (13) subject to equations 

(15) and (16) is 

 

)exp( ijjijiij cppKKp γ−=       (17) 

 

where iK  and jK  are normalization constants associated with equations (15), and γ  

is the parameter on the travel cost ijc  between zones i  and j  associated with 
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equation (16). It is easy to compute iK  and jK  by substituting for ijp  from equation 

(17) in equations (15) respectively and simplifying. This yields  

 

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

−
=

−
=

∑

∑

i
ijii

j

j
ijjj

i

cpK
K

cpK
K

)exp(
1

)exp(
1

γ

γ

  ,   (18) 

 

equations that need to be solved iteratively. 

 

These models can be scaled to deal with real trips or population simply by multiplying 

these probabilities by the total volumes involved, T  for total trips in a transport 

system, P  for total population in a city system, Y  for total income in a trading 

system and so on. This system however forms the basis for a family of interaction 

models which can be generated by relaxing the normalization constraints; for example 

by omitting the destination constraint, jjK ∀= ,1 , or by omitting the origin constraint, 

iiK ∀= ,1  or by omitting both where we need an explicit normalization constraint of 

the form ∑ =ij ijp 1  in equation (14) to provide an overall constant K . Wilson 

(1970) refers to this set of four models as: doubly-constrained – the model in 

equations (17) and (18), the next two as singly-constrained, first when iiK ∀= ,1 , the 

model is origin constrained, and second when jjK ∀= ,1 , the model is destination 

constrained; and when we have no constraints on origins or destinations, we need to 

invoke the global constant K  and the model is called unconstrained. It is worth noting 

that these models can also be generated in nearly equivalent form using random utility 

theory where they are articulated at the level of the individual rather than the 

aggregate trip-maker and are known as discrete choice models (Ben Akiva and 

Lerman, 1985). 

 

Let us examine one of these models, a singly-constrained model where there are 

origin constraints. This might be a model where we are predicting interactions from 
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work to home given we know the distribution of work at the origin zones. Then noting 

that jjK ∀= ,1 , the model is 

 

∑ −

−
=−=

j
ijj

ijj
iijjiiij cp

cp
pcppKp

)exp(
)exp(

)exp(
γ

γ
γ  .  (19) 

 

The key issue with this sort of model is that not only are we predicting the interaction 

between zones i  and j  but we can predict the probability of locating in the 

destination zone jp′ , that is 

 

∑ ∑ ∑ −

−
==′

i i
j

ijj

ijj
iijj cp

cp
ppp

)exp(
)exp(

γ
γ

 .   (20) 

 

If we were to drop both origin and destination constraints, the model becomes one 

which is analogous to the traditional gravity model from which it was originally 

derived prior to the development of these optimization frameworks. However to 

generate the usual standard gravitational form of model in which the ‘mass’ of each 

origin and destination zone appears, given by iP  and jP  respectively, then we need to 

modify the entropy formula, thus maximizing  

 

∑∑−=
i j ji

ij
ij PP

p
pH ln   ,    (21) 

 

subject to the normalization 

 

∑∑ =
i j

ijp 1  ,      (22) 

 

and this time a constraint on the average ‘logarithmic’ travel cost Cln   

 



 18

∑∑ =
i j

ijij Ccp lnln   .     (23) 

 

The model that is generated from this system can be written as 

 

η
ij

ji
ij

c

PP
Kp =         (24) 

 

where the effect of travel cost/distance is now in power law form with η  the scaling 

parameter. Besides illustrating the fact that inverse power forms as well as negative 

exponential distributions can be generated in this way according to the form of the 

constraints, one is also able to predict both the probabilities of locating at the origins 

and the destinations from the traditional gravity model in equation (24). 

 

Scaling, City Size, and Network Structure: Power Laws 

 

Distance is a key organizing concept in city systems as we have already seen in the 

way various urban distributions have been generated. Distance is an attribute of 

nearness or proximity to the most accessible places and locations. Where there are the 

lowest distance or travel costs to other places, the more attractive or accessible are 

those locations. In this sense, distance or travel cost acts as an inferior good in that we 

wish to minimize the cost occurred in overcoming it. Spatial competition also 

suggests that the number of places that have the greatest accessibilities are few 

compared to the majority of places. If you consider that the most accessible place in a 

circular city is the centre, then assuming each place is of similar size, as the number of 

places by accessibility increases, the lower the accessibility is. In short, there are 

many places with the same accessibility around the edge of the city compared to only 

one place in the centre. The population density model in equation (12) implies such an 

ordering when we examine the frequency distribution of places according to their 

densities. 

 

If we now forget distance for a moment, then it is likely that the distribution of places 

at whatever scale follows a distribution which declines in frequency with attributes 
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based on size due to competition. If we look at all cities in a nation or even globally, 

there are far fewer big cities than small ones. Thus the entropy-maximizing 

framework that we have introduced to predict the probability (or frequency) of objects 

of a certain size occurring, is quite applicable in generating such distributions. We 

derived a negative exponential distribution in equation (10) but to generate a power 

law, all we need to do is to replace the constraint in equation (7) with its logarithmic 

equivalent, that is 

 

∑ =
i

ii PPp lnln   ,     (25) 

 

and then maximize equation (5) subject to (6) and (25) to give 

 

)lnexp()1exp( iii PKPp ϕβϕ −−−== −  ,   (26) 

 

where ϕ  is the scaling parameter. Equation (26) gives the probability or frequency – 

the number of cities – for a zone (or city) with iP  population which is distributed 

according to an inverse power law. It is important to provide an interpretation of the 

constraint which generates this power law. Equation (25) implies that the system 

conserves the average of the logarithm of size which gives greater weight to smaller 

values of population than to larger, and as such, is recognition that the average size of 

the system is unbounded as a power function implies. With such distributions, it is 

unlikely that normality will prevail due to the way competition constrains the 

distribution in the long tail. Nevertheless in the last analysis, it is an empirical matter 

to determine the shape of such distributions from data, although early research on the 

empirical distributions of city sizes following Zipf’s Law (Zipf, 1949) by Curry 

(1964) and Berry (1964) introduced the entropy-maximizing framework to generate 

such size distributions.  

 

The power law implied for the probability ip  of a certain size iP  of city or zone can 

be easily generalized to a two-dimensional equivalent which implies a network of 

interactions. We will maximize the two-dimensional entropy H  in equation (13) 
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subject to constraints on the mean logarithm of population sizes at origins and 

destinations which we now state as 
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where ∑= j iji pp  and ∑= i ijj pp . Note however that there are no constraints on 

these origins and destination probabilities ip  and jp  per se but the global constraints 

in equation (14) must hold. This maximization leads to the model 
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where it is clear that the total flows from any origin node or location i  vary as  

 

i
ii Pp λ−∝′   ,      (29) 

 

and the flows into any destination zone vary as  

 

j

jj Pp λ−∝′   ,      (30) 

 

with the parameters iλ  and jλ  relating to the mean of the observed logarithmic 

populations associated with the constraint equations (27). Note that the probabilities 

for each origin and destination node or zone are independent from one another as 

there is no constraint tying them together as in the classic spatial interaction model 

where distance or travel cost is intrinsic to the specification. 

 

These power laws can be related to recent explorations in network science which 

suggest that the number of in-degrees – the volume of links entering a destination in 
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our terms – and the number of out-degrees – the volume emanating from an origin, 

both follow power laws (Albert, Jeong, and Barabasi, 1999). These results have been 

widely observed in topological rather than planar networks where the focus is on the 

numbers of physical links associated with nodes rather than the volume of traffic on 

each link. Clearly the number of physical links in planar graphs is limited and the 

general finding from network science that the number of links scales as a power law 

cannot apply to systems that exist in two-dimensional Euclidean space (Cardillo, 

Scellato, Latora, and Porta, 2006). However a popular way of transforming a planar 

graph into one which is non-planar is to invoke a rule that privileges some edges over 

others merging these into long links and then generating a topology which is based on 

the merged edges as constituting nodes and the links between the new edges as arcs. 

This is the method that is called space syntax (Hillier, 1996) and it is clear that by 

introducing order into the network in this way, the in-degrees and out-degrees of the 

resulting topological graph can be scaling. Jiang (2007) illustrates this quite clearly 

although there is some reticence to make such transformations and where planar 

graphs have been examined using new developments in network science based on 

small worlds and scale-free graph theory, the focus has been much more on deriving 

new network properties than on appealing to any scale-free structure (Crucitti, Latora, 

and Porta, 2006).  

 

However to consider the scale-free network properties of spatial interaction systems, 

each trip might be considered a physical link in and of itself, albeit that it represents 

an interaction on a physical network as a person making such an interaction is distinct 

in space and time. Thus the connections to network science are close. In fact the study 

of networks and their scaling properties has not followed the static formulations 

which dominate our study of cities in equilibrium for the main way in which such 

power laws are derived for topological networks is through a process of preferential 

attachment which grows networks from a small number of seed nodes (Barabasi and 

Albert, 1999). Nevertheless, such dynamics appear quite consistent with the evolution 

of spatial interaction systems. 

 

We will introduce these models a little later when we deal with urban dynamics. For 

the moment, let us note that there are various simple dynamics which can account not 

only for the distribution of network links following power laws, but also for the 
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distribution of city sizes, incomes, and a variety of other social (and physical) 

phenomena from models that grow the number of objects according to simple 

proportionate growth consistent with the generation of lognormal distributions. 

Suffice it to say that although we have focused on urban densities as following either 

power laws or negative exponential functions in this section, it is entirely possible to 

use the entropy-maximizing framework to generate distributions which are log-

normal, another alterative with a strong spatial logic. Most distributions which 

characterize urban structure and activities however are not likely to be normal and to 

conclude this section, we will review albeit very briefly, some empirical results that 

indicate the form and pattern of urban activities in western cities. 

 

Empirical Applications: Rank-Size Representations of Urban Distributions  

 

The model in equation (26) gives the probability of location in a zone i  as an inverse 

power function of the population or size of that place which is also proportional to the 

frequency 

 
ϕ−=∝ iii KPppf )(   .     (31) 

 

It is possible to estimate the scaling parameter ϕ  in many different ways but a first 

test of whether or not a power law is likely to exist can be made by plotting the 

logarithms of the frequencies and population sizes and noting whether or not they fall 

onto a straight line. In fact a much more preferable plot which enables each individual 

observation to be represented is the cumulative function which is formed from the 

integral of equation (31) up to a given size; that is 1+−∝ ϕ
ii PF . The counter-

cumulative iFF −  where F  is the sum of all frequencies in the system – that is the 

number of events or cities – also varies as 1+−ϕ
iP  and is in fact the rank of the city in 

question. Assuming each population size is different, then the order of }{i  is the 

reverse of the rank, and we can now write the rank r  of i  as iFFr −= . The equation 

for this rank-size distribution (which is the one that is usually used to fit the data) is 

thus 
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1+−= ϕ
rPGr          (32) 

 

where G  is a scaling constant which in logarithmic form is rPGr ln)1(ln −−= ϕ . 

This is the equation that is implicit in the rank-size plots presented below which 

reveal evidence of scaling. 

 

First let us examine the scaling which is implicit in urban size distributions for the 

largest world city populations over 1 million in 2005, for cities over 100000 in the 

USA in 2000, and for the 200 tallest buildings in the world in 2007. We could repeat 

such examples ad nauseum but these provide a good selection which we graph in 

rank-size logarithmic form in Figure 1(a), noting that we have normalized all the data 

by their means, that is by >< rP  and >< r , as >< rr PP /  and ><rr / . We are only 

examining a very small number at the very top of the distribution and this is clearly 

not definitive evidence of scaling in the rest of the distribution but these plots do show 

the typical distributions of city size activities that have been observed in this field for 

over 50 years. As we will imply later, these signatures are evidence of self-

organization and fractal structure which emerge through competition from the bottom 

up (Batty, 2008).  

 

To illustrate densities in cities, we take employment and working population in small 

zones in Greater London, a city which has some 4.4 million workers. We rank-order 

the distribution in the same way we have done for world cities, and plot these, 

suitably normalized by their means, logarithmically in Figure 1(b). These distributions 

are in fact plotted as densities so that we remove aerial size effects. Employment 

densities iii AEe /=  can be interpreted as the number of work trips originating in 

employment zones ∑= j iji Te  – the volume of the out-degrees of each employment 

zone considered as nodes in the graph of all linkages between all places in the system, 

and population densities jjj APh /=  as the destination distributions ∑= i ijj Th  – the 

in-degrees which measure all the trips destined for each residential zone from all 

employment zones. In short if there is linearity in the plots, this is evidence that the 

underlying interactions on the physical networks that link these zones are scaling. 

Figure 1(b) provides some evidence of scaling but the distributions are more similar 
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to lognormal distributions than to power laws. This probably implies that the 

mechanisms for generating these distributions are considerably more complex than 

growth through preferential attachment which we will examine in more detail below 

(Batty, 2008). 

 
(a) City Size Distributions (b) Zone Size Distributions in Greater London 

 
(c) Population and Employment Density v Travel Costs from Central London 

 
Figure 1: Scaling Distributions in World Cities and in Greater London 

 

 

Lastly, we can demonstrate that scaling in city systems also exists with respect to how 

trips, employment and population activities vary with respect to distance. In Figure 

1(c), we have again plotted the employment densities iii AEe /=  at origin locations 

and population densities jjj APh /=  at destination locations but this time against 
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distances iCBDd →  and jCBDd →  from the centre of London’s CBD in logarithmic terms. 

It is clear that there is significant correlation but also a very wide spread of values 

around the log-linear regression lines due to the fact that the city is multi-centric. 

Nevertheless the relationships appears to be scaling with these estimated as 
98.0042.0 −
→= iCBDi de  , ( 30.02 −=r ), and 53.0029.0 −

→= jCBDj dh , ( 23.02 −=r ). However 

more structured spatial relationships can be measured by accessibilities which provide 

indices of overall proximity to origins or destinations, thus taking account of the fact 

that there are several competing centers. Accessibility can be measured in many 

different ways but here we use a traditional definition of potential based on 

employment accessibility iA  to populations at destinations, and population 

accessibility jA  to employment at origins defined as 
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where ijc  is, as before, the generalized cost of travel from employment origin i  to 

population destination j . In Figures 2(a) and (b), we compare the distribution of 

employment densities ie  with accessibility origins iA  and in 2(c) and 2(d), 

population densities jh  with accessibility destinations jA . Each set of maps is clearly 

correlated with higher associations than in Figure 1(c) which took account of only the 

single CBD. Regressing }{ln ie  on }{ln iA  and }{ln jp  on }{ln jA  gives an 

approximate scaling with 31% of the variance accounted for in terms of origin 

accessibility and 41% for destination accessibility. These relations appear linear but 

there is still considerable noise in the data which undoubtedly reflects the relative 

simplicity of the models and the fact that accessibility is being measured using current 

transport costs without any reference to the historical evolution of the city’s structure. 

It is, however, building blocks such as these that constitute the basis for operational 

land use transport models that have developed for comparative static and quasi-

dynamic forecasting that we will discuss below. 
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(a) Employment Densities }{ ie  (c) Population Densities }{ jh  

(b) Origin Accessibilities }{ iA  (d) Destination Accessibilities }{ jA  

 
Figure 2: Employment, Population and Accessibilities in Greater London 

(greatest extent is 55kms east to west; 45kms north to south) 
 

 

Urban Dynamics 
 

Aggregate Development  

 

Models of city systems have largely been treated as static for at first sight, urban 

structure in terms of its form and to some extent its function appears stable and long-

lasting. During the industrial era, cities appeared to have a well-defined structure 

where land uses were arranged in concentric rings according to their productivity and 

wealth around a central focus, usually the central business district (CBD), the point 
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where most cities were originally located and exchange took place. Moreover data on 

how cities had evolved were largely absent and this reinforced the focus on statics and 

equilibria. Where the need to examine urban change was urgent, models were largely 

fashioned in terms of the simplest growth dynamics possible and we will begin with 

these here. 

 

The growth of human populations in their aggregate appears to follow an exponential 

law where the rate of change σ  is proportional to the size of the population itself 

)(tP , that is 

 

)()( tP
dt

tdP σ=  .      (34) 

 

It is easy to show that starting from an initial population )0(P , the growth is 

exponential, that is 

 

)exp()0()( tPtP σ=  .      (35) 

 

which is the continuous form of model. When formulated discretely, at time steps 

Tt ...,,2,1= , equation (34) can be written as )1()1()( −=−− tPtPtP β  which leads 

to 

 

)1()1()( −+= tPtP β   .     (36) 

 

Through time from the initial condition )0(P , the trajectory is 

 

)0()1()( PtP tβ+=   .     (37) 

 

β+1  is the growth rate. If 0>β , equation (37) shows exponential growth, if 0<β , 

exponential decline, and if 0=β , the population is in the steady state and simply 

reproduces itself. 
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This simple growth model leads to smooth change, and any discontinuities or breaks 

in the trajectories of growth or decline must come about through an external change in 

the rate from the outside environment. If we assume the growth rate fluctuates around 

a mean of one with β  varying randomly, above 1− , then it is not possible to predict 

the trajectory of the growth path. However if we have a large number of objects which 

we will assume to be cities whose growth rates are chosen randomly, then we can 

write the growth equation for each city as 

 

)1()](1[)( −+= tPttP iii β       (38) 

 

which from an initial condition )0(iP  gives 
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This is growth by proportionate effect; that is, each city grows in proportion to its 

current size but the growth rate in each time period is random. In a large system of 

cities, the ultimate distribution of these population sizes will be lognormal. This is 

easy to demonstrate for the logarithm of equation (39) can be approximated by 
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where the sum of the random components is an approximation to the log of the 

product term in equation (39) using Taylor’s expansion. This converges to the 

lognormal from the law of large numbers. It was first demonstrated by Gibrat (1931) 

for social systems but is of considerable interest here in that the fat tail of the 

lognormal can be approximated by an inverse power law. This has become the default 

dynamic model which underpins an explanation of the rank-size rule for city 

populations first popularized by Zipf (1949) and more recently confirmed by Gabaix 

(1999) and Blank and Solomon (2000) amongst others. We demonstrated this in 

Figure 1(a) for the world city populations greater than 1 million and for US city 
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populations greater than 100,000. As such, it is the null hypothesis for the distribution 

of urban populations in individual cities as well as population locations within cities. 

 

Although Gibrat’s model does not take account of interactions between the cities, it 

does introduce diversity into the picture, simulating a system that in the aggregate is 

non-smooth but nevertheless displays regularity. These links to aggregate dynamics 

focus on introducing slightly more realistic constraints and one that is of wide 

relevance is the introduction of capacity constraints or limits on the level to which a 

population might grow. Such capacitated growth is usually referred to as logistic 

growth. Retaining the exponential growth model, we can limit this by moderating the 

growth rate σ  according to an upper limit on population maxP  which changes the 

model in equation (34) and the growth rate σ  to 
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It is clear that when max)( PtP = , the overall rate of change is zero and no further 

change occurs. The continuous version of this logistic is 
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where it is easy to see that as ∞→t , max)( PtP → . 

 

The discrete equivalent of this model in equation (41) follows directly from 

)1()]/)1((1[)1()( max −−−=−− tPPtPtPtP β  as 
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where the long term dynamics is too intricate to write out as a series. Equation (43) 

however shows that the growth component β  is successively influenced by the 

growth of the population so far, thus preserving the capacity limit through the simple 

expedient of adjusting the growth rate downwards. As in all exponential models, it is 

based on proportionate growth. As we noted above, we can make each city subject to 

a random growth component )(tiβ  while still keeping the proportionate effect.  
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This model has not been tested in any detail but if )(tiβ  is selected randomly, the 

model is a likely to generate a lognormal-like distribution of cities but with upper 

limits being invoked for some of these. In fact, this stochastic equivalent also requires 

a lower integer bound on the size of cities so that cities do not become too small 

(Batty, 2007). Within these limits as long as the upper limits are not too tight, the 

sorts of distributions of cities that we observe in the real world are predictable. 

 

In the case of the logistic model, remarkable and unusual discontinuous nonlinear 

behavior can result from its simple dynamics. When the β  component of the growth 

rate is 2<β , the predicted growth trajectory is the typical logistic which increases at 

an increasing rate until an inflection point after which the growth begins to slow, 

eventually converging to the upper capacity limit of maxP . However when 2≅β , the 

population oscillates around this limit, bifurcating between two values. As the value 

of the growth rate increases towards 2.57, these oscillations get greater, the 

bifurcations doubling in a regular but rapidly increasing manner. At the point where 

57.2≅β , the oscillations and bifurcations become infinite, apparently random, and 

this regime persists until 3≅β  during which the predictions look entirely chaotic. In 

fact, this is the regime of ‘chaos’ but chaos in a controlled manner from a 

deterministic model which is not governed by externally induced or observed 

randomness or noise.  
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These findings were found independently by May (1976), Feigenbaum (1980), 

Mandelbot (1983) amongst others. They relate strongly to bifurcation and chaos 

theory and to fractal geometry but they still tend to be of theoretical importance only. 

Growth rates of this magnitude are rare in human systems although there is some 

suggestion that they might occur in more complex coupled biological systems of 

predator-prey relations. In fact one of the key issues in simulating urban systems 

using this kind of dynamics is that although these models are important theoretical 

constructs in defining the scope of the dynamics that define city systems, much of 

these dynamic behaviors are simplistic. In so far as they do characterize urban 

systems, it is at the highly aggregate scale as we demonstrate a little later. The use of 

these ideas in fact is much more applicable to extending the static equilibrium models 

of the last section and to demonstrate these, we will now illustrate how these models 

might be enriched by putting together logistic behaviors with spatial movement and 

interaction. 

 

One way of articulating urban dynamics at the intra-urban level is to identify different 

speeds of change. In particular we can define a fast dynamics that relates to how 

people might move around the city on daily basis, for example, in terms of the 

journey to work, and a slower dynamics that relates to more gradual change that 

relates to the size of different locations affected by residential migrations. We can 

model the fast dynamics using a singly-constrained spatial interaction which 

distributes workers to residential locations which we define using previous notation 

where all variables are now time scripted by )(t : )(tTij  trips between zones i  and j , 

employment )(tEi  at origin zone i , population )(tPj  at destination zone j , the 

friction of distance parameter )(tγ , and the travel cost )(tcij between zones i  and j . 

The model is defined as 
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from which we can predict residential population )(tPj′  as 
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This is the fast dynamics but each zone is capacitated by an unchanging upper limit 

on population where the zonal population changes slowly in proportion to its existing 

size through internal migration and in response to the upper limit maxjP . The change 

in terms of this slower dynamic from t  to 1+t  is modeled as 

 

)()]([)1( max tPtPPtP jjjj ′′−=+Δ β      (47) 

 

with the long term trajectory thus given as  

 

( ) )()]([1)1( max tPtPPtP jjjj ′′−+=+ β  .   (48) 

 

Clearly )(tPj  will converge to maxjP as long as )(tPj′ is increasing while the fast 

dynamics is also updated in each successive time period from 
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We may have an even slower dynamics relating to technological or other social 

change which changes maxjP  while various other models may be used to predict 

employment for example, which itself may be a function of another fast dynamics 

relating to industrial and commercial interactions. The time subscripted variables 

travel )1( +tcij and the friction of distance parameter )1( +tγ  might be changes that 

reflect other time scales. We might even have lagged variables independently 

introduced reflecting stocks or flows at previous time periods 1−t , 2−t  etc. Wilson 

(1981, 2007) has explored links between these spatial interaction entropy-maximizing 

models and logistic growth and has shown that in a system of cities or zones within a 

city, unusual bifurcating behavior in terms of the emergence of different zonal centers 
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can occur when parameter values, particularly the travel cost parameter )1( +tγ , 

crosses certain thresholds 

 

There have been many proposals involving dynamic models of city systems which 

build on the style of nonlinear dynamics introduced here and these all have the 

potential to generate discontinuous behavior. Although Wilson (1981) pioneered 

embedding dynamic logistic change into spatial interaction models, there have been 

important extensions to urban predator-prey models by Dendrinos and Mullaly (1985) 

and to bifurcating urban systems by Allen (1982, 1998), all set within a wider 

dynamics linking macro to micro through master equation approaches (Haag, 1989). 

A good summary is given by Nijkamp and Reggiani (1992) but most of these have not 

really led to extensive empirical applications for it has been difficult to find the 

necessary rich dynamics in the sparse temporal data sets available for cities and city 

systems; at the macro-level, a lot of this dynamics tends to be smoothed away in any 

case. In fact, more practical approaches to urban dynamics have emerged at finer 

scale levels where the agents and activities are more disaggregated and where there is 

a stronger relationship to spatial behavior. We will turn to these now.  

 

Dynamic Disaggregation: Agents and Cells 

 

Static models of the spatial interaction variety have been assembled into linked sets of 

sub-models, disaggregated into detailed types of activity, and structured so that they 

simulate changes in activities through time. However, the dynamics that is implied in 

such models is simplistic in that the focus has still been very much on location in 

space with time added as an afterthought. Temporal processes are rarely to the 

forefront in such models and it is not surprising that a more flexible dynamics is 

emerging from entirely different considerations. In fact, the models of this section 

come from dealing with objects and individuals at much lower/finer spatial scales and 

simulating processes which engage them in decisions affecting their spatial behavior. 

The fact that such decisions take place through time (and space) makes them temporal 

and dynamic rather through the imposition of any predetermined dynamic structures 

such as those used in the aggregate dynamic models above. The models here deal with 

individuals as agents, rooted in cells which define the space they occupy and in this 
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sense, are highly disaggregate as well as dynamic. These models generate 

development in cities from the bottom up and have the capability of producing 

patterns which are emergent. Unlike the dynamic models of the last section, their long 

term spatial behavior can be surprising and often hard to anticipate. 

 

It is possible however to use the established notation for equilibrium models in 

developing this framework based on the generic dynamic )()1()( tPtPtP iii Δ+−=  

where the change in population )(tPiΔ  can be divided into two components. The first 

is the usual proportionate effect, the positive feedback induced by population on itself 

which is defined as the reactive element of change )1( −tPiω . The second is the 

interactive element, change that is generated from some action-at-a-distance which is 

often regarded as a diffusion of population from other locations in the system. We can 

model this in the simplest way using the traditional gravity model in equation (24) but 

noting that we must sum the effects of the diffusion over the destinations from where 

it is generated as a kind of accessibility or potential. The second component of change 

is ∑ −− j ijji ctPKtP ηφ )1()1(  from which the total change between t  and 1−t  is  
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We have also added a random component )1( −tiε  in the spirit of our previous 

discussion concerning growth rates. We can now write the basic reaction-diffusion 

equation, as it is sometimes called, as 
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This equation looks as though it applies to a zonal system but we can consider each 

index i or j  simply a marker of location, and each population activity can take on any 

value; for single individuals it can be 0 or 1 while it might represent proportions of an 
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aggregate population or total numbers for the framework is entirely generic. As such, 

it is more likely to mirror a slow dynamics of development rather than a fast dynamics 

of movement although movement is implicit through the diffusive accessibility term. 

 

We will therefore assume that the cells are small enough, space-wise, to contain 

single activities – a single household or land use which is the cell state – with the 

cellular tessellation usually forming a grid associated with the pixel map used to 

visualize data input and model output. In terms of our notation, population in any cell 

i  must be 01)( ortPi = , representing a cell which is occupied or empty with the 

change being 1)1(01)( =−−=Δ tPifortP ii  and 0)1(01)( =−=Δ tPifortP ii . 

These switches of state are not computed by equation (51) for the way these cellular 

variants are operationalized is through a series of rules, constraints and thresholds. 

Although consistent with the generic model equations, these are applied in more ad 

hoc terms. Thus these models are often referred to as automata and in this case, as 

cellular automata (CA). 

 

The next simplification which determines whether or not a CA follows a strict 

formalism, relates to the space over which the diffusion takes place. In the fast 

dynamic equilibrium models of the last section and the slower ones of this, interaction 

is usually possible across the entire space but in strict CA, diffusion is over a local 

neighborhood of cells around i , iΩ , where the cells are adjacent. For symmetric 

neighborhoods, the simplest is composed of cells which are north, south, east and 

west of the cell in question, that is wesni ,,,=Ω  – the so-called von Neumann 

neighborhood, while if the diagonal nearest neighbors are included, then the number 

of adjacent cells rises to 8 forming the so-called Moore neighborhood. These highly 

localized neighborhoods are essential to processes that grow from the bottom up but 

generate global patterns that show emergence. Rules for diffusion are based on 

switching a cell’s state on or off, dependent upon what is happening in the 

neighborhood, with such rules being based on counts of cells, cell attributes, 

constraints on what can happen in a cell, and so on. 

 

The simplest way of showing how diffusion in localized neighborhoods takes place 

can be demonstrated by simplifying the diffusion term in equation (50) as follows. 
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Then ∑∑ −−=−
j ijjj j ctPKtPK ηφφ )1()1(  as 1=ijc  when wesni ,,,=Ω . The cost 

is set as a constant value as each cell is assumed to be small enough to incur the same 

(or no) cost of transport between adjacent cells. Thus the diffusion is a count of cells 

in the neighborhood i . The overall growth rate is scaled by the size of the activity in 

i  but this activity is always either 01)1( ortPi =− , presence or absence. In fact this 

scaling is inappropriate in models that work by switching cells on and off for it is only 

relevant when one is dealing with aggregates. This arises from the way the generic 

equation in (51) has been derived and in CA models, it is assumed to be neutral. Thus 

the change equation (50) becomes 
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where this can now be used to determine a threshold maxZ  over which the cell state is 

switched. A typical rule might be 
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It is entirely possible to separate the reaction from the diffusion and consider different 

combinations of these effects sparking off a state change. As we have implied, 

different combinations of attributes in cells and constraints within neighborhoods can 

be used to effect a switch, much depending on the precise specification of the model.  

 

In many growth models based on CA, the strict limits posed by a local neighborhood 

are relaxed. In short, the diffusion field is no longer local but is an information or 

potential field consistent with its use in social physics where action-at-distance is 

assumed to be all important. In the case of strict CA, it is assumed that there is no 

action-at-a-distance in that diffusion only takes place to physically adjacent cells. 

Over time, activity can reach all parts of the system but it cannot hop over the basic 

cell unit. In cities, this is clearly quite unrealistic as the feasibility of deciding what 

and where to locate does not depend on physical adjacency. In terms of applications, 
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there are few if any urban growth models based on strict CA although this does rather 

beg the question as to why CA is being used in the first place. In fact it is more 

appropriate to call such models cell-space or CS models as Couclelis (1985) has 

suggested. In another sense, this framework can be considered as one for agent-based 

modeling where the cells are not agents and where there is no assumption of a regular 

underlying grid of cells (Batty, 2005a, 2005b). There may be such a grid but the 

framework simply supposes that the indices i  and j  refer to locations that may form 

a regular tessellation but alternatively may be mobile and changing. In such cases, it is 

often necessary to extend the notation to deal with specific relations between the 

underlying space and the location of each agent. 

 

Empirical Dynamics: Population Change and City Size 

 

We will now briefly illustrate examples of the models introduced in this section 

before we then examine the construction of more comprehensive models of city 

systems. Simple exponential growth models apply to rapidly growing populations 

which are nowhere near capacity limits such as entire countries or the world. In 

Figure 3, we show the growth of world population from 2000 BCE to date where it is 

clear that the rate of growth may be faster than the exponential model implies, 

although probably not as fast as double exponential. In fact world population is likely 

to slow rapidly over the next century probably mirroring global resource limits to an 

extent which are clearly illustrated in the growth of the largest western cities. In 

Figures 4(a) and 4(b), we show the growth in population of New York City (the five 

boroughs) and Greater London from 1750 to date and it is clear that in both cases, as 

the cities developed, population grew exponentially only to slow as the upper density 

limits of each city were reached.  

 

Subsequent population loss and then a recent return of population to the inner and 

central city now dominate these two urban cores, which is reminiscent of the sorts of 

urban dynamic simulated by Forrester (1969) where various leads and lags in the flow 

of populations mean that the capacity limit is often overshot, setting up a series of 

oscillations which damp in the limit. Forrester’s model was the one of the first to 

grapple with the many interconnections between stocks and flows in the urban 
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economy although these relationships were predicated hypothetically in simple 

proportionate feedback terms. Together they generated a rich dynamics but dominated 

by growth which was capacitated, thus producing logistic-like profiles with the leads 

and lags giving damped oscillations which we illustrate from his work in Figure 5 

(Batty, 1976). We will see that the same phenomena can be generated from the 

bottom up as indeed Forrester’s model implies, using cellular automata within a 

bounded spatial system. 

 
 

Figure 3: Exponential World Population Growth  
The fitted exponential curve is shown in grey where for the most part it is coincident with the observed 

growth, except for the very long period before the Industrial Revolution (before 1750) 
 

Dynamics which arise from bottom-up urban processes can be illustrated for a typical 

CA/CS model, DUEM (Dynamic Urban Evolutionary Model) originally developed by 

Xie (1994). In the version of the model here, there are five distinct land uses – 

housing, manufacturing/primary industry, commerce and services, transport in the 

form of the street/road network, and vacant land. In principle, at each time period, 

each land use can generate quantities and locations of any other land use although in 

practice only industry, commerce and housing can generate one other as well as 

generating streets. Streets do not generate land uses other than streets themselves. 

Vacant land is regarded as a residual available for development which can result from 

a state change (decline) in land use. The way the generation of land uses takes place is 
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through a rule-based implementation of the generic equation (51) which enables a 

land use ,k  )(tPk
i , to be generated from any other land use ,l  )1( −tPj

l . Land uses 

are also organized across a life cycle from initiating through mature to declining. Only 

initiating land uses which reflect their relative newness can spawn new land use. 

Mature remain passive in these terms but still influence new location while declining 

land uses disappear, thus reflecting completion of the life cycle of built form.  

 
(a) Population Growth: New York City  (b) Population Growth: Greater London 

 
Figure 4: Logistic Population Growth 
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Figure 5: Oscillating Capacitated Growth in a Version of the  

Forrester Urban Dynamics Model (from Batty, 1976) 
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We are not able to present the fine details of the model here (see Batty, Xie and Sun, 

1999, and Xie and Batty, 2005) but we can provide a broad sketch. The way initiating 

land uses spawn new ones is structured according to rule-based equations akin to the 

thresholding implied in equation (53). In fact, there are three spatial scales at which 

these thresholds are applied ranging from the most local neighborhood through the 

district to the region itself. The neighborhood exercises a trigger for new growth or 

decline based on the existence or otherwise of the street network, the district uses the 

densities of related land uses and distance of the new land use from the initiating use 

to effect a change, while the region is used to implement hard and fast constraints on 

what cells are available or not for development. Typically an initiating land use will 

spawn a new land use in a district only if the cells in question are vacant and if they 

are not affected by some regional constraint on development with these rules being 

implemented first. The probability of this land use occurring in a cell in this district is 

then fixed according to its distance from the initiating location. This probability is 

then modified according to the density of different land uses that exist around each of 

these potential locations – using compatibility constraints – and then in the local 

neighborhood, the density of the street network is examined. If this density is not 

sufficient to support a new use, the probability is set equal to zero and the cell in 

question does not survive this process of allocation. At this point, the cell state is 

switched from ‘empty’ or ‘vacant’ to ‘developed’ if the random number drawn is 

consistent with the development probability determined through this process. 

 

Declines in land use which are simply switches from developed to vacant in terms of 

cell state are produced through the life cycling of activities. When a mature land use 

in a cell reaches a certain age, it moves into a one period declining state and then 

disappears at the end of this time period, the cell becoming vacant. Cells remain 

vacant for one time period before entering the pool of eligible locations for new 

development. In the model as currently constituted, there is no internal migration of 

activities or indeed any mutation of uses but these processes are intrinsic to the model 

structure and have simply not been invoked. The software for this model has been 

written from scratch in Visual C++ with the loosest coupling possible to GIS through 

the import of raster files in different proprietary formats. The interface we have 

developed, shown below, enables the user to plant various land use seeds into a virgin 

landscape or an already developed system which is arranged on a suitably registered 
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pixel grid which can be up to 3K x 3K or 9 million pixels in size. A map of this region 

forms the main window but there are also three related windows which show the 

various trajectories of how different land uses change through time with the map and 

trajectories successively updated in each run.  

 

A feature which is largely due to the fact that the model can be run quickly through 

many time periods, is that the system soon grows to its upper limits with exponential 

growth at first which then becomes logistic or capacitated. In Figure 6, we show how 

this occurs from planting a random selection of land use seeds in the region and then 

letting these evolve until the system fills. Because there are lags in the redevelopment 

of land uses in the model due to the life cycle effects, as the system fills, land is 

vacated. This increases the space available for new development leading to 

oscillations of the kind reflected in Forrester’s model shown in Figure 5 and more 

controversially in the real systems shown for New York City and Greater London in 

Figure 4. In this sense, a CA model has a dynamics which is equivalent to that of the 

more top-down dynamics where growth is modeled by exponential or logistic 

functions. CA models however generate this as an emergent phenomena from the 

bottom up. 

 

Our last demonstration of CA really does generate emergent phenomena. This is a 

model of residential movement that leads to extreme segregation of a population 

classified into two distinct groups which we will call red R and green G. Let us array 

the population on a square grid of dimension 51 x 51 where we place an R person 

next to a G person in alternate fashion, arranging them in checker board style as in 

Figure 7(a). The rule for being satisfied with one’s locational position viz a viz one’s 

relationship to other individuals is as follows: persons of a different group will live 

quite happily, side by side with each other, as long as there are as many persons of the 

same persuasion in their local neighborhood. The neighborhood in this instance is the 

eight cells that surround a person on the checkerboard in the n, s, e, w, and nw, se, sw, 

and ne positions. If however a person finds that the persons of the opposing group 

outnumber those of their own group, and this would occur if there were more than 4 

persons of the opposite persuasion, then the person in question would change their 

allegiance. In other words, they would switch their support to restore their own 

equilibrium which ensures that they are surrounded by at least the same number of 
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their own group. There is a version of this model that is a little more realistic in which 

a person would seek another location – move – if this condition were not satisfied 

rather than change their support, but this is clearly not possible in the completely 

filled system that we have assumed; we will return to this slightly more realistic 

model below. 

 
(a) Land Use Seeds as Developing Cities 

 

 
 

(b) Capacitated Growth with Cycling 
 

 
 

Figure 6: Cellular Growth using the DUEM Model 
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In Figure 7(a), the alternative positioning shown in the checker board pattern meets 

this rule and the locational pattern is in ‘equilibrium’: that is, no one wants to change 

their support to another group. However let us suppose that just six persons out of a 

total of 2601 (51 x 51 agents sitting on the checker board) who compose about 0.01 

percent of the two populations, change their allegiance. These six changes are easy to 

see in Figure 7(a) where we assume that four R persons of the red group, change in 

their allegiance to support the green group, and two Gs change the opposite way. 

What then happens is the equilibrium is upset in these locations but instead of being 

quickly restored by local changes, this sets off a mighty unraveling which quickly 

changes the locational complexion of the system to one where the Rs are completely 

and utterly segregated from the Gs. We show this in Figure 7(b). From a situation 

where everyone was satisfied and mixed completely, we get dramatic segregation 

which is a most unusual consequence. At first sight, one would never imagine that 

with so mild a balance of preferences, such segregation would take place. The 

ultimate pattern implies that Rs will live nowhere near Gs unless they really have to 

and there is nowhere else to live and vice versa. If an R or a G could not tolerate more 

than one person of a different kind living near them, then such segregation would be 

understandable but this is not the case: Rs are quite content to live in harmony with 

Gs as long as the harmony is equality. 

 

This model was first proposed more than 30 years by Schelling (1969, 1978). In fact 

we can make this is a little more realistic if we provide some free space within the 

system. In this case, we assume that 1/3 of the lattice is empty of persons of any kind, 

1/3 composed of Rs, and 1/3 of Gs, and we mix these randomly as we show in Figure 

7(c). Now the rule is slightly different in that if there are more opposition persons 

around a person of one persuasion, then that person will try to move his or her 

location to a more preferential position. This sets up a process of shuffling around the 

checker board but as we show in Figure 7(d), quite dramatic shifts take place in 

location which leads to the segregation shown. This is the kind of effect that takes 

place in residential areas in large cities where people wish to surround themselves 

with neighbors of their own kind. What is surprising about the phenomena which 

makes it ‘emergent’ is that for very mild preferential bias, dramatic segregation can 

take place. Of course if the preferences for like neighbors are very strong anyway, 

then segregation will take place. But in reality, such preferences are usually mild 
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rather than strong, yet extreme segregation takes place anyway. The conclusion is that 

cities often look more segregated around racial and social lines than the attitudes of 

their residents might suggest. 

 
a) a regular checker-board with 6 

changes in allegiance 
b) the resulting segregated pattern back 

in balance 

  
c) a random allocation of allegiance 

with space to move 
d) the resulting segregated pattern back 

in balance 

 
  
Figure 7: Emergent Segregation: A Fragile Equality (a) gives way to Segregation (b); 

A Random Mix with Available Space (c) gives way to Segregation (d) 
 

 

Comprehensive System Models of Urban Structure  
 

Integrated Land Use Transport Models 

 

The various components used to model cities in equilibrium were quickly assembled 

into structures that attempted to simulate urban structure and growth from the 1960s 

onwards. These models were referred to as land use transport models in that their aim 

was to simulate the locations of different land uses and their consequent patterns of 
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traffic generation, usually according to spatial interaction principles based on 

gravitational assumptions. But they usually represented cities as demographic and 

economic activities – population, households, employment and so on – rather than as 

residential, commercial or industrial land use. In short the city system was seen to 

operate at the level of the location of activities which then consumed space through 

land use from which traffic was generated, and once urban activities and their 

interactions were predicted, appropriate translations were made into land use. As we 

shall see, this is not as unproblematic as was originally thought. 

 

The integration of urban activities and their interactions – land use and transport – can 

be accomplished using a variety of economic frameworks built around economic 

relationships between activities. Traditionally these have been represented as input-

output models where one activity is linked to another and it is possible to predict the 

chain of linkages between all the activities using multipliers. We will illustrate this for 

two activities: we assume that employment E  is divided into an unpredictable 

component, sometimes considered as employment that is basic B  and export 

orientated in the economy, and employment that is non-basic S  where SBE += . 

Non-basic employment services the population P  from which it is derived as bPS = . 

If we then consider that population can be generated by applying an activity rate a  to 

employment as EaP = , we have the rudiments of a generative sequence that forms a 

structure for predicting activities and their locations which are highly interdependent. 

Simple manipulation of these relationships shows that 1)1( −−= baBE  where 

1)1( −− ba  is the multiplier central to traditional macro-economic theory. 

 

If we now consider that employment and population are related spatially through their 

interactions, we model the relationship between employment as population using a 

singly-constrained sub-model 
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where ijT  are work trips between i  and j , jF  is some measure of attraction at 

residential location j , and ψ  is the friction of distance/travel cost parameter. 

Employment is modeled in reverse direction as  
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where jiS  are employment demands in j  from i , iF  is some measure of attraction at 

residential location i , and ϖ  is the friction of distance/travel cost parameter. These 

two equations for the two sectors are not usually solved simultaneously but the chain 

is broken in that we start with basic employment B  in equation (54), predicting basic 

population, then using this basic population in equation (55) to produce an increment 

of non-basic employment which in turn is used to predict the next increment of non-

basic population in equation (54). This iteration converges to the multiplier 

relationships 1)1( −−= baBE  and 1)1( −−= babBP .  

 

This kind of sequence can be disaggregated indefinitely with respect to population 

and employment types and linked demands to other sectors. Education, leisure and so 

on can be added to the framework making the model ever more comprehensive. This 

was the model first developed by Lowry (1964). It is still the most widely applied of 

all operational urban models and has been elaborated in various ways, some of them 

dealing with partial dynamics (Batty, 1976). Their theoretical pedigree is rooted 

largely in regional economics, location theory and the new urban economics which 

represent the spatial equivalents of classical macro and micro economics. The most 

coherent recent statement in this vein is based on applications of trade theory to the 

urban economy as reflected in the work of Fujita, Krugman and Venables (1999) but 

there is a long heritage of empirical models in the Lowry (1964) tradition which 

continue to be built (Wegener, 2005).  

 

These models now incorporate the four-stage transportation modeling process of trip 

generation, distribution, modal split and assignment explicitly and they are consistent 

with discrete choice methods based on utility maximizing in their simulation of trip-
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making (Ben Akiva and Lerman, 1985). They have been slowly adapted to simulate 

dynamic change although they still tend to generate the entire activity pattern of the 

city in one go, and they remain parsimonious in that the assumption is that all the 

outcomes from the model can be tested in terms of their goodness of fit. They have 

also become more disaggregate and there are now links to physical land use although 

they still remain at the level of activity allocation despite their nomenclature as land 

use transport models. In short, this class of models is the most operational in that 

newer styles tend to be less comprehensive in their treatment of urban activities and 

transportation. Probably the most highly developed of these models currently is the 

UrbanSim model (Waddell, 2002) although the MEPLAN, TRANUS and IRPUD 

models, whose most recent versions were developed in the EU Propolis (2004) project, 

also represent the state-of-the-art. 

 

To conclude this section, it is worth showing a visualization from one of these land 

use transport models which we have recently built for the London region as part of an 

integrated assessment of climate change in the metropolis. The component we show is 

a residential location model which predicts the flow of workers from employment 

locations to residential areas using four different modes of transport and 

disaggregated into five employment and five household types. In Figure 8(a), we 

show some outputs from the model – the observed employment distribution, the 

pattern of population density, and total work trips from the airport (Heathrow) zone in 

the base year simulation 2005. This kind of model assumes that employment and the 

travel cost network are exogenously determined and thus ‘what-if’ style questions can 

be thrown at the model to be evaluated in terms of the impact of changes in the 

transport network and employment volumes on the location of population. We 

illustrate such a scenario builder for changes in the transport routes and costs in 

Figure 8(b) which provides some sense of how such complexity can be visualized. 

These are key issues in planning policy for the future growth of London, particularly 

with respect to flooding in the Thames Estuary which is likely to be affected by 

climate change. These kinds of models are hardly routine but they are being 

developed now in many places. 
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(a) Employment Distribution (b) Population Density (c) Work Trips from the Airport 

 
(a) (d) Building a Transport Scenario: Changing the Travel Costs from a Fast Rail Line 

 
Figure 8: Visualization of Outputs from a Greater London Land Use Transport Model 

 

 

Agent-Based and Cellular Automata Models of Land Development 

 

The first bottom-up CA models applicable to urban structure and growth can be traced 

back to the 1960s. Chapin and Weiss (1968) used cell-space (CS) simulation whose 

locational attractions were based on linear regression, in their models of urban growth 

in Greensboro, North Carolina. Lathrop and Hamburg (1965) used gravitational 

models to effect the same in simulating growth in the Buffalo-Niagara region while 

from a rather different perspective, Tobler (1970) used CA-like simulation to generate 

a movie of growth in the Detroit region. All these applications were on the edge of the 
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mainstream which 30 years ago was based not on formal dynamics but on cross-

sectional equilibrium models of the variety presented above. In the intervening years, 

CA insofar as it was considered a simulation tool, was regarded as important mainly 

for its pedagogic and analytical value (Couclelis, 1985). It was not until the early 

1990s that models began to emerge which were considered to be close enough to 

actual urban growth patterns to form the basis for simulation and prediction. In fact, 

there still exists a recurrent debate about whether or not CA models are more 

important for their pedagogic value rather than for their abilities to simulate real 

systems. These require gross simplifications of model processes and spatial units, 

sometimes rendering them further from reality than the static cross-sectional models 

that came before. 

 

The three earliest attempts at such modeling were geared to simulating rapid urban 

growth for metropolitan regions, medium-sized towns, and suburban areas. Batty and 

Xie (1994) developed simulations of suburban residential sprawl in Amherst, New 

York, where a detailed space-time series of development was used to tune the model. 

Clarke and Gaydos (1998) embarked on a series of simulations of large-scale 

metropolitan urban growth in the Bay Area and went on to model a series of cities in 

the US in the Gigalopolis project. White and Engelen (1993) developed a CA model 

for Cincinnati from rather crude temporal land use data and in all these cases, the 

focus was on land development, suburbanization, and sprawl. Since then, several 

other groups have developed similar models focusing on suburbanization in 

Australian cities (Ward, Murray, and Phinn, 2000), ‘desakota’ – rapid urban growth in 

rural areas in China – specifically in the Pearl River Delta (Yeh and Li, 2000), 

diffused urban growth in Northern Italy (Besussi, Cecchini, and Rinaldi, 1998), and 

rapid urbanization in Latin American cities (Almeida et al., 2003). Other attempts at 

modeling and predicting sprawl have been made by Papini et al. (1998) for Rome and 

Cheng (2003) for Wuhan, while Engelen’s group at RIKS in the Netherlands has been 

responsible for many applications of their model system to various European cities 

(Barredo, Kasanko, McCormick, and Lavalle, 2003).  

 

There are at least four applications which do not focus on urban growth per se. Wu 

and Webster (1998) have been intent on adding spatial economic processes and 

market clearing to such models, while Portugali and Benenson (1996) in Tel-Aviv 



 50

have focused their efforts on intra-urban change, particularly segregation and 

ghettoization. Semboloni (2000) has worked on adding more classical mechanisms to 

his CA models reflecting scale and hierarchy as well as extending his simulations to 

the third dimension, while there have been several attempts by physicists to evolve a 

more general CA framework for urban development which links to new ideas in 

complexity such as self-organized criticality and power law scaling (Andersson, 

Rasmussen, and White, 2002; Schweitzer and Steinbrink, 1997).  

 

 
 

Figure 9: Simulating Very Slow Growth and Rapid Decline in the Detroit Region 
Using the CA DUEM Model 

 

It is worth showing some graphics from such CA models as they are being applied to 

real cities. In Figure 9, we show how the DUEM model can be used to simulate the 

pattern of development change in the Detroit region of South East Michigan. In a 

sense because we live in world dominated by a somewhat unhealthy interest in growth, 

it might be assumed that all the models we have presented here are only geared to 

simulating new development. In fact, each of these models can simulate decline or 

reproduce the steady state because CA models can solely deal with transitions and 

change in the existing fabric as we illustrated earlier in the Schelling segregation 

model. This is the case in Detroit where the population has rapidly adjusted and 
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segregated its locations in the last 50 years but in a context where the overall growth 

has been extremely modest with many areas growing very fast in the suburbs but the 

central areas declining at similar rates. The profile in Figure 9 is akin to a steady state 

rather than the overall exponential growth or decline shown in previous examples. 

 

There are some agent-based models at the land use or activities level which enable 

predictions of future urban patterns but the main focus is at the very micro-level 

where local movements in terms of traffic are being simulated (Castle and Crooks, 

2006). Several models that approach the agent-based ideal originate from other areas. 

TRANSIMS is a hybrid in that its roots are in agent-based simulation of vehicles but 

it has been scaled to embrace urban activities (Nagel, Beckman, and Barrett, 1999) 

and even UrbanSim can be interpreted through the agent paradigm. A parallel but 

significant approach to individualistic modeling is based on micro-simulation which 

essentially samples individual behavior from more aggregate distributions and 

constructs synthetic agent-based models linked to spatial location (Clarke, 1996). This 

is a rapidly changing field at the present time with no agreement about terminology. 

The term agent is being used to describe many different types of models with some 

focusing on unique objects ranging from cells or points in space where activities or 

individuals exist to models of institutions and groups with only implicit spatial 

positioning (Gilbert, 2007). 

 

Models of Urban Morphology 

 

The models introduced above do not capture many of the physical features of cities 

and regions in terms of their morphology. Cities are highly organized with respect to 

their form, displaying as we have already seen in terms of city size, clusters of activity 

on all scales, in short, fractal (Batty and Longley, 1994). Insofar as static equilibrium 

models are able to reproduce this form and to an extent they are able to do so, this is 

largely because some of the structure of the city is input into these models through 

existing employment and population distributions which have already captured 

elements of the morphology. There are competitive effects in these models too that 

are intrinsic to these simulations with the dynamic models based on cellular automata 

closest to reflecting these processes in urban form. This is because the process of 

development is generated from the bottom up and agglomeration is a key feature of 
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the processes of development that are simulated as in some of the models discussed in 

the last section. Here we will simply illustrate some of the evolving forms that various 

combinations of the models already discussed are able to simulate. This shows how 

various processes of land development and travel behavior can come together to 

generate structures that are close to what we observe in the real world.  

 

 

 
 

Figure 10: The Growth of Las Vegas from 1907 to 1995  
(from Acevedo et al., 1997)  

 

A good example of the urban growth which has been rapid over the last 50 years is 

Las Vegas, the fastest growing metropolitan area in the United States which is 

illustrated in Figure 10 (Avecedo et al., 1997). The sprawl does not look very 

different from time period to time period although it is clear that growth is clustered 

and these clusters tend to merge as the city grows. In this sense, the pattern always 

looks like more of the same from time period to time period but inside the city, things 

have changed rather more dramatically as the place has moved from desert oasis and 

staging post prior to 1950 to the entertainment and gambling capital of the US. 

Exponential growth of population, employment and tourism is implied by this volume 

of urban development mirroring the simplest ‘un-capacitated’ growth model in 

equations (36) and (37). The fact that the city has grown in some directions rather 

than others is largely due to a combination of physical and accidental historical 

factors and does not imply any differences in the way growth has occurred from one 

time period to the next. 
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Cellular automata models can generate such growth where entirely local development 

rules are operated uniformly across the space to grow a city from a single seed. This 

can lead to fractal patterns, patterns that are self-similar in form with respect to scale, 

of the kind observed in real cities. In Figure 11(a), we show how the operation of 

deterministic rules where a cell is developed if there is one and only one cell already 

developed in its immediate neighborhood, leads to a growing structure. This is a 

typical example of a modular principle that preserves a certain level of density and 

space when development occurs but when operated routinely and exhaustively leads 

to cellular growth that is regular and self-similar across scales, hence fractal. In Figure 

11(b), the shape of the structure generated is now circular in that development 

eventually occurs everywhere. The city fills up completely but the order in which this 

takes place is a result of development taking place at each time period with random 

probability. This is the effect of introducing ‘noise’ or ‘diversity’ into the model used 

to generate the sequence in Figure 11(a). 

a) 

b) 

 
Figure 11: Growth from the Bottom Up 

 
 a) deterministic growth based on developing cells if one and only one cell is already developed in their 

8 cell adjacent neighborhood, and b) stochastic growth based on developing cell if any cell is 
developed in the adjacent neighborhood according to a random probability 

 

If urban growth is modular and scales in the simplistic way that is portrayed in these 

models of fractal growth, then it is not surprising that there is a tendency to explain 

such patterns generically, without regard to growth per se; to study these as if they 

represent systems with an equilibrium pattern that simply scales through time. But 

this is a trap that must be avoided. Dig below the surface, and examine the processes 

of growth and the activities that occupy these forms, disaggregate the scale and 

change the time interval, and this image of an implied stability changes quite radically. 
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During the era pictured in Figure 10, technology has changed dramatically. Las Vegas 

did not acquire its gambling functions until the 1950s but by then it was already 

growing fast and the subsequent injection of cash into its local economy, the largest 

per capita in the western world for those who reside there, did little to change the 

pattern of explosive growth that followed. The manner in which people moved in the 

early Las Vegas was by horse and wagon but the city could only grow with the car, 

the plane and air-conditioning, not to say the incredible information technologies that 

now dictate how one gambles, wins, and loses.  

 

Our six frame ‘movie’ of the growth of Las Vegas does reveal that the established 

pattern of adding to the periphery is not entirely the complete story for small blobs of 

development seem to attach themselves and then are absorbed back into the growing 

mass as growth catches them up. In this case, this is simply housing being constructed 

a little beyond the edge due to the mechanics of the development process. In older, 

more established settlement patterns such as those in Western Europe for example, 

this might be the absorption of older villages and freestanding towns into the growing 

sprawl. Consider the picture of population density in London recorded in 1991 and 

illustrated in Figure 12(a). Here there are many towns and villages that existed long 

before London grew to embrace them. If we define the metropolis as the connected 

network of settlement that fills an entire space where everyone can connect to 

everybody else either directly or indirectly, the picture is similar as we show in Figure 

12(b). 

 

One could envisage London being connected in this way with a much sparser network 

of links while at the other extreme the entire space could be filled. In fact, it would 

seem that the level of connectivity which has evolved with respect to the density of 

the space filled is just enough for the city to function as a whole. It is this morphology 

and degree of connectivity that marks the fact that the city has reached a level of self-

organization which is regarded as critical. If connectivity were greater, more space 

would be filled and many more connections put in place but the structure would 

contain a certain degree of redundancy making it inefficient. Below this, the system 

would not be connected at all and it would not function as a metropolis. In fact there 

are strong relationships to this characterization of urban settlement as a porous media 

in which a phase transition might take place as the system fills up which in network 
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terms, is like a percolation threshold (Batty, 2005b). The models that we have 

sketched above all provide ways of generating these kinds of morphology, albeit 

through somewhat different mechanisms than the obvious way in which growth in 

physical systems takes place. The forms generated constitute an essential check on the 

adequacy or otherwise of these system models.  

 

(a) population density on a 200m grid from the 
1991 Census of Population 

 

(b) The evolution of the road network over the 
last 500 years from the centre outwards 

 

  
 

Figure 12: Greater London: Self-Similar Clusters and  
the Connectivity Network within the Sprawl 

 

 

Future Directions 
 

The biggest problems facing the development of complex systems models in general 

and those applied to cities in particular involve validation. The move from articulating 

systems as organized entities structured from the top down based on some sort of 

centralized control mechanisms to systems that grow in an uncoordinated way from 

the bottom up have also shifted our perspective from developing systems model in a 

parsimonious way to developing much richer models requiring more detailed data. In 

short, complexity theory has changed the basis for theory and model selection from an 

insistence that all models must be testable against data to an acceptance that if there is 

a strong reason why some non-testable propositions should be included in a model (as 

models with very rich behaviors and processes imply), then these should be included 
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even if they cannot be tested. This is consistent with the shift from aggregate to 

disaggregate modeling, from the focus on equilibrium to dynamics, and on processes 

and behaviors rather than simply outcomes. 

 

This changes the entire basis of validation and combined with the difficulties of 

articulating processes which are clearly relevant but often unobservable, the way in 

which models might be useful in policy making in complex systems is changing too. 

Modeling is now much more contingent on context and circumstance than at any time 

in the past. The use of multiple models, counter modeling and the synthesis of 

different and often contradictory model structures is now taken for granted in systems 

where we consider there may be no optimal solutions and where there will always be 

dissent from what is regarded as acceptable. Many newer models such as those based 

on cellular and agent-based structures and those which postulate a dynamics that 

involves bifurcations that are often of only theoretical interest until one such dynamic 

is observed, are unlikely to meet the canons of parsimony in which unambiguous tests 

can be made against data. These limits to validation begin to suggest that complex 

system models need to be classified on a continuum of ways in which they can be 

tested and used in practice which will depend on the type of model, the context, and 

the users involved (Batty and Torrens, 2005). 

 

In terms of more substantive developments, the question of dynamics is still of 

burning importance in developing better models of cities. There is an intrinsic 

problem of articulating urban processes of change from sparsely populated data bases 

which often contain only the aggregate outcomes of multiple processes. The way in 

which our commonsense observations of decision making in cities can be linked to 

more considered outcomes represented in data has barely been broached in 

developing good models of urban spatial behavior. In agent-based modeling, the role 

of cognition is important while the question of defining agents at appropriate levels is 

a major research focus, particularly when it comes to aggregates which are of a more 

abstract nature, such as groups and institutions. However what is of clear importance 

is the fact that as our focus becomes finer and as we disaggregate to ever more 

detailed levels, we then begin to represent policy processes into which these models 

might be nested in more detailed ways, implying that policy making and planning 

itself might be simply one other feature of these system models.  
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In short in our quest for more detail and for embracing a wider environment, city 

models have come to encapsulate the control mechanisms themselves as intrinsic to 

their functioning. It is at this point that we need much better ways of showing how 

such models can be used in practice. To an extent, this implies that we need to link 

these system models to their wider context of use and application, showing how other 

conceptions, other systems models, might be related to them in less formal ways than 

in terms of the science we have presented here. This has always been a challenge for 

the application of complexity theory to human and social systems, and it will remain 

the cutting edge of this field whose rationale is the prediction and design of more 

efficient, equitable, and sustainable cities. 
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