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About 
In this workshop, we reviewed and discussed challenges and opportunities for Human-Computer 

Interaction in relation to cross-surface interaction in the wild based on the bring-your-own-device 

(BYOD) practice. We brought together researchers and practitioners working on technical 

infrastructures for cross-surface computing, studies of cross-surface computing in particular domains as 

well as interaction challenges for introducing cross-surface computing in the wild, all with a particular 

focus on BYOD. Examples of application domains are: cultural institutions, work places, public libraries, 

schools and education. Please find more details about the workshop, in the submitted proposal [1]. The 

workshop was held in conjunction with the 2016 ACM Conference on Human Factors in Computing 

Systems (CHI), that took place from May 7 to 12 in San Jose, USA. 

[1] Steven Houben, Nicolai Marquardt, Jo Vermeulen, Johannes Schöning, Clemens Klokmose, Harald 

Reiterer, Henrik Korsgaard, and Mario Schreiner. 2016. Cross-Surface: Challenges and Opportunities for 

'bring your own device' in the wild. In Proceedings of the 2016 CHI Conference Extended Abstracts on 

Human Factors in Computing Systems (CHI EA '16). ACM, New York, NY, USA, 3366-3372.  

DOI: http://dx.doi.org/10.1145/2851581.2856490 

Editors 

Dr. Steven Houben – University College London 

Dr. Nicolai Marquardt – University College London 

Dr. Jo Vermeulen – University of Calgary 

Prof. Johannes Schöning – Hasselt University – tUL –iMinds 

Prof. Clemens Klokmose – Aarhus University 

Prof. Harald Reiterer – University of Konstanz 

Henrik Korsgaard – Aarhus University 

Mario Schreiner – University of Konstanz 

Program 

09:00  Introduction to workshop by the organizers 

09:15  Keynote by Professor Susanne Bødker 

10:00  Paper Presentations 

10:30  Coffee break 

11:00  Case studies and brainstorm 

13:00  Lunch 

14:00  Present ideas + map out design space 

16:00  Coffee break 

16:30  Group reflections and panel 

17:30  Closing  
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Keynote 

Title: “Holding artifacts in common” 

This talk will address multiplicity and artifacts: multi-artifact practices, multi-

practice artifacts, multi-user artifacts, and multi-artifact users. I will use both 

empirical examples and theoretical concepts to further discuss how human 

users hold artifacts in common, and how this holding in common develops 

over time 

Biography: 

Susanne Bødker is professor of Human Computer Interaction at the Computer 

Science Department, University of Aarhus. Her research areas include 

participatory design, computer-supported cooperative work and 

human-computer interaction. Her PhD thesis, Through the Interface—a Human Activity Approach to User 

Interface Design was an early attempt to present activity theoretical HCI to an international audience. 

Much of her research since can be seen as consolidation and expansion of this theoretical frame. 
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Figure 1: A dual-screen use
case – in such scenarios, the
users switch their attention
between the motion rich TV and
the second screen companion
content (in this example on the
tablet). Though both displays
can be considered the primary
focus, research shows that
generally the more motion rich
TV content becomes the
‘primary’ display. Here the user
is holding up the tablet so that
the displays meet. However,
the device is typically rested on
a user’s lap (discussed in Figure
2) on the next page.

Towards Cross-device Harmony

Timothy Neate
FIT Lab
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Abstract
In modern home entertainment, our personal devices
regularly supplement some ‘primary’ screen. Such
layouts of screens in the living room afford enhanced
autonomous browsing, collocated interactions, and
give broadcasters the opportunity to enhance TV
through multi-device experiences. TV/personal de-
vice scenarios are becoming one of the first ubiqui-
tous cross-device situations, and therefore stand as
a potential exemplar of the use case. Our research
looks at the potential attention bottlenecks in such
scenarios, and works towards improving such experi-
ences through informed design of attention.

Author Keywords
Dual-screen; companion content; television; atten-
tion; user experience; media; displays; media

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g.,
HCI)]: Miscellaneous

Introduction
The infrastructure for exciting, multi-sensory, cross-
device experiences lies in our hands, and adorns our
walls – by bringing along our handheld devices, we
open up a new world of personalised second screen
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content. The inherent portability, connectability, and
sheer computing power of such devices make them
prime candidates to supplement larger displays (e.g.
Smart TVs) with complementary multimodal stim-
uli and additional interaction possibilities. Much re-
search has documented how we may appropriate
existing technologies to engage in complementary
multi-device consumption of media. Therefore, many
broadcasters and application developers have began
leveraging such research to design between-device
media as the next step from beyond traditional linear
broadcast.

Figure 2: In companion
content scenarios users tend to
switch attention, as opposed to
divide. Typically, users rest the
device on their lap, in their
peripheral – creating a visual
congruence between the foci.
This means they must
constantly check the device for
new content when focusing on
the TV, and monitor the
auditory stream of the TV for
points that pique their interest.

There are, however, some confounds when it comes
to such scenarios – as we divide our attention be-
tween devices we create a disjunct between displays.
In this workshop paper we reflect on the TV for HCI
communities’ reflections on attention across devices
with an aim to further consider how this applies to
cross-device interactions generally.

Context & Brief Background
We increasingly watch TV accompanied by a second
screen – we Google tangential information in pro-
grammes, social network, or simply browse the web.
In 2012, Google suggested that 77% of us second-
screened regularly [2] (a statistic later revised up to
87% by Accenture [3]). Predominantly, this growing
practice is done on smartphones, tablets, and lap-
tops.

Clearly, then, this use case (Figures 1 and 2) is ubiq-
uitous and (unsurprisingly) broadcasters now wish
to lever this enthusiasm for dual-screens to enhance
UX. To support dual-screen experiences content providers
have began developing companion applications –

material developed for second-screen handheld de-
vices that run alongside a TV programme, providing
relevant facts, quizzes, and social media content.
With the increasing proliferation of internet-driven
media and object based broadcasting (see [6]), this
area of multi-device media is quickly accelerating
and therefore people are considering its fundamental
design.

There are many recent commercial examples of pro-
grammes which utilise a second device with support-
ing material (e.g. [4]). In addition to this, much lit-
erature in the HCI for TV community explores this
scenario from an academic standpoint, to support
content creators. Further, for such cases, some work
(e.g. Brown et al. [1]) has investigated how atten-
tion switches for dual-screen companion content.

Currently dual-screen experiences require users to
manage their own attention across displays – they
are often overloaded with information to the point
where they cannot engage with content as its de-
signers envisioned. Moreover, the visual disjunct be-
tween the foci (see Figure 2) can mean users fixating
on one display. This, coupled with the inherent cost
of display switching [8], negatively impacts on UX.

Due to the lack of thorough investigation on this
topic, the dual-screen experience is fundamentally
undesigned. Therefore, our research looks at how
we may better design cross-device media to encom-
pass attention, and design towards experiences in
which the displays are complementary, and harmo-
nious. To this end we have been building on the lit-
erature by conducting preliminary interviews, design-
ing interventions, and conducting systematic studies
with users. We, by working with our industry part-
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Figure 3: Content curation process: a) video is broken down into 20 second time slices; b) complexity of TV content is
determined; c) complexity of tablet content is determined by inverting the TV complexity value. Figure from [5]

ners (the BBC), are refining our idea of what creates
a positive multi-device media experience through
proper cross-device attention management.

Work so Far
To establish the current experience of the dual-screen
use case we conducted interviews with participants
about their usage habits. In general we found early
on that there are some clear attention bottlenecks.
For example, when users view content on their phones
(be it social media or related web content) they, gen-
erally, to some degree need to make some sacrifice –
to try to ‘block out’ one device, in favour of another.
Though we can monitor content in our peripheral, in
either the audio of visual domain, it requires extrane-
ous effort.

To explore this more systematically we conducted a
lab study in which participants watched TV accom-
panied by companion content – related textual and
graphical information (e.g. Figure 4). The indepen-
dent variables were the companion device’s textual
and graphical complexity. In general, we saw in-
creased visual attention and increased effort required

as the complexity was increased, more so for textual
information. We then associated this with our quali-
tative data from the participants to learn better what
TV content requires more effort as the second screen
complexity is increased.

Using our qualitative data we established a set of ob-
servable and codeable behaviours in the presence
of varying complexity, and from this developed sys-
tems in which the complexity on a tablet computer
adapted (we term this curated) based on the com-
plexity of the TV (see Figure 3). We then compared
this to a baseline and an adaptable (by the user)
case and found that such methods complement more
‘lean back’ companion experiences. In addition, we
found a degree of variability in the participants who
enjoyed the adaptable UI. Some, who were more en-
gaged with the second screen material actively in-
creased the complexity of the content. Whereas oth-
ers, who wanted to engage with the companion con-
tent less, turned down the complexity so that they
could gain a better gist of the materials. These stud-
ies culminated in the work presented in [5].
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In our work, we have also considered how we may
move a participants gaze between displays. For ex-
ample, in [7] we looked at a variety of methods to
notify users we looked at how we may mediate at-
tention between the foci. For example, we found that
if we wish to command attention shifts quickly and
effectively we should use peripheral stimuli (on the
tablet) of either audio or visual medium. And that if
we wish to permit some degree of autonomy to the
users calls to action on the TV work effectively (Fig-
ure 5). Further, we found that in contexts with up-
dating information that users strongly preferred their
attention to be mediated to some extent, to avoid
over/under-attendance of a device.

Figure 4: Example of a simple
piece of trivia typical of
companion content. The users
are free to swipe through such
trivia or view as a slide show.
This was used in the mediating
attention experiment, and in
the work of Brown et al. [1].

Figure 5: Example on an
on-TV notification. Such calls
to action are often found in
current interactive TV, for
example encouraging users to
follow a hashtag, or press the
(BBC) red button for more
information.

In summary, we have so far looked at key areas of
concern in the dual-device media scenario, and have
investigated solutions to alleviate. In the future, we
hope to reflect on how we may glean insight from the
increasingly ubiquitous use case that is multi-device
TV, towards considering how we may better design
complementary UI for general (non-media) cross-
device scenarios.
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Abstract
To counteract the rising complexity of mobile systems,
context-aware computing is important to determine user
intent and adapt devices accordingly. This position paper
proposes to improve context detection by harnessing the
fact that most modern devices have become detectable,
networked beacons, allowing other devices to pick up their
virtual presences and use these presences as indicators
for the current physical environment. This paper proposes
to improve context detection by a) analysing surrounding
devices and b) communicating with nearby devices to ex-
change environmental status information. The paper de-
scribes the approach - both conceptually as well as tech-
nically - and describes possible use cases and limitations.
We believe that further research in this direction can im-
prove context detection in the future dramatically.

Author Keywords
context-aware computing; environment; context; bluetooth

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g., HCI)]:
Miscellaneous

Introduction
Modern devices, and in particular mobile devices, have
rapidly gotten more powerful over the last couple of years.
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With this, they gained new features but also became much
more complex to use. For mobile interaction designers, this
introduces new challenges: Users tend to use mobile de-
vices to achieve a single task in a short time[2] with their
cognitive resources being very limited[3]. But with com-
plexity, the time to solve a task increases as well. As a
prominent way to tackle this issue, research has looked into
context-aware computing[1]. Context is a proxy for human
intent[5] and as such helps to adapt applications to better
aid the user. But detecting context is no trivial task: The
components that make up “context” are manifold, ranging
from location and time over lighting, temperature and noise
to people and objects that surround us[1].

Current devices use a limited set of sensor hardware - such
as GPS for location or accelerometer to detect motion - in
combination with machine learning algorithms to determine
context. While useful, this kind of context detection is very
limited and insufficient to represent the complexity of peo-
ple’s life. Additional information about the surrounding could
help devices to improve their context-aware behaviour. This
position paper will focus on the possibilities of detecting
the user’s physical environment. We propose the use of
short-range wireless technologies (i.e. Bluetooth Low En-
ergy) to scan the user’s current surrounding. By learning
about repeating occurrences of combinations of devices
(i.e. by using machine learning algorithms), and combining
these occurrences with other sensor data (such as GPS,
contact list data or the active application), it is our believe
that context detection could be largely improved. The basic
approach is not novel in itself - for example, ContextPhone
has described the use of “physical environment, including
surrounding Bluetooth devices”[4] as a possible sensor. We
think, though, that this kind of sensing has tremendous po-
tential to improve context-aware computing and is not suffi-
ciently explored yet, in particular in light of recent advances

in technology. Therefore, this paper will describe an ap-
proach of a) context sensing using surrounding devices and
b) retrieving extended environmental information through
communication with nearby devices. We will further detail
different use cases where this detection can improve appli-
cation behaviour and describe the limitations and technical
difficulties in making this approach a reality.

Context through Surrounding Devices
With the advance of Weiser’s vision of ubiquitous comput-
ing and the emergence of the Internet of Things, almost any
modern device communicates with the outside world. Wi-Fi,
Bluetooth, and NFC have become prominent communica-
tion channels and are found in smartphones, tablets, and
computers, but also watches, light bulbs, fridges, TVs, and
many more devices. It is likely this trend will continue in the
future to incorporate even more types of devices. We be-
lieve this fact can be harnessed by scanning and learning
about the surrounding of a device to derive context informa-
tion.

For example, consider workplace detection using location.
While suited for regular work at a single workplace, such a
detection will fail for a travelling salesman or for extraordi-
nary events, such as external meetings or a dinner. Using
surrounding devices, the detection of the work context be-
comes much more adaptable. During work-related events
the user is surrounded by a similar circle of devices: The
personal devices of co-workers. Based on this, work events
can then be correctly classified. By querying additional
sensors, such as time and location, the context can be fur-
ther narrowed down: For example, at a restaurant in the
evening, the work event becomes a dinner with colleagues.
Using this knowledge, devices can adapt, e.g. by turning off
non-crucial notifications and giving quick access to culinary
information such as wine ratings.
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In contrast, consider being at the same restaurant at the
same time but being surrounded by close friends: Here,
all notifications would be enabled, taken photos could be
automatically shared, and, when leaving, the location of
bars with long opening hours can be suggested.

Environmental detection can also provide valuable meta-
data for artefacts. While scribbling down digital notes during
a meeting, the artefact can be automatically tagged, e.g.
with the project name. When taking a photo, face detec-
tion can be improved based on the people present and the
photo can further be tagged with the people not seen on
the photo. Advanced activity tracking, such as determining
how long the user spent on his work computer or how often
he went up to get coffee, can provide valuable insights for a
healthier lifestyle.

Detecting surrounding devices can also provide an indica-
tor for the current level of publicity. When interacting with
a large display, the number and type of nearby people can
influence the displayed information: With no one nearby,
personal information such as the next appointment can be
disclosed. At a public place with lots of people nearby, only
limited information, such as the time to the next appoint-
ment, but no details, are shown.

It is our believe that an environment-based approach to
context detection will lead to more adaptable and robust re-
sults and performs better at translating to actual user intent.

Enriching Environmental Information
So far, the focus has been on the presence or absence of
surrounding devices to determine context. Using modern
communication technologies, environmental information
can be enriched by allowing devices to retrieve additional
information from their surrounding. This information can
vary: Most importantly, the type of nearby devices can be

retrieved. Devices can also allow to retrieve their current
state, for example the currently running movie on a TV or
the measured temperature on a thermostat. This enables
an even deeper integration with the environment. This kind
of exchange can be performed through the same ad hoc
communication channels as the detection of devices, such
as Bluetooth or NFC.

Such advanced environmental information further enhance
a device’s ability to adapt. For example, retrieving the cur-
rently running movie from a TV allows for second-screen in-
formation on the smartphone, such as the actors in the cur-
rent scene. And knowing the exact type of training tool the
user is currently working out at enables advanced fitness
tracking through accelerometer and heart rate sensors.

We think that a standardised exchange of local environmen-
tal information combined with the refined context detection
described previously can enable entirely novel ways of how
our devices sense their surrounding and adapt to it.

Technological Approach
Most of today’s off-the-shelf consumer devices feature the
hardware required for environmental detection. Most promi-
nently, Bluetooth Low Energy is built into almost any mod-
ern device. Even home automation devices (such as light
bulbs) are often Bluetooth-enabled. Additionally, technolo-
gies such as NFC have become more commonly available
and could enable cheaper sensing of devices in the future.

Detection of surrounding devices can be done with simple
Bluetooth scans. Paired with additional sensors (such as
GPS), using information from the user’s contacts list, and
combined with fuzzy machine learning algorithms, a robust
detection of context can become possible. For simplicity, for
abstraction and to protect user information such a detec-
tion should be implemented on an OS-level, handing only
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high-level context information to applications. Detailed in-
formation, such as the exact devices and people in a user’s
surrounding, should not be handed to applications.

Exchanging environmental information can be done us-
ing the same technologies. Developing a common proto-
col amongst all the different devices in our environment is
required in order to achieve a seamless communication
between these devices. This is difficult, in particular con-
sidering the large variety of possible devices. A high-level
protocol that allows devices to register predefined device
types and capabilities, similar to how most home automa-
tion protocols work, could tackle this issue, but also restricts
flexibility. Applications could register for the desired device
types and properties to receive updates about them from
the OS. Mixing such a static protocol, implemented on an
OS-level, with the ability to exchange a limited amount of
custom data, implemented at application level, could enable
a trade-off between abstraction and flexibility. For example,
this would allow TVs to advertise themselves as a screen
device, but also broadcast the current movie for applica-
tions interested in this information. Nonetheless, the com-
munication between all different types of devices remains
the largest issue in this approach, and an issue in cross-
device interaction and ubiquitous computing in general.

Limitations
In a real-world implementation, mapping of virtual device
presences to people, which is required for some scenar-
ios, can be difficult. For example, Bluetooth Low Energy
alternates the MAC address of a device regularly to make it
untraceable. And even with traceable devices, matching de-
vices to contact list entries can still be a difficult task. Also,
such a mapping can be considered a security risk and must
be implemented with care to ensure user privacy. The ex-
cessive data exchange between devices could furthermore

exceed the bandwidth possibilities of Bluetooth and a large
amount of signals could lead to interference. Future tech-
nologies might be able to solve such technical issues.

Furthermore, context remains only a proxy for human in-
tent, and environmental detection does neither guarantee
that the context is correctly determined nor that the context
is correctly translated into intent. Certain scenarios will re-
main difficult to detect. This, of course, is a general issue
with context detection and can only be improved by further
research in this direction, development of better sensors
and improvement of algorithms.
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Abstract
Recent research has focused on web developer toolkits for
distributed multi-device user interfaces. We investigate a
new solution, XDBrowser, where the web browser itself is
aware of and able to use multiple devices in parallel. This
paper discusses how XDBrowser’s interaction and imple-
mentation techniques help overcome many challenges of
BYOD-based interaction given its increasing ability to adapt
existing web interfaces and browsers for cross-device use.

Author Keywords
multibrowsing; semi-automatic distribution; hybrid browser

Introduction
State-of-the-art web browsers have added support for keep-
ing the browser history, bookmarks and settings in sync so
that users can use multiple personal devices for browsing
the web. This partly addresses the need for more seamless
multi-device interaction identified in earlier studies on infor-
mation work and web use [3, 9, 10, 14]. More recent stud-
ies [11, 15] find an increased need to better support parallel
device usage so that users can flexibly distribute tasks be-
tween devices, taking into account both device capabilities
and user preferences. However, there is no native browser
support for using multiple devices in parallel. Instead, spe-
cial cross-device development toolkits and modifications to
existing web interface code are required [4, 7, 12, 17].
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As part of the XDBrowser project, we are investigating how
existing web browsers can be extended to support rich in-
teractions and parallelism in cross-device use. A first pro-
totype of XDBrowser [11] implemented new end-user cus-
tomization tools for re-authoring existing web pages so that
they can be distributed and synchronized between mul-
tiple devices. This prototype was then used to conduct a
study on user-defined cross-device web page designs for a
given set of five popular web applications. The study gen-
erated 144 cross-device designs that can be distilled down
to seven core design patterns. While the first version of XD-
Browser proved very useful for that study, we are currently
working on a new version with two major improvements.

First, the existence of patterns suggests that part of the
manual re-authoring process could be automated. Provid-
ing automated support for adaptation could be beneficial
to users since users could browse new pages they have
not visited before, without having to first customize them
for cross-device use, and could instead choose from avail-
able patterns and switch the design depending on the task.
The primary challenge then becomes to detect the desired
pattern from only minimal user interaction and distribute
existing web pages without prior modification by developers.

Second, while the chosen architecture was sufficient to en-
able our end-user customization study, there are techni-
cal limitations that we are currently addressing. We dis-
cuss the benefits and limitations of our browser-in-browser
implementation technique which, rather than building on
common browser extensions and plug-ins, overloads the
browser with a full-screen browser interface that hides the
host browser. It is compatible with a wide variety of devices
and existing web browsers even if they do not support ex-
tensions, but still lacks some advantages of browser exten-
sions that we aim to overcome with a new hybrid approach.

Semi-Automatic Distribution Techniques
Our end-user customization study using XDBrowser pro-
duced 144 desirable cross-device designs leading to seven
distinct patterns. The full description of the study and re-
sults can be found in [11]. To illustrate the extensions we
are designing for XDBrowser, let us focus on two patterns.

(a) Remote control of mail reading pane on the tablet from the phone

(b) (1a) select inbox on tablet;
(1b) push inbox from tablet to
phone; (1c) inbox on phone

(c) (2a) select mail on tablet;
(2b) push mail to tablet;
(2c) mail on tablet

Figure 1: Six-step end-user customization in the first version of
XDBrowser. Pattern-based semi-automatic distribution achieves
the same result simply by double-tapping the inbox page element.

Consider the mail application in Figure 1 with the inbox
and the reading pane distributed for remote-control from
the phone. To distribute the elements in this way, the first
version of XDBrowser required users to perform a series
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of manual selections and operations to push selected el-
ements between the devices. The goal of our new tech-
niques is to reduce this effort to a single interaction. The
main inspiration for our approach comes from modern
browser support for double-tap to zoom on mobile devices
to view selected portions of the page in more detail. Our
idea is to allow users to double-tap the content they want
zoomed and make use of connected devices to automati-
cally distribute the page elements pushed out of the browser
viewport when zooming the content on the current device.

Figure 2: Classification of DOM nodes for mail application

Figure 2 shows a breakdown of the main page elements
relevant for two of the patterns we want to be able to acti-
vate, remote-control and overview+detail (Figure 3).

(a) Remote-control

(b) Overview+detail

Figure 3: Patterns for using one
device to control the other or for
overview and the other for detail

(a) Remote-control

(b) Overview+detail

Figure 4: Segmentation and
triggered patterns (star marks
element invoked by double-tap)

Since selecting a message in the inbox controls which mes-
sage is shown in the reading pane, the remote-control pat-
tern should become active when the user double-taps the
Inbox element on the phone. As a result, the Inbox element
should be kept on the phone and the other elements moved

to the tablet (Figure 4(a)). Looking at how the Inbox ele-
ment is constructed by nesting different types of HTML
DOM nodes, from the node that received the double-tap
event, we would need to traverse the DOM tree upwards
until we find the node wrapping the Inbox element, i.e., the
DIV with id “inbox” (Figure 2). This node is characterized
by having an id attribute and containing a set of BUTTON
and LI nodes with onclick event handlers. Once we have
found this node, we can extract it and hide all other ele-
ments on the current device. On connected devices, we
hide this node and show all other elements instead.

If the user double-taps the Message element, overview+detail
should become active. As a result, the reading pane should
be zoomed on the current device so that it fills the browser
viewport (Figure 4(b)). In this case, the Message element
is constructed from several nested DIV nodes, all of which
again have an id attribute. Zooming any of them leads to
the same result as zooming the “message” DIV directly.

Common web page segmentation techniques split the page
into smaller blocks of content elements based on text and
structure analysis, DOM hierarchy and layout informa-
tion [1, 2, 6, 16]. These elements can then be extracted
as a group. However, they typically require full analysis of
the page content to do so, which can be computationally ex-
pensive, especially on less powerful devices. Based on in-
sights from our study such as above, we are developing an
interaction-based approach that does not require full seg-
mentation and only involves relevant parts of the DOM tree.
It constructs the DOM path to the invoked element, per-
forms a classification into three types of elements—control,
input, or other—by traversing the DOM hierarchy upwards,
and activates the pattern depending on the type of element
found by extracting relevant nodes and showing them on
one device and hiding them on connected devices.
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In our first evaluations with a set of 50 top-ranked sites by
Alexa from 10 different genres, our simple classification
proved sufficient to support semi-automatic distribution.

Hybrid Approach to Cross-Device Browsing
We developed two implementations of XDBrowser using
different architectures. First, we developed an extension
of the popular Chrome web browser, making it possible to
run on both Desktop and Android devices, including tablets
and smartphones. Note that on mobile devices we built on
the Crosswalk web runtime1 to embed the latest Chrome
and add support for extensions which are not supported in
Chrome for Android. The architecture is shown in Figure 5.
XDBrowser connects multiple browser windows, either run-
ning on different devices or as multiple Chrome instances
on the same device. The implementation is divided into a
client-side background script executed once per browser
window—it is used to activate patterns and maintain a
WebSocket connection between multiple browser windows
through the server; a content script executed for every page
loaded into a tab—it is used to inject our DOM distribution
and view state synchronization methods; and a Node.js
server using Socket.IO for WebSocket communication. The
Chrome API is used for DOM manipulation, Hammer.js for
touch events, and Zoom.js to magnify web page elements
that were extracted using our classification.

Figure 5: XDBrowser as a Chrome
extension using a Node.js-based
client-server architecture with
WebSocket communication

Figure 6: Hybrid approach
resorting to browser-in-browser
and using Node.js or Peer.js for
client-server or peer-to-peer
communication

Our second implementation is “a browser within a browser”.
The host browser, however, is not visible to the user since
XDBrowser runs in fullscreen. This implementation has
the advantage that iOS mobile devices and even Android
Wear smartwatches on which Chrome is not available can
be supported. Here, we use WIB2 as the host browser in-
stead. The client side of our second implementation uses

1https://crosswalk-project.org
2https://play.google.com/store/apps/details?id=com.appfour.wearbrowser

responsive web design based on HTML5, CSS3 and jQuery
to adapt to a wide range of devices including smartwatches
and phones, tablets, desktops/laptops, and tabletops. Using
only native web technologies allows it, in principle, to run on
any web-enabled device with modern browser support. The
server side is the same as the first implementation.

The two implementations have their pros and cons. The first
is compatible with devices running Chrome and basically
any web site, but requires installation of a browser plugin or
special client. The second supports an even larger set of
devices and any browser, but embeds web sites via iframes.
Many top sites forbid iframe embedding and browsers pre-
vent cross-site scripting, but a proxy server fixes this [5].
For sites that maintain a session, the user needs to login
on each device, but a remote-control architecture [13] or
shared virtual browser such as PhantomJS resolves this [8].

We are working on a hybrid approach that combines the
best of these techniques (Figure 6). Using the common
server side and parts of the Chrome API as the common in-
terface, XDBrowser switches to the browser-in-browser ap-
proach if the host browser is not Chrome or the XDBrowser
extension not installed. Note that the server can be embed-
ded within the browser. We have also experimented with
Peer.js rather than Node.js for peer-to-peer communication
via WebRTC, which avoids the server after connection bro-
kering and is especially useful for watch-based scenarios.
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Abstract
From offices to public spaces, dynamic multi-surface
environments that can leverage the devices that users
carry with them are becoming more common. However
these environments are often implicit and therefore hard
to discover, as are the multi-device interactions that they
support. This position paper outlines the challenges that
designers of multi-surface environments face to improve
service discoverability, to support interactions that
leverage users’ devices, and to provide software tools to
design and develop cross-devices applications.

Author Keywords
multi-surface interaction, wall-sized displays,
infrastructures, distributed architectures

Introduction
Recent technological advances have rendered connected,
personal devices much more ubiquitous. It is common for
users to carry some combination of smartphones, tablets,
laptops, and smart jewelry such as watches, bracelets, and
rings. Similarly, physical infrastructures such as interactive
wall-sized displays and tabletops, as well as systems that
track the locations of users and devices, are becoming
more prevalent. Advanced users, such as scientists and
data analysts, increasingly incorporate such environments
into their work. In the workplace, smart meeting rooms
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are becoming more common. Even in everyday life, such
interactive environments are finding their way into
shopping malls and airports.

Each of these multi-surface environments, however, affords
different interaction styles with different kinds of devices.
Users might be able to extend the existing environment to
include their own devices and data, or extend their own
devices to appropriate the physical infrastructure.
Discovering whether such capabilities are available and
how to actually perform such operations remain unsolved
problems: there are no well-established conceptual models
for such distributed interfaces, and therefore users cannot
integrate them into their own mental models.

Moreover, building such multi-surface applications, with
interactions well-suited to users’ needs, requires mastering
not only the details of the application domain, but also
the intricacies of low-level technologies. While it is
possible to create cross-device applications with existing
models, they are still too complex to build and often too
brittle. To create multi-surface applications, developers
need new abstractions for discoverability, management of
shared data models, network communication, and
adaptability to heterogeneous devices. Interaction
designers, on the other hand, need more expressive models
based on post-WIMP conceptual frameworks, such as
instrumental interaction [1].

Figure 1: Multi-surface
interaction in the WILD
Room [2].

Multi-surface environments
The diversity of a users’ devices and contexts of use
results in a variety of multi-surface environments. We
identify three broad categories of multi-surface
environments: dedicated platforms, smart meeting rooms
and public spaces.

Our work so far has focused on dedicated multi-surface
environments in which interaction, processing and
rendering may take place on different devices. Such
distributed environments take the form of a fixed,
dedicated infrastructure such as the WILD room [2] which
combines wall-sized displays, motion capture systems, and
data and computation clusters with heterogeneous
portable devices that users may bring with them (Fig. 1).
Since each platform may have specific capabilities, e.g. 3D
display or multitouch wall-sized display, not available on
other platforms, a design challenge is to create software
that takes advantage of the specific capabilities of the
platform yet can be ported to other environments.

Less extreme multi-surface environments, such as “smart”
meeting rooms, may also create user-centered spaces that
leverage cross-device interactions enabled by, e.g., Apple
Handoff, Hamilton & Wigdor’s Conductor [3], or
Webstrates [4]. Unlike dedicated platforms, these
environments are more standardized. Most work in this
field has focused on interaction involving smartphones,
tablets, tabletops and wall-sized displays. However, as
wearable devices become more powerful and affordable,
users will also want those devices to support new
interaction capabilities in such environments.

Finally, multi-surface environments may be experienced in
everyday life. In contexts such as shopping malls, airports
and train stations, interactive ads and information displays
are becoming more common. A user may search for a
particular shop at a mall kiosk or consult an interactive
subway map in a station. Since these environments are
public, users may have a variety of kinds of devices.
Interaction must therefore be reduced to the lowest
common denominator to accomodate as many users as
possible.
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User perspective
We are interested primarily in multi-surface environments
in which users can dynamically combine interaction
between a fixed infrastructure and their own devices. For
example, a user may extend the capabilities of her devices
to take advantage of the local infrastructure or to enrich
the local infrastructure with her own data or device
capabilities. In either case, the user must first discover
and pair the available devices and services before she can
appropriate the new interaction space created by the
combination of her own devices and the environment.
Thus, the discovery and pairing processes must have low
viscosity. Currently, if a user wishes to, e.g., interact with
a subway map from his phone, he could easily spend more
time connecting the devices together than actually
interacting with the map.

Once the user’s devices are connected, they create an
implicit multi-surface environment that provides
interaction capabilities and possibly access to data. To
exploit these capabilities, the user must be aware of their
existence and understand what interactions are possible
and what their effects are. This requires proper
feedforward and feedback to make interaction more
discoverable.

For example, consider a simple task, such as editing a
document on a shared display with other people in the
room: how would the user discover that his device can be
used to share the document with the display and notify
other users that they can interact with it concurrently?
What should the interaction look like to achieve that
particular task? For now, the commonly used interaction
models do not encompass such unified, seamless
cross-device interactions. This results in ad-hoc solutions,
mixing different interaction metaphors.

Technological perspective
Multi-surface interaction typically involves several devices
in the interaction loop, requiring mechanisms to maintain
and synchronize a consistent state across the devices as
well as manage events coming from multiple devices.
However, since current laptops, tablets, and smartphones
were designed for standalone use, their operating systems
and user interface toolkits do not provide adequate
support for multi-surface environments.

The dynamicity of such environments, where devices can
join and leave at any time, adds to the challenge. New
software architectures and programming models are clearly
needed to support these highly-distributed, dynamic and
uncertain environments in order to let software developers
build cross-surface applications that provide expressive
and consistent interactions from the user’s perspective.
Conductor [3] is an example of a step in the right
direction.

Our recent work on Webstrates [4] explores an alternative
approach. Webstrates turn the web into shared, dynamic
media: the pages served by a Webstrates server are
automatically synchronized across the clients viewing
them when any client makes a change. Pages can
transclude the content of other pages [5], creating a host
of possibilities to display and manipulate content. For
example, an editor is a webstrate that transcludes a set of
editing instruments (each is a webstrate) as well as a
content page (a webstrate too). The instruments contain
code that can edit the shared content. Users can configure
and personalize their environment, as well as create and
exchange content (including editors and instruments).

By using the web as infrastructure, any web-capable
device can access Webstrates and users are immediately
familiar with the basic interaction model. We have
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created a number of scenarios that involve multiple
interactive surfaces [4], such as a slide presentation with
audience participation and session-chair control (Fig. 2).
However, more work is needed to better support
interactions that involve multiple devices. We also want
to extend Webstrates to devices from the
internet-of-things that do not support web protocols.

Figure 2: A slideshow controlled
with Webstrates [4]. Top to
bottom: presenter view, audience
view, moderator view, session
chair view.

Three Challenges
We see three primary challenges faced by designers of
cross-device applications:

Discoverability How can a user easily discover that
pairing one of his devices with the environment might
bring new interactions capabilities? Typical approaches
include directing the user to a captive web portal, but this
requires explicit user actions and several steps. For simple
actions such as querying a display for a subway route and
downloading it to their smartphone, the cost of discovery
and pairing must be minimal or users will simply not use
these features.

Interaction How can a user interact with multiple
surfaces? Creating interactions that span several devices
in a distributed environment is complex, even for simple
ones, due to the dynamism of the infrastructure and the
need to coordinate and synchronize multiple devices.
From the users’ perspective, it is critical to create a
consistent conceptual model so that users can concentrate
on the task at hand rather than struggle to understand
what interactions are possible and how to perform them.

Software What architectures and tools should we provide
to developers so they can build such applications more
easily? WIMP and Post-WIMP toolkits and interface
builders help developers create widgets and assemble
them into functional applications with relative ease.

Similar tools should be developed to design cross-device
applications for multi-surface environments, as well as for
managing the arrival and departure of devices in the
environment.

Conclusion
This position paper has identified three categories of
multi-surface environments with different levels of
capabilities, and outlined the interaction and technological
challenges of multi-surface interaction. We have briefly
described our work on Webstrates, and highlighted three
challenges for the creation of multi-surface environments.
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Advances and Challenges in Ad-hoc 
Mobile Spatial Tracking for Seamless 
Interaction across Commodity Devices

 
 

Abstract 
In this workshop paper, we assess the progress and 
lessons learned in developing ad-hoc cross-device 
tracking for mobile spatial interaction and point out the 
challenges existing systems still face. We identify the 
next steps that are necessary to bring truly fluent 
cross-device interaction to commodity devices. We fin-
ish with a discussion of the emerging opportunities in 
today’s and future mobile devices as well as infrastruc-
ture systems that will facilitate accurate ad-hoc track-
ing on commodity devices. 

Author Keywords 
Ad-hoc mobile tracking, commodity devices, BLE. 

ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., 
HCI): Miscellaneous;  

Introduction 
To enable users to interact seamlessly across devices, 
involved devices need to be aware of surrounding de-
vices. Tracking surrounding devices thereby needs to 
be ad-hoc, such that users can continue an activity on 
one mobile device seamlessly on another. A big chal-
lenge of such tracking is that users interact with devic-
es in their natural space, yet current devices lack a no-
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tion of this ‘natural’ physical space. To support seam-
less interaction, devices thus need to understand this 
3D space, which is particularly important when multiple 
users and devices are involved.  
 
Unfortunately, current commodity mobile devices de-
tect only the presence of surrounding devices to enable 
cross-device interaction (e.g., iOS 8 Continuity, Android 
Wear notifications), typically by analyzing the BLE sig-
nal strength to infer the proximity of other devices. This 
works particularly well if devices are held close.  

However, when interacting across several present de-
vices, apps often have to resort to showing a list of 
devices from which a user must pick. Ideally, though, 
users would interact naturally—much like they interact 
with physical objects in their environment. 

Recent research projects have made progress in bring-
ing ad-hoc tracking to mobile devices. They often inte-
grate one or more signal types to enable UI apps to 
detect the 3D location of surrounding devices. In this 
workshop paper, we first review the progress in mobile 
tracking and assess assumptions and shortcomings. We 
then outline the challenges and directions for future 
mobile commodity tracking systems. 

Advances in ad-hoc tracking 
Since most interaction across devices takes place on 
mobile devices, tracking systems need to work ad-hoc. 
This insight has brought researchers’ attention to the 
built-in sensors in today’s commodity devices. 

Camera-based tracking on mobile devices 
Much related work has used the video feed from the 
camera for ad-hoc tracking. For example, TouchProjec-
tor observes the screen contents of other stationary 

devices’ screens to infer their relative positions [1], but 
requires a constant visual connection to other screens. 
Orienteer requires both mobile devices to observe a 
shared view for registration, such as users’ shoes [4].  

While the camera is a strong sensor for vision-based 
tracking, existing vision technologies are mostly devel-
oped for stationary rather than mobile cameras. The 
mobile nature and suboptimal camera position for mo-
bile vision requires different solutions. Moreover, finger 
occlusion and table placement will further limit the ro-
bustness of ad-hoc camera tracking. 

Inertial Motion Units (IMU) for mobile tracking 
IMU sensors are the most responsive built-in sensors, 
which make them suitable for gesture recognition [9] 
and rough layout inference [6]. However, most mobile 
devices are not equipped with high-quality IMUs, caus-
ing sensor drift and rendering dead reckoning unusable 
for ad-hoc 3D tracking. To avoid drift, Tracko [9] inte-
grates temporary dead reckoning and local coordinate 
transformation to prevent errors from sensor drift. 

Audio processing for ad-hoc mobile tracking 
Recent commodity mobile processors can process audio 
in real-time. BeepBeep [14] is one of the first projects 
that uses this to determine round-trip distances be-
tween devices. Tracko [9] establishes 3D tracking 
based on multiple audio units, producing high accuracy 
3D tracking across devices, but is subject to noisy envi-
ronments and restricted to limited interaction ranges.  

Mobile radio to enable device tracking 
Radio sensors (e.g., Wifi, GSM, BLE) are common on on 
today’s mobile devices. Many systems use the signal 
strength as an indicator to estimate the distance to 
remote devices. But since these radio sensors are not 
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designed for ranging purpose, predictions are inac-
curate up to several meters (e.g., Tracko [8]). Howev-
er, using better radio sensors could substantially in-
crease the accuracy, such as QSRCT radio nodes [12]. 

Towards truly ad-hoc tracking in the wild 
While researchers have examined ad-hoc tracking for a 
long time, it is the new technologies and advances in 
commodity hardware that bring about opportunities 
that let us think about mobile tracking in new ways—
ways that were not possible previously.  

Higher-quality built-in sensors 
Future devices will pack higher-quality sensors, such as 
multiple speakers for communication. The popularity of 
mobile music has brought stereo speakers to many re-
cent phones; the latest iPad Pro even has four speak-
ers. Ad-hoc mobile tracking will benefit from these de-
velopments, such as enabling watches or other small 
devices with only a microphone to be tracked in 3D. 

New sensors and low-cost hardware accessories 
One potential way to improve commodity ad-hoc sens-
ing is by integrating additional novel sensors into com-
modity devices—sensors that are expensive now, but 
will become low-cost through mass production. For ex-
ample, Google’s Tango understands its environment by 
using special-purpose depth cameras in a tablet.  

Cameras on current mobile devices are under-utilized 
for tracking due to their position and limited field-of-
view, which limits the tracking area. One step forward 
is SurroundSee [16], which is a mobile omni-directional 
camera that enables peripheral vision around the de-
vice to augment daily mobile tasks. We expect that 
more low-cost hardware, such as camera filters and 
phone cases [2] will improve tracking significantly. 

Internet of Things and Wearables 
A plethora of small devices is currently emerging, each 
dedicated to accomplishing a small task. While such 
Internet-of-Things devices typically connect using Blue-
tooth low energy, they often require knowledge of 
where they have been deployed. Wearables face a simi-
lar challenge: activity trackers would substantially ben-
efit from an spatial awareness of where the user choos-
es to wear or carry them. For example, WristQue [13] 
adjusts the local heating and cooling system depending 
on its (static) location inside a building. We think that 
emerging systems for ad-hoc tracking, such as Tracko 
[9], will bring rich capabilities to smart devices that 
adapt to changed locations in smart environments.. 

Ubiquitous infrastructure 
The recent development of indoor positioning systems 
makes tracking systems in the infrastructure ubiqui-
tous, which also benefits ad-hoc tracking on commodity 
devices. WiFi-SLAM [5] determines the physical location 
of a mobile device based on wireless signal strengths 
from access points in the environment. Chung et al. [3] 
and Epsilon [11] explore the space of magnetic filed 
positioning and light-based positioning. Tracking infra-
structure also helps further advancing the relative posi-
tioning on current systems to absolute positioning. 

Convenient cross-device user authentication 
Identification tokens, such as smartphones or weara-
bles increasingly aid users in authentication with local 
and remote systems. Ad-hoc spatial device tracking will 
allow current implementations to increase their security 
by seamlessly ensuring that such identification tokens 
are close-by [7] and have the potential to fundamental-
ly change scenarios in which multiple users interact 
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with another device simultaneously, tracking and cor-
rectly associating all input with a particular user [8]. 

Development tools 
The development in ad-hoc cross-devices is more com-
plex than single device interactions as the developers 
need to debug on multiple devices at the same time. 
The efforts to develop ad-hoc cross-device interaction 
increase exponentially as the number of involved devic-
es increases. We are looking forward to more software 
development tools like HuddleLamp [15].  

Error-prone correction user interface 
Tracking accuracy may be not perfect all the time. 
Thus, the ideal user interface should be able to handle 
errors implicitly. For example, Corona [10] uses implicit 
behavior to correct predictions. Depending on the accu-
racy of the tracking systems, there should be adaptive 
interfaces for different contexts. Balancing the tracking 
accuracy and the interactions it can enable can be a 
promising future research direction.  

Conclusion 
The recent technology innovations on hardware and 
software make ad-hoc tracking possible on mobile de-
vices. Developments in this area are still early stage 
yet promising and indicate that they will impact users’ 
future interactions profoundly. We analyzed the chal-
lenges of existing approaches and offered potential 
paths that we think will allow current systems to make 
big leaps forward. We believe that in 10 years with 
next-generation sensors and processors, ad-hoc track-
ing will be fully mobile and part of commodity devices 
and operating systems. Future systems will seamlessly 
integrate 3D ad-hoc tracking much like GPS today. 
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The Challenges of Using an Existing 
Cross-Device Interaction Prototype for 
Supporting Actual Curation Practices

 

 

Abstract 

Volunteer-driven organisations curating historic 

documents, such as societies and charities, often work 

within a bring-your-own-device (BYOD) practice and 

their meetings are in varying situations. A recurring 

challenge is finding lightweight ways to enable them to 

share and collectively work with documents using their 

own devices while in situ. We are working on building 

novel interaction techniques and applications 

(prototyped with a custom developer toolkit) for 

supporting the curation of digital collections – for 

example, historic documents. We discuss the pros and 

cons of using an existing prototype system for this 

purpose and points to consider when taking a prototype 

from the lab into the wild.  
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Cross-device interactions; in-the-wild; bring-your-own-

device; using existing frameworks. 

ACM Classification Keywords 
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HCI): Miscellaneous. 

Introduction 

Within volunteer driven organisation, such as historic 

societies and charities, bring-your-own-device (BYOD) 

is a common practice. Working collaboratively in a 

group can help to reveal more connections between 

various resources during co-located meetings, and 

allows to bring together people with expertise from 

different backgrounds. However, collecting, analysing, 
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creatively reworking, or sharing digital content as a 

group across a diverse ecology of devices is difficult: 

most devices work in isolation, not well supporting any 

collaborative collection, organization, or sharing 

activities. In recent years, researchers have produced 

several different frameworks for spatial tracking of 

people and devices, as well as supporting cross-device 

interactions (e.g. [4,5,7]). These frameworks were 

proposed for rapid development of (research) 

prototypes and were often mainly used to demonstrate 

a proof-of-concept in the lab. However, when taking 

such a tool out of the lab, in order to build a system to 

deploy in the wild, there are several challenges which 

need to be addressed. In particular rigidity is one of 

them: even prototype systems need to be more robust 

in-the-wild than when tested in controlled situations. 

Examples are changing environments (such as 

changing lighting conditions, or cluttered areas), people 

using applications in (slightly) different ways than what 

they were intended for, or users using a system for 

entirely different activities.  

In our research we are interested in how co-located 

curation activities can be supported through cross-

device interaction techniques. We are building a 

specialised developer toolkit, supporting in particular 

novel cross-device interactions within BYOD practices, 

collaborative content curation, and blending digital and 

physical artefacts.  

CollectionsExplorer for collaborative 

curation activities 

In order to support these small group collaborations we 

are developing CollectionsExplorer, a set of hardware 

and software tools that enable content curation [8] 

tasks to be facilitated when working with multiple tablet 

devices. However, rather than start from scratch we 

chose to build CollectionsExplorer using an existing 

platform that had been used for demo purposes 

beforehand. CollectionsExplorer was built on top of 

HuddleLamp [7], which is a technology developed to 

spatially track devices, providing a way of combining 

them into a larger surface. HuddleLamp uses a hybrid 

approach of a depth-sensing and an RGB-camera to 

identify and track tablets and phones on a table. We 

deployed CollectionsExplorer during informal pilot 

studies and as part of a workshop to various user 

groups. We observed how participants approached the 

system, adapting it to their needs – and adapting their 

own behaviour in order to avoid the pitfalls of the 

system.  

CollectionsExplorer was built to enable photographic 

collections to be shared across multiple devices, 

allowing users to explore individual pictures as well as 

creating new collections out of existing ones. A user 

can browse collections of photos, zoom in, rotate, and 

move and flick individual pictures between multiple 

devices (Figure 2 top). Figure 2 shows how a user 

explores multiple picture collections on an iPad. Each 

collection is organized in stacks of images (Figure 2 

middle), which can then be spatially arranged on a 

digital canvas shared by all connected devices (Figure 2 

bottom). In the future, CollectionsExplorer will be 

extended to support other key curation activities (e.g., 

duplicating current states to take home, or different 

ways of presenting results) and additional interaction 

techniques supporting these tasks.  

For the spatial tracking of the devices we are using an 

existing system [7], which requires the tablets to lay 

flat on a table. When the camera’s field of view is clear 

 

Figure 2: The general flow of 

items in CollectionsExplorer 

(top): photos can be moved 

across devices: all tablets 

share a digital canvas. Middle 

and bottom: All photos (in this 

case mainly photos of street 

signs) are placed on a virtual 

canvas that can be explored 

by moving the iPads on the 

table. Items can be moved, 

rotated, scaled and flicked 

between tablets. 
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and not the lighting conditions are controlled, the 

tracking is stable and precise. However, as soon as 

people try to use the system outside of a controlled lab 

situation, using it in an everyday task or as part of their 

daily routine, new problems arise, e.g. tracking gets 

lost because of occlusion, lighting conditions change, or 

people adapt tools in ways that works best for them, 

not how the developer might have anticipated. 

Thorough testing is needed, in order to get the 

technical issues solved and to get the interaction 

techniques clear enough so that they do not break 

outside controlled situations.  

For example in our case we have observed that when 

presented with CollectionsExplorer, people’s first 

reaction was to pick up one of the tablets to have a 

closer look. However, since the camera-based tracking 

only works when the tablets are placed on a table, the 

system fails. Another issue arose, when people pointed 

to a specific photo, or reached for it to increase its size 

or to rotate it. With their arms reaching into the field of 

view of the camera, overhead tracking does not work 

properly. Both of this (not being able to pick up tablets 

and frequently lost tracking through occlusion) 

distracted participants from their main task. Instead of 

focusing on their primary task their main focus became 

how to avoid the system to fail, the technology itself 

got in the users’ way. As a result, participants of the 

study refrained from further touching the tablets and 

relied on pointing to the tablets from afar, keeping a 

safe distance so that their arms did not occlude the 

camera. Some users reported to start thinking about 

the technical setup more than about their primary 

curation task.  

Open questions for the workshop 

When taking a new tool from the lab into the wild there 

are several challenges which need to be addressed. In 

the following they are split up into technical and social 

challenges.  

Technical challenges 

Setup and prerequisites. How can we enable cross-

device interactions without the need for special devices 

or complicated setup mechanisms? In particular, for 

BYOD and walk-up-and-use situations the setup needs 

to be easy, quick, and allow people with varying 

technical knowledge to integrate their own and other 

devices. How should devices be best connected to a 

system? How should availability and execution of cross-

device interactions be best communicated to a user?  

Ubiquity and precision of spatial tracking. When 

employing spatial tracking, how can this tracking and 

the required devices be integrated in the surrounding? 

A precise spatial tracking often comes at a cost, e.g. 

the need for specialised hardware, markers, long setup 

procedures, etc. If less precise, these requirements 

could be reduced. However, this varies with the 

intended use case. We would like to see a discussion 

about the cost of precise spatial tracking vs. its benefit. 

Rigidity for in-the-wild deployments. How does a 

research prototype need to be changed in order to be 

taken from the lab into the wild? For in-the-wild 

purposes they need to be robust, being able to be used 

in different scenarios than what they were intended for. 

Mixed data and environment. To account for the rich 

nature of documents and the mixed settings of various 

tasks, a system should account for both, digital and 

non-digital content and allow to work in environments 

with cluttered work areas and noisy data. Deployments 

in the wild might happen in cluttered areas, much 
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unlike a controlled lab study, making possible issues 

unpredictable.  

Social challenges 

Communicating availability and ability. How are 

availability and interactions communicated to people in 

a walk-up-and-use situation? For example display 

blindness [6] and the honeypot effect [2] have been 

observed with public displays and could serve as a 

starting point for how those could be considered when 

designing cross-device interaction techniques. 

Privacy and personal space. Going from the lab into 

the wild requires not only technical adjustments, but 

also careful considerations of other factors, e.g. when 

employing public displays, issues such as privacy [3], 

or personal spaces [1] and territories [9] need to be 

taken into account.  

Control and feedback. Different social expectations 

and cultural backgrounds are further factors to be 

considered. For example, how much control should a 

person have over the tracking within a system and how 

much should the control be hidden and stay in the 

background?  
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The benefits of ‘In The Wild’ studies for 
successful introduction of ‘Bring Your 
Own Device’ policies in the industry

 

 

Abstract 

Bring Your Own Device (BYOD) policies are becoming 

more and more popular in large corporations - in busi-

ness, but also in industry. The possible benefits are 

reduced investment costs and improved productivity, 

flexibility and satisfaction of the users. However, BYOD 

policies raise new challenges for industry corporations 

in terms of device integration and evaluation strategies 

for the resulting IT ecosystem. In this contribution, we 

will briefly introduce those challenges. We will give 

generic recommendations on how to create (industrial) 

BYOD-enabled applications and systems. Finally, we will 

present some of our research results and our research 

agenda for BYOD policies in Industry. 
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Bring Your Own Device (BYOD) - What does 

it mean (for industry)? 

Bring Your Own Device (BYOD) is an increasingly popu-

lar business policy which enables employees to use 

technology which was first deployed in the consumer 

market and which is owned by the employees them-

selves [1]. This allows the company to reduce invest-

ment and maintenance expenses for the devices and 

leads to increased employee satisfaction. One major 

concern, however is the increased number of potential 

security risks. Insecure connections, lost or stolen de-

vices, malware and personal privacy issues of the de-

vice owner are major challenges of the BYOD approach 

[4]. These issues are subject to research and develop-

ment driven by leading software companies, however. 

A second major concern is the lack of appropriate 

means to verify BYOD IT-ecosystems in industry-grade 

usability evaluations. The fragmentation of the system, 

the very short device and platform lifecycles and the 

quick evolution of interaction paradigms require an 

explicit design for evolution. Conventional lab and field 

usability testing faces practical limits when it comes to 

continuous evaluation on multiple user-owned devices 

with multiple operating systems that follow different 

interaction paradigms [2]. Alternative approaches like 

remote usability testing still perform significantly below 

lab tests [1]. Yet, many questions of evaluating the 

usability of BYOD IT-ecosystems in the industry remain 

unsolved. In the process industries, where our research 

is settled, even further requirements may arise [6]. 

How to create (industrial) BYOD applications 

and systems? 

According to our research experiences over the past 

years, we follow three basic principles in designing 

successful mobile and BYOD IT-ecosystems for industry 

corporations. Firstly, we largely follow the design phi-

losophy and guidelines that come with the platform of 

the users-owned devices. This may require some re-

strictions of the accepted operating systems, vendors, 

versions or models of hardware and software (Choose 

Your Own Device policy). Following the update cycles 

determined by the platform vendors is crucial in order 

to not lag behind the state of the art. This is difficult 

because it sometimes means to redesign an application 

although the functionality is still sufficient for the task. 

However, the more the design of an application be-

comes outdated the more the user’s perception of non-

functional quality attributes will deteriorate.  

Secondly, we largely rely on the device and deployment 

ecosystem provided by the platform vendor. Most ven-

dors offer specific solutions for industry users. One may 

adapt, enhance or even replicate the ecosystem if nec-

essary, but this should be done transparently to the 

users. Complex corporate tasks often call for more 

sophisticated means for deployment and administration 

of the IT-ecosystem than non-professional consumers.  

Finally, we try to continuously evaluate BYOD-enabled 

applications and systems in real settings with real users 

imposing as few artificial limitations as possible. Eco-

logical validity is crucial for usability / user experience 

evaluations when it comes to BYOD scenarios. In The 

Wild studies might meet the requirements of usability 

testing of BYOD IT-ecosystems. Study designs with 

mainly observational character or very limited targeted 

variation of independent variables or control of con-

founding factors, however, tend to be insufficient for 

industry-grade usability evaluations. Same holds for 

low-effort remote usability testing methods proposed in 

the literature. 

 

 

 

Figure 1: Mobile application to 

support industrial maintenance 

tasks on a ruggedized COTS 

smartphone. 

 

 

Figure 2: Ubiquitous task support 

using multiple event-driven An-

droid Wear apps on a COTS 

smartwatch. 
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Research Results and a Research Agenda for 

BYOD in Industry  

Following the first principle, we largely rely on the 

Google Android ecosystem. We developed several mo-

bile applications for common tasks in the process in-

dustry [4, 7, 9] (Figure 1) and extended them with 

sophisticated smartwatch support [10] (Figure 2). We 

also incorporated the Google Cardboard VR environ-

ment to virtually explore production sites (Figure 5). 

Largely relying on the design guidelines of the men-

tioned platforms we created cross-device applications 

that are easy to use for employees which are familiar 

with the Android ecosystem and that are easy to main-

tain for the app developers. 

A main objective of a corporate application is to imple-

ment a certain, well defined business process or work-

ing procedure. Our App Orchestration Framework [7] 

provides a powerful engine to arrange sets of multiple 

apps (so-called app ensembles) based on BPMN models 

of the business processes and workflows (so-called app 

orchestration). Following the second principle, this 

framework is based on Google Android, thus the apps 

may be deployed via the off-the-shelf available Google 

Play for Work infrastructure. In addition, a Jenkins au-

tomation server has been extended to automatically 

create app ensembles for the user-owned device and to 

organize the deployment, either directly from the Jen-

kins server or from the Google Play for Work infrastruc-

ture. Currently, this infrastructure supports Google 

Android and Android Wear applications in order to cre-

ate convenient cross-device interaction. In the near 

future, we plan to include Google Cardboard applica-

tions as well. This deployment infrastructure also pro-

vides comprehensive support for different input and 

output devices (so-called wearable distributed user 

interfaces) [8].  Using this infrastructure, multiple app 

ensembles can be created for the same task, where 

each version is optimized for a specific interaction tech-

nique (e.g. single-hand game controllers, keypads, 

gesture or speech input). Thus, users can choose the 

app ensemble that is best suited for their current task 

(Figure 4). This flexible multi-device orchestration al-

lows for cross-device interaction under the highly ad-

verse and variable working contexts of use where touch 

interaction is unsuitable. 

In order to bring research one step further, we are 

developing evaluation strategies that allow for the sub-

tle, yet controlled variation of independent variables 

and a sufficient characterization and treatment of the 

participants. The downside of ecologically valid settings 

is the evaluator’s limited control over confounding envi-

ronmental and situational factors. Following the third 

principle, one focus of our research is to develop con-

trol strategies and measures that reduce or govern 

confounding effects both in In The Field and In The Wild 

experiments.  

In The Wild studies are limited in the possibilities to 

equip the evaluation environment with measuring in-

struments and in the ability to actively involve users in 

the evaluation of the system (e.g. by means of a ques-

tionnaire). For this reason, we aim at developing a 

device-centric measurement methodology including 

cloud-based logging (user input, system reaction), 

camera and audio data (e.g. for gaze and emotion 

analysis), bio-signals (coming from smart wearables), 

context information such as illumination, noise, tem-

perature or weather data from the device nearby-

devices in the IT ecosystem (e.g. smart home sensors) 

or other sources of relevant information. 

 

 

Figure 3: Unity-driven stereo-

scopic 3D VR application of a 

production site. The prototype 

supports interactive highlighting 

of assets and provides relevant 

asset data on-the-fly. 

 

 

 

Figure 4: Wearable distributed 

user interfaces enable users to 

operate their mobile systems in 

settings where touch operation is 

unsuitable. They are also used to 

operate wearable systems such 

as VR systems.  
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Conclusion – Where are we now? 

It is easier than ever to create complex cross-device 

interactions with commercial-off-the-shelf (COTS) 

products. There are device and service ecosystems 

spanning across a wide range of interaction devices, 

and which are widely used by millions of users every 

day. BYOD policies allow corporations to gain ad-

vantage from these ecosystems. We have developed 

appropriate deployment infrastructures over the past 

years and will continue this work by integrating novel 

COTS platforms such as AR/VR-systems, wearable sys-

tems and very large displays (e.g. power walls). 

BYOD-enabled IT-ecosystems should continuously be 

evaluated In The Wild. In order to improve the perfor-

mance of such studies, subtle means for targeted varia-

tion and elementary control of the most relevant varia-

bles as well as a user-independent, device-centric 

measurement methodology need to be developed fur-

ther. Such means can be partly adopted from the area 

of In the Field research, but novel strategies and tech-

niques need to be developed in order to take the spe-

cific characteristics of In The Wild studies into account. 

We are using a realistic industrial environment to im-

prove and test our device-centric measurement meth-

odology and evaluation strategy (Figure 5). This ap-

proach proved to be a good compromise between the 

rigidity of lab usability testing and the ecological validi-

ty of field testing, especially in domains such as the 

process industry, where real environments are adverse 

and dangerous. For large-scale summative usability 

testing, however, we will take our tool set and method-

ology and to go Into The Wild. 
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do usability testing of mobile and 

wearable applications for the 
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Towards Context-Aware Cross-Device 
User Interfaces in the Wild 

 

Abstract 
In recent years a number of frameworks for easing  
design and development of cross-device user interfaces 
have been put forward, mainly in research contexts. In 
general, they provide support for connection 
management, data synchronization, and user interface 
distribution. However, the applications that can be 
obtained can be accessed from a wide variety of 
contexts of use that vary in terms of available devices 
and connectivity, surrounding environment, user 
preferences and abilities, and social relationships. Thus, 

one of the main limitations in the adoption of such 
applications in the wild is the difficulty to customize 
them for different needs in such diverse contexts. This 
position paper indicates and discusses the issues that 
should be addressed for this purpose and intrdouces 
possible approaches to solve them. 

Author Keywords 
Cross-device user interfaces, Context of use, End-user 
development.  

ACM Classification Keywords 
H.5.2 [Information interfaces and presentation (e.g., 
HCI)]: User Interfaces - Input devices and strategies.  

Introduction 
The increasing availability of various types of devices in 
our daily life is often a missed opportunity since current 
applications are limited in supporting seamless task 
performance across them. Users often perceive device 
fragmentation around them rather than an ecosystem 
of devices that supports their activities. In order to 
address such issues a number of frameworks, 
platforms, and authoring environments have been 
proposed, mainly in research environment. The goal is 
to facilitate design and development of multi-device 
user interfaces. We can distinguish various types of 
multi-device user interfaces depending on the features 
that they support: migratory user interfaces are able to 
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dynamically migrate from one device to another in 
order to follow users’ movements while preserving their 
state; distributed user interfaces allow users to interact  
with an application through multiple devices at the 
same time; cross-device user interfaces are distributed 
user interfaces, with the additional capability to 
synchronise their state, so that the interactions through 
some element in one device update the state of the 
corresponding elements (if any) in another device. 
Such categories are not mutually exclusive, so for 
example it is possible to have user interfaces that are 
both migratory and cross-device. 

Cross-device Frameworks and Authoring 
Environments 
In recent years some frameworks that provide useful 
support for developing cross-device user interfaces 
have been proposed. The proximity toolkit [5] simplifies 
the exploration of interaction techniques by supplying 
fine-grained proxemics information between people, 
portable devices, large interactive surfaces, and other 
non-digital objects in a room-sized environment. We 
have designed a framework supporting user interface 
distribution in multi-device and multi-user 
environments with dynamically migrating engines has 
been proposed [2]. It does not require a fixed server to 
manage the distribution. The elements of the UI can be 
distributed by specifying specific device(s), group(s) of 
devices, specific user(s), and groups of users according 
to roles. Panelrama [7] is a solution able to categorize 
device characteristics and dynamically change UI 
allocation to best-fit devices. For this purpose, this 
framework lets developers to specify the suitability of 
panels to different types of devices. The increasing use 
of wearables in the context of cross-device user 
interfaces has been addressed by Weave [1], a 

framework for developers to create cross-device 
wearable interaction by scripting. It provides a set of 
JavaScript- based APIs to easily distribute UI output 
and combine sensing events and user input across 
mobile and wearable devices. Other cross-device 
frameworks involving smartwatches have been 
proposed (e.g. [4]). In addition to frameworks, also 
some authoring environment to ease the development 
of cross-device  user interfaces has been proposed. An 
example is XDStudio [6], which supports two 
complementary authoring modes: simulated and on-
device. In the former mode, authoring is carried out on 
a single device in which the user interfaces distributed 
are simulated. In the latter mode, design and 
development actually takes place on the target devices 
themselves. However, this type of authoring 
environment does not provide support for specifying 
context-dependent behavior. This aspect has been 
addressed by our context-aware authoring environment 
[3], which supports development of user interfaces able 
to adapt to the various types of contextual events (that 
can be related to users, devices, environments, and 
social relationships), with the possibility of distributing 
the user interface elements across multiple devices. 
The context-dependent behavior is modelled through 
trigger / action rules (an example tool for editing them 
is in Fig.1), and can even be applied to extend the 
capabilities of Web applications that were not originally 
designed to be context-aware. 

An Architecture for Context-aware Cross-
device User Interfaces 
In order to correctly execute the applications according 
to the adaptation rules specified it is necessary to have 
a specific architectural support at run-time. The main 
goals of such support are to manage and apply the user 

Figure 1  Tool for editing trigger 
action  rules 
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interface adaptation or distribution rules, and detect 
the events that trigger their performance. Such run-
time support exploits the functionalities of three 
components: the context manager, the adaptation 
engine, and the distribution manager. The context 
manager is composed of a context server and a set of 
external modules delegated to monitor relevant 
parameters of the context of use (e.g. environmental 
noise, device coordinates, user physical activity).  

The purpose of the context manager is to detect 
contextual events and inform the adaptation engine, 
which stores and manages the contextual rules, and 
requests changes in the cross-device user interface 
according to the triggered rules. The distribution 
manager  handles user interfaces distributed across 
multiple devices in order to allow dynamic migration of 
components and keep their state synchronized. Figure 

2 shows how such components interact with each 
other. The adaptation engine subscribes to the context 
model manager in order to be informed of the 
occurrence of the events relevant for the rules 
associated with the active applications. When one or 
more of such events occur, the adaptation engine sends 
the actions to the applications in order to perform the 
corresponding changes. Such update commands are 
interpreted by the scripts included in the application by 
the authoring environment. They can modify properties 
of user interface elements or content, activate functions 
or navigation, and change the distribution of some user 
interface parts across devices. In the latter case the 
adaptation engine can directly send the corresponding 
command to the distribution manager, which notifies 
the involved devices. Such distribution manager 
contains the current distribution profile, which indicates 
how the various parts of the user interface are 
currently distributed across the devices that have 
subscribed to the environment. A distribution command 
mainly determines whether a user interface element or 
the elements included in a container should be visible 
or not on one specific device or a group of devices that 
have the same role or on all devices of a given 
platform. 

Issues for Deployment in the Wild 
The approach to context-aware cross-device user 
interfaces is general and can be deployed for a wide 
variety of applications (for example smart retail, 
museums, smart cities, e-learning, ...). For this 
purpose various aspects should be considered. 

Interoperability.  

We need the possibility to operate on various types of 
devices (smartwatches, smartphones, tablets, 

Figure 2  Architecture for Context-aware Cross-device User Interfaces. 
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desktops, public displays, ..) from various vendors. 
Only Web applications can be accessed through almost 
all of them with limited effort. However, the run-time 
supporting the cross-device user interfaces should be 
able to work even when network connections to remote 
external Web servers is not possible (a possible solution 
is described in [2]). This means that the underlying 
architecture should be able to create peer-to-peer 
organization amongst the involved devices. 

End-user development 

In the end only the users know the best way to 
configure their cross-device user interfaces in their 
specific contexts of use, thus we need to provide them 
with authoring environments and customization tools 
that allow them to directly specify the contextual rules 
even if they do not know how the underlying 
technology works. For this purpose the use of subset of 
natural language to indicate the desired behaviour with 
familiar, domain-dependent terms can be effective. 

Flexibility 

The control on the cross device user interface by 
developers and users should be able to address various 
granularity levels when allocating or dynamically 
changing which user interface parts should be in each 
device. We can identify four possible granularity levels: 
some distribution changes can involve the entire user 
interface, others can only involve groups of elements, 
or be limited to single user interface elements (e.g. a 
list or a text input), or even parts of single elements 
(e.g. their prompt or feedback). 

Modalities 

Some approaches only consider graphical cross-device 
user interfaces but natural interaction can be achieved 
if the associated environments are also able to support 

other various modalities that users can exploit 
depending on the context (vocal, gestural, graphical, 
…) in an integrated manner. 

Mixed-initiative Triggers 

The changes in the configuration of the cross-device 
user interface can be made on explicit request through 
customization tools or triggered automatically by the 
context-dependent rules. In the latter case it is still 
important to make users aware when the changes 
occur, with also the possibility to reject them if they are 
not deemed useful at a given time. 
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Prototyping "In The Wild" Interaction 
Scenarios With RE/Tk

 
 

Abstract 
Building interactive environments that blend digital 
information into the physical world is hindered by the 
complexity of setting up the technological medium. We 
developed the Responsive Ecologies Toolkit (RE/Tk) to 
provide researchers and developers with a toolkit that 
would cut down the low-level technical demands thus 
making it easier to prototype applications for 
heterogeneous networked devices. This position paper 
argues for a better conceptual model to support design 
of interaction experiences "in the wild". It also proposes 
extensions to the RE/Tk to support design iterations 
where the potential interaction devices and their 
capabilities are not known. 

Author Keywords 
Toolkit; Prototyping; Cross-Device Interfaces; 
Interactive Environments. 

ACM Classification Keywords 
H.5.2. Information Interfaces. User Interfaces – input 
devices and strategies, prototyping. 

Introduction 
A growing body of research in cross-device interfaces 
has focused on providing interaction techniques for 
sharing information across devices [1], as well as 
mapping gestures across devices [3]. Much of the effort 
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put into such research involves bootstrapping low-level 
technical challenges such as programming for multiple 
platforms, communication across devices, and 
developing an ad-hoc framework for comprehending 
the complexity of cross-device interfaces. This has led 
researchers to revisit a more fundamental question in 
cross-device interface research. What tools and 
techniques are beneficial for simplifying the exploration 
of cross-device interaction techniques? 

There exist numerous software toolkits for the rapid 
prototyping of spatially-aware interactions [5], tangible 
and physical computing [2] [4] and cross-device 
interactions [7][8][9]. However, there is limited 
support for the design of complex interactive 
environments involving heterogeneous off-the-shelf as 
well as custom devices. Weave [8], for instance, 
provides an authoring environment for cross-device 
interactions which supports off-the-shelf wearable and 
mobile devices. WatchCONNECT [8] explores sensor-
based interactions focusing on smartwatches. 
Panelrama [7] aims at easing the development of 
distributed user interfaces, thus it does not consider 
smart objects without a display surface.  

Our goal with RE/Tk is to provide support to quickly 
build responsive and interactive environments, which 
can include people personal devices, interactive 
surfaces and custom-made tangible objects (e.g., 
arduino-based devices). In addition, we wish to provide 
a fully customizable and extensible toolkit that supports 
multiple aspects of developing cross-device 
applications.  

There are several reasons for this. Firstly, the 
landscape of interaction devices and their capabilities is 

ever-changing. The heterogeneity of the underlying 
runtime environments and the communication protocols 
of these devices makes it challenging to provide a 
toolkit that stands the test of time. In addition, scaling 
up or modifying existing toolkits to support cross-
device interface development does not address the 
underlying fundamental issue: there is no conceptual 
framework that allows designers to visualize and 
discuss a complex interaction scenario at a higher level 
of abstraction. 

We designed the Responsive Ecologies Toolkit (RE/Tk), 
building on the work of the ROSS Toolkit [6], for 
prototyping applications that span across different (off-
the-shelf and custom) devices. The RE/Tk provides a 
conceptual framework for designing multi-device 
applications and toolkit for prototyping such 
applications. 

However, in its current state, the toolkit assumes that 
the "players" in the interaction space i.e. the underlying 
devices and sensors are known before hand and 
conform to a fixed device hierarchy within the 
interaction space. Below, we discuss the current state 
of the RE/Tk and propose a conceptual framework and 
new features to the toolkit that will enable prototyping 
& development of "in the wild" interaction experiences 
such as bring-your-own-device (BYOD) scenarios. 

RE/Tk 
RE/Tk provides a conceptual framework that allows the 
developers to conceptualize and design interactive 
environments as hierarchical nested structures. Every 
object, screen, sensor in an interaction space is 
mapped within a hierarchical structure. This hierarchical 
tree (Figure 1) encapsulates relationships between 

 

Figure 1: An example of the 
nested hierarchical structure. 
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various entities and determines how they interact: (a) 
direct interaction and communication occurs between a 
child node and its parent node, (b) interaction between 
sibling nodes is mediated by their parent node, (c) the 
tree structure is also used to determine the 
communication path between two (directly unrelated) 
nodes, and (d) the structure allows for easier 
computation of spatial interactions between different 
devices. 

 
Figure 2: An example XML descriptor file for a scenario where 
a wall display mirrors the interactions on a smartphone. 

Designers and developers outline this structure in an 
XML descriptor file (see Figure 2). This document is fed 
to the toolkit which generates the application code and 
manages the communication between different sensors 
and devices. 

All generated server and client components are in 
JavaScript. The server application runs on Node.js  (a 
cross-platform runtime environment) while the client 
applications run on the devices' browsers. As an 
exception to the rule, we generate deployable code for 
Arduino and other microcontrollers that do not support 
a JavaScript runtime environment. 

A Javascript API exposes the functionality of the toolkit 
and provides an alternative way of developing or 
iterating the generated interaction software for expert 
developers. 

In addition, to support “moving targets”, RE/Tk is 
designed to be extensible. Designers and developers 
can extend the XML structure as well as the JavaScript 
API to suit custom workflows. 

This approach simplifies the development, deployment 
and management of applications onto a variety of 
hardware and software platforms. Since the JavaScript 
code is compiled at runtime, modifying a part of the 
application code does not require recompilation for the 
entire interactive environment. Code can also be locally 
modified and inspected for debugging purposes. These 
features encourage faster iteration of application 
designs. 

In addition, the toolkit provides different levels of 
abstractions in terms of application behavior, GUI and 
widgets, sensor mapping, spatial mapping and 
communication. 

Application Behavior Abstraction. XML-based 
application authoring is the first level of abstraction 
provided by the toolkit. All the features and functions of 
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the API are abstracted and accessible as XML tags. 
Large and complex XML files can also be split into 
multiple XML files, each defining a different feature of 
an application, i.e. one XML file for describing the 
application functionality and another one for the UI. 

GUI Abstraction and Widgets. An authored XML 
description includes not only the device structure but 
also the user interface design for all the devices. This 
provides a unified way of designing UIs for different 
types of screens. This also allows for easily porting 
applications to native code when needed. In addition to 
this, we have implemented a few generic widgets (e.g. 
Maps widget) that can easily be included in any 
application. 

Sensor Mapping Abstraction. RE/Tk supports 
straightforward mapping of sensor output data of one 
device as an input to a function of another device or an 
actuator in just a few lines. The underlying 
implementation of listener events, data range mapping, 
network routing etc. are abstracted from the 
developers (they are still accessible to the developers 
through the generated application code for 
modifications). Custom data filters can also be easily 
attached to a sensor output. 

Spatial Mapping Abstraction. The hierarchical nested 
structure of devices is leveraged to provide easy access 
to spatial information of each device. Developers can 
directly query position information of each device 
relative to the interaction space or another device. 
Converting spatial data from one coordinate system to 
another is also supported by the built-in functions. 

Communication Abstraction. RE/Tk uses and builds 
upon TUIO to simplify cross-device communication. 
Developers can extend the protocol for custom 
scenarios. The hierarchical structure, used to 
automatically setup the underlying communication 
channels between devices, forms another level of 
communication abstraction. 

In addition to these abstractions, the modular nature of 
the XML files (and the API in general) allows developers 
to easily extend the features of RE/Tk. 

Supporting interactions in the wild 
An interaction environment with a fixed network of 
devices poses sufficient challenges for a developer to 
envision and deploy interactive experiences. However, 
prior access to the network information, device 
capabilities, and access control provides a handle to the 
developer for managing the overall interaction 
experience. RE/Tk leverages this information to simplify 
authoring of interactive applications. "In the wild" 
scenarios involve additional challenges that need to be 
addressed while prototyping. 

In this section we discuss some novel features for the 
RE/Tk to support interactive BYOD scenarios. One 
assumption we make about the BYOD scenarios is that 
the developers of such scenarios have access to at least 
one device within the interaction environment that will 
be assigned the role of a server/arbiter. An example of 
a typical BYOD scenario: an interactive surface 
computer in a public space that allows walk-in users to 
lay their smartphones on the surface and interact with 
the displayed information on their smartphones as well 
as the larger surface. 
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Challenge 1: Since the interaction devices and their 
capabilities are not know during the design process, the 
toolkit has to provide a new framework and additional 
tools to design adaptive experiences. We propose the 
following two features to address this challenge. 

Designing for device categories: We propose to 
extend the hierarchical tree model to support for 
hierarchies of generic device categories rather than 
specific devices. This allows the developers to think 
about and design experiences for groups of devices 
while the underlying toolkit manages the 
heterogeneous nature of such groups. Developers can 
declare a category of devices (e.g., smartphones or 
smartwatches) that interact within an interactive space 
for a given scenario. In addition, the developers can set 
the maximum number of devices supported within a 
device category based on the context and limitations of 
use. This information is used to deploy a generic 
Javascript application for each declared device 
category. We believe that this conceptual framework 
breaks down the barrier for entry for authoring such 
interaction scenarios. 

Supporting adaptability of UI and interactions: 
Breaking down of application features by device 
categories may not be sufficiently granular for certain 
interaction scenarios. In addition, this does not 
guarantee that an application will run on all the walk-in 
devices as envisioned by the developer. We propose 
custom XML tags that allow for declaring multiple 
versions of the user interface or UI elements and 
interaction logic during the design phase. The 
developers can include branching logic within these 
tags that may include specific device properties (eg. 
specific UI layouts are targeted for specific range of 

screen sizes OR specific interaction scenarios run only if 
an accelerometer is present) or specific user 
permissions. These alternate versions of interface or 
interaction logic are selected & deployed at runtime. 
This is made possible by the automated API calls that 
query a newly joined interaction device for its 
capabilities. This approach allows the deployment of a 
generic interaction scenario with high level of 
adaptability at runtime. It also provides an easy 
method for developers to support graceful degradation 
of rich interactive experiences. 

Challenge 2: BYOD scenarios may need to support 
authentication and permission management for 
different groups of users and different networks of 
devices. 

While a single communication network and a common 
device permission may be sufficient for most BYOD 
scenarios, certain scenarios may require developers to 
support different permission levels for different user 
groups as well as support devices that may be on 
different networks altogether. We propose two 
additional features to extend the toolkit's capabilities. 

Multi-Step Device Handshake: Currently every client 
application developed using the RE/Tk goes through a 
single-step handshake procedure which queries the 
device for its capabilities to automatically identify its 
role within the interaction scenario. We introduce multi-
step device handshake procedure to include additional 
initialization routines. Firstly, we extend the device 
feature querying to be exhaustive that better supports 
the adaptability of UI and interactions previously 
discussed. In addition, we include an authentication 
phase that allows a walk-in device to be authenticated 
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as a valid interaction device and be assigned a specific 
permission level. This may happen prior to the 
application launch as well. Lastly, we include a third 
step to the handshake procedure - user-side permission 
management. In BYOD scenarios where a walk-user 
can share information from her device within the 
interaction space, this step gives her the control to 
manage permissions for what gets shared. The user can 
also control what features of her device can be used 
within the interaction scenario. 

Multi-step device-handshake procedures can be 
customized via the XML files and extended to more 
steps as required. 

Device Authentication and Heterogeneous 
Networks: There are two points of entry for a typical 
BYOD scenario. A walk-in user can connect to a local 
wireless network thereby gaining access to an 
interaction experience through a web browser or a 
native application. Alternatively, users can access a 
specific URL on the world wide web that points to the 
interactive application. Since users gain such 
knowledge when they are in the proximity of the 
physical interaction space, this is a sufficient level of 
authentication for most BYOD scenarios.  

For further permission management, web-based 
applications generated by the RE/Tk can take 
advantage of both the points of entry. Multiple access 
points can be placed for multiple levels of 
authentication to the same interactive experience. A 
simpler approach is to provide a unique passphrase 
that walk-in users can enter during the initial 
application launch. The passphrase, combined with the 
branching interaction logic previously mentioned, 

provides sufficient granularity for multiple levels of 
access control. The web-based nature of application 
and access control ensures that devices in different 
networks can be managed easily through a single 
interface as long as the underlying application is 
deployed onto the world wide web. In situations where 
devices are connected via Bluetooth, USB or other 
forms of communication, the RE/Tk provides custom 
modules to connect with different communication 
protocols. All of the different devices and protocols 
communicate with a server-side routing logic that is 
abstracted by the API. This ensures that the developer 
can ensure homogeneity of communication and 
interaction among heterogeneous mix of devices and 
networks with minimal effort. 

Workshop Goals 
Our proposed changes to the RE/Tk and the underlying 
conceptual framework enables us to provide a powerful 
prototyping tool that simplifies the design of interaction 
scenarios where target devices are not known. We hope 
to engage the community in a discussion of further 
opportunities and challenges for tools that support 
interactions "in the wild". In addition, we wish to 
contribute to the efforts of standardizing protocols, 
platforms, and tools for building cross-device 
interfaces. 
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Abstract
We report on our experience of adding cross-device func-
tionality to a learning platform with a substantial user base.
The extension allows students to display an exercise sheet
on one device (typically a notebook) and use a paired hand-
held device to submit photographed solutions to the exer-
cise. We outline the design and implementation of the fea-
ture and discuss lessons learned in the process of working
outside of a controlled lab environment.

Author Keywords
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Introduction
Today’s device ecologies offer exciting opportunities for in-
teractions between multiple devices [3]. Tools and frame-
works facilitate the design [4, 2] and implementation [5,
6, 1] of cross-device applications. Nevertheless, we have
encountered few such applications in the wild. Two no-
table exceptions have been extensions to Google Maps1

and YouTube2. Both of these are small extensions to appli-

1https://support.google.com/maps/answer/6081481
2https://support.google.com/chromecast/answer/2995235
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cations with a huge user base. Building up a user base is
challenging for any application. Having access to an exist-
ing base is thus an interesting opportunity to explore cross-
device designs in the wild, but comes with the challenge of
having to integrate with an existing system.

We had the opportunity to extend a web-based education
platform called Taskbase3 with cross-device functional-
ity. Taskbase manages collections of theory and exercise
materials and allows exercises to be grouped into exer-
cise sheets and published to a class of students. Students
can give feedback on the exercises and rate their difficulty.
Taskbase is currently in use at several schools and univer-
sities in Switzerland, including ETH Zurich with over 3500
users in the mathematics department and the University
of St. Gallen with over a 1000 users. ETH Zurich has its
own installation4 and this was used in the work described
here. The platform was developed by the startup company
edTechLab in cooperation with the mathematics depart-
ment of ETH. The authors of this paper were not involved
with development prior to the cross-device project that we
describe in this paper. However, one of the authors is ac-
quainted with the CEO of edTechLab and the company ex-
pressed interest in exploring cross-device functionality in
Taskbase.

Figure 1: The student scans a QR
code on their notebook.

Cross-Device Extension
We started by analysing how Taskbase is used and where
there is potential added value with a cross-device exten-
sion. We then designed a cross-device feature and, after
consulting with edTechLab, implemented it in Taskbase.

3http://www.edtechlab.ch/taskbase
4https://e-lectures.ethz.ch/

Figure 2: For each exercise, a QR code is displayed that takes
the student to the exercise submission site when scanned with a
phone.

Analysis
While the exercise sheets can be printed, instructors ob-
served that students often use their devices (notebooks or
tablets) to access them during exercise sessions. This was
confirmed when we analysed access patterns to the sys-
tem. We also noted that many students used more than
one device to access the platform. Within one week, we
observed roughly 2700 users accessing the platform with
two different devices, while fewer than 400 users only used
a single device. Fewer than 100 users accessed Taskbase
with three or more devices.

In our own teaching (independent of Taskbase), we are in-
creasingly experiencing students submitting either scanned
or photographed versions of their handwritten assignments
via email. The teaching assistant then prints the submis-
sions, marks them on paper, and returns them in the next
exercise session.

Design
Based on our analysis, we decided to design a feature that
allows students to submit their handwritten solutions to ex-
ercises using the camera of their phones or tablets. An ex-
ercise sheet may consist of multiple exercises and a stu-
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dent can submit a solution for each exercise. The interface
offers options to directly upload a file from the current de-
vice (typically a notebook or a desktop computer) or to use
another device for uploading. If the latter option is chosen,
the system displays a QR code (Fig. 2). When the code is
scanned with a phone or tablet (Fig. 1), it opens a URL that
points to the same exercise as that currently opened on the
first device (Fig. 3) and the student is automatically logged
in. Now they can simply photograph their solution (Fig. 5)
and it will be associated with the exercise and uploaded to
Taskbase. The responsible teaching assistant can access
all submissions from their students and provide feedback
as annotations on the pictures (Fig. 4) which can then be
viewed by the student.

Figure 3: After scanning the QR
code, the student is taken to the
corresponding exercise on their
phone.

Implementation
As Taskbase is already in use, it was a clear goal not to dis-
rupt users in any way and to keep the implementation as
lightweight as possible, while integrating with the current ar-
chitecture based on Java on the backend and AngularJS on
the frontend. As current cross-device frameworks are still
experimental, it was deemed too large a risk to integrate
one of them and the changes were kept to a bare minimum.
Consequently, no direct communication between the de-
vices was implemented. Consequently, when a students
scans their submission with their mobile phone, they need
to manually refresh the notebook to see their submission.
While we would have preferred synchronisation between
the two devices, we had to compromise for the sake of com-
plying with the current architecture which does not support
any push messages from the server.

Deployment
As the electronic hand-in is only useful if assistants are will-
ing to accept submissions made through the system, the
feature was disabled by default and had to be enabled per

Figure 4: The UI for evaluating submitted exercises. Teachers or
assistants can add comments and give feedback.

course. Taskbase then sent an email to professors inform-
ing them of the change and asking for volunteers to opt
in. Unfortunately, there were few responses and the ones
that we got were negative. The feature was rolled out in the
second half of the semester and professors were reluctant
to change the process half-way in. One professor worried
that the feature would decrease personal interaction be-
tween assistants and students and feared dehumanisation
of the process. We therefore decided to do a pilot test of the
feature in one of the author’s classes which had not been
using Taskbase previously. The platform was introduced
and the feature was demonstrated in class. Students were
encouraged to use it, but were still allowed to hand in their
solutions in person or by email. In total 44 students were
enrolled in that class and roughly 30 students typically at-
tended the exercise sessions. Handing in assignments was
voluntary (a master solution was provided) and generally
done by 6 to 10 students to get feedback. After the intro-
duction of the cross-device feature, two students submitted
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their solution via their phone. 6 students used the new UI
to upload a file from their notebook. No more assignments
were submitted in person or by email. One student reported
a problem with his installed QR code scanner that could not
display the Taskbase website correctly. The rather low num-
ber of photographed submissions can be partly explained
by the nature of the exercise which was better suited to be-
ing solved on a computer as well as the fact that it was the
last exercise of the semester where the number of submis-
sions of non-mandatory assignments typically drops.

Figure 5: The student takes a
picture of their solution and
uploads it to the system.

Lessons Learned
While we had experience in developing cross-device appli-
cations, we typically work in a controlled environment where
we can choose the architectures, technologies and devices
and have full control over the applications that we build.
Users are introduced to our applications in user studies or
demonstrations where we, again, control many parameters.
Working with Taskbase forced us to give up some of that
control, confronted us with real users and stakeholders, and
taught us the following lessons.

Focus on the user, not the devices. While our main inter-
est was in integrating the phone, a significant amount of
time was spent on the UI for giving feedback to the assign-
ments. Had we skipped that part, students would have had
no reason to use the system to hand in their solutions. It
was important to develop a whole use-case, rather than just
focusing on the cross-device part. All in all, a small fraction
of time was spent on actual cross-device development.

Stakeholders are not necessarily excited about making
something cross-device. Mainly students and teaching as-
sistants benefited from our changes and the Taskbase team
was very supportive. Professors however were more scep-
tical but important decision makers. Getting them on board

will be critical for the success of the cross-device feature.

Cross-device frameworks may introduce a big change to
the existing architecture. Cross-device frameworks typically
introduce additional servers or services and protocols (for
example WebSockets). Furthermore, companies may shy
away from using frameworks that have not been proven to
be production ready. In our case, the risk and effort was
considered too high for a simple feature and, despite our
experience with our own framework5, we decided not to use
it.

Don’t make any assumptions about software and hardware.
Provide alternatives to support a wide range of platforms
and devices. We integrated a web-based QR scanner that
could be accessed from a short URL for those users who
had none installed. Our system required no installation
on any device, thus maintaining a low barrier to entry. We
did not force users to use their phones for submissions but
rather supported file uploads from any device.

Carefully plan the introduction to the users. In our case, the
timing of the introduction towards the end of the semester
was not ideal. However, we were constrained by the timing
of the student project and could not wait until the beginning
of the next semester. Also, consider how users can learn
to use cross-device features. The demonstration in class
proved to be a good solution, however, it does not scale
very well to a large user base.
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Enabling multi-device interaction on 
the go in the MAGI project

 
Abstract 
We discuss the MAGI project’s vision for multi-device 
interaction and how we plan to support application 
developers. Key aspects of our vision are the presence 
of multi-device gestures and adaptation to changing 
physical contexts and device contexts. Our gesture 
recognition architecture reduces power consumption 
and recognition latency through a pipelined HMM 
approach with early discard of processing samples of 
unlikely candidates. To help developers build 
applications that adapt to changing contexts, we 
propose the use of Midgets (MAGI widgets); context-
dependent interaction components that span across 
devices. Application designers choose the device 
configurations that an application will support, assign 
them to physical contexts, and lay out Midgets 
manually. The MAGI system chooses the best 
configuration based on users’ current activity and the 
input/output channels available. 
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Introduction 
Wearable devices such as smart watches are gaining 
widespread interest from consumers. While wearables 
provide easy access to content outputs such as 
notifications, emails or text messages, each device has 
limited input and output capabilities. We envision a 
personal multi-device ecosystem where applications 
span across all of a user’s devices; ranging from smart 
watches, smart glasses, smart bands to smart phones. 
Inputs and outputs are distributed automatically, 
depending on what devices are available and the 
automatically detected context of use (e.g. walking, sitting 
or cycling). 

This paper briefly outlines our vision, called MAGI 
(Multi-device Adaptive Gestures & Interfaces) [3]. We aim 
to enable developers with an Android framework that 
provides high-performance, multi-device gesture 
recognition and primitives for interface adaptation. 
Here, we illustrate this vision with two scenarios. We 
then show how we are addressing the challenges of 
multi-device gesture recognition with a novel pipelined 
HMM approach with early discard of unlikely candidates. 
Finally, we describe our vision for Midgets (MAGI 
Widgets), which are context dependent hierarchical 
interaction components that span across devices. 

Multi-Device Scenarios 
Consider the following scenarios, which show the types 
of applications that we intend MAGI to support.  

Scenario 1: Steering in a driving game.  
While riding on a train, Alice is playing a driving game on 
her virtual reality display, smart watch and smart phone. 
With her watch on one hand, and phone in the other, she 
turns an imaginary steering wheel. She uses the 

touchscreen buttons on the phone to accelerate or brake. 
Her phone vibrates, indicating an incoming call, and Alice 
raises her phone to her ear. When she does this, the 
game pauses, and Alice takes her call. 

Scenario 2: News feed consultation.  
(a) Clara is sitting at a café, browsing the titles of her 
news feed on her phone. As she scrolls through the list of 
articles, her augmented reality (AR) glasses preview the 
first lines of the topmost article at the periphery her 
vision. A search field allows her to look for specific content 
(see Figure 1). (b) Later, Clara gets up and starts walking 
to the metro station, holding her smartphone at her side, 
without looking at it. The list of articles moves to her 
glasses where she can see it, and she scrolls the list by 
swiping on her phone (see Figure 2). (c) When Clara 
boards the crowded metro train, she puts her phone in 
her pocket to keep it safe. Still browsing articles on her 
glasses, she now begins scrolling by swiping on her watch 
(see Figure 3). 

These scenarios illustrate two key challenges. The first 
scenario uses a continuous, multi-device gesture that is 
particularly sensitive to latency. Recognizing such 
gestures will place high processing demands on wearable 
devices, which increases power consumption. The second 
scenario shows a user’s changing context. The application 
must adapt by choosing optimal input and output channel. 
MAGI will address these challenges. 

Gesture Recognition Challenges 
Each device employed in the personal space will have to 
deal with two problems (1) recognition latency, and 
(2) energy consumption. By nature of their size, the 
computational capabilities and energy resources of mobile 
devices are limited. Most previous works adopt a 

 
Figure 1: Midgets running on each 
device in scenario 2 part (a): seated 
with the phone out. 

  
Figure 2: Midgets in scenario 2 part 
(b): walking with phone in hand.  

  
Figure 3: Midgets in scenario 2 part 
(c): sitting without phone. 
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centralized approach [1,4]. Sensor inputs (e.g. 
accelerometer and gyroscope data) are all streamed to 
a single device that handles the recognition process. 
This approach has two disadvantages. The first is 
continuous sensor data transmission, which consumes 
excessive energy in both the sender and the receiver. 
The second is poor scaling. As the number of devices in 
the ecosystem increases, a centralized recognizer on a 
mobile device can rapidly be overwhelmed. We propose 
to tackle these demands through collaborative and 
adaptive systems and algorithms. 

Previously, we developed an on-device, early-filtering 
Hidden Markov Model-based (HMM) gesture recognizer 
that improves the speed and reduces the latency (and 
hence energy efficiency) of two-handed gesture 
recognition (see Figure 4) [3]. Gesture recognition is 
distributed as much as possible to reduce network usage. 
The method attempts to recognize gestures early. If an 
entire gesture is recognized with high likelihood by an 
HMM, then a prefix (an initial part) of the gesture should 
also have high likelihood. Our approach thus permits early 
discard, avoiding processing samples whose prefix 
indicate that it is unlikely to be a gesture. Also, our 
method is heavily pipelined, reducing the latency of 
gesture detection by performing Viterbi decoding 
concurrently with the generation of subsequent gesture 
samples. Since our method performs gesture recognition 
on-device, we significantly reduce the throughput which 
otherwise would comprise sending multiple raw sensor 
feeds into a central device and having that perform all the 
work. In the tests reported previously, our system 
recognized gestures with 89.86% accuracy in 
approximately 0.2ms [3].  

In the future, we plan to let devices assist each other in 
recognition process by notifying them when it is safe to 
halt an HMM for a candidate gesture. An advantage of 
performing gesture recognition on-device is that with 
independent recognition streams and continuous gesture 
fusion, any one of the streams may provide enough 
information about the activity such as to trigger early 
termination of some gesture candidates for processing or 
terminating recognition altogether on any of the other 
devices. For example, while executing a steering gesture 
in a driving game (see Scenario 1), the movement of one 
hand (equipped with a smart watch) out of the norm for 
steering gestures, may indicate termination of processing 
on the smart watch on the other hand, which can indicate 
to the system that the game should be paused. 

Context Adaptation Challenges 
Previous researchers have studied automatic layout of 
distributed applications depending on device context (e.g. 
Panelrama [4]). Such approaches can lead to 
unpredictable behavior. We prefer to give designers more 
precise control over the input and output channels that 
their application will use, while still allowing easy 
coordination of components and adaptation to context. 
This led us to develop the concept of Midgets, which are 
context dependent interaction components that span 
across devices. Midgets are shared across devices in an 
application, but they can have different behavior 
depending both on a user’s device context and physical 
context (recognized automatically, as in [2]). 

Consider the application from Scenario 2 in three 
contexts. At first (Figure 1), a phone and a pair of glasses 
are used in conjunction. The Midgets of the application are 
spread across the two devices. When the user starts 
walking and stops looking at her phone, the phone screen 

Figure 4. The MAGI architecture supports 
distributed gestural interfaces that are able 
to automatically adapt themselves to 
different contexts of use. 
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switches to input only and the glasses hold all visual 
information (Figure 2). Showing all Midgets at once on the 
glass may not be a good design choice as it is likely to 
occlude a large portion of the user’s vision. Thus, in this 
context, a designer may prefer to give access to only one 
Midget at a time. Finally, when the phone is put away 
(Figure 3) input switches from the phone to another 
device. 

Our vision gives designers more control, because 
designers will specify all the device configurations allowed 
by an application and will have an opportunity to design 
each one separately. The designer will also specify the 
context when each configuration is preferred. Scenario 2, 
for example, uses three configurations. When sitting with 
the phone and glass available, configuration (a) in Figure 
1 is preferred. When walking with phone in hand, 
configuration (b) in Figure 2 is preferred. When sitting 
with phone unavailable, configuration (c) in  Figure 3 is 
preferred. MAGI will determine the user’s context and 
choose the best configuration, allowing the user to 
override when context recognition errors occur.  

Inspired by Panelrama’s method of automatically 
arranging output layouts [4], we are also considering 
adding an automatic layout engine so that a designer can 
set some Midgets to automatically re-arrange themselves 
without additional intervention. 

Conclusion 
We presented our vision of a multi-device ecosystem 
used on the go. We addressed system-related issues 
with a new distributed recognition approach, presented 
the architecture of our multi-device framework and 
discussed how it can be used by a designer to create 

applications that automatically adapt their inputs and 
outputs to their context of use. 

This first work opens several challenges we are 
interested to address in the future. What Midgets will a 
designer need to create robust applications? How can 
we manage multi-application contexts and the inputs 
and outputs allocation between concurrent 
applications? How can we support multi-user 
applications and allow applications to span across 
personal ecosystems? 
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Abstract
We present a plane surface non-invasive sensing system
for developing new cross-device interaction in the wild,
based on electrical capacitance tomography (ECT) mea-
surement setup. The core element of the system is a plane
capacitance sensor consisting of 32 electrodes built in un-
derneath the surface of an experimental tabletop assembly.
The interaction is enabled through physical objects inter-
fering with the electrostatic field in proximity of the surface.
This principle of operation is shown here for a set of mo-
bile devices in order to develop spatially-aware applications.
The system is independent in terms of sensing. It can de-
tect all solid objects in its proximity. Here, we present the
basic features of TomoTable and discuss future usage sce-
narios for the sensing system.

Author Keywords
position sensing; tomography; multi-device environments

ACM Classification Keywords
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Introduction
As recent research shows that many rationales for using
multi-device systems in the wild exist [6, 3], spatial aware-
ness emerges as one of the key enablers for rich multi-
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device interactions. Recent work on sensemaking [7] shows
specific scenarios for multi-device interactions emerging
while the range of possible areas where users already use
multiple devices simultaneously grows. Yet, the sensing
techniques allowing for easy access to such interactive
environments are still limited. Most research on enabling
spatial awareness involves either external sensors/cameras
(which suffer from line-of-sight and other issues e.g. [5]).
Consequently, most of solutions are explored only in the
laboratory conditions and provide limited possibilities for
in-the-wild studies. As an alternative solution, we propose
a TomoTable — an ECT-based prototype sensing system
that uses a plane capacitance sensor easy to be embed-
ded within an ordinary table. The sensor is accompanied by
process tomography measurement equipment and a dedi-
cated measurement protocol. TomoTable enables identify-
ing devices in the close proximity of the electrodes that are
hidden below the measurement plane (e.g. the surface of
a table) thus enabling ad-hoc interactions in different loca-
tions as proposed in [4]. This paper contains a short techni-
cal overview of the prototype concept as well as preliminary
results and a discussion on further studies.

TomoTable
TomoTable is a rectangular planar sensor that uses elec-
trical process tomography measurement. It consists of 32
electrodes arranged in 4 rows and 8 columns, all embedded
just below the surface of an ordinary table (Figure 1). The
sensor is intentionally made visible (showing the principle
of operation, it can be easily hidden below an opaque layer
during normal operation) underneath a transparent plastic
layer (3mm thick) of polycarbonate. It is worth noting that
the system can be a part of virtually any other surface as
well.

The table we currently use is 450mm x 610mm while each

Figure 1: TomoTable embedded in a table. A semitransparent
surface is used to show the sensors.

electrode is 95mm x 60mm. The gaps in between the elec-
trodes are 10mm. The bottom part of the sensor (10mm
below the table surface) was electrically screened in order
to improve the signal-to-noise ratio (SNR), thus improving
the sensing properties of the system in the space above the
sensor. Electrical capacitance tomography is based on the
principle of measuring the change of capacitance between
all the consecutive pairs of sensing electrodes irrespective
of their position or orientation by quickly switching the ex-
citation to successive electrodes while grounding the rest.
Experiments were conducted using 32-channel equipment
capable of real time on-the-fly monitoring of the measure-
ment space [1]. Next, we show 2D reconstructed images
(using a basic LBP algorithm to illustrate the working con-
cept of the system). The images, however are not needed
to design spatially-aware interactions, reveal potential of
the system and the image processing algorithm can simple
output the relative positions of the devices on the sensing
surface.

Preliminary results
Despite us using an early prototype with basic image pro-
cessing and a low sensing resolution, the size and orien-
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Figure 2: Two iPhone 6 units placed on TomoTable sensor (left
figure) and the resulting reconstructed image (right figure). The
color scale show measurement intensity that varies from empty
space (navy blue) to the fully occupied space above the sensor
(dark brown).

tation of the devices can be easily seen on the resulting
reconstructed image. We show two cases with different
orientation of the devices with respect to each other and
different alignments with respect to the orientation of the
electrodes (Figures 2 and 3, left) as well as the resulting re-
constructed images of the distribution of the objects on the
sensed surface (Figures 2 and 3, right).

There are observable differences in the produced images
depending on how the devices are positioned in relation to
the electrode array and other devices. This showcases the
potential of electrical capacitance tomography to provide
accurate sensing for multi-device systems. We demonstrate
that it is feasible to: (1) obtain the position of the device
(2) distinguish the size of the device (3) detect the rotation
angle and (4) sense several distinct devices.

Discussion and further work
Measurement records taken during experiments revealed
significant changes in sensed capacitance which are sev-
eral orders of magnitude higher than the sensing resolution
of the processing unit used. This leads to a conclusion that

Figure 3: An iPhone 6 and an iPad mini placed on TomoTable
sensor (left figure) and the resulting reconstructed image (right
figure). The spatial arrangement of the devices is misaligned with
TomoTable´s electrode array. Such a case is more likely in an
in-the-wild scenario.

simpler and cheaper embedded devices can be used to
provide accurate sensing for the table. Moreover, the sys-
tem design and operational foundations in terms of both
simplicity and the measurement protocol make the equip-
ment easily scalable. Future work will include refining the
measurement protocol coupled with dedicated contextual
data processing. With the help of inverse problem solving
techniques, we hope to achieve increased accuracy without
the need for extensive additional computation.

We hope that TomoTable will provide opportunities for in-
the-wild studies of multi-device systems. If our development
progresses as planned, we imagine that we will be able to
introduce multi-device setups to meeting places such as
pubs or cafés. Much like in the case of interactive table-
tops (e.g. [2]), we hope that observational studies of how
users interact with such systems over a long period of time
will yield new insights that will inspire new interaction tech-
niques.
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Conclusions
This paper gives an overview of the technical concept of
TomoTable - an ECT-based position sensing system for de-
veloping of interactive applications in multi-device environ-
ments. While spatial awareness may emerge as a key inter-
action paradigm for multi-device environments, a question
of a balance between the required sensing accuracy and
the complexity and ease of deployment remains open. Our
prototype offers limited spatial resolution compared to more
complex and expensive systems i.e. marker-based motion
tracking. However, further research on refining the design in
terms of different electrode arrangements coupled with ded-
icated measurement protocols as well as contextual data
processing algorithms shall provide sufficient accuracy. The
key advantage of TomoTable is that it has a large potential
for easy embedding in existing meeting environments. As it
can be easily made visible, we anticipate it will enable us to
run in-the-wild studies with multi-device systems.
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“Bring-your-own-app?!” – Why apps 
hinder us from achieving true cross-
device BYOD interaction 

 

 

Abstract 

I believe that our community is widely ignoring a 

fundamental challenge that stands between our 

ambitious visions for cross-device interaction and what 

we actually achieve when deploying our prototypes in 

the real world. The problem is that we still “think” in 

apps and design BYOD prototypes as apps for a few 

selected tasks and for clearly defined combinations and 

configurations of devices. We therefore support only a 

tiny fraction of the wealth of possible BYOD usages, 

device combinations, and collaboration styles. To build 

and observe BYOD technologies that fundamentally 

change how we interact with computing systems, we 

have to move beyond the concept of single BYOD apps 

and find ways to make our prototypes more adaptable 

and interoperable so that they support unanticipated 

and fundamentally new usage patterns in the wild.  
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Introduction 

Most likely all participants of this workshop will agree 

that cross-device interaction promises a fascinating 

new way of using our increasingly diverse device 

ecosystems for solving real-world problems. Many of us 

share the vision of a world in which users can rapidly 

shape “symphonies” [4] or “communities” [6] of 

devices that feel like one seamless natural UI for cross-

device applications. We hope to achieve this not only 

for single users but also for multiple users. As a result, 

our community has started to explore bring-your-own-

device (BYOD) scenarios in which users join their 

personal devices to create a shared community of 

devices for collaboration (e.g. [14]).  

Overall, HCI research has made great progress in this 

field. I will illustrate this by shamelessly using two 

examples from my own work: My work on ZOIL at the 

University of Konstanz [7] explored how the mobile and 

stationary devices inside a physical interactive space 

(e.g. tabletops, data walls, tablets, PCs) could be 

combined for multi-user sensemaking in a shared visual 

workspace. In subsequent work at UCL, we worked 

together to create a more lightweight and portable 

cross-device technology. The result was HuddleLamp 

[14] that enables users to combine off-the-shelf mobile 

devices for spontaneous collaboration simply by putting 

them under a desk lamp.  

Lessons from ZOIL and HuddleLamp 

Naturally both results are not perfect. For example, 

applications built with ZOIL are not easy to deploy in 

the wild because they can be installed only on Windows 

devices and need network connections that are often 

blocked by firewalls in real-world settings. As a result, 

we decided that HuddleLamp applications should 

become HTML5 browser applications to overcome the 

problem of incompatible devices or operating systems 

and eliminating the need for local installation or 

configuration of apps. Moreover, all communication 

should happen using web sockets, so that firewalls 

become much less problematic. This strategy proved to 

be very successful. 

ZOIL also does not support BYOD scenarios: There is 

no possibility to easily detect the presence of a new 

device and automatically connect it without manually 

configuring network addresses and ports. In 

HuddleLamp this is much easier by simply opening a 

web page (e.g. by scanning a QR code) that will briefly 

flash a marker on the screen to identify the device and 

establish a connection without any manual setup.  

A further problem is that ZOIL does not track spatial 

positions of devices, so that interactions or object 

transfers between devices require choosing device IDs 

from lists or placing objects in shared locations in a 

visual workspace. This feels much less fluid and more 

difficult than with other cross-device systems that 

extensively make use of inter-device spatial relations or 

proxemics [3]. I repeatedly discussed this important 

role of physical space and gestures for cross-device 

interaction in my work. Two examples are a workshop 

paper [9] at CHI 2014 and a resulting full paper at CHI 

2015 [15]. As a consequence, already the very first 

ideas for HuddleLamp were centered around spatially-

aware interactions [6,8]. However, all these 

interactions can only be detected inside the field of 

view of HuddleLamp’s camera system. This is why Jin 

et al.’s recent work for sensing device locations without 

external hardware or device modifications is a very 

important step forward [10].   
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The really hard problems with BYOD apps 

I believe that all above lessons and challenges have 

something in common: They will be solved within a few 

years. It is fair to assume that we will soon be able to 

detect, identify, and connect multiple devices of 

different types and sizes and to track their positions 

and the gestures between them. We also already know 

a lot about how to design such gestures, so what is the 

real challenge for BYOD in the wild? 

In my opinion, there is a widely underrated challenge 

that stands between our ambitious visions for cross-

device interaction and what we currently achieve when 

deploying our prototypes in the real-world. I believe 

that this challenge is only seldomly addressed in 

research yet, because it sits between the traditional 

research topics of HCI (e.g., gesture design, user 

studies, new sensors & algorithms) and software 

engineering (e.g., software architectures, distributed 

systems, standards for interoperability). Furthermore, it 

focuses on a concept that we are so familiar with that 

we find it “natural” and hardly recognize it as a 

deliberate design choice that has been made for us 

decades ago and that we need to challenge: the 

concept of packaging and distributing computing 

functionality as applications or apps.  

Why are apps problematic for cross-device interaction 

and BYOD? First of all, they exacerbate the problem of 

adaptability. Monolithic walled apps are inherently bad 

at adapting to sudden changes in context, e.g. in the 

number and kind of present devices. As I discuss in [4], 

such changes will happen permanently and it is 

impossible to enumerate the set of contextual states 

that may exist. Therefore the traditional idea of 

designing an app for a clearly defined number and 

combination of devices and trying to predict all possible 

states cannot keep up with the complexity of real-world 

users and usage. If “bring-your-own-device” (BYOD) 

should not mean “bring-your-own-device (as long as 

your task is T, you are using app A, your device is a 

phone running operating system X and browser Y, has 

a screen size of S, and there are only between N and M 

other devices involved)” we must find more flexible and 

adaptable ways of providing functionality such as 

commands, objects, or instruments.  

Second, there is the problem of missing interoperability 

between apps: Even apps that serve a very similar 

purpose, (e.g. different apps for taking notes with a 

stylus, different apps for visualizing data in bar charts) 

cannot talk to each other in BYOD settings. In the best 

case, they share a file format, so that data can be 

exchanged between them via cloud services by 

manually storing and opening files on different devices. 

But this is far from the seamless real-time collaboration 

across devices that we intend to realize. We must find 

alternatives that enables user to flexibly connect or 

combine functionality across devices, even in ways that 

were not anticipated by the developers but successfully 

emerge from usage in the wild. 

If we keep on thinking about BYOD in terms of a single 

app with companion devices that can only be used 

according to the plan of the app’s designer, we only 

scratch the surface of what could be achieved. But 

introducing new ideas how multiple devices could 

provide, share, distribute, and combines functionality 

and content across different devices in unanticipated 

ways could truly revolutionize the way how we interact 

with computing.  
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Alternatives to apps 

The good news is that there are some alternatives out 

there. Researchers & practitioners have proposed a 

number of approaches for replacing the application-

centric model with alternatives that are more flexible 

and arguably closer to the way we work and think in 

the real word, e.g. the object-oriented user interfaces 

(OOUIs) of the early 1990s [2], the instrumental 

interaction of the early 2000s [1], and its more recent 

incarnations as VIGO [11] or Webstrates [12]. 

Therefore I believe that we should use the current shift 

from the single-device to the multi-device era as an 

opportunity to critically reflect about the role that 

monolithic apps or applications should have in future 

and if alternatives such as objects, instruments, or 

webstrates would not meet the requirements of true 

BYOD and cross-device computing much more. 

References 
1. Beaudouin-Lafon, M. 2000. Instrumental 

interaction: an interaction model for designing 
post-WIMP user interfaces. In Proc CHI '00. 446-
453.  

2. Collins, D. 1995. Designing Object-Oriented User 
Interfaces. Benjamin/Cummings. 

3. Greenberg, S., Marquardt, N., Ballendat, T., Diaz-
Marino, R. and Wang, M. 2011. Proxemic 
interactions: the new ubicomp? interactions. 18, 1 
(Jan. 2011), 42-50. 

4. Hamilton, P. and Wigdor, D.J. 2014. Conductor: 
enabling and understanding cross-device 
interaction. In Proc. CHI ’14, 2773–2782. 

5. Jetter, H.-C., Zöllner, M., Gerken, J. and Reiterer, 
H. 2012. Design and Implementation of Post-WIMP 
Distributed User Interfaces with ZOIL. International 

Journal of Human-Computer Interaction. 28, 11 
(2012), 737–747. 

6. Jetter, H.-C. and Reiterer, H. 2013. Self-Organizing 
User Interfaces: Envisioning the Future of Ubicomp 
UIs. Workshop “Blended Interaction” (CHI ’13). 

7. Jetter, H.-C. 2013. Design and Implementation of 

Post-WIMP Interactive Spaces with the ZOIL 
Paradigm. PhD Thesis, University of Konstanz. 

8. Jetter, H.-C. 2013. Visual and Functional 
Adaptation in Ad-hoc Communities of Devices. 
Workshop on Visual Adaptation of Interfaces (In 
conjunction with ITS ’13). 

9. Jetter, H.-C. 2014. A Cognitive Perspective on 
Gestures, Manipulations, and Space in Future Multi-
Device Interaction. Workshop “Gesture-based 
Interaction Design” (In conjunction with CHI ’14). 

10. Jin, H., Holz, C. and Hornbæk, K. 2015. Tracko: 
Ad-hoc Mobile 3D Tracking Using Bluetooth Low 

Energy and Inaudible Signals for Cross-Device 
Interaction. In Proc UIST '15. 147-156. 

11. Klokmose, C. N. and Beaudouin-Lafon, M. 2009. 
VIGO: instrumental interaction in multi-surface 
environments. In Proc CHI '09, 869-878.  

12. Klokmose, C. N., Eagan, J. R., Baader, S., Mackay, 
W., Beaudouin-Lafon, M. 2015. Webstrates: 
Shareable Dynamic Media. In Proc UIST '15. 280-
290.  

13. Marquardt, N., Hinckley, K. and Greenberg, S. 
2012. Cross-device interaction via micro-mobility 
and f-formations. In Proc UIST ’12. 

14. Rädle, R., Jetter, H.-C., Marquardt, N., Reiterer, H. 
and Rogers, Y. 2014. HuddleLamp: Spatially-Aware 
Mobile Displays for Ad-hoc Around-the-Table 
Collaboration. In Proc. ITS ’14, 45–54. 

15. Rädle, R., Jetter, H.-C., Schreiner, M., Lu, Z., 
Reiterer, H. and Rogers, Y. 2015. Spatially-aware 
or spatially-agnostic? Elicitation and Evaluation of 
User-Defined Cross-Device Interactions. In Proc. 
CHI ’15, 3913-3922. 

2016-13 63



Composition and mediation in
cross-surface interaction

Henrik Korsgaard
Aarhus Univeristy
8200 Aarhus N, Denmark
korsgaard@cs.au.dk

Clemens Nylandsted
Klokmose
Aarhus University
8200 aarhus N, Denmark
clemens@cs.au.dk

Copyright is held by the author/owner(s). Presented at the Cross-Surface ’16
workshop, in conjunction with ACM CHI’16. May 7, San Jose, USA.

Abstract
In this position paper we propose two perspectives on inter-
action in cross-surface systems: compositon and mediation.
We advocate for a focused effort to expand our theoretical
and analytical vocabulary when it comes to cross-surface
interaction.
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Introduction
Over the years we have build, deployed and studied a num-
ber of multi-device and cross-surface systems ’in the wild’.
We have seen how the roles of devices and surface, whether
large or small, can differ quite significantly given the use
case and application: A personal device may e.g. provide
a private interface for interacting with shared surfaces (as
in our own Local Area Artworks [2]) or become part of a
shared distributed interface (as in HuddleLamp [6]). Our
vocabulary for talking about human-computer interaction
beyond one user—one device is still limited, and we be-
lieve it is important to continuously refine and expand this
vocabulary. In this position paper we propose two analyti-
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cal perspectives on interaction with cross-surface systems:
composition and mediation.

We build upon a growing body of work on taxonomies and
theoretical frameworks for post-desktop, multi-device and
cross-surface interaction. Notably Terrenghi et al. [9] ex-
amine multi-display ecosystems with the intent of under-
standing the relationship between scale (form-factor), social
interaction and the interaction methods that couple devices
and displays and make interaction possible. Müller et al. [4]
have developed a taxonomy capitulating how people per-
ceive public displays, interaction modalities and supported
interaction. Sørensen et al. [8] present the 4C framework
for (collaborative) interaction in digital ecosystems. The 4C
framework derives principles of interaction design in digital
ecosystems from a 2x2 matrix of ’many users’ vs. ’many ar-
tifacts’ and ’sequential’ vs. ’simultaneous interaction’. The
themes of the quadrants are communality (many sequential
users), collaboration (many simultaneous users), continu-
ity (many sequential devices) and complementarity (many
simultaneous devices).

Theoretical premise
This work is part of our ongoing efforts in trying to grasp
and theorise on the relationship between human activities
and the role artifacts play. This work is strongly positioned
within an activity theoretical understanding of activities, me-
diation and cultural-historical analysis of artifacts as crys-
tallised knowledge. The core tenet of activity theory is that
artifacts mediate human activity and that in order to under-
stand artifacts we take the activity they are part of as the
minimum meaningful unit of analysis. If a given artifact, de-
vice, software application, service etc., is used in an activity,
we take that it has a meaningful instrumental role in the
context of the activity, as it mediates intentional action and
help users to realise specific goals.

With the proliferation of personal and ubiquitous computing,
the artifacts available and their capabilities have changed
significantly. In previous empirical work we have described
these systems as artifact ecologies and made tentative
distinctions related to some of their characteristics. The
concept of artifact ecologies is socio-technical and encom-
passes both the actual technologies and how they are ap-
propriated and used in meaningful activities. In the em-
pirical and theoretical work, we have primarily focused on
social aspects, e.g. the dynamics of personal artifact ecolo-
gies [1] and how a community appropriate and use multiple
artifacts as part of their activities [3]. Individuals have a rich
personal ecology of devices, although not always an active
part of the activity at hand. Throughout an activity, a person
only uses a subset of their ecology depending on the activ-
ity. We posit that the active artifacts are selected through
an (unconscious) assessment between what is to be ac-
complished in a given activity and the potential artifacts
knowingly available to the person – in the situation and in
their knowledge of the artifacts capabilities. Here we distin-
guish between the potential and actual artifacts available to
and used in a given activity. The potential is the “pool” from
which an individual or group selects the actual artifacts to
be used within the activity at hand (see also [7] on constel-
lations of artifacts and group negotiation), and the actual
artifacts are those that are part of the specific activity.

Perspectives on cross-surface systems
In the following we outline two perspectives on cross-device
systems and artifact ecologies.

Composition. The composition is the actual artifacts in use
as part of an activity. It may span multiple personal and
shared devices which may or may not share resources or
technical coupling. The composition might involve dedi-
cated devices developed specifically for the particular activ-
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ity or may be more or less impromptu use and coordination
across heterogeneous devices – personal and shared. The
composition of cross-device system changes as the activ-
ity changes and the individual devices might change role
in the activity. The changes can either be adding, remov-
ing or substituting a device. Here we distinguish between a
horizontal and a vertical change in the composition. When
horizontal changes occur the base functionality of the multi-
device system and its role in the activity does not change.
Participants may add another device with identical capabil-
ities of an existing, e.g. adding a larger display or another
tablet that can interact with a specific component. A ver-
tical change is when functionality is added or removed to
the activity and system, e.g. adding a sketchpad or digi-
tizer to a system that allow participants to embed sketches
within a document. Understanding how the composition
changes and what parts of the potential ecology (personal
and shared devices) are active and the role they play are
extremely important in supporting individual and collabora-
tive activities and the various transitions that occur.

Mediation. Cross-surface systems mediate activities of peo-
ple with certain goals and motives. We characterize the
relationship between people to be either: individual, social
or collaborative. Individual interaction with a cross-surface
system is e.g. to distribute a web page across multiple per-
sonal devices [5]. Social interaction is where the interaction
is influenced by the actions of others, but not directly af-
fected. E.g. when posting images from personal devices to
a public display. Finally collaborative interaction is when
there is a common goal and interactions are directly af-
fected by other users, e.g. collaborative editing of text on
a shared display [2].

The way goals are realized mediated by the system we
call the instrumentality of the interaction. Interaction can

be consumption of digital content through reading, watch-
ing or listening; communication with other users through
a digital medium either synchronously or asynchronously;
production and manipulation of any kind of digital con-
tent, whether text, images videos etc.; control of the state
of a system, whether digital (e.g. playback of a video) or
physical (e.g. controlling the lighting of a room); search
and retrieval of digital content; and finally configuration of
a digital workspace (e.g. personalization or window place-
ment). Each of the aspects of instrumentality can naturally
not happen in isolation: search requires consumption, con-
sumption requires control etc.

Some discussion
Returning to the 4C framework [8], here the focus is al-
most exclusively on collaborative control and consumption
in their Netflix example; a screen is used for watching a
movie and smartphone apps are used to control what is be-
ing watched. The composition of the example used in the
4C paper is simple and the capabilities/role of the artifacts
are closely tied to the instrumentality of the system. In this
case adding or removing a control device would be a hor-
izontal change, whereas adding a device that allowed to
review and discuss the movie would be a vertical addition
to the composition. Note that this might already be possible
within the system, but has to be actually used as part of the
activity to be a part of the composition.

A recent study shows that while it is commonly assumed
that the larger the surface the better for collaborative sense
making, this may not be true for cross-surface situations
where sense-making and search and retrieval are dis-
tributed across personal and shared surfaces [10]. This
means that mediation and composition influence the affor-
dances of interactive surfaces, which emphasises the need
for being able to articulate them.
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Not all combinations of mediation and composition are
common-place today. Collaborative, cross-surface produc-
tion and manipulation of digital content is rarely seen. This
may point to a deeper challenge, namely that our tools for
production and our understanding of those tools are deeply
rooted in traditional personal computing.

Going forwards
Our own everyday confusion in articulating and working
with cross-surface/multi-device perspectives on computing
are motivating us to develop a conceptual framework that
allow us to analyse and design novel systems within this
space. This position paper attempt to do just that anchored
in familiar theoretical territory. By basing our tentative vo-
cabulary in activity theory we want to emphasise activities,
and not individual use, as a primary focus. This is also an
attempt to identify what’s next in computing and in particu-
lar, how to address some of the fundamental (design) flaws
of personal computing and move forward.
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Abstract
Large vertical displays are increasingly widespread, and
content sharing between them and personal mobile devices
is central to many usage scenarios. Research has already
led to manifold interaction techniques. In most cases how-
ever, they do not lend themselves for realistic, in-the-wild
usage. In this paper we present our research towards bridg-
ing the gap to real world usage. We address the issues of
awareness & connectivity as well as privacy, which we be-
lieve to be two important aspects of BYOD (bring your own
device) content sharing between public displays and mobile
devices.

Author Keywords
Cross-device interaction; data transfer; privacy; large dis-
plays; mobile phones; proxemic interaction

ACM Classification Keywords
H.5.2. [Information Interfaces and Presentation: User Inter-
faces]: Input devices and strategies, Interaction styles

Introduction & Background
Hardware advances are making very large vertical displays
more common in a variety of scenarios, e.g., as public dis-
plays. At the same time, personal devices such as mobile
phones have become ubiquitous over the last years, as they
allow people to conveniently manage their digital identi-
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ties and content. In combination these two device classes
provide the advantages of both settings: among others, per-
sonalized interaction, private data storage, and on-demand
data sharing. While these issues have been studied ex-
tensively in the past, there is a lack of work specifically ad-
dressing scenarios where users bring their own devices
to share data with large public or semi-public displays out-
side of typical lab settings. In our research we address two
aspects that are often still problematic in real world usage
scenarios: (i) awareness & connectivity and (ii) privacy.
In the following we will give a brief overview of the related
work before exploring these two aspects in more detail.

Figure 1: Tango tablet used in
combination with a wall-sized
display. The position is tracked
using the internal sensors only.

For a general introduction to interaction with wall-sized dis-
plays, we refer to the overview by Müller et al. on public
displays [7]. Additionally, Marquardt et al.’s work on Gradual
Engagement [6] provides a design framework for integrating
the relative positions of the devices involved in cross-device
interaction. A related notion is Greenberg et al.’s Proxemic
Interaction (e.g., [4]), in which interactions are based on
spatial relationships between people and devices.

Much of the work on cross-device data transfer considers
single-item transfer in close proximity. Rekimoto’s Pick-and-
Drop [8] is early work on cross-device data transfer using
a pen as interaction device. More recently, Schmidt et al.’s
PhoneTouch associates touches on a large display with
a mobile phone by correlating the phone’s motion sensor
signals, covering both the technology [9] and numerous
interaction techniques [10]. In SleeD [14], von Zadow et
al. use an arm-worn device; transfer involves touching the
large display with the hand the device is strapped on. Alt
et al. [1] compare content creation for and exchange with
public displays using multiple modalities, while Seifert et
al. [12] introduce a number of interaction techniques that
allow privately selecting the data to share before perform-

ing the actual transfer. In PointerPhone [11], Seifert et al.
investigate the interactions possible when remote pointing
is combined with interactions on the phone. Dachselt and
Buchholz’s Throw and Tilt [3] utilizes expressive gestures
for data transfer, while Hassan et al.’s Chucking [5] is inter-
esting because it also supports positioning of items on the
large screen.

Awareness & Connectivity
A particular challenge for in-the-wild interaction between
mobiles and public displays is the issue of awareness &
connectivity. In this context, both technology and user in-
terface have to be considered, which involves providing
standardized protocols (location and services) as well as ui
components and interactions.

Concerning the user interface, awareness is the knowledge
of the user that there is a public display, that it supports in-
teraction, and that it is ready to accept user input. Known
approaches such as Marquardt et al.’s Gradual Engage-
ment Pattern [6] can support this. We believe that in the fu-
ture a background service on the mobile device could con-
tinuously check for available connections in the environment
and give appropriate feedback, e.g., status bar messages
or vibration to get the user’s attention.

Technologically, awareness means that both the mobile can
react to public displays, as described above, and the large
display can react to the mobile device. However, there are
different levels of sensing to this. In fact, they form a whole
spectrum between only knowing that a device is in the vicin-
ity and full six DoF tracking. These technical capabilities
influence the availability of the following interaction styles:

• In the case where no additional tracking data is avail-
able, the mobile device can only be used similar to
a TV remote. Data transfer by techniques such as
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swiping is possible but lacks positional information.
Alternatively, drag gestures on the phone can (rela-
tively) control the movement of a pointer on the large
display.

• If the large display allows sensing of contact posi-
tions (e.g. it is touch capable or via marker tracking
of the phone), precise transfer to the touch position
becomes possible when in touching distance (e.g.,
[9, 14]).

• Relative motion tracking of the mobile device, e.g.,
using the internal IMU, enables device gestures such
as throwing [3].

• Finally, with full 6 DoF tracking available, pointing is
available and allows for precisely targeted transfer of
digital objects.

Figure 2: Top: The preview image
on the public display is blurred to
preserve privacy. Bottom: Blurring
can be distance aware. When the
user stands near the large display
and shoulder surfing is harder, less
blurring is applied.

Figure 3: By default, only the
position of pictures on a map is
shown. Only when directly pointing
at them, their preview is revealed.

Up to now, tracking of mobile devices in front of large ver-
tical displays usually involves instrumentation of the room
and in many cases also the device, using marker based
tracking systems or depth cameras (e.g., [13]). Lately, de-
vices such as Google’s Tango1 allow non-instrumented,
visual motion tracking. We tested Tango in a typical inter-
action scenario in front of a wall-sized interactive display
(Figure 1) and found the tracking precision sufficient for
most application cases. Drift, however, can be a problem,
especially when the display content changes rapidly.

For meaningful interaction between the devices, not only
files transfer has to be considered but also specific, intuitive
user interfaces. General file transfer applications, e.g., a file
browser, would be applicable to a wide range of situations.
However, we believe that carefully crafted interfaces that
take the context (display type, application scenario, ...) into

1https://www.google.com/atap/project-tango/

consideration could provide a richer experience. Addition-
ally, such interfaces could also integrate not only content
sharing but other uses for mobile devices, such as personal
tangible magic lenses, as well. Therefore, in our investiga-
tions we explore a streaming-based thin-client architecture.
The application running on the large display streams user
interfaces to the mobile device and collects user input. Our
current prototype renders the UI into an h.264 video stream
using the Python-based libavg2 framework. The stream
is then decoded and displayed on the mobile device by a
small, native application. User input, i.e., touch and motion
data, is streamed back via OSC protocol. This allows appli-
cations that use a simple and thin client to provide arbitrary,
application-specific user interfaces. Depending on the pre-
cise details of the usage scenario (e.g., number of clients),
we think that this solution could serve as a basis for various
settings, because the bandwidth of available network con-
nections increases continuously and todays mobile devices
are equipped with efficient decoders.

Privacy
Privacy is a general concern in many multi-user application
scenarios. In particular, we believe that this is a major factor
to be considered in content sharing applications between
public and private devices. There has already been work
regarding the presentation of private data on public dis-
plays and specific interactions, such as on limiting shoulder
surfing [2] and password input [9], respectively. Given that
users often store very personal pictures on their phones,
they might be hesitant to let others see them unfiltered. To
counteract privacy concerns in such cases, we currently ex-
plore three different interface strategies: (i) limit what data
is displayed at all, (ii) hide information through blurring and
other image-based methods, and (iii) show abstract repre-
sentations of data items, e.g., by only showing metadata.

2http://libavg.de/
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In our investigations, we use a simple two-step process for
data sharing activities: First, instead of sharing and display-
ing all documents at once, the user manually selects them
on his or her device, thus filtering them on a smaller, more
private display, similarly to [12]. Secondly, when transferring
to the public display, we show a heavily blurred version of
the content (Figure 2). This allows the user, who knows his
or her photos, to cancel the transfer if an undesired picture
is shown, while hiding details from the public. For use cases
such as geotagged photos on a map, we transfer metadata
of items first, allowing the large display to show preview cir-
cles at corresponding positions. The photos themselves are
not revealed until the pointing cursor is over their position,
preserving privacy (Figure 3).

Besides the issue of uploading content, downloading from
the public display can also lead to privacy concerns: Imag-
ine a public information terminal in a medical center with
info flyers on different medical issues or a digital notice
board with anonymized publicly available exam results.
These are situations in which a user might not want others
to see which digital objects he or she copies to their per-
sonal device. To this end, we propose the concept of blind
pointing: During pointing/selection, no visual representa-
tion of a selection cursor is shown on the public display.
Instead, the user only gets vibrotactile feedback. We be-
lieve that proprioception could allow users to reliably select
items on a large display solely supported by such unspecific
feedback in combination with small, inconspicuous pointing
gestures.

Conclusion
In this position paper, we outlined our on-going explorations
on content sharing between large displays and mobile de-
vices, focusing on the two important aspects awareness
& connectivity as well as privacy. In the context of BYOD

and to consider different device platforms, maximize com-
patibility, and ease the process of device connections, we
explore the usage of non-instrumented devices (i.e., without
additional markers) such as Tango and deploy a streaming-
solution in which the display application sends the user in-
terface (output) and collects user input. Furthermore, we
developed early concepts and prototype implementations
addressing the issue of privacy, such as abstracting visual
user feedback on large displays or using blind pointing.

We believe that, together with various other investigations
in this field, our research helps the community to determine
underlying principles and enable the development of seam-
less content sharing between large displays and personal
mobile devices in the wild.
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