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Abstract 

Public statistics and private experience:  
Varying feedback information in a take-or-pass game 

by David Danz, Steffen Huck and Philippe Jehiel* 

We study how subjects in an experiment use different forms of public information about 
their opponents' past behavior. In the absence of public information, subjects appear to use 
rather detailed statistics summarizing their private experiences. If they have additional 
public information, they make use of this information even if it is less precise than their 
own private statistics—except for very high stakes. Making public information more 
precise has two consequences: It is also used when the stakes are very high and it reduces 
the number of subjects who ignore any information—public and private. That is, precise 
public information crowds in the use of own information. Finally, our results shed some 
light on unravelling in centipede games. 
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JEL classification: C72, C92, D83, D84 
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1 Introduction

Any form of belief-based learning requires that agents receive some informa-
tion about their opponents’ play. The information might be precise or noisy,
gained through own experience or through other channels, regard all parts
of opponents’ strategies or only certain aspects thereof. In this paper we
study how the provision of different forms of public information about oth-
ers’ behavior affects subjects’ play in a specific and highly stylized strategic
interaction.

Specifically, we consider a variant of the so-called centipede game in-
troduced by Rosenthal (1981). This game has the attractive feature that
opponents have to take many similar decisions. At each decision node a
player must decide between Take or Pass. This allows us to vary the preci-
sion of information about others in a natural way. Jehiel (2005) has proposed
that boundedly rational agents who think about others who have to take
similar decisions repeatedly might actually use coarse aggregate statics when
forming their beliefs. In a centipede-like game a very coarse statistic would,
for example, tell you that your opponent passed, on average across all deci-
sion nodes, x% of the time whereas a fine statistic would tell you the pass
rate of your opponent at every decision node. The framework introduced in
Jehiel (2005) permits the description of the interaction of players who base
their beliefs on any such statistics, and the corresponding equilibrium called
Analogy-Based Expectation Equilibrium is parameterized by the coarseness
of the statistics used by the players.1

In our experiment, groups of subjects play several times a centipede-like
game, and we provide subjects with public information about past behavior
of their opponents. This information varies in its precision. It can either be
based on averages across all nodes or it can be node-specific. Furthermore,
the provided statistics are either averaged across the entire history of play
or based on moving averages from the last five periods. This gives rise to
a 2x2 design. In addition, we have a treatment without public information
where agents have only their own experience.

When analyzing the data from the treatment without public information
we compute private statistics that are equivalent to the four different public
statistics we provide in the other treatments. Analyzing the decision data
we find that subjects’ behavior is best explained by use of the most precise
private statistic. That is, at any given node a subject’s behavior is best ex-

1The statistic used by a player is referred to as an analogy class and defined as a
partition of the decision nodes of the other player.
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plained as a reaction to what they learned from their own recent experience
about what happens at the following node. The higher the pass rate that
they experienced at the following node, the more likely they are to pass at
the present node.

Surprisingly, we find that subjects’ behavior is not much affected by
their own past performance as measured, for example, by their payoff so
far or the frequency with which they won games. Overall, this suggests
that subjects who have just their own experience use their experience in a
rather sophisticated manner. Their behavior is much better described by a
model with node-specific memory than by a model with a coarser memory
structure where they just remember one average across all nodes or by a
model in which they solely remember their past average performance.

Using this result as a benchmark we can then analyze behavior in the
treatments with public information and we can study to what extent sub-
jects use public information and private experience. We find that most of
the time subjects who do make use of information make use of both types of
information. However, the number of subjects who disregard any informa-
tion (public as well as own) is considerably larger if the public information
lacks precision. Thus, high-quality public information triggers the general
use of information, private and public.

Our experiment also sheds new light on the issue of unravelling in take-or-
pass games. From a theory viewpoint, more unravelling should be expected
with the node-specific statistics than with the coarse statistics. With node-
specific statistics, this is the classical insight: players can detect the exact
node at which their opponent takes and as a consequence players should
take earlier and earlier. With coarse statistics like average pass rates across
all nodes players fail to identify when exactly their opponent takes. As a
consequence a few pass decisions can stabilize play and prevent unravelling
(see Jehiel 2005 for details on this).

As we have seen that subjects tend to rely on rather precise node-specific
statistics when they have only their own experiences, one would, therefore,
expect a lot of unravelling in the treatment without public information.
However, as it turns out unravelling in that treatment is far from complete,
which is due to the fact that without good public information there are a lot
of “non-learners”, i.e., subjects who always do the same regardless of what
happens in the game. In fact, these non-learners pass so often that they
help to stabilize play in the treatment without public information quite a
bit above the Nash equilibrium. We also observe that there is much more
pronounced unravelling in the presence of a precise public statistic than in
the other treatments. This is because (1) a precise public statistic reduces
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the number of non-learners as we have stated before and non-learners appear
to pass a lot; and (2) the pass rate at a given node falls dramatically when
the public (rather than the private) information about the pass rate at the
next decision node are very low.2 Since such a scenario can only occur in
the treatment with node-specific statistics, it provides a further explanation
for the more pronounced unravelling observed in this treatment.

Compared to other centipede games we find a much higher degree of
unravelling, which is in part due to the payoff structure that we employ
and that removes incentives for cooperation (the player who does not take
gets invariably the same payoff irrespective of when the opponent takes).
Thus, the non-unravelling observed in earlier centipede games (for exam-
ple, McKelvey and Palfrey 1992 or Nagel and Tang 1998) is at least partly
due to subjects’ willingness to cooperate, perhaps, induced through “social
preferences” (see, for example, Bolton and Ockenfels 2000).

The remainder of the paper is organized as follows. In Section 2 we
introduce the game that we study in the experiment and offer a brief the-
oretical discussion. In Section 3 we introduce the experimental design and
procedures. Section 4 contains the data and data analysis and Section 5
concludes.

2 The game

We study a version of Rosenthal’s (1982) centipede game, a simple game of
take-or-pass.3 There are two players, called Even and Odd. The game has
nine decision nodes. At each node one of the two players decides between
Take or Pass. Odd decides at odd nodes 1, 3, 5, 7, and 9; Even at even nodes
2, 4, 6, and 8. If a player takes, the game is over. The game also ends if Odd
passes at node 9. To make our terminology as simple as possible we will say
that, if odd passes at node 9, node 10 is reached where Even automatically
takes. Let the player who ends the game by taking be called the “winner”
and the other player the “loser”. This helps us to define the payoffs in a
simple manner. The loser earns £0.10 regardless of the last decision node
that was reached. The winner’s payoff, on the other hand, depends on the
last decision node. At node 1 it is £0.30. After that it doubles from node
to node, reaching £153.60 at node 10. Figure 1 shows the winner’s payoff
for all possible last decision nodes. Slightly abusing standard terminology

2Such an attitude toward extreme information is per se sufficient to generate unravel-
ling.

3Reny (1993) calls the same game Take-it-or-leave-it.
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we will refer to these in the following as end nodes.

Node:
Player:

πO:
πE :

1
O

PassTake

0.30
0.10

2
E

PassTake

0.10
0.60

3
O

PassTake

1.20
0.10

4
E

PassTake

0.10
2.40

5
O

PassTake

4.80
0.10

6
E

PassTake

0.10
9.60

7
O

PassTake
19.20
0.10

8
E

PassTake

0.10
38.40

9
O

PassTake

76.80
0.10

10
E

Take

0.10
153.60

Figure 1: The take-or-pass game. The payoffs of player Odd (O) and Even
(E) are denoted by πO and πE , respectively.

The game has a number of Nash equilibria in pure strategies and in-
finitely many in mixed strategies. But all these equilibria induce the same
equilibrium path where Odd takes immediately at node 1. The unique sub-
game perfect equilibrium prescribes for both players to take at every node.
Our game shares all these properties with Rosenthal’s original game. How-
ever, there is one major difference: the payoff of the player who does not take
is the same irrespective of when take occurs.4 That is, one of the players is
unambiguously the loser and the decision to pass cannot be interpreted as
a cooperative move. Despite the pass move not being reducible to a coop-
erative move, there are still several reasons for why a player might wish to
pass in our game. Intuitively, a player in a gambling mood (gambling here
is about the behavior of the other player) may be thought of as being ready
to pass at least in the early nodes of the game.

Several approaches have been proposed to explain why players may pass
in the centipede game. A discussion of these approaches appears in Rubin-
stein (1998) and Jehiel (2005). Of particular relevance to this paper is the
analogy-based expectation equilibrium approach introduced in Jehiel (2005):
This approach assumes that players base their choice of strategy on the sole
information about the average behavior of their opponent over bundles of
nodes referred to as analogy classes. To illustrate the approach, assume that
players use the coarsest analogy partition. That is, each player bundles all
the nodes of the other player into a single analogy class and bases his choice
of strategy on the sole information about the average pass rate of the other
player throughout the game. A strategy profile in which the Even player
passes at all nodes and the Odd player passes at all nodes except node 9

4Such a specification is considered by Reny (1993).
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is an equilibrium under this assumed analogy grouping (see Jehiel 2005).
Let us review the reasoning of the Even player. This player knows that the
Odd player passes on average with probability 4/5 (this is the statistic that
would emerge from the assumed strategy profile). Extrapolating that this is
the Odd player’s behavior at each of his decision nodes 1-3-5-7-9, the Even
player finds passing attractive even at decision node 8 (4/5 × 2 > 1).

More generally, most coarse analogy grouping would allow players to pass
a few times. This is because such behaviors give rise to high pass rates, and,
based on such an information, players would find it optimal to pass except
toward reaching the end of the game. The logic of backward induction
breaks down in this approach because players fail to identify exactly when
their opponent stops passing.

3 Experimental design and procedures

In the experiment we vary the amount and type of public information players
receive about other players whenever they have to make a decision. But
before going into the details of the treatments, let us briefly describe those
aspects of the design which were kept constant across treatments.

The experimental sessions lasted 50 rounds. In each round subjects were
randomly paired to play the extensive-form take-or-pass game.5 Roles were
randomly assigned before the first round of the experiment and kept fixed
during the entire course of a session. Once the game ended, they could infer
their payoffs and a new round was started. For actual monetary payoffs, we
selected two rounds, one from the first 25, one from the second 25, which
was, of course, known by subjects.6

The five treatments we considered are listed in Table 1. In treatment
NO, no public information was available, i.e., subjects did not receive any
information about the past play of others other than their experience from
own past play.7

5Randomizations were done on the spot, i.e., the matching did not follow any prede-
termined pattern.

6We paid two randomly selected rounds to decrease the variance in subjects’ final
payments. For a recent discussion of (improvements of) the random incentive system see
Johnson et al. (2015).

7As in the other treatments, the computer screens in the NO treatment did not provide
subjects with a history of their own previous choices or the past actions of their immediate
opponents. Thus, in the NO treatment subjects had to memorize the actions of the
other players throughout the experiment to form private statistics analogous to the public
information provided in the AN and NS treatments.
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Table 1: Overview of treatments and sessions.

Treatment
NO AN NS AN-MA NS-MA
(No

Informaton)

(All Nodes) (Node specific) (All nodes,

moving average)

(Node specific,

moving average)

Information
about other
player’s aver-
age pass rate

./.

Average over
all nodes,

Subsequent
node,

Average over
all nodes,

Subsequent
node,

over all pre-
vious rounds

over all pre-
vious rounds

over last five
rounds

over last five
rounds

Sessions 3 2 2 3 3

Subjects
42 26 30 48 40

(14+12+16) (12+14) (12+18) (18+18+12) (12+14+14)

In the remaining four treatments, subjects received some information
about the past play of others. More specifically, from round two on, odd
subjects were informed about pass rates of even subjects in previous rounds,
i.e., some relative frequency with which the group of even subjects had
passed in the past (and vice versa). This public information was updated
each round and presented to the subjects before they made their choice.

In treatment AN pass rates were aggregated over all nodes and all previ-
ous rounds. Whenever Odd had to make a decision, a message was displayed
saying that Even subjects had previously passed in x % of all instances. As
average pass rates were only updated between rounds, the number x would
not change in the course of a single game.

In treatment NS pass rates were node-specific but still aggregated over
all previous periods. Whenever Odd had to make a decision at node k, a
message was displayed saying that Even subjects had previously passed at
node k + 1 in x % of all instances where node k + 1 was reached. If k + 1
had not been reached before, subjects were told so. Again, pass rates were
updated after each round.

Treatment AN-MA was identical to treatment AN with the exception
that pass rates were calculated as moving averages from the last 5 rounds.
Similarly, treatment NS-MA was identical to treatment NS with the ex-
ception that pass rates were calculated as moving averages from the last 5
rounds.

The experiment was conducted at the Experimental Laboratory of the
ELSE Centre at the Department of Economics at UCL in 2002. Subjects
were recruited from the ELSE experimental subject pool, which includes
mainly UCL undergraduate students across all disciplines. Each session had
an even number of subjects who were recruited via Email. (Actual numbers
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Figure 2: Evolution of mean end nodes in treatment NO.

varied from 12 to 18.) In all, 186 subjects participated. Subjects had no
previous experience with this experiment and each subject participated in
only one session. Table 1 shows how the total of subjects was allocated
to the treatments. The experiment was computerized using EXPECON
(Tomlinson 2005) but instructions were handed out on paper (see Appendix
A). Subjects were paid immediately after each session. On top of their game
payoff, subjects received a £8 as a show-up fee.

4 Experimental results

4.1 Evolution of end nodes

A first approach to how subjects played the take-or-pass games is obtained
by looking at the end nodes they reached. Figures 2, 3, and 4 show aver-
age end nodes for all sessions. Casual inspection of the figures reveals that
without feedback information there is some rather light unravelling in the
beginning but rather stable play over the last 30 or so rounds. In the AN
treatments there seems to be some unravelling during the first half, followed
by rather stable play towards the end. Only in session AN-MA 2 unravelling
appears to continue until the very end. In general, there is not much dif-
ference between AN and AN-MA. Finally, in the NS treatments we observe
more consistent downward trends in all sessions. In NS-MA 1 the unrav-
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elling is almost complete after the first half of the experiment after which
average end nodes fluctuate between 1 and a little over 2. Again, there is no
perceptible difference between information that is aggregated over all rounds
and moving averages.

The differences in the degrees of unravelling that appear to be obvious
from looking at the three figures can be validated statistically. We estimated
random-effect panel regressions of the type

nit = α+ βt+ vi + εit,

where nit is the end node reached by player i, t is time, vi is the subject-
specific error term and εit the residual.

We estimated this model separately for all treatments and for different
spans of time. In particular, we analyzed the last 10, 20, 30, and more pe-
riods. Tables 2, 3, and 4 show the results of regressions, where we pool AN
with AN-MA and NS with NS-MA.8 In case of the latter two we do, however,
exclude session NS-MA 1 when we estimate the last 20 and the last 10 peri-
ods because there no further unravelling can be expected. The tables show a
clear pattern. For the last 20 (or more) periods β is significantly negative for
all treatments (one-sided tests). In treatment NO and the AN treatments
the time coefficient β becomes small and becomes insignificant in the last 10
periods. In contrast, in the NS treatments β is always—including the last
10 periods—significantly negative. Furthermore, unravelling is strongest (in
terms of the size of the β coefficient) in the treatments with node-specific
information, a little weaker in treatments with information about aggregate
nodes and still weaker in the treatment where subjects can only rely on feed-
back about their own play.9 This pattern holds for all time intervals except
for the comparison of the NO treatment and the AN treatments when the
regression is based on the last 40 periods. We summarize our findings in

Result 1 Only when public information is precise, i.e., in treatments with
node-specific information, we find continuous unravelling until the very
end of the experiment. In all other treatments, i.e., when public in-
formation is less precise or absent, unraveling is less pronounced and

8We take all odd subjects as the repeatedly measured units. Results with even subjects
are virtually identical.

9A joint regression over all treatments and periods of the end node on a constant, the
period, and two interactions of the period with a dummy for the AN treatments and the
NS treatments, respectively, reveals that the time trends in the NO treatment, the AN
treatments, and the NS treatments are significantly different from each other (p ≤ 0.018
for all comparisons).

9
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Figure 3: Evolution of end nodes in treatments AN and AN-MA.
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Table 2: Estimated time trends of end nodes in treatment without public informa-
tion (NO).

Dependent var.: End node

Time interval: All Periods t > 10 t > 20 t > 30 t > 40

Period β −0.030∗∗∗ −0.033∗∗∗ −0.021∗∗∗ −0.016∗∗ −0.019
(0.003) (0.003) (0.005) (0.009) (0.025)

Constant α 5.341∗∗∗ 5.451∗∗∗ 4.986∗∗∗ 4.735∗∗∗ 4.858∗∗∗

(0.165) (0.215) (0.266) (0.418) (1.143)

χ2
(1) 116.740 106.407 20.263 3.099 0.580

N 1050 840 630 420 210

Note: Linear regressions with individual random effects. Values in parentheses represent stan-
dard errors. Stars represent p-values of one-sided tests for the time trends and two-sided tests for
the constant: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

Table 3: Estimated time trends of end nodes in treatment with public information
aggregated over nodes (AN and AN-MA).

Dependent var.: End node

Time interval: All Periods t > 10 t > 20 t > 30 t > 40

Period β −0.038∗∗∗ −0.031∗∗∗ −0.031∗∗∗ −0.031∗∗∗ 0.007
(0.002) (0.002) (0.004) (0.007) (0.020)

Constant α 5.517∗∗∗ 5.242∗∗∗ 5.247∗∗∗ 5.256∗∗∗ 3.529∗∗∗

(0.101) (0.123) (0.181) (0.311) (0.932)

χ2
(1) 427.454 154.423 67.569 21.731 0.106

N 1850 1480 1110 740 370

Note: Linear regressions with individual random effects. Values in parentheses represent stan-
dard errors. Stars represent p-values of one-sided tests for the time trends and two-sided tests
for the constant: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

Table 4: Estimated time trends of end nodes in treatment with node-specific
public information (NS and NS-MA).

Dependent var.: End node

Time interval: All Periods t > 10 t > 20 t > 30 t > 40

Period β −0.049∗∗∗ −0.050∗∗∗ −0.044∗∗∗ −0.056∗∗∗ −0.036∗∗

(0.002) (0.003) (0.004) (0.007) (0.021)

Constant α 5.898∗∗∗ 5.909∗∗∗ 5.696∗∗∗ 6.567∗∗∗ 5.656∗∗∗

(0.183) (0.203) (0.235) (0.331) (0.951)

χ2
(1) 533.198 347.756 129.727 55.873 3.018

N 1750 1400 1050 580 290

Note: Linear regressions with individual random effects. Values in parentheses represent standard
errors. Stars represent p-values of one-sided tests for the time trends and two-sided tests for the
constant: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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behavior eventually settles down such that unravelling stops before the
last period is reached.

4.2 Individual behavior

To understand what is driving the above result and to gain insight into
how subjects use public and private information we shall now turn to the
analysis of individual strategies. First of all, we shall classify subjects into
four different categories:

1. Pure-strategy types (P) These are subjects whose behavior in all rounds
is consistent with a fixed pure strategy, i.e., they always take at the
same node (or lose the game because their opponent takes at an earlier
node). Among those would also be subjects who follow the backward
induction solution and take at the earliest possible node. However,
there are no subjects who exhibit such behavior.

2. Almost pure-strategy types (AP) These are subjects whose behavior
is consistent with a fixed pure strategy in 80% of all rounds, i.e., we
allow for ten deviations over 50 periods.

3. Non-rationalizable types (N) These are subjects (in the role of Odd)
who sometimes pass at the very last node. We do not want to speculate
about what drives them.

4. Adaptive types (A) All other subjects, i.e., subjects who do different
things at different times, presumably because of different information
or experiences.

Table 5 shows the absolute and relative frequencies of all four types in
the different treatments.

A couple of observations are in order. While non-rationalizable types
are rare, the vast majority of subjects are adaptive players. Moreover, the
share of adaptive players is highest in the treatments with node-specific
information which is statistically significant.10 More precise information
about different nodes makes experimentation and learning more attractive.
This increase in adaptive behavior might be important for explaining the
differences in unravelling observed above (see more on this below). With

10Pooling the treatments with node-specific information and pooling all others, we find
that the share of adaptive players compared to other types is significantly higher in the
NS treatments (two-tailed Pearson: p = 0.047).
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Table 5: Types of subjects in the different treatments.

Types
Treatment P AP N A

NO 0 9 3 30
(0%) (21.4%) (7.1%) (71.4%)

AN 0 7 0 19
(0%) (26.9%) (0%) (73.1%)

AN-MA 1 9 2 36
(2.1%) (18.8%) (4.2%) (75%)

NS 1 3 0 26
(3.3%) (10%) (0%) (86.7%)

NS-MA 0 3 3 34
(0%) (7.5%) (7.5%) (85%)

All 2 31 8 145
(1.1%) (16.7%) (4.3%) (78%)

Note: Absolute number in first row, percentage in second row. Types are de-
noted by P (Pure), AP (Almost Pure), N (Non-rationalizable), and A (Adap-
tive).

fewer subjects reacting to information, behavior is more likely to settle down
when public information is imprecise or absent. We summarize this in:

Result 2 The number of adaptive players, i.e., players who react to public
information and/or private experience is increasing in the quality of
the public information.

In the following we shall try to understand the behavior of adaptive
players. In particular, we want to analyze how adaptive types react to their
own experiences and the information provided. For that we can eliminate
subjects who always do the same—in particular as their presence would
cause a selection bias when we compare behavior at different nodes. (Those
who always take at node 4 are never present at node 6.) Moreover, we focus
on nodes 3, 4, 5, and 6. This is because there is very little variation at
the first two nodes (with pass rates above 90% in all treatments) and not
enough data for the last three nodes since they are reached too rarely.

To understand how own experiences enter subjects’ decision rules, we
first analyze treatment NO, where subjects have no additional information
they can base their decision on. In a first step we estimate decision rules

13



Table 6: Estimated decision rules at nodes 3, 4, 5, and 6 in treatment NO.

Dependent var.: Pass
Node 3 Node 4 Node 5 Node 6

Private Statistic β 0.450∗∗∗ 0.612∗∗∗ 0.546∗∗∗ 0.560∗∗∗

(node-specific, last 5 periods) (0.041) (0.067) (0.094) (0.156)

Constant α 0.527∗∗∗ 0.407∗∗∗ 0.312∗∗∗ 0.221∗∗∗

(0.051) (0.036) (0.043) (0.046)

R2 0.283 0.182 0.128 0.100
χ2

(1) 118.310 84.248 33.555 12.860

N 594 478 352 114

Note: Linear probability model with individual random effects. Values in parentheses represent
standard errors. Stars represent (two-sided) p-values: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

using random-effects linear probability models with just one independent
variable capturing subjects’ own experience. Specifically, we estimate the
model

pn,i,t = αn + βnSn+1,i,t + vn,i + εn,i,t (1)

where Sn+1,it is subject i’s private statistic for the average pass rate at node
n+1 previous to the decision period t, vn,i is a subject-specific random effect
and εn,i,t the remaining error. For reasons of parsimony we only examine the
explanatory power of private statistics that are constructed in the same way
as the statistics we provide in the other treatments, i.e., we examine models
with private statistics for own experienced pass rates at specific nodes for
the last five periods; at specific nodes for the entire history; averaged over
all nodes and the last five periods; and, finally, averaged over all nodes and
the entire history.11 We estimate this model separately for nodes 3, 4, 5,
and 6.12

The estimation results draw an extremely clear picture. For each node
the R2 is, by far, highest for the model with the most precise statistic, the
one that corresponds to the NS-MA treatment (see Table 6 for the estima-

11In some cases the most detailed statistic that corresponds to the NS-MA treatment
might be missing, simply because the next node has not been reached in the last five peri-
ods. Since we have found that pass rates given the statistic is missing are indistinguishable
from pass rates when the statistic is zero we replaced missing values by zeros.

12In the table and for any comparisons of the descriptive accuracy of specifications with
different private statistics, we exclude the first six periods since here the NS and NS-MA
statistics (as well as the AN and AN-MA statistics) are the same.
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tion results for this specification).13 Thus, it appears that in the absence
of information provided by the experimenter subjects memorize their own
experiences in a rather subtle way. We further observe that unconditional
passing becomes less pronounced at later nodes, reflected by the falling con-
stants, However, there is significant unconditional passing at all nodes we
estimated—even towards the end of the game.

Result 3 In the absence of public information players appear to store their
own experiences in a rather sophisticated way. They appear to mem-
orize node-specific information for the more recent past as opposed
to more aggregate information about the past behavior of their oppo-
nent(s).

How robust is this result when one controls for other aspects of subjects’
learning? We have added variables for past performance to capture possible
effects of aspiration levels (see, for example, Selten 1998, or Oechssler 2002)
or learning direction theory (Selten and Buchta 1998) as well as a variable
counting the periods to check for unravelling induced by the vanishing time
horizon. The estimation results shown in Appendix B are unambiguous.
None of the extra variables has a consistent significant effect while the esti-
mates for the coefficient of the private statistic remain significant and similar
in size throughout all nodes when one includes the other variables. Further-
more, for each node, a model selection based on the Bayesian information
criterion (BIC) selects the specification including the private statistic (1)
over a competing model containing the effects of aspiration levels, learning
direction theory, and time (but not the private statistic).14 We summarize
this in

Result 4 Subjects’ behavior is not consistently affected by their past per-
formance nor by the outcome of their last game nor by the passing of

13The average R2 for models with the private NS-MA statistic for the first six nodes
(where we have more than 100 observations for each) is 16.3%. For the models with NS
statistics averaged over all periods the average R2 is 7.2%. Finally, we the two models
that examine private statistics averaged over all nodes the average R2 are 1.4% (AN-MA)
and 2.0% (AN).

14The precise specification of the alternative model is pn,i,t = αn + γnπi,t + λnLn,i,t +
κt+ vn,i + εn,i,t, where all variables are defined as in Appendix B. The BIC for model (1)
[for the alternative model] is 221.59, 583.48, 460.17, 143.50 [248.77, 614.83, 461.56, 157.57]
for node 3, 4, 5, and 6, respectively. The results are qualitatively the same, i.e., for each
node the model with the private statistic is selected over the alternative model, when
(i) a time trend is included in (1) or excluded in the alternative specification, (ii) the
alternative specification includes only the effects of aspiration levels, or (iii) the alternative
specification includes only learning direction theory.
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time itself.

Let us now turn our attention to estimating decision rules for the same
nodes in the treatments where a public statistic is available. We shall esti-
mate the following random-effects linear probability model

pn,i,t = αn + βnSn+1,i,t + γnPn+1,i,t + vn,i + εn,i,t

where Pn+1,i,t is the public statistic and all other variables are defined as
before. We estimate this model separately for the AN and NS treatments
and again for nodes 3, 4, 5, and 6. The results are shown in Tables 7 and
8.15

Some observations can be made immediately. In general, subjects make
use of all available information, private experience and publicly provided
statistics. However, comparing the tables, it is apparent that the coefficients
on the information variables are much bigger in the AN treatments than in
the NS treatments. However, at node 6 when stakes reach £9.60 subjects
start to ignore public imprecise public information but still rely on it when
it is node-specific. We summarize our findings on the treatments with public
information in

Result 5 In general, subjects use all types of information that is available.
However, when the stakes approach £10 and the public statistic is
imprecise the public statistic is ignored.

4.3 Unravelling

From a theory viewpoint, if players rely on the node-specific statistic a lot of
unravelling should be expected. If players rely on a coarse statistic (average
pass rate across all nodes) then a few Passes may take place before the
system stabilizes (this is because players would fail to identify exactly when
their opponent takes, see Jehiel 2005). Thus, less unravelling should be
expected in this case.

Our finding in the treatment without public information – that subjects
mostly rely on their own most precise node-specific information – would
suggest that a lot of unravelling should appear in all treatments. But, as
shown in Result 1 unravelling is more pronounced if there is a precise public
statistic (i.e., in the NS treatments). To understand this differential degree
of unravelling, we introduce two additional slices of the data.

15As in Table 6, we exclude the first six observations in the regressions.
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Table 7: Estimated decision rules at nodes 3, 4, 5, and 6 in AN treatments.

Dependent var.: Pass
Node 3 Node 4 Node 5 Node 6

Private Statistic β 0.540∗∗∗ 0.507∗∗∗ 0.644∗∗∗ 0.375∗∗

(node-specific, last 5 periods) (0.032) (0.055) (0.062) (0.158)

Public Statistic γ 1.202∗∗∗ 3.130∗∗∗ 1.105∗∗ −1.780
(0.218) (0.633) (0.435) (1.192)

Constant α −0.455∗∗∗ −2.125∗∗∗ −0.683∗∗ 1.615∗

(0.163) (0.502) (0.342) (0.969)

R2 0.286 0.181 0.187 0.059
χ2

(2) 467.446 166.909 126.175 9.616

N 1288 797 613 155

Note: Linear probability model with individual random effects. Values in parentheses represent
standard errors. Stars represent (two-sided) p-values: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

Table 8: Estimated decision rules at nodes 3, 4, 5, and 6 in NS treatments.

Dependent var.: Pass
Node 3 Node 4 Node 5 Node 6

Private Statistic β 0.372∗∗∗ 0.450∗∗∗ 0.522∗∗∗ 0.408∗∗∗

(node specific, last 5 periods) (0.041) (0.046) (0.057) (0.077)

Public Statistic γ 0.196∗∗∗ 0.652∗∗∗ 0.564∗∗∗ 0.374∗∗

(0.068) (0.089) (0.126) (0.146)

Constant α 0.444∗∗∗ 0.048 0.056 0.077
(0.043) (0.049) (0.056) (0.063)

R2 0.263 0.301 0.229 0.131
χ2

(2) 256.679 378.519 169.918 44.274

N 1130 953 630 296

Note: Linear probability model with individual random effects. Values in parentheses represent
standard errors. Stars represent (two-sided) p-values: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table 9: Pass rates of non-adaptive subjects.

Treatments Node 3 Node 4 Node 5 Node 6

NO 0.913 0.708 0.400 0.254
AN/AN-MA 0.852 0.695 0.321 0.439
NS/NS-MA 0.960 0.816 0.592 0.452

Note: Pass rates computed excluding the first six periods to
make them comparable with estimates for adaptive subjects.

First, Table 9 shows the pass rates of the non-adaptive subjects for nodes
3 to 6. The table reveals that non-adaptive subjects tend to pass a lot which
does put a bound on the possibilities for unravelling.16 Of course, in the NS
treatments there are only roughly half as many non-adaptive subjects than
in the two others (14.3% as compared to 28.6% in NO and 25.7% in the
AN treatments). This basically halves the impact of non-adaptive play in
the NS treatments and increases the room for unravelling. This is our first
explanation for why unravelling is more pronounced in the NS treatments.

Second, Table 10 shows how adaptive subjects in treatment NS-MA react
to extreme information, i.e., to very small observed and experienced pass
rates. In principle, the reaction to extreme information alone can explain
(different degrees of) unravelling. The table shows the pass rates of adaptive
subjects for those cases where either the private or the public statistic about
the next node were below 10%.

Table 10: Pass rates of adaptive subjects in treatment NS-MA.

Node 3 Node 4 Node 5 Node 6

Private statistic < 0.1 0.500 0.305 0.356 0.263

Public statistic < 0.1 0.222 0.143 0.143 0.056

Note: Pass rates computed excluding the first six periods to make them
comparable with estimates for adaptive subjects.

The table illustrates that subjects are much more careful when the public
statistic is very bleak. If their own experience has been bad they are much
more optimistic and incidentally these numbers are basically the same in
all other treatments. Hence, we should expect if adaptive subjects were on

16Over all treatments, the average pass rate of non-adaptive players is significantly
higher than the average pass rate of adaptive players (t-test yields p < 0.001; node-
specific t-tests yield p = 0.004 and p = 0.023 for odd players at node 3 and 5, respectively,
and p < 0.001 and p = 0.001 for even players at node 4 and 6, respectively).
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their own they would converge very closely to Nash equilibrium play with
precise public information. With less precise public information this is less
likely as extreme information is, by design, less frequent.

It is interesting to compare our data on unravelling with previous ex-
periments on centipede games in which also the loser’s payoff increases over
time. Both payoffs increasing over time generates, of course, strong incen-
tives for cooperation. McKelvey and Palfrey (1992) study such centipede
games with four and six decision nodes. The games are repeated over ten
rounds and while there is some unravelling it is very limited. In the games
with six decision nodes the average end node falls from 4.29 in the first half
of the experiment to 3.98 in the second half. Nagel and Tang (1998) study
a reduced normal-form version of a centipede game with 14 decision nodes.
Subjects play this game repeatedly for 100 periods and, quite amazingly,
there is no unravelling at all. In fact, in some sessions the average end node
even increases over time (see their Figure 4, p.362). Thus, a comparison with
our data suggests that the different payoff structure that we employ makes a
big difference even if it induces the same best reply correspondence. Taking
away the possibility for mutually beneficial cooperation, there is much more
unravelling.17

5 Concluding remarks

Our experimental results can be summarized as follows. When faced with
their sole experience subjects seem to use their memory in a rather sophis-
ticated way: They do not rely much on their past performance, and rather
rely on some quite sophisticated estimate of their opponent’s behavior that
varies from one decision node to the other.

When public statistics are introduced subjects make use of both, their
own experience and the public statistic—even if the latter is rather imprecise.
Only when stakes are high, coarse public statistics are ignored. Another
effect of providing precise public information is that more subjects start
using information—public and private. That is, precise public information
crowds in the use of private information and reduces the number of non-
learners. This may have important consequences for a variety of games and

17There is also much more unravelling in high-stakes three-player centipede games as
studied by Rapoport, Stein, Parco, and Nicholas (2003). Remarkably, the same pattern
has also been observed in quite different games. Huck, Normann, and Oechssler (2004),
for example, report that subjects in Cournot markets only manage to collude if there are
no more than two competitors.
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economic applications and deserves further study. In that sense we advocate
the methodology of varying public information in experiments.
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A Experimental instructions

Welcome to our experiment!

Please read these instructions carefully! Do not speak to your neighbours
and keep quiet during the entire experiment! If you have a question, raise
your hand and the experimenter will see you.

In this experiment you will repeatedly make decisions. Doing this you can
earn real money. How much you earn depends on your decisions and on the
decisions of other participants. All participants receive the same instruc-
tions. You will stay anonymous to us and to the other participants.

The experiment will have 50 rounds. In each round you will be randomly
matched with one other participant with whom you are going to interact.
Your payoff in one particular round depends solely on the decisions taken
by yourself and by the other participant that you were matched with. After
the experiment we will randomly select two rounds that will be paid off for
real. One payoff round will be selected randomly from rounds 1-25 and one
payoff round will be selected randomly from rounds 26-50.

There are two groups of participants in this experiment, Odd participants
and Even participants. In each round each Odd participant will be randomly
matched with an Even participant and vice versa.

Each round consists of up to 10 stages. Odd participants have to make
decisions in odd stages, Even participants have to make decisions in even
stages. In each stage, the decision is between TAKE and PASS. If a partici-
pant chooses PASS the round continues into its next stage. If a participant
chooses TAKE the round is over. Finally, if the 10th stage is reached, PASS
is no longer an option and the participant has to TAKE.

The payoffs are as follows. The payoff of the participant who has chosen
TAKE depends on the stage in which he has done so. The payoff of the
other participant is 10p regardless of the stage in which TAKE has been
chosen.

The payoff for the participant who has chosen TAKE follows a simple rule.
In stage 1 it is 30p. After that it will be doubled in each and every stage,
finally, reaching £153.60 in stage 10. The following table shows you all the
numbers.
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Payoffs of participant who chooses TAKE

1 2 3 4 5 6 7 8 9 10

£0.30 £0.60 £1.20 £2.40 £4.80 £9.60 £19.20 £38.40 £76.80 £153.60

[NS Treatments:
When making a decision you will have some information about the past.
More specifically, you will be told how often, on average, the other par-
ticipants have chosen to PASS at the next stage in the past [NS-MA: five
rounds]. For example, if you are an Even participant deciding at stage 4
you will be told how often Odd participants passed in stage 5 in the past
[NS-MA: five rounds]. Averages will be updated after each round and will
be available to you whenever you make a choice. If the next stage has not
been reached in the past [NS-MA: five rounds], you will be told there is
no data available. [NS-MA: (During the first five rounds, averages will be
based on all previous decisions.)]]

[AN Treatments:
When making a decision you will have some information about the past.
More specifically, Odd participants will be told how often, on average, Even
participants have chosen to PASS in the past [AN-MA: five rounds]. Simi-
larly, Even participants will be told how often, on average, Odd participants
have chosen to PASS in the past [AN-MA: five rounds]. These averages will
be updated after each round and will be available to you whenever you make
a choice. [AN-MA: (During the first five rounds, averages will be based on
all previous decisions.)]]

These are the rules. Everything will happen exactly as specified by them.
Enjoy.
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B Estimation results with further variables

Here we show further estimation results for treatment NO. Next to own
experienced pass rates, we include a variable capturing the possible effect
of aspiration levels, πi,t, subject i’s average payoff up to period t − 1; a
variable capturing the possible effect of learning direction theory, Ln,i,t = 1
if subject i lost in period t−1 on node n+1 (and 0 otherwise); and a variable
capturing the passing of time, t itself. Table 11 shows the estimates for the
random-effects model

pn,i,t = αn + βnSn+1,i,t + γnπi,t + λnLn,i,t + κt+ vn,i + εn,i,t, (2)

where n = 3, 4, 5, 6 is the decision node and all other variables are defined
as before. Conventional wisdom would let us expect a positive sign for γ (if
aspiration levels matter), a negative sign for λ (if subjects immediately react
to bad experiences in the way of moving towards better responses), and a
negative sign for κ (if there is unravelling because of a vanishing shadow of
the future). Strikingly, none of these expectations turns out to be true.

Table 11: Estimated decision rules at nodes 3, 4, 5, and 6 in treatment NO.

Dependent var.: Pass
Node 3 Node 4 Node 5 Node 6

Private Statistic β 0.423∗∗∗ 0.550∗∗∗ 0.616∗∗∗ 0.578∗∗∗

(node specific, last 5 periods) (0.049) (0.077) (0.101) (0.167)

Aspirations γ 0.015∗ 0.008 0.014 −0.001
(0.009) (0.007) (0.010) (0.009)

Learning dir λ 0.064∗∗ −0.046 −0.088 0.017
(0.030) (0.043) (0.057) (0.125)

Period κ −0.003∗∗ −0.003∗ −0.002 0.008∗∗

(0.001) (0.002) (0.002) (0.003)

Constant α 0.539∗∗∗ 0.492∗∗∗ 0.329∗∗∗ 0.054
(0.063) (0.071) (0.080) (0.107)

R2 0.285 0.189 0.139 0.151
χ2

(2) 167.043 102.590 55.791 19.449

N 594 478 352 114

Note: Stars represent (two-sided) p-values: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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