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Abstract—A new technique is proposed for fault-tolerant
linear, sesquilinear and bijective (LSB) operations on M integer
data streams (M ≥ 3), such as: scaling, additions/subtractions,
inner or outer vector products, permutations and convolutions.
In the proposed method, the M input integer data streams are
linearly superimposed to form M numerically-entangled integer
data streams that are stored in-place of the original inputs. A
series of LSB operations can then be performed directly using
these entangled data streams. The results are extracted from the
M entangled output streams by additions and arithmetic shifts.
Any soft errors affecting any single disentangled output stream
are guaranteed to be detectable via a specific post-computation
reliability check. In addition, when utilizing a separate processor
core for each of the M streams, the proposed approach can
recover all outputs after any single fail-stop failure. Importantly,
unlike algorithm-based fault tolerance (ABFT) methods, the
number of operations required for the entanglement, extraction
and validation of the results is linearly related to the number
of the inputs and does not depend on the complexity of the
performed LSB operations. We have validated our proposal in
an Intel processor (Haswell architecture with AVX2 support) via
fast Fourier transforms, circular convolutions, and matrix mul-
tiplication operations. Our analysis and experiments reveal that
the proposed approach incurs between 0.03% to 7% reduction in
processing throughput for a wide variety of LSB operations. This
overhead is 5 to 1000 times smaller than that of the equivalent
ABFT method that uses a checksum stream. Thus, our proposal
can be used in fault-generating processor hardware or safety-
critical applications, where high reliability is required without
the cost of ABFT or modular redundancy.

Index Terms—linear operations, sum-of-products, algorithm-
based fault tolerance, silent data corruption, core failures, nu-
merical entanglement

I. INTRODUCTION

THE current technology roadmap for high-performance
computing (HPC) indicates that digital signal process-

ing (DSP) routines running on such systems must become
resilient to transient or permanent faults occurring in arith-
metic, memory or logic units. Such faults can be caused
by process variations, silent data corruptions (e.g., due to
particle strikes, circuit overclocking or undervolting, or other
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hardware non-idealities) [1], scheduling and runtime-induced
faults [2], misconfigured application programming interfaces
(APIs) [3] and opportunistic resource reservation [4] in cloud
computing systems. For example, DSP systems such as: web-
page or multimedia retrieval [5], object or face recognition
in images [6], machine learning and security applications [7],
transform decompositions and video encoding [8]–[16], and
visual search and retrieval systems [17], are now deployed
using Amazon Elastic Compute Cloud (EC2) spot instances
with substantially-reduced billing cost (e.g., in the order of
0.01$ per core per hour). However, Amazon reserves the right
to terminate EC2 spot instances at any moment with little or
no prior notice. In addition, transient service interruptions may
occur at unpredictable intervals, since processor cores in EC2
spot instance reservations may not be solely dedicated to the
cluster under consideration [3], [4].

System-induced faults in DSP routines manifest as [1],
[2], [18]: (i) transient faults, where execution continues un-
interrupted on all input data streams—albeit with corrupted
data and possibly carrying out erroneous logic or arithmetic
operations—or (ii) fail-stop failures, where the execution on
one of the processor cores halts due to a fail-stop exception
(e.g., overflow detection, memory leak assertion, etc.) or a
system crash. In the first case, a highly-reliable system should
be able to detect all faults (and possibly correct them); in
the second case (which is analogous to an erasure in a
communications system, since it is easily detectable), the
system should be able to recover the results of the halted
execution without requiring recomputation.

The compute- and memory-intensive parts within DSP
routines comprise: transform decompositions, signal cross-
correlation, inner or outer vector products, matrix products,
etc. Such operations are linear, sesquilinear (also known as
“one-and-half linear”) and bijective, collectively called LSB
operations in this paper. Moreover, especially when consider-
ing multimedia data, these operations are typically performed
using 32-bit or 64-bit integer arithmetic. Therefore, ensuring
highly reliable integer LSB operations with minimal overhead
against their unreliable equivalents is of paramount importance
for signal processing systems.

A. Summary of Prior Work

Existing techniques that can ensure reliability to tran-
sient faults and/or fail-stop failures comprise three cate-
gories: (i) component-based reliability via error-correcting
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codes (ECC) [19], e.g., random access memory or cache
memory chip designs with native ECC support for the detec-
tion/correction of bit flips; (ii) algorithm-based fault-tolerance
(ABFT) [20]–[26], i.e., methods producing additional check-
sum inputs/outputs that are tailored to the algorithm under
consideration; (iii) systems with double or triple modular
redundancy (MR), where the same operation is performed in
parallel in two or three separate processors (or threads) that
cross-validate their results and recover from fail-stop failures
[27].

While component-based methods can indeed mitigate many
of the faults occurring in memory or processor components,
their integration into hardware designs is known to incur
substantial overhead [28]. Therefore, system designers tend
to disable such functionalities for most applications, even at
the risk of allowing faults to occur undetected. Moreover, in
order to offer end-to-end guarantees on fault tolerance and
robustness to fail-stop failures (i.e., from the input data streams
to the results of a certain computation), component-based fault
tolerance must be integrated with checkpointing and execution
roll-back [21], which further increases the complexity of the
final solution.

Similarly, it is well known that ABFT and MR solutions can
lead to substantial processing overhead in hardware/software
systems and can incur increased energy consumption. For
example, Bosilca et. al. [29], report that checkpointing the
system state to detect a single fault per process (and rolling
back to a previous state when faults are detected) leads to
9%–34% time overhead for an implementation using up to
484 processes. Similarly, Chen and Dongarra [21] report that,
for detecting a single fault per subblock of a large matrix
operation, 4%–9% execution time overhead is incurred in
a ScaLAPACK implementation over a distributed computing
system. Finally, Wunderlich et. al. [30] report that ABFT for
the generic matrix multiply (GEMM) routine incurs 18%–45%
execution time overhead versus the unprotected GEMM on
medium to large matrix dimensions under a GPU implemen-
tation. In conjunction with recent studies on soft errors in
processors that indicate that hardware faults tend to happen
in bursts [1], [19], [31], this shows that ABFT techniques
may ultimately not be the best way to mitigate arbitrary fault
patterns occurring in 32-bit or 64-bit data representations in
memory, arithmetic or logic units of the utilized hardware. On
the other hand, while MR approaches can indeed mitigate such
faults with very high probability, it is well known that they
incur a two-fold or three-fold penalty in execution time (or
energy consumption) as well as substantial data transfers and
latencies to synchronize and cross-check results [27].

B. Contribution

We propose a new method to mitigate transient faults or
failures in LSB operations performed in integer data streams
with integer arithmetic units. Examples of such operations
are element-by-element additions and multiplications, inner
and outer vector products, sum-of-squares and permutation
operations. They are the building blocks of algorithms of
foundational importance, such as: matrix multiplication [20],

[32], convolution/cross-correlation [33], template matching for
search and motion estimation algorithms [13]–[16], [34]–[36],
covariance calculations [6], [37], integer-to-integer transforms
[9], [10], [12], [38] and permutation-based encoding systems
[39], which form the core of the applications discussed earlier.
Our method:

1) does not generate additional data in form of checksum or
duplicate inputs, as done by ABFT-based or MR-based
methods; instead, it performs pairwise linear superposi-
tions within the numerical representation of the original
inputs, thereby increasing their dynamic range, albeit in
a controllable manner.

2) does not require modifications to the arithmetic or mem-
ory units, as done by component-based ECC approaches,
and can be deployed in standard 32/64-bit integer units
or even 32/64-bit floating-point units;

3) does not depend on the specifics of the LSB operation
performed; in fact, it can also be used to detect silent data
corruptions in storage systems, i.e., when no computation
is performed with the data.

Beyond the analytic presentation of our proposal and the
theoretical estimation of its complexity against ABFT, we also
present performance results using fast Fourier transform (FFT)
computation, cross-correlation and matrix product operations,
thereby significantly advancing our early exposition [40] that
summarized our initial findings on fail-stop failure mitigation
for limited types of operations. The results show that, for
the vast majority of cases, our method’s percentile overhead
in execution against the fault-intolerant (i.e., conventional)
realization is upper-bounded by 0.6%. This overhead is found
to be 5 to 1000 times smaller than the one incurred by the
ABFT approach that offers the same fault tolerance capability.

C. Paper Organization

In Section II, we outline ABFT, MR and the basic concept of
the proposed approach for fault tolerance in numerical stream
processing. In Section III we present the details for the newly-
proposed concept of numerical entanglement and demonstrate
its inherent reliability for LSB processing of integer streams.
Section IV presents the complexity of numerical entangle-
ments within integer linear or sesquilinear operations. Section
V presents experimental comparisons and Section VI presents
some concluding remarks.
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II. ABFT/MR METHODS VERSUS NUMERICAL

ENTANGLEMENT

Consider a series of M input streams of integers, each
comprising Nin samples1 (M ≥ 3, Nin ∈ N⋆):

cm = [cm,0 . . . cm,Nin−1] , 0 ≤m <M. (1)

These may be the elements of M rows of a matrix of integers,
or a set of M input integer streams of data to be operated upon
with an integer kernel g. This operation is performed by:

∀m ∶ dm = cm op g

op ∈ {+, − , × , ⟨ , ⟩ ,⊗,(
I
G
) ,⋆} (2)

with dm the mth vector of output results and op
any LSB operator such as element-by-element addi-
tion/subtraction/multiplication, inner/outer product, permuta-
tion2 (i.e., bijective mapping from the sequential index set I
to index set G corresponding to g) and circular convolution
or cross-correlation with g. An illustration of the application
of (2) is given in Fig. 1(a). Beyond the single LSB operator
indicated in (2) and illustrated in Fig. 1(a), we can also
assume series of such operators applied consecutively in order
to realize higher-level algorithmic processing, e.g., multiple
consecutive additions, subtractions and scaling operations with
pre-established kernels followed by circular convolutions and
permutation operations. Conversely, the input data streams can
also be left in their native state (i.e., stored in memory), if
op = {×} and g = 1.

A. Algorithm-based Fault Tolerance and Modular Redun-
dancy

In their original (or “pure”) form, the input data streams of
(1) are uncorrelated and one input element cannot be used to
cross-check for faults in another without inserting some form
of coding or redundancy. This is conventionally achieved via
ABFT methods [20]–[26]. Specifically, one additional input
stream is created that comprises checksums of the original
inputs:

r = [r0 . . . rNin−1] , (3)

by using, for example, the sum of the input samples [25], [26]
at the nth position in each of the M streams, 0 ≤ n < Nin:

1Notations: Boldface uppercase and lowercase letters indicate matrices and
vectors, respectively; the corresponding italicized lowercase indicate their
individual elements, e.g. A and am,n; calligraphic uppercase letters indicate
operators; N⋆ is the set of natural numbers excluding zero; d̂ denotes the
recovered value of d after unpacking or disentanglement; all indices are
integers. Basic operators: ⌊a⌋ is the largest integer that is smaller or equal
to a (floor operation); ⌈a⌉ is the smallest integer that is larger or equal to a
(ceiling operation); ∥a∥ is vector norm-2; a&b denotes binary AND operation
between the bits of a and b, respectively; a≪ b and a≫ b indicate left and
right arithmetic shift of integer a by b bits with truncation occurring at the
most-significant or least significant bit, respectively; a mod b = a − ⌊a

b
⌋ b is

the modulo operation; a← b assigns the value of variable or expression b to
variable a.

2We remark that we consider LSB operations that are not data-dependent,
e.g., permutations according to fixed index sets as in the Burrows-Wheeler
transform [39], [41].

∀n ∶ rn =
M−1

∑
m=0

cm,n. (4)

Then the processing is performed in all input streams
c0, . . . , cM−1 and in the checksum input stream r by:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

d0

⋮
dM−1

e

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c0

⋮
cM−1

r

⎤⎥⎥⎥⎥⎥⎥⎥⎦

op g, (5)

Any transient faults in any single stream out of M + 1 output
streams can then be detected by checking if:

∃n ∶
M−1

∑
m=0

dm,n ≠ en. (6)

This process is pictorially illustrated in Fig. 1(b). Similarly,
result recovery after any single fail-stop failure can take place
by subtracting the results of all the remaining output streams
from r. As discussed in partitioning schemes for checksum-
based methods and ABFT [25], [26], the recovery capability
can be increased by using additional weighted checksums.
However, this comes at the cost of increasing the number of
checksum input streams, which leads to increased overhead.
For this reason, practical approaches tend to use a single
checksum stream [20], [21], [25], [29], [42]. At the other
extreme, when M checksum streams are used, this corresponds
to repeating the operation twice (dual modular redundancy)
and any fault on the original computation can be detected if
the results are compared with the results of the checksum set.
In summary, the practical limitations of ABFT are:

1) The percentile implementation overhead (i.e., processing
cycles, energy consumption, memory accesses) of ABFT
is 1

M
× 100%.

2) The dynamic range of the computations with each of the
checksum input streams is increased by ⌈log2 M⌉ bits,
as each of the checksum input data values comprises the
sum of groups of M input samples, as shown in (4).

3) The overall execution flow changes as the total number
of processed streams is changed from M to M + 1.

B. Numerical Entanglement

In our proposal, numerical entanglement mixes the inputs
prior to linear processing using linear superposition and en-
sures the results can be extracted and validated via a mixture
of shift-add operations. It is conceptualized in Fig. 2. As
shown there, M (M ≥ 3) input streams (each comprising Nin

integer samples and denoted by cm 0 ≤ m < M ) become
M entangled streams of integers (of Nin integer samples
each), εm. Each element of the mth entangled stream, εm,n

(0 ≤ n < Nin), comprises the superposition of two input
elements cx,n and cy,n from different input streams x and y,
i.e., 0 ≤ x, y <M and x ≠ y. The LSB operation is carried out
with the entangled streams, thereby producing the entangled
output streams δm (each comprising Nout integer samples).
These can be disentangled to recover the final results d̂m. Any
transient faults that occurred on any single entangled output
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(a) Conventional processing (b) ABFT-based processing using one checksum stream

Figure 1. (a) kernel g applied to M streams of input integers via LSB operator op; (b) corresponding application using one checksum input stream for
transient fault detection or fail-stop failure recovery via ABFT.

stream out of M are detectable with a single test that utilizes
additions and shift operations. In addition, any single fail-stop
failure can be mitigated from the results of the remaining
streams.

Unlike checksum or MR methods, numerical entanglement
does not use additional checksum streams. Therefore, the
complexity of entanglement, disentanglement (recovery) and
fault checking does not depend on the complexity of the
operator op, or on the length and type of the kernel (operand)
g. The entangled inputs can be written in-place and no addi-
tional storage or additional operations are needed during the
execution of the actual operation (albeit at the cost of reducing
the dynamic range supported). In fact, with the exception of
addition/subtraction operations with constants, no modifica-
tions are performed to the processors, software routines and
arithmetic units performing the operation with kernel g and
the computational system design remains unaware of the fact
that entangled input streams are used instead of the original
input streams. Thus, the entangled computation shown in Fig.
2 can be executed concurrently in M processing cores (that
may be physically separate) and any memory optimization
or other algorithmic optimization can be applied in the same
manner as for the original computation. For example, if a fast
Fourier transform (FFT) routine is used for the calculation
of convolution or cross-correlation of each input stream cm

with kernel g, this routine can be used directly with the
entangled input streams εm and kernel g. A summary of
the features of each approach is presented in Table I. The
comparison includes our previous work on numerical packing
and duplicate execution [33], [36], [43]–[45], which can be
seen as an alternative form of MR.

III. NUMERICAL ENTANGLEMENT

Numerical entanglement bears some resemblance to the
concept of numerical packing proposed previously by An-
dreopoulos et. al. [33], [35], [36], [43]–[45], Kadyrov and
Petrou [34] and others [38], [46]. By using multiple packed
representations and no overlap, it can be shown [45] that
all faults occurring on a single description can be detected,
at the cost of using a 64-bit integer representation that can
accommodate up to 19-bit signed integer outputs in packed
format. This illustrates that utilizing packing for fault detection
may be a viable approach, but it comes at the cost of significant

Figure 2. LSB processing via numerical entanglement, followed by result
recovery and validation.

reduction in the dynamic range supported by the packed rep-
resentation. The proposed approach overcomes this limitation
by allowing inputs to superimpose each other, thereby creating
an input representation where certain bits from pairs of input
data samples are numerically entangled, as explained in the
following.

A. Proposed Numerical Entanglement in Groups of Three
Inputs (M = 3)

Numerical entanglement guarantees the detection of any
transient fault occurring in any one out of the M entangled
streams created. In addition, if a separate core is used for the
processing of each stream, it allows for the recovery of all
outputs after any single fail-stop core failure.

1) Entanglement: In the simplest form of entanglement
(M = 3), each triplet of input samples [shown in Fig. 3(a)]
of the three integer streams, c0,n, c1,n and c2,n, 0 ≤ n < Nin,
produces the following entangled triplet via the linear super-
position:

ε0,n = Sl {c2,n} + c0,n

ε1,n = Sl {c0,n} + c1,n (7)

ε2,n = Sl {c1,n} + c2,n

with

2l + k ≤ w (8)
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Table I
SUMMARY OF FEATURES OF DIFFERENT METHODS FOR FAULT TOLERANCE WITHIN EACH GROUP OF M OUTPUTS OF M STREAMS, WITH EACH STREAM

ELEMENT COMPRISING w BITS.

Method ABFT Dual Modular Packing and Duplicate Proposed
Feature [20], [21], [29], [42] Redundancy [27] Execution [33], [36], [43] Numerical Entanglement

In-place storage No No No Yes
% of redundant 1

M
× 100% 100% 0% 0%

computations
Output bitwidth reduction due ⌈log2 M⌉ bits (only

0 bits 0 bits ⌈ w
M
⌉ bitsto fault tolerance capability for checksum inputs)

Guaranteed fault detection / 1 fault in every 1 fault in every 1 fault in every 1 fault in every
fail-stop failure mitigation M outputs 2 outputs 2 outputs M outputs

Percentile overhead 1
M
× 100%

More than More than 0.03% to 7% (decreases
in execution 100% 100% with operand length)

where w ∈ {32,64} for 32 or 64-bit integer representations,
and

Sb {a} ≡ {
(a≪ b) , if b ≥ 0
[a≫ (−b)] , if b < 0

(9)

the left or right arithmetic shift of a by b bits, with the
maximum dynamic range supported for each signed input,
c0,n, c1,n and c2,n, being proportional to l + k bits.

The values for l and k are chosen such that l+k is maximum
within the constraint of (8) and k ≤ l. Via the application of
LSB operations, each εm entangled input stream (0 ≤ m <
M ) is converted to the entangled output stream3 δm (which
contains Nout values):

∀m ∶ δm = (εm op g) . (10)

A conceptual illustration of the entangled outputs after (7) and
(10) is given in Fig. 3(b). The overlap of the arrows in the
representations of δ0,n, δ1,n and δ2,n indicate the “entangled”
region of k bits, where the final outputs, d0,n, d1,n and d2,n,
numerically superimpose each other (in pairs) due to the
shift and add operations of (7). Similarly as before, l bits
of dynamic range are sacrificed in order to detect faults (or
mitigate a fail-stop failure) during the computation of (10).
Since it is assumed that the dynamic range of the inputs
does not exceed l + k bits, the entangled representation is
contained within 2l+k bits and never overflows. As a practical
instantiation of (7), we can set w = 32, l = 11 and k = 10 in a
signed 32-bit integer configuration.

We now describe the disentanglement and result validation
(or recovery) process. The reader can also consult Fig. 3.

2) Disentanglement: We can disentangle and recover the
final results d̂0,n, d̂1,n and d̂2,n by (0 ≤ n < Nout):

dtemp = δ2,n − Sl {δ1,n}

d̂2,n = S−2(w−l) {S2(w−l) {dtemp}}

d̂0,n = S−2l {− (dtemp − d̂2,n)} (11)

d̂1,n = δ1,n − Sl {d̂0,n}

3For the particular cases of: op ∈ {+,−}, g must also be entangled with
itself via: gn ← Sl {gn} + gn, in order to retain the homomorphism of the
performed operation. All other operations occur without any modification in
g.

The first three parts of (11) assume a 2w-bit integer repre-
sentation is used for the interim operations, as the temporary
variable dtemp is stored in 2w-bit integer representation. How-
ever, all recovered results, d̂0,n, d̂1,n and d̂2,n, require only
l + k bits.

Explanation of (11): The first part creates a temporary
composite number, dtemp, comprising d̂0,n in the l + k most-
significant bits and d̂2,n in the 2l least-significant bits (there-
fore, dtemp requires 3l + k bits). The creation of dtemp is
pictorially illustrated in Fig. 3(c). In the second part, d̂2,n is
extracted by: (i) discarding the (2w − 2l) most-significant bits
of dtemp; (ii) arithmetically shifting the output down to the
correct range. The third part of (11) uses d̂2,n to recover d̂0,n

from dtemp and, in the fourth part of (11), d̂0,n is used to
recover d̂1,n. Notice that (11) recovers all three d̂0,n, d̂1,n and
d̂2,n without using δ0,n. This is a crucial aspect that leads to
the fault tolerance characteristic of our proposal, which are
discussed next.

B. Properties and Fault Tolerance Characteristics

Remark 1 (operations within w bits): To facilitate our
exposition, the first three parts of (11) are presented under the
assumption of a 2w-bit integer representation. However, it is
straightforward to implement them via w-bit integer operations
by separating dtemp into two parts of w bits and performing
the operations separately within these parts.

Remark 2 (dynamic range): Bit l+k within each recovered
output d̂0,n, d̂1,n and d̂2,n represents its sign bit. Given that: (i)
each entangled output comprises the addition of two outputs
(with one of them left-shifted by l bits); (ii) the entangled
outputs must not exceed 2l + k bits, the outputs of the LSB
operations must not exceed the range

∀n ∶ d0,n, d1,n, d2,n ∈ {− (2
l+k−1 − 2l) , . . . , 2l+k−1 − 2l} .

(12)
Therefore, (12) comprises the range permissible for the LSB
operations with the entangled representation.

Proposition 1. If a separate core is used for each stream
computation of (10) with M = 3, the disentanglement process
of (11) can recover all results, d̂0, d̂1, and d̂2, after any single
fail-stop failure.

Proof: See Appendix.
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Figure 3. The arrows indicate the dynamic range of the represented data elements (from least-significant to most-significant bits). (a) Illustration of three
input data samples at position n; (b) entangled outputs after entangling and integer LSB processing; (c) illustration of the first part of (11) that produces the
temporary variable dtemp.

The following proposition proves that, if all three entangled
output streams are available, we can detect any transient fault
in any single stream.

Proposition 2. Any transient fault occurring on a single
entangled output stream during the computation of (10) with
M = 3 is detectable.

Proof: See Appendix.

C. Generalized Entanglement in Groups of M Inputs (M ≥ 3)

We extend the proposed entanglement process to using M
inputs and providing M entangled descriptions, each com-
prising the linear superposition of two inputs. This ensures
that, for every n (0 ≤ n < Nout), any single transient fault
will be detected within each group of M output samples.
Alternatively, if M separate cores are used for the computation
of the M entangled outputs, any single fail-stop failure will be
mitigated from the remaining M −1 output entangled streams.

The condition for ensuring that overflow is avoided is

(M − 1) l + k ≤ w (13)

and the dynamic range supported for all outputs is (∀m,n):

dm,n ∈ {−2
(M−3)l+k (2l−1 − 1) , . . . , 2(M−3)l+k (2l−1 − 1)} .

(14)
The values for l and k are chosen such that (M − 2) l + k is
maximum within the constraint of (13) and k ≤ l.

We now define the following circulant matrix opera-
tor comprising cyclic permutations of the 1 × M vector
[1 0 ⋯ 0 Sl]:

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0 Sl

Sl 1 ⋯ 0 0
⋱

0 ⋯ Sl 1 0
0 ⋯ 0 Sl 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦M×M

. (15)

Operator E generalizes the proposed numerical entanglement
process. Specifically, following the case of M = 3, in the
generalized entanglement in groups of M streams, two inputs
are entangled together (with one of the two shifted by l
bits) to create each entangled input stream of data. Any LSB
operation is then performed on these entangled input streams
and we shall show that any transient fault occurring during the
processing of a single entangled stream can be detected within
each group of M outputs. Alternatively, any single fail-stop
core failure can be mitigated.

For every input stream position n, 0 ≤ n < Nin, the
entanglement vector performing the linear superposition of
pairs out of M inputs is now formed by:

[ε0,n ⋯ εM−1,n]
T
= E {[c0,n ⋯ cM−1,n]

T
} (16)

Fig. 4 illustrates the entangled outputs after (16) and the LSB
processing of (10) under M = 4. In addition, Fig. 5 illustrates
the general case of M outputs, produced after M inputs were
entangled to create M descriptions and (16) and (10) were
performed.

After the application of (10), we can disentangle every
output stream element δm,n, 0 ≤ m < M , 0 ≤ n < Nout, as
follows. Let us first identify the entangled output stream δr

(with 0 ≤ r <M ) that we shall not use in the disentanglement
process, either because it is unavailable due a fail-stop failure,
or because we would like to recreate it if we are checking for
transient faults. We produce the 2w-bit temporary variable4

dtemp by:

dtemp =
M−2

∑
m=0
(−1)m S(M−2−m)l {δ(r+1+m)modM,n} . (17)

An illustration of the result of (17) for M = 4 and r = 0 is
given in Fig. 6. Notice that (17) does not use δr. We can then

4Due to the usage of 2w bits, (17)–(19) must be separated in two parts of
w bits if the entire operation has to occur via w-bit integer arithmetic. Since
this is an implementation issue, we do not illustrate this separation in our
exposition.
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bits

Figure 4. Illustration of entanglement of M = 4 outputs after integer LSB
processing. In this case, for w ∈ {32,64}, k = l = w

4
.

bits bits

Figure 5. Illustration of the general form of entanglement of M outputs
after integer LSB processing.

extract the value of d̂r,n and d̂(r+M−1)modM,n directly from
dtemp:

d̂(r+M−1)modM,n = S−[2w−(M−1)l] {S2w−(M−1)l {dtemp}} (18)

d̂r,n = S−(M−1)l {(−1)
M (dtemp − d̂M−1,n)} . (19)

The other outputs can now be disentangled by (1 ≤m <M−2):

d̂(r+m)modM,n = δ(r+m)modM,n − Sl {d̂(r+m−1)modM,n} . (20)

Proposition 3. If a separate core is used for each stream
computation of (10), the disentanglement process of (17)–
(20) can recover all results, d̂0, . . . , d̂M−1, after any single
fail-stop failure.

Proof: See Appendix.

Proposition 4. Any transient fault occurring on a single
entangled stream during the computation of (10) with M ≥ 3
is detectable.

unused bits bits

Figure 6. Temporary value dtemp produced during the disentanglement
process of (17) within an integer representation, with M = 4. As shown
in Table II, for w ∈ {32,64}, k = l for this case.

Proof: See Appendix.
Remark 3 (dynamic range of generalized entanglement and

equivalence to checksum methods): Examples for the maxi-
mum bitwidth achievable for different cases of M are given in
Table II assuming a 32-bit representation. We also present the
dynamic range permitted by the equivalent checksum-based
method [(3)–(6)] in order to ensure that its checksum stream
does not overflow under a 32-bit representation. Evidently, for
M ≤ 10, the proposed approach incurs loss of 1 to 9 bits
of dynamic range against the checksum-based method, while
it allows for higher dynamic range than the checksum-based
method for M ≥ 11. At the same time, our proposal does
not require the overhead of applying the LSB operations to
an additional stream, as it “overlays” the information of each
input onto another input via the numerical entanglement of
pairs of inputs. Beyond this important difference, Propositions
3 and 4 show that our approach offers the exact equivalent to
the checksum method of (3)–(6) for integer inputs.

Remark 4 (extensions): It is of theoretical interest to con-
sider whether the proposed numerical entanglement approach
can be extended to guarantee detection of multiple tran-
sient faults occurring in co-located positions in the entangled
streams, or recover from more than a single fail-stop failure
in M streams. In addition, while LSB operations cover a
wide range of compute- and memory-intensive DSP systems, it
would be interesting to investigate the applicability of our ap-
proach to data-dependent operations or non-linear operations,
like modulo, binary operators, etc. Finally, beyond integer pro-
cessing, the fault tolerance of numerical entanglement would
be extremely beneficial to floating-point LSB operations.

Concerning the first point, a potential solution could be to
create multiple tiers of entanglement, i.e., reapply the operator
of (16) to [ε0,n ⋯ εM−1,n]

T
to create K entanglement

stages, and thereby examine if this leads to the possibility
of resilience to K transient faults in M co-located entangled
outputs (or recovery from K fail-stop failures in M streams)
without requiring K checksum streams like ABFT. While we
have some encouraging results in this direction, due to space
limitations we plan to investigate and quantify this in another
paper.

The second point (extension beyond LSB operations) is also
a limitation of ABFT fault-tolerance methods. Therefore, it can
be addressed in a similar way as carried out for such cases, i.e.,
disentangle all outputs before the non-LSB operation, carry
out this operation with the disentangled outputs (using another
form of fault tolerance—such as MR—for this process), and
then re-entangle the results if no faults or failures are detected.
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This requires a system-level approach to carefully leverage the
cost of such modifications, so we opt to leave it as a topic for
future work.

Finally, concerning extension to floating-point arithmetic,
we do not foresee a direct way to achieve this with the pro-
posed approach, as standard floating-point arithmetic does not
allow for two “clean” top and bottom zones of bits in the way
presented in Figs. 3, 4 and 5. Moreover, it is important to note
that, in the case of floating-point arithmetic, even conventional
ABFT approaches require more complex handling of fault
detection based on appropriate thresholds, as the sum of the
results of the M output streams will not be reproduced exactly
by the results of the checksum stream due to the lossy and
non-commutative nature of floating-point arithmetic. However,
possibilities to incorporate kernel-adaptive companding and
rounding (that convert floating-point inputs into integers for
error-tolerant generic matrix multiplication kernels [36]) prior
to entanglement, may be investigated in future work.

Table II
EXAMPLES OF l AND k VALUES AND BITWIDTH SUPPORTED FOR THE

OUTPUT DATA UNDER w = 32 BITS AND: (i) DIFFERENT NUMBERS OF

ENTANGLEMENTS; (ii) ABFT WITH P = 1. BOTH APPROACHES

GUARANTEE THE MITIGATION OF A FAIL-STOP FAILURE (OR DETECT

TRANSIENT FAULTS) IN ONE OUT OF M STREAMS.

M l k
Maximum bitwidth supported by

proposed: ABFT:
(M − 2) l + k w − ⌈log2 M⌉

3 11 10 21 30
4 8 8 24 30
5 7 4 25 29
8 4 4 28 29

11 3 2 29 28
16 2 2 30 28
32 1 1 31 27

IV. COMPLEXITY IN LSB OPERATIONS WITH NUMERICAL

ENTANGLEMENTS

We now turn our attention to the cost of performing numer-
ical entanglement, result extraction and validation versus the
cost of the LSB operation itself.

A. Complexity Analysis

Consider M input integer data streams, each comprising
several samples and consider that an LSB operation op with
kernel g is performed in each stream. This is the case,
for example, under inner-products performed for GEMM or
convolution/cross-correlation between multiple input streams
for similarity detection or filtering applications or matrix-
vector products in Lanczos iterations and iterative methods
[37]. If the kernel g has substantially smaller length than the
length of each input stream, the effective input stream size can
be adjusted to the kernel length under overlap-save or overlap-
add operation in convolution and cross-correlation [33] and
several (smaller) overlapping input blocks can be processed
independently. Similarly, block-major reordering is used in
matrix products and transform decompositions for increased
memory efficiency [9], [10], [12], [32], [36], [47]. Thus, in the
remainder of this section we assume that N expresses both the

input data stream and kernel dimension under 32/64-bit integer
representation.

The operations count (additions/multiplications) for stream-
by-stream sum-of-products between a matrix comprising M
subblocks of N × N integers and a matrix kernel compris-
ing N × N integers (see [21], [32], [36], [42] for example
instantiations within high-performance computing environ-
ments) is: CGEMM = MN3. For sesquilinear operations, like
convolution and cross-correlation of M input integer data
streams (each comprising N samples) with kernel g [see Fig.
1(a)], depending on the utilized realization, the number of
operations can range from O (MN2) for direct algorithms
(e.g., time-domain convolution) to O (MN log2 N) for fast
algorithms (e.g., FFT-based convolution) [33]. For exam-
ple, for convolution or cross-correlation under these settings
and an overlap-save realization for consecutive block pro-
cessing, the number of operations (additions/multiplications)
is [33]: Cconv,time = 4MN2 for time domain processing
and Cconv,freq = M [(45N + 15) log2 (3N + 1) + 3N + 1] for
frequency-domain processing.

As described in Section III, numerical entanglement of
M input integer data streams (of N samples each) requires
O (MN) operations for the entanglement, extraction and val-
idation (or recovery) per output sample. For example, ignoring
all arithmetic-shifting operations (which take a negligible
amount of time), based on the description of Section III the
upper bound of the operations for numerical entanglement,
extraction and validation/recovery is: Cne,conv = 2MN . Simi-
larly as before, for the special case of the GEMM operation
using M subblocks of N × N integers, the upper bound
of the overhead of numerical entanglement of all inputs is:
Cne,GEMM = 2MN2. We present the percentile values obtained
for Cne,GEMM

CGEMM
×100%, Cne,conv

Cconv,time
×100% and Cne,conv

Cconv,freq
×100% in Fig.

7 for typical values of N and M . For sesquilinear operations,
the overhead of numerical entanglement, extraction and result
validation/recovery in terms of arithmetic operations is below
0.3%. Moreover,

lim
N→∞

Cne,GEMM

CGEMM
= lim

N→∞

Cne,conv

Cconv,time
= lim

N→∞

Cne,conv

Cconv,freq
= 0, (21)

i.e., the overhead of the proposed approach approaches 0% as
the dimension of the LSB processing increases.

For comparison purposes, Fig. 8 shows the percentile over-
head of ABFT methods [Fig. 1(b) [21], [29], [42]] under: (i)
the same range of values for N and M and (ii) the same
fault tolerance capability5. Specifically, we examine the ratios:
CABFT,GEMM

CGEMM
× 100%, CABFT,conv,time

Cconv,time
× 100% and CABFT,conv,freq

Cconv,freq
× 100%,

where CABFT,GEMM = 2MN2 + 1
M

CGEMM, CABFT,conv,time =
2MN + 1

M
Cconv,time and CABFT,conv,freq = 2MN + 1

M
Cconv,freq

represent the overhead in terms of operations count (addi-
tions/multiplications) for each case. Given that time-domain
and frequency-domain convolution exhibit the same percentile
overhead as for the case of GEMM (with variation that is

5In order to keep our treatment generic, we consider as ABFT in GEMM
the method that generates an additional (i.e., checksum) subblock for fault tol-
erance, instead of the row-column ABFT method of Huang and Abraham [20].
However, our experiments present a comparison of the proposed approach for
GEMM against both approaches.
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(a) GEMM (b) Convolution (time) (c) Convolution (freq)

Figure 7. From left to right: Ratios of arithmetic operations for numerical entanglement, extraction and result validation/recovery versus the arithmetic
operations of: generic matrix multiplication, time-domain convolution and frequency-domain convolution, with M the number of streams (or the number of
subblocks within a GEMM operation) and N the kernel size (the dimension of each subblock in a GEMM operation).

limited to no more than 0.2%), Fig. 8 illustrates only the latter.
As expected, the overhead of ABFT methods converges to
1
M
×100% as the dimension of the LSB processing operations

increases, i.e.,

lim
N→∞

CABFT,GEMM

CGEMM
= lim

N→∞

CABFT,conv,time

Cconv,time

= lim
N→∞

CABFT,conv,freq

Cconv,freq
(22)

=
1
M

.

Therefore, ABFT leads to substantial overhead (above 10%)
when high reliability is pursued, i.e., when M ≤ 8. Finally,
even for the low reliability regime (i.e., when M > 8), Fig. 8
shows that ABFT can incur more than 4% overhead in terms
of arithmetic operations.

Figure 8. Ratio of arithmetic operations for ABFT generation and result
validation/recovery versus the arithmetic operations of: generic matrix multi-
plication, with M the number of streams (i.e., GEMM subblocks) and N the
kernel size (i.e., the dimension of GEMM subblocks).

B. Discussion

The comparison between Fig. 7 and Fig. 8 is illustrative
for the capabilities unleashed by the proposed highly-reliable

numerical entanglement. Evidently, in the proposed approach,
the most-efficient operational area is the leftmost part of the
plots, i.e. small values of M and large values of N (small-size
grouping of long streams of high-complex LSB operations).
This area corresponds to the least-efficient operational area of
ABFT. The comparison between the two figures demonstrates
that, for the same fault tolerance capability (e.g., detection
of one transient fault in every three co-located outputs or
recovery from one fail-stop failure in three processors, which
corresponds to M = 3), the overhead of the proposed ap-
proach is three orders of magnitude smaller than that of
ABFT. Conversely, the least-efficient operational area for our
approach is the rightmost part of the plots of Fig. 7 and Fig.
8, i.e. large values of M and small values of N (large-size
grouping of short streams of low-complex LSB operations).
This area corresponds to the most-efficient operational area of
high-redundant ABFT methods. Nevertheless, the comparison
between the two figures demonstrates that, for the same fault
tolerance capability (e.g., detection of one transient fault in
every 32 co-located outputs or recovery from one fail-stop
failure out of 32 processors, which corresponds to M = 32),
the overhead of the proposed approach is still one to two orders
of magnitude less than that of ABFT. Overall, our approach is
maximally beneficial when high reliability is desired for com-
plex LSB operations with very low implementation overhead.

V. EXPERIMENTAL VALIDATION

All our results were obtained using an Intel Core i7-
4700MQ 2.40GHz processor (Haswell architecture with AVX2
support, Windows 8 64-bit system, Microsoft Visual Studio
2013 compiler). Entanglement, disentanglement and fault de-
tection/recovery mechanisms were realized using the Intel
AVX2 SIMD instruction set for faster processing. For all cases,
we also present comparisons with ABFT-based fault tolerance,
the checksum elements of which were also generated using
AVX2 SIMD instructions.

First, we consider the low-complexity case of basic
frequency-domain processing of M streams (e.g., antialias-
ing, frequency-selective systems, etc.) comprising: (i) FFT of
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Figure 9. Throughput results for FFT–IFFT of M integer streams. “Conventional” refers to conventional (fault-intolerant) FFT realization using FFTW 3.3.3
and it is used as a benchmark under (a) M = 3; (b) M = 8.
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Figure 10. Throughout results for convolution of M integer streams. “Conventional” refers to conventional (fault-intolerant) convolution realization using
Intel IPP 7.0 and it is used as a benchmark under (a) M = 3; (b) M = 8.
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Figure 11. Throughput results for M GEMM subblocks, each comprising a 2000 × N by N × 1200 integer matrix product. “Conventional” refers to
conventional (fault-intolerant) GEMM realization using Intel MKL 11.0 and it is used as a benchmark under (a) M = 3; (b) M = 8.

the input streams; (ii) attenuating a random subset of the
resulting frequency components of each stream to zero by
weighting with the Fourier transform of an integer frequency-
selective filter; (iii) inverse FFT (IFFT) to obtain M integer
streams. We present results for input blocks with dimension
between N ∈ {210, . . . , 10 × 210} and select two sizes for
number of input streams, M , which represent different fault
tolerance capabilities and operational complexity for the FFT–
IFFT multi-stream realization. Fig. 9 presents representative
results based on the FFTW 3.3.3 library [48]. The throughput
results are given in Mega-samples per second (Msamples/s).

The figure demonstrates that, under the same fault tolerance
capability, our approach leads to only 0.4% to 6.9% decrease
in throughput, while ABFT incurs throughput loss of 13.8%
to 34.1%.

We then extend this case by performing experiments with
general convolution operations of integer streams. We used
Intel’s Integrated Performance Primitives (IPP) 7.0 [49] con-
volution routine ippsConv_64f that can handle the dynamic
range required under convolutions with 32-bit integer inputs.
We experimented with: input size of Nin = 106 samples,
several kernel sizes between Nkernel ∈ [100, 4500] samples.



11

Representative results are given in Fig. 10 under two settings
for the number of input streams M . The results demonstrate
that the proposed approach substantially outperforms ABFT,
while allowing for same level of fault tolerance. In line with
the theoretical predictions of Fig. 7(b) and Fig. 8(b), the
decrease in throughput for the proposed approach is only 1.8%
to 2.8%, while ABFT incurs 16.1% to 37.8% throughput loss
against the fault-intolerant realization of convolution.

Thirdly, considering generic matrix multiplication, out of
several sets of experiments performed, we present results
for M matrix subblock products of 2000 × N by N × 1200
each, with N ∈ [200, 2000]. Fig. 11 presents results for the
decrease in throughput (in Mega samples per second) against
the conventional GEMM kernel realization based on the Intel
MKL GEMM subroutine [47]. In line with the theoretical
predictions of Fig. 7(a) and Fig. 8(a) and for the same level
of fault tolerance capability, our approach is able to detect
transient faults (or recover from fail-stop failures) with only
0.03% to 0.6% decrease in throughput, while ABFT requires
13.3% to 35.1% loss of throughput to perform result validation
within the final GEMM result. Therefore, ABFT is 2 to 3
orders of magnitude less efficient than the proposed approach.

Finally, given that ABFT can be applied within individual
GEMM subblocks following the row-wise and column-wise
checksum generation within the input subblocks (as originally
proposed by Huang and Abraham [20]), we also carried out
a comparison against such an ABFT framework for GEMM
(termed as “ABFT RC-check”). The results demonstrated that,
for the same subblock sizes as for the experiments of Fig. 11,
the overhead of ABFT RC-check was between 3.5% to 5.5%,
which is still 5 to 1000 times higher than the corresponding
overhead of the proposed approach. Importantly, while ABFT
RC-check offers guaranteed detection of transient faults in up
to three outputs out of every 2000×1200 outputs, the proposed
approach offers guaranteed detection/recovery of up to one
fault out of every M (M ∈ [3, 8] ) outputs. Therefore, in this
case, the significantly-increased efficiency is also coupled with
increased reliability for GEMM computations.

VI. CONCLUSION

We propose a new approach for highly-reliable LSB pro-
cessing of integer data streams that is based on the novel
concept of numerical entanglement. Under M input streams
(M ≥ 3), the proposed approach provides for: (i) guaranteed
detection of transient faults within any single input/output
stream; (ii) guaranteed recovery from any single fail-stop
failure if each input stream is processed by a different core;
(iii) complexity overhead that depends only on M and not on
the complexity of the performed LSB operations, thus, quickly
becoming negligible as the complexity of the LSB operations
increases. These three features demonstrate that the proposed
solution forms a third family of approaches for fault tolerance
in data stream processing (i.e., beyond ABFT and MR) and
offers unique advantages, summarized in Table I. As such, it is
envisaged that it will find usage in a multitude of systems that
require guaranteed reliability against transient or permanent
faults in hardware with very low implementation overhead.

APPENDIX

A. Proof of Proposition 1

Proof: Notice that (11) does not use δ0,n. Therefore, full
recovery of all outputs takes place even with the loss of δ0.
This occurs because, for every n, 0 ≤ n < Nout, δ1,n and
δ2,n contain d̂0,n and d̂2,n [which are recovered via (11)—
this link is pictorially illustrated in Fig. 3]. Therefore, δ1 and
δ2 suffice to recover all three output streams d̂0, d̂1 and d̂2.
Since the entanglement pattern is cyclically-symmetric, it is
straightforward to rewrite the disentanglement process of (11)
for recovery from any two out of δ0, δ1 and δ2.

B. Proof of Proposition 2

Proof: Given that we can create any single entangled
output stream from the other two streams, we can apply
this and compare the recreated entangled output stream
with the available one in order to check for occurrences of
transient faults. For example, we create δ̂0 starting from the
recovered d̂0 and d̂2 (which were extracted solely from δ1

and δ2) and then compare it with the original values of δ0 to
detect transient faults. Specifically, for every n, 0 ≤ n < Nout, if

δ0,n − [Sl {d̂2,n} + d̂0,n] ≠ 0 (23)

holds, then a transient fault occurred in the triplet of
{δ0,n, δ1,n, δ2,n}. Since the recovered outputs d̂0,n and d̂2,n

stem from the 3l + k least-significant bits of dtemp, which in
turn stem from the 2l+k bits of δ1,n and δ2,n, the check of (23)
includes all the bits of {δ0,n, δ1,n, δ2,n}. Transient faults may
still remain undetected if, and only if, there exists a stream
position n (0 ≤ n < Nout) for which two or all three out of
{δ0,n, δ1,n, δ2,n} are corrupted in a manner that the check of
(23) does not hold. Thus, we conclude that, for integer outputs
with range bounded by (12), the check of (23) is necessary
and sufficient for the detection of any transient fault in one of
δ0,n, δ1,n, δ2,n for all stream positions n, 0 ≤ n < Nout.

C. Proof of Proposition 3

Proof: For every output position n, 0 ≤ n < Nout, we are
able to recover all results of all M streams without using δr,n

in (17)–(20). Therefore, the proposed method is able to recover
from a single fail-stop failure in one of the M entangled
streams.

D. Proof of Proposition 4

Proof: Given that we can create any single entangled
output stream from the other M − 1 streams, we can apply
this and compare the created entangled stream with the
available one to check for the occurrences of transient faults.
For example, if we apply this for the rth entangled output
stream, δr, (1 ≤ r ≤M , 0 ≤ n < Nout):

δr,n − [d̂(r+M)modM,n + Sl {d̂(r+M−1)modM,n}] ≠ 0 (24)

then, if (24) holds, a fault occurred in one of the
M entanglements at stream position n. Since the re-
covered outputs d̂(r+m)modM,n and d̂(r+M−1)modM,n stem
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from the 2 (M − 1) l + k least-significant bits of dtemp,
which in turn stem from the (M − 1) l + k bits of
{δ0,n, . . . , δr−1,n, δr+1,n, . . . , δM−1,n}, the check of (24) in-
cludes all the bits of {δ0,n, . . . , δM−1,n}. Transient faults may
still remain undetected if, and only if, there exists a stream
position n (0 ≤ n < Nout) for which two or more out of
{δ0,n, . . . , δM−1,n} are corrupted in a manner that the check
of (24) does not hold. Thus, we conclude that, for integer
outputs with range bounded by (12), the check of (24) is
necessary and sufficient for the detection of any transient
fault in one of {δ0,n, . . . , δM−1,n} for all stream positions
n, 0 ≤ n < Nout.
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