
 1 

Nickel Speciation in Cement-Stabilized/Solidified 

Metal Treatment Filtercakes  

 

Amitava Roya and Julia A. Stegemannb 

 

a J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices, Louisiana State 

University, Baton Rouge, LA 70806, USA; E-mail:  reroy@lsu.edu  

b Corresponding Author; Centre for Resource Efficiency & the Environment, Department of 

Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, 

Gower Street, London WC1E 6BT, UK;  E-mail:  j.stegemann@ucl.ac.uk; Phone:  +44(0)207 

679 7370 

  

ABSTRACT:   Cement-based stabilization/solidification (S/S) is used to decrease environmental 

leaching of contaminants from industrial wastes. In this study, two industrial metal treatment 

filtercakes were characterized by X-ray diffractometry (XRD), thermogravimetric and 

differential thermogravimetric analysis (TG/DTG) and Fourier transform infrared (FTIR); 

speciation of  nickel was examined by X-ray absorption (XAS) spectroscopy.  Although the 

degree of carbonation and crystallinity of the two untreated filtercakes differed, -nickel 

hydroxide was identified as the primary nickel-containing phase by XRD and nickel K edge 

XAS.  XAS showed that the speciation of nickel in the filtercake was unaltered by treatment with 

any of five different S/S binder systems.  Nickel leaching from the untreated filtercakes and all 

their stabilized/solidified products, as a function of pH in the acid neutralization capacity test, 

was essentially complete below pH ~5, but was 3-4 orders of magnitude lower at pH 8-12.  S/S 

does not respeciate nickel from metal treatment filtercakes and any reduction of nickel leaching 

by S/S is attributable to pH control and physical mechanisms only. pH-dependent leaching of Cr, 

Cu and Ni is similar for the wastes and s/s products, except that availability of Cr, Cu and Zn at 

decreased pH is reduced in matrices containing ground granulated blast furnace slag. 
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1. INTRODUCTION 

Treatment by stabilization/solidification with cement-based binders (S/S) is an option for 

wastes that cannot be prevented or reduced, such as metal-bearing industrial wastes and 

wastewaters. S/S aims to provide a chemical environment where contaminants have lower 

solubility, and a physical matrix of low hydraulic conductivity, to minimize leaching when the 

resulting cement-based product is utilized or land-disposed. 

Metal-bearing wastewaters are usually acidic, and are typically treated by neutralization 

with excess calcium hydroxide to produce a hydroxide sludge that is dewatered by filter 

pressing.  The filtercake tends to undergo carbonation from the atmosphere, before possible 

further treatment by S/S.  The mineralogical composition of such metal treatment filtercakes, and 

the speciation of contaminants in them, is controlled by both kinetic and thermodynamic factors 

and has not been well-characterized. In fact, the initial precipitate is often colloidal and the solid 

phases are unstable or metastable and therefore different from predictions based on 

thermodynamic equilibrium. 

Characterization of waste mineralogy and speciation of contaminants in wastes and their 

stabilized/solidified (s/s) products is critical for understanding contaminant leachability in 

laboratory tests and the environment, as well as development of effective treatments.  The effect 

of S/S on metal contaminant speciation and leachability is of particular interest, as respeciation 

of contaminants is arguably a primary goal of the treatment.  In theory, S/S results in 

precipitation or co-precipitation of metal ions, e.g.,  as hydroxides, or up-take by cement 

hydration products, e.g., in calcium silicate hydrate, or ettringite and/or monosulphate-type 

phases, possibly including a change in oxidation state [1].  Papers about S/S commonly speculate 

about contaminant speciation without evidence, e.g., reporting leaching results for regulatory 

tests such as the USEPA Toxicity Characteristic Leaching Procedure (e.g.,[2, 3]), and/or as “% 

immobilization” (the difference between the total concentration and the leached amount as a 

percentage of the total concentration (e.g., [3-5]).  Such results are arbitrary in relation to 

potential environmental leaching, since they can be manipulated by changing the leaching 

conditions (pH, liquid-to-solid ratio, contact method), and are unhelpful in elucidating the 
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contaminant immobilization mechanism. Questionable evidence of respeciation is often based on 

application of a sequential extraction procedure (e.g., [6], such as that originally proposed by 

Tessier et al. [7], though this has been shown to be highly inaccurate for s/s products [8]. 

A variety of instrumental techniques are available to examine mineralogy and 

contaminant speciation of wastes and cement-based materials. X-ray diffractometry (XRD) is 

widely used for mineralogical characterization of crystalline samples, but is of limited help for 

non-crystalline materials.  Fourier transform infrared (FTIR) microscopy and thermal analysis 

are also routinely used to investigate cementitious materials. None of these techniques is element 

specific and they are not useful for study of elements at low concentrations.  In contrast, X-ray 

absorption spectroscopy (XAS) can track a particular element at relatively low concentrations in 

a complex host matrix and probe its local structure and speciation, without a requirement for 

crystallinity.  

The application of XAS to complex matrices in relation to environmental fate and 

behavior of contaminants is still relatively rare, but it has been employed in a limited number of 

studies of the speciation of metals in cement pastes, including chromium [9], cobalt [10], copper 

[11], lead [12], neodymium [13], selenium [14], tin [15], uranium [16] and zinc [17], as well as 

nickel [18-20].  Apart from Rinehart et al. [9], who examined the oxidation state of chromium in 

a s/s contaminated soil and showed that this was not affected by S/S, and Hsaio et al. [11], who 

indicated that S/S respeciated CuCl2 and reduced forms of copper in municipal waste incinerator 

air pollution control residues to Cu(OH)2, other studies have all prepared hydrated cement pastes 

by mixing pure solutions of soluble metal salts with cement powder.  This contact mechanism is 

unrealistic, as contaminants in wastes are rarely fully dissolved, and the speciation observed in 

this way may not apply in cement-based systems containing real wastes.  Previous scanning 

electron microscopy work has shown encapsulation of sludge particles, tens of m in size, in the 

cement matrix [21]. Microscopy, however, cannot infer whether respeciation occurred.  

This study therefore used multiple techniques, including XAS, to investigate the 

mineralogy and speciation of nickel in two real metal treatment filtercakes, as well as in five 

different s/s products prepared from one of the filtercakes using different S/S formulations.  pH-

dependent leaching of Ni, Cr, Cu and Zn in both filtercakes and their s/s products was also 

examined.   
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Nickel was studied as an element of environmental concern that is more common in 

metal treatment filtercakes than other industrial wastes usually treated by S/S.  Previous work 

with these materials found the trivalent oxidation state of chromium to be unaltered by S/S, but 

indicated that hydroxo complexes with similar coordination but slightly different bond distances 

were formed in s/s products[22].   Speciation of copper and zinc, also present in these wastes, has 

not yet been investigated. This work was conducted in the context of a larger project led by 

University College London (UCL) to increase transparency of S/S technology by developing 

process envelopes for generic S/S of the most common/problematic residual waste types, i.e., to 

investigate relationships between engineering and leaching properties and s/s product 

composition [23, 24].   

 

2. Experimental materials and methods 

2.1 Filtercakes 

Two metal treatment filtercakes were obtained by UCL from anonymous industrial 

sources, designated “ST” and “TX” in the following text.  The filtercakes were produced by 

filterpressing sludges from neutralization of plating wastes with calcium hydroxide, in a process 

that is open to the atmosphere.  The residual moisture contents of ST and TX were 57% and 78% 

wet mass, respectively.  To obtain representative results in the S/S trials, the filtercakes were 

dried to constant mass at 60oC, crushed to a particle size of <1 mm, homogenized and 

reconstituted to a moisture content of 50% wet mass before being treated by S/S.  The chemical 

compositions of the dried filtercakes were determined by inductively coupled plasma optical 

emission or mass spectroscopy (ICP-OES/MS) following aqua regia digestion, with 

measurement of anions by ion chromatography of the extract from a 10:1 water extraction.   

Loss-on-ignition (LOI) of the filtercakes was determined at 550oC, and total organic carbon 

(TOC) content was measured in a LECO furnace.  The typical composition ranges of the 

filtercakes for several samples taken over more than a year are shown in Table 1, including the 

specific samples used in this work (i.e., totals shown in Figure 5 and used in Table 3). The 

variations in element concentrations observed are typical of industrial wastes, whereby 

concentrations of the soluble ions potassium, sodium and nitrate were particularly variable, but 

quite low.  The TOC content of both sludges was low (<3.3%), so the much higher LOI values 

(<61%) suggest the presence of inorganic compounds that decompose at a relatively low 
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temperature (see also 3.1.3).  Nickel was present at % levels in both sludges, with a four-fold 

concentration variation in sludge ST and a two-fold variation in sludge TX.  

 

2.2 Preparation of stabilized/solidified products 

The binders used in S/S were Portland cement on its own, or Portland cement or hydrated 

lime (Ca(OH)2) blended with power plant fly ash (from combustion of pulverized bituminous 

coal, i.e., “Class F” or “pfa”) or ground granulated blast furnace slag.  The five formulations 

studied in this work are summarized in Table 2.  The overall concentrations of selected elements 

in each formulation (Table 3) were calculated based on the elemental compositions and 

proportions of filtercake and binder, and the moisture contents of the s/s products determined by 

drying at 60oC after 28-day curing.  The dried s/s products were also ground and used for the 

following XAS, mineralogical characterization, and leaching studies. 

 

2.3 Standards 

The reference materials examined for comparison with the FTIR spectra, TG curves and 

XAS spectra are summarized in Table 4; comparisons with data from the literature are cited in 

the text, where appropriate. 

 

2.4 X-Ray Absorption Spectroscopy 

XAS, including extended X-ray absorption fine structure (EXAFS) and X-ray absorption 

near edge structure (XANES), was performed at the electron storage ring of J. Bennett Johnston, 

Sr., Center for Advanced Microstructures and Devices (CAMD), Louisiana State University, 

Baton Rouge. The ring is operated at 1.3 GeV. A wavelength shifter in a straight section of the 

ring operating at 7.5 Tesla increases the workable X-ray energy range to about 30 keV. Data 

were collected at the Wavelength Shifter Double Crystal Monochromator (WDCM) beamline of 

CAMD. The monochromator is a Lemonnier-type with design modifications made at Bonn 

University, Germany. The crystals in the monochromators can be easily exchanged to obtain any 

energy from 1.7 keV to 30 keV. Germanium 220 crystals were used in the monochromator for 

the nickel K edge measurements. Nickel metal foil was used for monochromator calibration 

(8333.0 eV). The measurements in fluorescence mode were conducted with a 13-element 

germanium solid state detector (Canberra Industries, Meridian, Connecticut, USA). The steps in 
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each scan were 5 eV up to 30 eV below the edge, 0.3 eV from -30 eV to 60 eV above the edge, 

and 0.05k up to 1000 eV above the edge, with 5 seconds integration at each step.  

Multiple scans (2-5 each) were run at room temperature and were averaged using the 

ATHENA software[25]. Athena in Demeter was also used for principal component analysis.  

EXAFS fitting was performed with WinXAS [26]. Generally, the region between 3 k/Å and 14 

k/Å was fitted in r-space. The S0
2 factor was obtained by fitting bunsenite (Table 6) and then 

kept constant for subsequent fitting of the s/s product spectra. Fitting was performed for only the 

first two shells, approximately the region of 1.0 Å to 3.20 Å. FEFF paths were obtained from the 

crystal structure of -nickel hydroxide [27].  A sample of -nickel hydroxide (Table 6) was also 

fitted for comparison. To obtain a robust fit, the number of variables was kept as low as possible 

at the cost of a slightly higher chi square value.  

 

2.5 X-Ray Diffractometry 

The XRD patterns were also obtained at the CAMD WDCM beamline. A Huber four-

circle goniometer with flat plate geometry in theta-two theta configuration was used. The 

wavelength was set to nickel’s K absorption edge (1.4878 Å).  The samples were scanned from 

10 to 70° 2. The patterns were analyzed with MDI JADE 9.3.4 coupled with ICDD’s PDF2 

database.  

 

2.6 Fourier Transform Infrared Spectroscopy 

The FTIR spectra were obtained with a Thermo-Fischer Scientific Nicolet 670 

spectrometer with an attenuated total reflectance (ATR, Smart iTR) attachment. Diamond plates 

were used in the ATR. The spectra were collected for the range 4000 to 650 cm-1. 

 

2.7 Thermal Analysis 

Simultaneous thermal analysis measurements were performed with a TA Instrument’s Q-

600 SDT. The following parameters were used for the runs: purge gas of nitrogen with a flow 

rate of 100 mL/min; alumina pans; equilibration at 40°C for 10 minutes; heating rate of 5°C/min 

from 40°C to 200°C, followed by a heating rate of 10°C/min up to 1000°C. The amount of 

sample used was typically 10 to 20 mg.  
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2.8 pH-Dependent Leaching 

The cements used in S/S provide a highly alkaline environment (usually pH>12), which 

is a primary factor in contaminant immobilization.  Since the natural environment is usually at a 

much lower pH (5-8), cement alkalinity will be neutralized over time at a rate dependent on the 

specific waste management conditions. Measurement of dissolved contaminant concentrations as 

a function of pH is therefore helpful in understanding long-term contaminant leachability and 

was measured using the Acid Neutralization Capacity [28] test with a liquid-to-solid ratio of 6:1 

(now also adapted as DD CEN/TS 15364:2006).  This test involves rotary extraction of a series 

of 11 subsamples of finely ground s/s product, each with a different amount of nitric acid, for 

48h.  Following measurement of pH, each subsample is filtered and the filtrate is analyzed for 

the elements of interest by ICP-OES/MS.  Results are plotted as element concentrations leached 

from the solid, on a logarithmic scale, as a function of pH. 

 

3. Results and discussion 

3.1 Filtercakes 

3.1.1 X-Ray Diffractometry 

The XRD pattern of filtercake ST is shown in Figure 1a. The peaks are very broad, 

indicating very small crystallite size.  The 0.253 nm and the 0.152 nm peaks are similar to those 

of α-nickel hydroxide reported by Genin et al.[29].   Based on the 0.253 nm peak, the Scherrer 

equation suggests that the crystallite size for this phase is only 20 Å.  

The XRD pattern of filtercake TX (inset in Figure 1a) is dominated by the peaks of 

highly crystalline calcite, with one unidentifiable additional peak with a d-spacing of 0.430 nm. 

3.1.2 Fourier Transform Infrared Spectroscopy 

The FTIR patterns of both filtercakes are shown in Figure 1b, along with that of calcite. 

The aragonite and nickel carbonate reference materials were also run but are not shown here as 

there were few similarities. The hydroxyl (moisture) peak around 3300 cm-1 is broad in both 

filtercakes. No sharp hydroxyl peak suggestive of crystalline calcium hydroxide is present in 

either. The peak around 1600 cm-1 suggests the presence of molecular water. An unidentified 

peak at about 1010 cm-1 is common to both filtercakes.  Calcite can be distinguished from 

vaterite by the typical peaks around 1400 cm-1 and 800-700 cm-1.  Both are significant in the 

FTIR pattern for filtercake TX, indicating significant carbonation, whereas they are almost 
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absent for filtercake ST, indicating a remarkable difference in the degree of carbonation of the 

two filtercakes, as is consistent with the XRD observations.   

  

  

Figure 1. a)  X-ray diffraction patterns for filtercakes ST and TX(inset); (b) Fourier 

transform infrared spectroscopy patterns for filtercakes ST  and TX, compared with 

calcite; (c) Thermogravimetric patterns for filtercakes ST and TX, compared with calcite;  

and  (d) X-ray absorption near edge spectroscopy patterns for Ni in filtercakes ST and TX, 

compared with -nickel hydroxide and nickel carbonate. 
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3.1.3 Thermogravimetric Analysis 

 Figure 1c shows a clear DTG peak at 730°C only for filtercake TX, indicating 

decomposition of about 73 % calcite (Table 5).  Three smaller DTG peaks can be observed for 

filtercake ST. The peak at 640°C suggests about 8.8% calcium carbonate [31], that at 432°C is 

likely about 19% uncarbonated calcium hydroxide, and that at around 96°C may be attributable 

to moisture, molecular water, or hydroxyl groups. In general, mass loss of both filtercakes is 

gradual, suggesting multiple overlapping thermal decomposition processes, and/or incongruent 

decomposition of amorphous, impure and/or metastable phases, which could include nickel 

hydroxide [32].     

The higher level of carbonation for filtercake TX compared with ST observed by XRD, 

FTIR and TG is consistent with a higher pH measured for filtercake ST (Table 1), whereas the 

pH measured for TX is consistent with the equilibrium pH of a system dominated by calcite.  

3.1.4 X-Ray Absorption Spectroscopy  

The XANES spectra of the two filtercakes, along those of -nickel hydroxide and nickel 

carbonate (Table 1) are shown in Figure 1d. The spectra for the two filtercakes are identical, 

except in white line intensity (A). The coincidence of the white lines shows that the oxidation 

state of nickel in the filtercakes is +II, as it is in the reference materials. Peak B, seen in the 

filtercakes and the -nickel hydroxide, is absent in the nickel carbonate phase, suggesting that Ni 

is present as a hydroxide.  However, it is slightly suppressed; this and a small shift in peak C in 

the filtercakes from its location in the -nickel hydroxide spectrum indicates a slight difference 

in its form.  

The Fourier transforms of the k2-weighted nickel K edge EXAFS spectra in r space for 

filtercake TX are shown in Figure 4a (for comparison with those of the s/s products in 3.2), with 

summary of the corresponding measurements and statistics in Table 6. Bunsenite and -nickel 

hydroxide are also included for comparison. The reference materials both show a strong first 

peak (Ni-O) at about 2.05 Å, but the position of the second peak (Ni-Ni) is 2.93 Å for bunsenite 

and 3.12 Å for -nickel hydroxide;  these Ni-O and Ni-Ni coordination numbers and distances, 

are similar to those reported in the literature [33]. The filtercake pseudo-radial distributions also 

show a strong first peak (Ni-O) at about 2.05 Å, but the second peak (Ni-Ni) is at about 3.05 to 

3.06 Å.  The heights of these second peaks for the filtercakes are also quite reduced in 

comparison with the bunsenite and -nickel hydroxide, as they have lower Ni-Ni coordination 
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numbers (ranging from 2.57 to 4.64). In an extensive study of nickel hydroxide battery material, 

Pandya et al. [33] reported a similar Ni-Ni distance and relatively low, variable second shell 

coordination for -nickel hydroxide.  

XRD of filtercake TX suggests the presence of the -nickel hydroxide phase.  Although 

the pattern is weak due to the very small size of the crystallites and relatively low overall 

concentration of Ni, comparison of the XAS results with those for -nickel hydroxide in the 

literature [33] confirms the presence of -nickel hydroxide in the filtercakes.  The Ni-Ni second 

shell is only partly filled, and the second peaks of the EXAFS spectral transforms therefore vary 

from sample to sample. Kurama [34] has also reported -nickel hydroxide in plating sludge, 

although his XRD pattern shows surprisingly high intensities for this relatively disordered phase, 

unlike our data.  The -nickel hydroxide in the filtercake may have a turbostratic nature that 

explains the low XRD intensities. 

 

3.2 Stabilized/Solidified Products 

3.2.1 X-Ray Diffractometry 

The XRD patterns of the s/s products (Figure 2a) show the crystalline phases expected in 

carbonated cement-based materials and those from power plant fly ash when it is a component.   

For example, Sample 1466 contains fly ash as a binder component (see Table 2 for formulation 

details) and thus mullite (3Al2O32SiO2/2Al2O3SiO2) and quartz (SiO2) from the fly ash are 

present in the diffraction pattern. The XRD patterns have low intensities generally, indicating the 

presence of few strongly crystalline phases.  Calcite is common from carbonation.  The -nickel 

hydroxide phase observed in filtercake TX could not be detected in the s/s products by XRD. 

3.2.2 Fourier Transform Infrared Spectroscopy 

The FTIR spectra of the s/s products shown in Figure 2b have broad silicate peaks [35], 

with the peak maxima varying from 991 cm-1 to 950 cm-1. The proportions of different binders 

and polymerization after cement hydration and/or pozzolanic reaction ultimately determine the 

location of the silicate peak. The location of the silicate peaks in the FTIR patterns of the binder 

materials themselves (not shown) varies from as high as 1002 cm-1 in the power plant fly ash, to 

900 cm-1 in the ground granulated blast furnace slag. 

For all the formulations, carbonate peaks in the 1500 to 1400 cm-1 region  (asymmetric, 

3 vibration) of the FTIR spectra clearly show two overlapping peaks, one centered around 1460 
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cm-1, which is likely to be aragonite, and 

another centered around 1410 cm-1, which is 

likely to be calcite. The 3 peak in powdered 

calcite can also be broad due to its anisotropic 

crystal structure [35]. There are also two sharp 

peaks around 860 cm-1, one at 876 cm-1 which 

is likely to be calcite, and another less intense 

peak at 856 cm-1 (out-of-plane bend, 2), which 

is likely to be aragonite.  The broad hydroxyl 

peaks in the FTIR spectra, around 3360 cm-1, 

may represent adsorbed moisture in the sample 

or the hydrated phases. No sharp peaks 

corresponding to calcium hydroxide are 

observed. The peak from free water around 

1600 cm-1 is also quite broad. 

3.2.3 Thermogravimetry 

The DTG curves of the s/s products 

shown in Figure 2c have similar shapes, 

suggesting that similar phases are present, but 

the peak heights vary. In the low temperature 

range, the peaks around 60°C correspond to 

ettringite (Ca6Al2(SO4)3(OH)12·26H2O), and the 

peaks around 80°C correspond to gypsum 

(CaSO42H2O). Around 440°C, peaks from the 

breakdown of calcium hydroxide are seen. 

Quantification of the mass losses from the TG 

curves shows that the amount of calcium 

hydroxide varies, from a high of 13.9% in 

Sample 1475, to undetectable in Sample 1478.  

In the region where the calcium carbonate 

phases break down, from about 500°C to 

 

 

 

Figure 2. X-ray diffraction patterns (a), 

FTIR patterns (b), and differential 

thermogravimetric curves (c) of 

stabilized/solidified products prepared with 

filtercake TX (see Table 2 for formulations). 
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700°C, peaks are seen for all the s/s products.  The calcium carbonate peak shapes are complex, 

unlike that of pure calcite or the filtercake (Figure 1c). The amount, grain size and the nature of 

the carbonate phases can all contribute to the complex shape. It seems likely that the calcium 

carbonate is coming from two sources, the filtercake and the binder.  The variation in calcium 

hydroxide and carbonate contents between the samples, which correlate inversely (Table 5), may 

be due to retardation of the hydration reaction of the cement by the waste, a difference in the 

pozzolanic reaction rates of the slag or fly ash or could be random. 

3.2.4 X-Ray Absorption Spectroscopy 

Figure 3a shows the nickel K edge XANES spectra of the s/s products along with that of 

the filtercake TX. The edge location (derivative of the white line, not shown) is identical for all 

of them, indicating the same oxidation state for nickel in the filtercake and the s/s products. The 

other peaks at higher energy are all in similar locations.  

Principal component analysis of the nickel K edge XANES spectra for the five s/s 

products together suggests that 99% of the variation in Ni speciation between the different s/s 

products can be explained by just one component (Figure 3b). Target transformation (Figure 3c) 

of the filtercake nickel XANES spectrum suggests that it is a very good fit for the nickel in all 

 

Figure 3. Nickel K edge X-ray absorption near-edge structure spectra of stabilized/solidified 

products (a) and results of principal component analysis (b) and target transformation (c). 
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the s/s products. The evidence from XANES therefore indicates that the nickel speciation does 

not change from the filtercake to the s/s products. 

The Fourier transforms of the k2-weighted nickel K edge EXAFS spectra in r space for 

the s/s products are shown in Figure 4a, with summary of the corresponding measurements and 

statistics in Table 6. These spectra may be compared with those for the filtercakes and reference 

materials, also in Figure 4a.   It may be seen that the first peaks (Ni-O) in the pseudo-radial 

distributions of the s/s products are again at 2.05 Å, and the second (Ni-Ni) peaks are again at 

3.05 to 3.07 Å, similar to the observation for the filtercakes, again also with reduced Ni-Ni peak 

heights.  

Principal component analysis of the EXAFS spectra of the s/s products in k space 

suggests that one component explains 92% of the variation in nickel speciation (Figure 4c). 

Target transformation of the filtercake nickel EXAFS spectrum indicates excellent fit to the s/s 

product spectra (Figure 4d). EXAFS thus also suggests that no re-speciation takes place in the 

chemical environment provided by the S/S binders. 

XAS therefore clearly shows that there is no respeciation of nickel in the s/s products, 

which are mechanical mixtures of the filtercake and binders, i.e., nickel is also present in the s/s 

products as -nickel hydroxide.  -nickel hydroxide is a compound of considerable interest due 

 

Figure 4. Fourier transforms of the k2-weighted nickel K edge extended X-ray absorption fine 

structure spectra of stabilized/solidified products in r space (a), their principal components 

analysis (b) and target transform of filtercake TX. 
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to its applications in alkaline storage batteries (e.g., Ni-Cd, Ni-Zn, Ni-Fe, and Ni-MH) and 

catalysts.  Its characteristics, including the layered double hydroxide (LDH) structure of both - 

and -nickel hydroxides is reviewed by Hall et al. [32], whereby Ni can be substituted by other 

multivalent cations, Al, Zn, Co, etc.. -nickel hydroxide is metastable and is supposed to convert 

to the more stable  form over time. Dissolved ions such as Al and Zn in highly alkaline 

chemical environments can, however, prevent that phase transformation [36].   In fact, an Al-

substituted form of nickel hydroxide was found in previous research with hydrated cement pastes 

prepared by mixing solutions of soluble metal salts with cement powder [19]. The presence of 

Ni-LDH should be considered as a possibility, since aluminum is present in the sludge and its 

solubility increases with pH. XAS, however, cannot distinguish between -nickel hydroxide and 

Ni-LDH [37].  

 

3.3  pH-Dependent Leaching 

The concentrations of Ni leached from both filtercakes and their s/s products as a 

function of pH, in mg/kg of filtercake are shown relative to their total concentrations in Figure 

5a. The similarity of nickel speciation in the filtercakes and s/s products is reflected in the trend 

for nickel leaching as a function of pH, where leached concentrations from both the filtercakes 

and s/s products lie along the same curve.  Nickel is essentially completely available for leaching 

below pH ~5, but is 3-4 orders of magnitude lower at pH 8-12.  This suggests that any change in 

nickel solubility is a function of pH alone, though the leaching results cannot confirm whether 

only one species is present in the solid at pH values above 6, and leaching of nickel from s/s 

products may also be affected by physical encapsulation. 

pH dependent leaching of Cr, Cu and Zn from these samples has also been shown in 

Figure 5b, c and d, as a matter of general interest for these matrices.  The most alkaline condition 

represents the pHs without acid addition, which ranged from 8.2-9.4 for the filtercakes, and  

from 11.7 to 12.3 for the s/s products.  It may be observed that leaching of Cr is highly variable 

and was decreased for s/s products containing ggbs.   Examination of Cr speciation by XAS [22] 

suggests that only a tiny fraction of Cr is present as leachable Cr(VI), but this seems to be 

variable and determines leachate concentrations for the non-ggbs matrices.  The small proportion 

of Cr(V) may be reduced to Cr(III) by ggbs addition, decreasing leachability at neutral pH.  Cu is 

likely associated with dissolved organic carbon in the leachates [38], and its availability at low 
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pH is also decreased by ggbs addition, perhaps by formation of CuS.  Zn demonstrates pH 

dependent leachability in the s/s products, as in the filtercakes, and is not fully available even at 

low pH, neither in the filtercakes nor the s/s products. 

 

4. Conclusions 

This work applied a portfolio of techniques to examination of the mineralogy of real 

metal treatment filtercakes with a bulk chemical composition dominated by calcium hydroxide 

and/or carbonate, and the effect of S/S on Ni speciation.  Peaks of -nickel hydroxide identified 

in the metal treatment filtercakes were near the detection limit by XRD and could not be seen 

after S/S.  The use of  nickel K edge XAS as a more sensitive technique to examine element 

speciation at relatively low concentrations in complex matrices was demonstrated, and showed 

that nickel is indeed present in the -nickel hydroxide form in the filtercakes, and that S/S with 

five different binder systems did not induce its respeciation.  Leaching in the acid neutralization 

capacity test is consistent with physical encapsulation of the waste in the binder.  

Respeciation of the high concentrations of chromium, copper and zinc present in metal 

treatment filtercakes by treatment with S/S is a potential subject for future work. 
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Figure 5. pH-dependent leaching of nickel (a), chromium (b), copper (c) and zinc (d) from 

filtercakes and stabilized/solidified products. 
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Figure Captions 

 

Figure 1. a)  X-ray diffraction patterns for filtercakes TX  and ST (inset); (b) Fourier transform 

infrared spectroscopy patterns for filtercakes TX  and ST, compared with calcite; (c) 

Thermogravimetric patterns for filtercakes TX and ST, compared with calcite;  and  (d) X-ray 

absorption near edge spectroscopy patterns for filtercakes TX and ST, compared with -nickel 

hydroxide and nickel carbonate. 

 

Figure 2.   X-ray diffraction patterns (a), Fourier transform infrared  patterns (b), and differential 

thermogravimetric curves (c) of stabilized/solidified products (see Table 2 for formulations).  

 

Figure 3. Nickel K edge X-ray absorption near-edge structure spectra of stabilized/solidified 

products (a) and results of principal component analysis (b) and target transformation (c). 

 

Figure 4.  Fourier transforms of the k2-weighted nickel K edge extended X-ray absorption fine 

structure spectra of stabilized/solidified products in r space (a), their principal components 

analysis (b) and target transform of filtercake TX. 

 

Figure 5.  pH-dependent leaching of nickel in filtercakes and stabilized/solidified products.  
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Tables 

 

Table 1.  Compositions of metal treatment filtercakes  

Filtercake                                     ST TX 

 Average CoV Range (n) Average CoV Range (n) 

Metals in mg/kg dry mass 

Al 9000 35% 2,700 – 14,000 (9) 38,000 28% 2,7000 – 5,5000 (7) 

Ba 140 32% 71 – 200 (9) 400 13% 320 – 440 (5) 

Ca 220,000 49% 57,000 – 370,000 (10) 110,000 96% 32,000 –250,000 (5) 

Cd 250 52% 59 – 430 (9) 170 68% 42 – 320 (7) 

Co 7 24% 5.4 – 10 (6) 960 73% 10 – 1,700 (5) 

Cr 13,000 35% 3,500 – 17,000 (9) 44,000 44% 4,700 – 69,000 (6) 

Cu 2,300 50% 600  – 4,100 (8) 16,000 35% 8,900 – 22,000 (7) 

Fe 8,400 60% 2,400 – 21,700 (10) 38,000 32% 22,000 – 57,000 (7) 

K 220 204% 8 – 1,200 (7) 520 103% 38 – 1,200 (5) 

Mg 7,200 32% 2,300 – 9,000 (7) 10,000 82% 800 – 17,000 (5) 

Mn 390 37% 250 – 640 (9) 1,600 21% 1,100 – 2,100 (7) 

Na 2,900 133% 31 – 11,000 (9) 2,000 198% 55 – 9,000 (5) 

Ni 19,000 33% 7,600 – 27,000 (9) 48,000 17% 38,000 – 64,000 (7) 

P 5,100 55% 480 –7,500 (8) 25,000 90% 150 – 45,000 (5) 

Pb 350 45% 130  – 610 (8) 800 61% 330 – 1,400 (7) 

Sb <10 NA < 10 (3) 160 153% 3.4 – 580 (3) 

Si 7,600 81% 3,500 – 21,000 (7) 18,000 161% 710 – 70,000 (5) 

Sn 430 37% 230 – 650 (7) 4,000 63% 530 – 7,700 (5) 

Sr 710 52% 75 – 1,100 (9) 172 91% 25 – 440 (5) 

Zn 4,100 41% 1,700 – 6,400 (9) 63,000 7% 58,000 – 69,000 (6) 

Anions in mg/kg dry mass* 

Cl- 840 77% 380 – 1,300 (2) 3900 44% 2,700 – 5,100 (2) 

NO3
- 100 135% 4.7 – 200 (2) 9.0 NA 9.0 (1) 

SO4
2- 1600 32% 1,200 – 1,900 (2) 4100 10% 3,800 – 4,400 (2) 

pH* 8.9 4% 8.6 – 9.4 (4) 8.4 3% 8.2 – 8.7 (3) 

LOI  45% 32% 26 – 61 (5) 31% NA 31% (1) 

TOC 4.5% 107% 0.41 – 9.9 (3) 1.2% 43% 0.6 – 1.6% (2) 

CoV = Coefficient of Variation = 100 x Standard Deviation/Average; n = number of samples; LOI = 

loss on ignition at 550oC;  TOC = total organic carbon; NA = not applicable 

*based on distilled water extraction at liquid:solid ratio of 10:1 
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Table 2.  Stabilized/solidified product formulations (% total dry mass)[23] 

 

Sample 

 CEMI hlime ggbs pfa Filtercake 

TX 

Water 

1475 (CEMI:ggbs:TX) 7.5  67.5  25.0 46.5 

1476 (hlime:ggbs:TX)  15.0 60.0  25.0 46.5 

1477 (CEMI:pfa:TX) 16.4   58.6 25.0 46.5 

1466  18.3   72.5 9.2 44.9 

1478 (CEMI:TX) 75.0    25.0 46.5 

CEMI = Portland cement; hlime = hydrated lime; pfa = pulverized fuel ash = power plant fly ash; 

ggbs = ground granulated blast furnace slag 
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Table 3.  Concentrations of selected elements in stabilized/solidified products (mg/kg dried 

mass) 

  1475 

CEMI:ggbs:TX 

1476 

hlime:ggbs:TX 

1477 

CEMI:pfa:TX 

1466 1478 

CEMI:TX 

Fe  4600 3000 17700 19600 10400 

Cr  6800 6900 6500 2500 7600 

Cu  1200 1200 1200 480 1400 

Ni  6300 6400 6000 2300 7000 

Zn  7500 7500 7100 2700 8300 
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Table 4.  Reference materials used for comparison with filtercakes and stabilized/solidified 

products 

Mineral Phase Chemical Source 

aragonite CaCO3 Natural coral 

calcite CaCO3 Sigma Aldrich (>99%; CAS# 471-34-1) 

metal Ni foil EXAFS Company 

bunsenite NiO Alfa Aesar (>99.99%; CAS# 1313-99-1) 

-nickel hydroxide Ni(OH)2 Alfa Aesar (CAS #12054-48-7) 

 NiCO3 ACROS (CAS# 3333-67-3) 
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Table 5.  Quantification* of calcium hydroxide and calcium carbonate in filtercakes and 

stabilized/solidified products from thermogravimetry 

%  ST TX 1475 1476 1477 1466 1478 

Ca(OH)2 19 ND 14 2.3 2.3 4.2 ND 

CaCO3 8.8 73 16 18 14 10 36 

* based on 74 g Ca(OH)2/g mass lost as H2O; 100 g CaCO3/g mass lost as CO2 

ND = not detected 

  



 27 

 

Table 6.  Fitting of extended X-ray absorption fine structure spectra for stabilized/solidified 

products. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N – coordination number;  R – interatomic distance; 2  - Debye Waller factor; E0  - Binding 

energy; S0
2 – amplitude reduction factor; Reduced 2; a – 20%; Fit quality estimated accuracy – 

a 20%, b – ±0.02 Å; *held constant. 

 

 

 

Sample Shell Na Rb  (Å) 2 (x10-3) E0 S0
2 R(%) 

bunsenite Ni-O 6* 2.07 0.5* 0.32±1.47 0.80 6.58 

 Ni-Ni 12* 2.93 0.6* -3.93±0.45   

-nickel 

hydroxide 

Ni-O 5.51 2.05 0.6* -3.27±0.07  6.73 

 Ni-Ni 5.63 3.12 0.6* -0.71±0.05   

ST Ni-O 6* 2.04 0.53 -3.27*  6.66 

 Ni-Ni 3.89 3.05 0.69 -3.58±0.07   

TX Ni-O 6* 2.04 0.69 -1.50±0.07 0.8* 7.61 

 Ni_Ni 3.49 3.06 0.85 -2.85±0.13   

1475 Ni-O 6* 2.06 0.6 -1.84±0.93 0.8* 7.60 

 Ni-Ni 3.39 3.06 0.8 -5.97±0.19   

1476 Ni-O 6* 2.05 0.45 -3.27*  5.86 

 Ni-Ni 2.57 3.07 0.39 -3.64±0.07   

1477 Ni-O 6* 2.05 0.4 -1.80±0.05  6.56 

 Ni-Ni 2.96 3.06 0.5 -3.48±0.08   

1478 Ni-O 6* 2.05 0.45 -0.94±0.077  6.74 

 Ni-Ni 4.64 3.07 0.90 -3.09±0.131   


