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ABSTRACT: Cement-based stabilization/solidification (S/S) is used to decrease environmental
leaching of contaminants from industrial wastes. In this study, two industrial metal treatment
filtercakes were characterized by X-ray diffractometry (XRD), thermogravimetric and
differential thermogravimetric analysis (TG/DTG) and Fourier transform infrared (FTIR);
speciation of nickel was examined by X-ray absorption (XAS) spectroscopy. Although the
degree of carbonation and crystallinity of the two untreated filtercakes differed, a-nickel
hydroxide was identified as the primary nickel-containing phase by XRD and nickel K edge
XAS. XAS showed that the speciation of nickel in the filtercake was unaltered by treatment with
any of five different S/S binder systems. Nickel leaching from the untreated filtercakes and all
their stabilized/solidified products, as a function of pH in the acid neutralization capacity test,
was essentially complete below pH ~5, but was 3-4 orders of magnitude lower at pH 8-12. S/S
does not respeciate nickel from metal treatment filtercakes and any reduction of nickel leaching
by S/S is attributable to pH control and physical mechanisms only. pH-dependent leaching of Cr,
Cu and Ni is similar for the wastes and s/s products, except that availability of Cr, Cu and Zn at

decreased pH is reduced in matrices containing ground granulated blast furnace slag.



KEYWORDS Stabilization/solidification; X-ray absorption spectroscopy; electroplating sludge;

waste treatment; wasteform; leaching

1. INTRODUCTION

Treatment by stabilization/solidification with cement-based binders (S/S) is an option for
wastes that cannot be prevented or reduced, such as metal-bearing industrial wastes and
wastewaters. S/S aims to provide a chemical environment where contaminants have lower
solubility, and a physical matrix of low hydraulic conductivity, to minimize leaching when the
resulting cement-based product is utilized or land-disposed.

Metal-bearing wastewaters are usually acidic, and are typically treated by neutralization
with excess calcium hydroxide to produce a hydroxide sludge that is dewatered by filter
pressing. The filtercake tends to undergo carbonation from the atmosphere, before possible
further treatment by S/S. The mineralogical composition of such metal treatment filtercakes, and
the speciation of contaminants in them, is controlled by both kinetic and thermodynamic factors
and has not been well-characterized. In fact, the initial precipitate is often colloidal and the solid
phases are unstable or metastable and therefore different from predictions based on
thermodynamic equilibrium.

Characterization of waste mineralogy and speciation of contaminants in wastes and their
stabilized/solidified (s/s) products is critical for understanding contaminant leachability in
laboratory tests and the environment, as well as development of effective treatments. The effect
of S/S on metal contaminant speciation and leachability is of particular interest, as respeciation
of contaminants is arguably a primary goal of the treatment. In theory, S/S results in
precipitation or co-precipitation of metal ions, e.g., as hydroxides, or up-take by cement
hydration products, e.g., in calcium silicate hydrate, or ettringite and/or monosulphate-type
phases, possibly including a change in oxidation state [1]. Papers about S/S commonly speculate
about contaminant speciation without evidence, e.g., reporting leaching results for regulatory
tests such as the USEPA Toxicity Characteristic Leaching Procedure (e.g.,[2, 3]), and/or as “%
immobilization” (the difference between the total concentration and the leached amount as a
percentage of the total concentration (e.g., [3-5]). Such results are arbitrary in relation to
potential environmental leaching, since they can be manipulated by changing the leaching

conditions (pH, liquid-to-solid ratio, contact method), and are unhelpful in elucidating the



contaminant immobilization mechanism. Questionable evidence of respeciation is often based on
application of a sequential extraction procedure (e.g., [6], such as that originally proposed by
Tessier et al. [7], though this has been shown to be highly inaccurate for s/s products [8].

A variety of instrumental techniques are available to examine mineralogy and
contaminant speciation of wastes and cement-based materials. X-ray diffractometry (XRD) is
widely used for mineralogical characterization of crystalline samples, but is of limited help for
non-crystalline materials. Fourier transform infrared (FTIR) microscopy and thermal analysis
are also routinely used to investigate cementitious materials. None of these techniques is element
specific and they are not useful for study of elements at low concentrations. In contrast, X-ray
absorption spectroscopy (XAS) can track a particular element at relatively low concentrations in
a complex host matrix and probe its local structure and speciation, without a requirement for
crystallinity.

The application of XAS to complex matrices in relation to environmental fate and
behavior of contaminants is still relatively rare, but it has been employed in a limited number of
studies of the speciation of metals in cement pastes, including chromium [9], cobalt [10], copper
[11], lead [12], neodymium [13], selenium [14], tin [15], uranium [16] and zinc [17], as well as
nickel [18-20]. Apart from Rinehart et al. [9], who examined the oxidation state of chromium in
a s/s contaminated soil and showed that this was not affected by S/S, and Hsaio et al. [11], who
indicated that S/S respeciated CuCl, and reduced forms of copper in municipal waste incinerator
air pollution control residues to Cu(OH)., other studies have all prepared hydrated cement pastes
by mixing pure solutions of soluble metal salts with cement powder. This contact mechanism is
unrealistic, as contaminants in wastes are rarely fully dissolved, and the speciation observed in
this way may not apply in cement-based systems containing real wastes. Previous scanning
electron microscopy work has shown encapsulation of sludge particles, tens of um in size, in the
cement matrix [21]. Microscopy, however, cannot infer whether respeciation occurred.

This study therefore used multiple techniques, including XAS, to investigate the
mineralogy and speciation of nickel in two real metal treatment filtercakes, as well as in five
different s/s products prepared from one of the filtercakes using different S/S formulations. pH-
dependent leaching of Ni, Cr, Cu and Zn in both filtercakes and their s/s products was also

examined.



Nickel was studied as an element of environmental concern that is more common in
metal treatment filtercakes than other industrial wastes usually treated by S/S. Previous work
with these materials found the trivalent oxidation state of chromium to be unaltered by S/S, but
indicated that hydroxo complexes with similar coordination but slightly different bond distances
were formed in s/s products[22]. Speciation of copper and zinc, also present in these wastes, has
not yet been investigated. This work was conducted in the context of a larger project led by
University College London (UCL) to increase transparency of S/S technology by developing
process envelopes for generic S/S of the most common/problematic residual waste types, i.e., to
investigate relationships between engineering and leaching properties and s/s product

composition [23, 24].

2. Experimental materials and methods
2.1 Filtercakes

Two metal treatment filtercakes were obtained by UCL from anonymous industrial
sources, designated “ST” and “TX” in the following text. The filtercakes were produced by
filterpressing sludges from neutralization of plating wastes with calcium hydroxide, in a process
that is open to the atmosphere. The residual moisture contents of ST and TX were 57% and 78%
wet mass, respectively. To obtain representative results in the S/S trials, the filtercakes were
dried to constant mass at 60°C, crushed to a particle size of <1 mm, homogenized and
reconstituted to a moisture content of 50% wet mass before being treated by S/S. The chemical
compositions of the dried filtercakes were determined by inductively coupled plasma optical
emission or mass spectroscopy (ICP-OES/MS) following aqua regia digestion, with
measurement of anions by ion chromatography of the extract from a 10:1 water extraction.
Loss-on-ignition (LOI) of the filtercakes was determined at 550°C, and total organic carbon
(TOC) content was measured in a LECO furnace. The typical composition ranges of the
filtercakes for several samples taken over more than a year are shown in Table 1, including the
specific samples used in this work (i.e., totals shown in Figure 5 and used in Table 3). The
variations in element concentrations observed are typical of industrial wastes, whereby
concentrations of the soluble ions potassium, sodium and nitrate were particularly variable, but
quite low. The TOC content of both sludges was low (<3.3%), so the much higher LOI values

(<61%) suggest the presence of inorganic compounds that decompose at a relatively low



temperature (see also 3.1.3). Nickel was present at % levels in both sludges, with a four-fold

concentration variation in sludge ST and a two-fold variation in sludge TX.

2.2 Preparation of stabilized/solidified products

The binders used in S/S were Portland cement on its own, or Portland cement or hydrated
lime (Ca(OH).) blended with power plant fly ash (from combustion of pulverized bituminous
coal, i.e., “Class F” or “pfa”) or ground granulated blast furnace slag. The five formulations
studied in this work are summarized in Table 2. The overall concentrations of selected elements
in each formulation (Table 3) were calculated based on the elemental compositions and
proportions of filtercake and binder, and the moisture contents of the s/s products determined by
drying at 60°C after 28-day curing. The dried s/s products were also ground and used for the

following XAS, mineralogical characterization, and leaching studies.

2.3 Standards
The reference materials examined for comparison with the FTIR spectra, TG curves and
XAS spectra are summarized in Table 4; comparisons with data from the literature are cited in

the text, where appropriate.

2.4 X-Ray Absorption Spectroscopy

XAS, including extended X-ray absorption fine structure (EXAFS) and X-ray absorption
near edge structure (XANES), was performed at the electron storage ring of J. Bennett Johnston,
Sr., Center for Advanced Microstructures and Devices (CAMD), Louisiana State University,
Baton Rouge. The ring is operated at 1.3 GeV. A wavelength shifter in a straight section of the
ring operating at 7.5 Tesla increases the workable X-ray energy range to about 30 keV. Data
were collected at the Wavelength Shifter Double Crystal Monochromator (WDCM) beamline of
CAMD. The monochromator is a Lemonnier-type with design modifications made at Bonn
University, Germany. The crystals in the monochromators can be easily exchanged to obtain any
energy from 1.7 keV to 30 keV. Germanium 220 crystals were used in the monochromator for
the nickel K edge measurements. Nickel metal foil was used for monochromator calibration
(8333.0 eV). The measurements in fluorescence mode were conducted with a 13-element

germanium solid state detector (Canberra Industries, Meridian, Connecticut, USA). The steps in



each scan were 5 eV up to 30 eV below the edge, 0.3 eV from -30 eV to 60 eV above the edge,
and 0.05k up to 1000 eV above the edge, with 5 seconds integration at each step.

Multiple scans (2-5 each) were run at room temperature and were averaged using the
ATHENA software[25]. Athena in Demeter was also used for principal component analysis.
EXAFS fitting was performed with WinXAS [26]. Generally, the region between 3 k/A and 14
k/A was fitted in r-space. The S¢? factor was obtained by fitting bunsenite (Table 6) and then
kept constant for subsequent fitting of the s/s product spectra. Fitting was performed for only the
first two shells, approximately the region of 1.0 A to 3.20 A. FEFF paths were obtained from the
crystal structure of B-nickel hydroxide [27]. A sample of B-nickel hydroxide (Table 6) was also
fitted for comparison. To obtain a robust fit, the number of variables was kept as low as possible

at the cost of a slightly higher chi square value.

2.5 X-Ray Diffractometry

The XRD patterns were also obtained at the CAMD WDCM beamline. A Huber four-
circle goniometer with flat plate geometry in theta-two theta configuration was used. The
wavelength was set to nickel’s K absorption edge (1.4878 A). The samples were scanned from
10 to 70° 20. The patterns were analyzed with MDI JADE 9.3.4 coupled with ICDD’s PDF2

database.

2.6 Fourier Transform Infrared Spectroscopy
The FTIR spectra were obtained with a Thermo-Fischer Scientific Nicolet 670
spectrometer with an attenuated total reflectance (ATR, Smart iTR) attachment. Diamond plates

were used in the ATR. The spectra were collected for the range 4000 to 650 cm’!.

2.7 Thermal Analysis

Simultaneous thermal analysis measurements were performed with a TA Instrument’s Q-
600 SDT. The following parameters were used for the runs: purge gas of nitrogen with a flow
rate of 100 mL/min; alumina pans; equilibration at 40°C for 10 minutes; heating rate of 5°C/min
from 40°C to 200°C, followed by a heating rate of 10°C/min up to 1000°C. The amount of
sample used was typically 10 to 20 mg.



2.8 pH-Dependent Leaching

The cements used in S/S provide a highly alkaline environment (usually pH>12), which
is a primary factor in contaminant immobilization. Since the natural environment is usually at a
much lower pH (5-8), cement alkalinity will be neutralized over time at a rate dependent on the
specific waste management conditions. Measurement of dissolved contaminant concentrations as
a function of pH is therefore helpful in understanding long-term contaminant leachability and
was measured using the Acid Neutralization Capacity [28] test with a liquid-to-solid ratio of 6:1
(now also adapted as DD CEN/TS 15364:2006). This test involves rotary extraction of a series
of 11 subsamples of finely ground s/s product, each with a different amount of nitric acid, for
48h. Following measurement of pH, each subsample is filtered and the filtrate is analyzed for
the elements of interest by ICP-OES/MS. Results are plotted as element concentrations leached

from the solid, on a logarithmic scale, as a function of pH.

3. Results and discussion
3.1 Filtercakes
3.1.1 X-Ray Diffractometry

The XRD pattern of filtercake ST is shown in Figure 1a. The peaks are very broad,
indicating very small crystallite size. The 0.253 nm and the 0.152 nm peaks are similar to those
of a-nickel hydroxide reported by Genin et al.[29]. Based on the 0.253 nm peak, the Scherrer
equation suggests that the crystallite size for this phase is only 20 A.

The XRD pattern of filtercake TX (inset in Figure 1a) is dominated by the peaks of
highly crystalline calcite, with one unidentifiable additional peak with a d-spacing of 0.430 nm.
3.1.2 Fourier Transform Infrared Spectroscopy

The FTIR patterns of both filtercakes are shown in Figure 1b, along with that of calcite.
The aragonite and nickel carbonate reference materials were also run but are not shown here as
there were few similarities. The hydroxyl (moisture) peak around 3300 cm™ is broad in both
filtercakes. No sharp hydroxyl peak suggestive of crystalline calcium hydroxide is present in
either. The peak around 1600 cm™ suggests the presence of molecular water. An unidentified
peak at about 1010 cm™ is common to both filtercakes. Calcite can be distinguished from
vaterite by the typical peaks around 1400 cm™ and 800-700 cm™'. Both are significant in the

FTIR pattern for filtercake TX, indicating significant carbonation, whereas they are almost



absent for filtercake ST, indicating a remarkable difference in the degree of carbonation of the

two filtercakes, as is consistent with the XRD observations.
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Figure 1. a) X-ray diffraction patterns for filtercakes ST and TX(inset); (b) Fourier

transform infrared spectroscopy patterns for filtercakes ST and TX, compared with

calcite; (c) Thermogravimetric patterns for filtercakes ST and TX, compared with calcite;

and (d) X-ray absorption near edge spectroscopy patterns for Ni in filtercakes ST and TX,

compared with S-nickel hydroxide and nickel carbonate.



3.1.3 Thermogravimetric Analysis

Figure 1c shows a clear DTG peak at 730°C only for filtercake TX, indicating
decomposition of about 73 % calcite (Table 5). Three smaller DTG peaks can be observed for
filtercake ST. The peak at 640°C suggests about 8.8% calcium carbonate [31], that at 432°C is
likely about 19% uncarbonated calcium hydroxide, and that at around 96°C may be attributable
to moisture, molecular water, or hydroxyl groups. In general, mass loss of both filtercakes is
gradual, suggesting multiple overlapping thermal decomposition processes, and/or incongruent
decomposition of amorphous, impure and/or metastable phases, which could include nickel
hydroxide [32].

The higher level of carbonation for filtercake TX compared with ST observed by XRD,
FTIR and TG is consistent with a higher pH measured for filtercake ST (Table 1), whereas the
pH measured for TX is consistent with the equilibrium pH of a system dominated by calcite.
3.1.4 X-Ray Absorption Spectroscopy

The XANES spectra of the two filtercakes, along those of B-nickel hydroxide and nickel
carbonate (Table 1) are shown in Figure 1d. The spectra for the two filtercakes are identical,
except in white line intensity (A). The coincidence of the white lines shows that the oxidation
state of nickel in the filtercakes is +II, as it is in the reference materials. Peak B, seen in the
filtercakes and the B-nickel hydroxide, is absent in the nickel carbonate phase, suggesting that Ni
is present as a hydroxide. However, it is slightly suppressed; this and a small shift in peak C in
the filtercakes from its location in the 3-nickel hydroxide spectrum indicates a slight difference
in its form.

The Fourier transforms of the k?-weighted nickel K edge EXAFS spectra in r space for
filtercake TX are shown in Figure 4a (for comparison with those of the s/s products in 3.2), with
summary of the corresponding measurements and statistics in Table 6. Bunsenite and -nickel
hydroxide are also included for comparison. The reference materials both show a strong first
peak (Ni-O) at about 2.05 A, but the position of the second peak (Ni-Ni) is 2.93 A for bunsenite
and 3.12 A for B-nickel hydroxide; these Ni-O and Ni-Ni coordination numbers and distances,
are similar to those reported in the literature [33]. The filtercake pseudo-radial distributions also
show a strong first peak (Ni-O) at about 2.05 A, but the second peak (Ni-Ni) is at about 3.05 to
3.06 A. The heights of these second peaks for the filtercakes are also quite reduced in

comparison with the bunsenite and B-nickel hydroxide, as they have lower Ni-Ni coordination



numbers (ranging from 2.57 to 4.64). In an extensive study of nickel hydroxide battery material,
Pandya et al. [33] reported a similar Ni-Ni distance and relatively low, variable second shell
coordination for a-nickel hydroxide.

XRD of filtercake TX suggests the presence of the a-nickel hydroxide phase. Although
the pattern is weak due to the very small size of the crystallites and relatively low overall
concentration of Ni, comparison of the XAS results with those for a-nickel hydroxide in the
literature [33] confirms the presence of a-nickel hydroxide in the filtercakes. The Ni-Ni second
shell is only partly filled, and the second peaks of the EXAFS spectral transforms therefore vary
from sample to sample. Kurama [34] has also reported a-nickel hydroxide in plating sludge,
although his XRD pattern shows surprisingly high intensities for this relatively disordered phase,
unlike our data. The a-nickel hydroxide in the filtercake may have a turbostratic nature that

explains the low XRD intensities.

3.2 Stabilized/Solidified Products
3.2.1 X-Ray Diffractometry

The XRD patterns of the s/s products (Figure 2a) show the crystalline phases expected in
carbonated cement-based materials and those from power plant fly ash when it is a component.
For example, Sample 1466 contains fly ash as a binder component (see Table 2 for formulation
details) and thus mullite (3A1,03-2S102/2A1,03-Si07) and quartz (SiO) from the fly ash are
present in the diffraction pattern. The XRD patterns have low intensities generally, indicating the
presence of few strongly crystalline phases. Calcite is common from carbonation. The a-nickel
hydroxide phase observed in filtercake TX could not be detected in the s/s products by XRD.
3.2.2 Fourier Transform Infrared Spectroscopy

The FTIR spectra of the s/s products shown in Figure 2b have broad silicate peaks [35],
with the peak maxima varying from 991 cm™ to 950 cm™'. The proportions of different binders
and polymerization after cement hydration and/or pozzolanic reaction ultimately determine the
location of the silicate peak. The location of the silicate peaks in the FTIR patterns of the binder
materials themselves (not shown) varies from as high as 1002 cm™ in the power plant fly ash, to
900 cm™! in the ground granulated blast furnace slag.

For all the formulations, carbonate peaks in the 1500 to 1400 cm™! region (asymmetric,

v3 vibration) of the FTIR spectra clearly show two overlapping peaks, one centered around 1460

10



cm’!, which is likely to be aragonite, and
another centered around 1410 cm™!, which is
likely to be calcite. The v3 peak in powdered
calcite can also be broad due to its anisotropic
crystal structure [35]. There are also two sharp
peaks around 860 cm!, one at 876 cm™! which
is likely to be calcite, and another less intense
peak at 856 cm™ (out-of-plane bend, v2), which
is likely to be aragonite. The broad hydroxyl
peaks in the FTIR spectra, around 3360 cm™,
may represent adsorbed moisture in the sample
or the hydrated phases. No sharp peaks
corresponding to calcium hydroxide are
observed. The peak from free water around
1600 cm™ is also quite broad.
3.2.3 Thermogravimetry

The DTG curves of the s/s products
shown in Figure 2¢ have similar shapes,
suggesting that similar phases are present, but
the peak heights vary. In the low temperature
range, the peaks around 60°C correspond to
ettringite (CasAl,(SO.);(OH),,-26H,0), and the
peaks around 80°C correspond to gypsum
(CaS04-2H20). Around 440°C, peaks from the
breakdown of calcium hydroxide are seen.
Quantification of the mass losses from the TG
curves shows that the amount of calcium
hydroxide varies, from a high of 13.9% in
Sample 1475, to undetectable in Sample 1478.
In the region where the calcium carbonate

phases break down, from about 500°C to
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Figure 2. X-ray diffraction patterns (a),
FTIR patterns (b), and differential
thermogravimetric curves (c) of
stabilized/solidified products prepared with
filtercake TX (see Table 2 for formulations).
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700°C, peaks are seen for all the s/s products. The calcium carbonate peak shapes are complex,
unlike that of pure calcite or the filtercake (Figure 1¢). The amount, grain size and the nature of
the carbonate phases can all contribute to the complex shape. It seems likely that the calcium
carbonate is coming from two sources, the filtercake and the binder. The variation in calcium
hydroxide and carbonate contents between the samples, which correlate inversely (Table 5), may
be due to retardation of the hydration reaction of the cement by the waste, a difference in the
pozzolanic reaction rates of the slag or fly ash or could be random.
3.2.4 X-Ray Absorption Spectroscopy

Figure 3a shows the nickel K edge XANES spectra of the s/s products along with that of
the filtercake TX. The edge location (derivative of the white line, not shown) is identical for all

of them, indicating the same oxidation state for nickel in the filtercake and the s/s products. The
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Figure 3. Nickel K edge X-ray absorption near-edge structure spectra of stabilized/solidified

products (a) and results of principal component analysis (b) and target transformation (c).

other peaks at higher energy are all in similar locations.

Principal component analysis of the nickel K edge XANES spectra for the five s/s

products together suggests that 99% of the variation in Ni speciation between the different s/s

products can be explained by just one component (Figure 3b). Target transformation (Figure 3¢)

of the filtercake nickel XANES spectrum suggests that it is a very good fit for the nickel in all

12



the s/s products. The evidence from XANES therefore indicates that the nickel speciation does
not change from the filtercake to the s/s products.

The Fourier transforms of the k?-weighted nickel K edge EXAFS spectra in r space for
the s/s products are shown in Figure 4a, with summary of the corresponding measurements and
statistics in Table 6. These spectra may be compared with those for the filtercakes and reference
materials, also in Figure 4a. It may be seen that the first peaks (Ni-O) in the pseudo-radial
distributions of the s/s products are again at 2.05 A, and the second (Ni-Ni) peaks are again at

3.05 to 3.07 A, similar to the observation for the filtercakes, again also with reduced Ni-Ni peak

heights.
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Figure 4. Fourier transforms of the k’-weighted nickel K edge extended X-ray absorption fine
structure spectra of stabilized/solidified products in r space (a), their principal components

analysis (b) and target transform of filtercake TX.

Principal component analysis of the EXAFS spectra of the s/s products in k space
suggests that one component explains 92% of the variation in nickel speciation (Figure 4c).
Target transformation of the filtercake nickel EXAFS spectrum indicates excellent fit to the s/s
product spectra (Figure 4d). EXAFS thus also suggests that no re-speciation takes place in the
chemical environment provided by the S/S binders.

XAS therefore clearly shows that there is no respeciation of nickel in the s/s products,

which are mechanical mixtures of the filtercake and binders, i.e., nickel is also present in the s/s

products as a-nickel hydroxide. a-nickel hydroxide is a compound of considerable interest due
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to its applications in alkaline storage batteries (e.g., Ni-Cd, Ni-Zn, Ni-Fe, and Ni-MH) and
catalysts. Its characteristics, including the layered double hydroxide (LDH) structure of both a-
and B-nickel hydroxides is reviewed by Hall et al. [32], whereby Ni can be substituted by other
multivalent cations, Al, Zn, Co, etc.. a-nickel hydroxide is metastable and is supposed to convert
to the more stable 3 form over time. Dissolved ions such as Al and Zn in highly alkaline
chemical environments can, however, prevent that phase transformation [36]. In fact, an Al-
substituted form of nickel hydroxide was found in previous research with hydrated cement pastes
prepared by mixing solutions of soluble metal salts with cement powder [19]. The presence of
Ni-LDH should be considered as a possibility, since aluminum is present in the sludge and its
solubility increases with pH. XAS, however, cannot distinguish between a-nickel hydroxide and

Ni-LDH [37].

3.3 pH-Dependent Leaching

The concentrations of Ni leached from both filtercakes and their s/s products as a
function of pH, in mg/kg of filtercake are shown relative to their total concentrations in Figure
5a. The similarity of nickel speciation in the filtercakes and s/s products is reflected in the trend
for nickel leaching as a function of pH, where leached concentrations from both the filtercakes
and s/s products lie along the same curve. Nickel is essentially completely available for leaching
below pH ~5, but is 3-4 orders of magnitude lower at pH 8-12. This suggests that any change in
nickel solubility is a function of pH alone, though the leaching results cannot confirm whether
only one species is present in the solid at pH values above 6, and leaching of nickel from s/s
products may also be affected by physical encapsulation.

pH dependent leaching of Cr, Cu and Zn from these samples has also been shown in
Figure 5b, c and d, as a matter of general interest for these matrices. The most alkaline condition
represents the pHs without acid addition, which ranged from 8.2-9.4 for the filtercakes, and
from 11.7 to 12.3 for the s/s products. It may be observed that leaching of Cr is highly variable
and was decreased for s/s products containing ggbs. Examination of Cr speciation by XAS [22]
suggests that only a tiny fraction of Cr is present as leachable Cr(VI), but this seems to be
variable and determines leachate concentrations for the non-ggbs matrices. The small proportion
of Cr(V) may be reduced to Cr(IIl) by ggbs addition, decreasing leachability at neutral pH. Cu is

likely associated with dissolved organic carbon in the leachates [38], and its availability at low
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pH is also decreased by ggbs addition, perhaps by formation of CuS. Zn demonstrates pH
dependent leachability in the s/s products, as in the filtercakes, and is not fully available even at

low pH, neither in the filtercakes nor the s/s products.

4. Conclusions

This work applied a portfolio of techniques to examination of the mineralogy of real
metal treatment filtercakes with a bulk chemical composition dominated by calcium hydroxide
and/or carbonate, and the effect of S/S on Ni speciation. Peaks of a-nickel hydroxide identified
in the metal treatment filtercakes were near the detection limit by XRD and could not be seen
after S/S. The use of nickel K edge XAS as a more sensitive technigque to examine element
speciation at relatively low concentrations in complex matrices was demonstrated, and showed
that nickel is indeed present in the a-nickel hydroxide form in the filtercakes, and that S/S with
five different binder systems did not induce its respeciation. Leaching in the acid neutralization
capacity test is consistent with physical encapsulation of the waste in the binder.

Respeciation of the high concentrations of chromium, copper and zinc present in metal

treatment filtercakes by treatment with S/S is a potential subject for future work.
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Figure Captions

Figure 1. a) X-ray diffraction patterns for filtercakes TX and ST (inset); (b) Fourier transform

infrared spectroscopy patterns for filtercakes TX and ST, compared with calcite; (c)
Thermogravimetric patterns for filtercakes TX and ST, compared with calcite; and (d) X-ray
absorption near edge spectroscopy patterns for filtercakes TX and ST, compared with -nickel

hydroxide and nickel carbonate.

Figure 2. X-ray diffraction patterns (a), Fourier transform infrared patterns (b), and differential

thermogravimetric curves (c) of stabilized/solidified products (see Table 2 for formulations).

Figure 3. Nickel K edge X-ray absorption near-edge structure spectra of stabilized/solidified

products (a) and results of principal component analysis (b) and target transformation (c).

Figure 4. Fourier transforms of the k?>-weighted nickel K edge extended X-ray absorption fine
structure spectra of stabilized/solidified products in r space (a), their principal components

analysis (b) and target transform of filtercake TX.

Figure 5. pH-dependent leaching of nickel in filtercakes and stabilized/solidified products.
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Tables

Table 1. Compositions of metal treatment filtercakes

Filtercake ST TX

Average CoV Range (n) Average CoV Range (n)
Metals in mg/kg dry mass
Al 9000 35% 2,700 — 14,000 9) 38,000 28%  2,7000 —5,5000 (7)
Ba 140 32% 71 —-200 9) 400 13% 320 - 440 (5)
Ca 220,000 49% 57,000 -370,000 (10) 110,000 96% 32,000 -250,000 (5)
Cd 250 52% 59 -430 9) 170 68% 42 -320 (7)
Co 7 24% 54-10 (6) 960 73% 10 - 1,700 (5)
Cr 13,000  35% 3,500 - 17,000 9) 44,000 44% 4,700 — 69,000  (6)
Cu 2,300 50% 600 —4,100 (8) 16,000 35% 8,900 - 22,000 (7)
Fe 8,400 60% 2,400 - 21,700 (10) 38,000 32% 22,000 -57,000 (7)
K 220 204% 8 —1,200 (7) 520 103% 38 - 1,200 (5)
Mg 7,200 32% 2,300 - 9,000 (7 10,000 82% 800 — 17,000 (5)
Mn 390 37% 250 - 640 9) 1,600 21% 1,100 — 2,100 (7)
Na 2,900 133% 31-11,000 9) 2,000 198% 55-9,000 (5)
Ni 19,000  33% 7,600 — 27,000 9) 48,000 17% 38,000 — 64,000 (7)
P 5,100 55% 480 -7,500 (8) 25,000 90% 150 — 45,000 (5)
Pb 350 45% 130 - 610 (8) 800 61% 330 - 1,400 (7)
Sb <10 NA <10 3) 160 153% 3.4-580 (3)
Si 7,600 81% 3,500 —21,000 (7) 18,000 161% 710 — 70,000 (5)
Sn 430 37% 230 -650 (7) 4,000 63% 530-7,700 (5)
Sr 710 52% 75 -1,100 9) 172 91% 25-440 (5)
Zn 4,100 41% 1,700 — 6,400 9) 63,000 7% 58,000 — 69,000 (6)
Anions in mg/kg dry mass*
Cr 840 77% 380 —-1,300 2) 3900 44% 2,700 - 5,100 (2)
NO;5 100 135% 4.7-200 (2) 9.0 NA 9.0 (1)
SO4* 1600 32% 1,200 — 1,900 (2) 4100 10% 3,800 — 4,400 (2)
pH* 8.9 4% 8.6-94 4) 8.4 3% 8.2-8.7 3)
LOI 45% 32% 26 - 61 (5) 31% NA 31% (1)
TOC 4.5% 107% 0.41-9.9 (3) 1.2% 43% 0.6 —1.6% (2)

CoV = Coefficient of Variation = 100 x Standard Deviation/Average; n = number of samples; LOI =
loss on ignition at 550°C; TOC = total organic carbon; NA = not applicable
*based on distilled water extraction at liquid:solid ratio of 10:1
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Table 2. Stabilized/solidified product formulations (% total dry mass)[23]

CEMI hlime ggbs pfa Filtercake | Water
Sample TX
1475 (CEMIL:ggbs:TX) 7.5 67.5 25.0 46.5
1476 (hlime:ggbs:TX) 15.0 60.0 25.0 46.5
1477 (CEMIL:pfa:TX) 16.4 58.6 25.0 46.5
1466 18.3 72.5 92 44.9
1478 (CEML:TX) 75.0 25.0 46.5

CEMI = Portland cement; hlime = hydrated lime; pfa = pulverized fuel ash = power plant fly ash;

ggbs = ground granulated blast furnace slag

23



Table 3. Concentrations of selected elements in stabilized/solidified products (mg/kg dried

mass)
1475 1476 1477 1466 1478
CEMI:ggbs:TX  hlime:ggbhs:TX CEMI:pfa:TX CEMI:TX
Fe 4600 3000 17700 19600 10400
Cr 6800 6900 6500 2500 7600
Cu 1200 1200 1200 480 1400
Ni 6300 6400 6000 2300 7000

Zn 7500 7500 7100 2700 8300




Table 4. Reference materials used for comparison with filtercakes and stabilized/solidified

products
Mineral Phase Chemical Source
aragonite CaCOs Natural coral
calcite CaCOs Sigma Aldrich (>99%; CAS# 471-34-1)
metal Ni foil EXAFS Company
bunsenite NiO Alfa Aesar (>99.99%; CAS# 1313-99-1)
B-nickel hydroxide ~ Ni(OH). Alfa Aesar (CAS #12054-48-7)
NiCOs3 ACROS (CAS# 3333-67-3)
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Table 5. Quantification* of calcium hydroxide and calcium carbonate in filtercakes and

stabilized/solidified products from thermogravimetry

% ST TX 1475 1476 1477 1466 1478

Ca(OH): 19 ND 14 23 23 4.2 ND
CaCOs 8.8 73 16 18 14 10 36

* based on 74 g Ca(OH)2/g mass lost as H>O; 100 g CaCOs/g mass lost as CO»
ND = not detected
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Table 6. Fitting of extended X-ray absorption fine structure spectra for stabilized/solidified

products.

Sample Shel Na R’ (A) o2(x103) EO So? R(%)

bunsenite Ni-O  6* 2.07 0.5% 0.32+1.47 0.80  6.58
Ni-Ni  12* 293 0.6* -3.93+0.45

B-nickel Ni-O 551 2.05 0.6* -3.27+0.07 6.73

hydroxide
Ni-Ni ~ 5.63  3.12 0.6* -0.71+0.05

ST Ni-O 6% 2.04 0.53 -3.27% 6.66
Ni-Ni ~ 3.89 3.05 0.69 -3.58+0.07

TX Ni-O 6% 2.04 0.69 -1.50+0.07  0.8*  7.61
Ni Ni 349 3.06 0.85 -2.85+0.13

1475 Ni-O 6% 2.06 0.6 -1.84+0.93  0.8*  7.60
Ni-Ni 339 3.06 0.8 -5.97+0.19

1476 Ni-O  6* 2.05 0.45 -3.27% 5.86
Ni-Ni ~ 2.57  3.07 0.39 -3.64+0.07

1477 Ni-O 6% 2.05 0.4 -1.80+0.05 6.56
Ni-Ni 296 3.06 0.5 -3.48+0.08

1478 Ni-O  6* 2.05 0.45 -0.94+0.077 6.74
Ni-Ni  4.64 3.07 0.90 -3.09+0.131

N — coordination number; R — interatomic distance; 6> - Debye Waller factor; Eo - Binding

energy; So”> — amplitude reduction factor; Reduced y2; a — 20%; Fit quality estimated accuracy —

a20%, b —+0.02 A; *held constant.
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