

Cross-Surface

2016-1

Proceedings of Cross-Surface 2016 1

Proceedings of the second Cross-Surface workshop

Editors: Steven Houben, Jo Vermeulen, Nicolai Marquardt, Johannes Schöning,
Clemens Klokmose, Harald Reiterer, Henrik Korsgaard and Mario Schreiner.

Copyright: Copyright for the whole publication remains with the editors.
Copyright of individual papers remain with the authors / owners.

Publication: Published online in 2016.

Contact: Steven Houben

Department of Computer Science
University College London
Gower Street, London WC1E 6BT
United Kingdom

Proceedings of Cross-Surface 2016 2

About
In this workshop, we reviewed and discussed challenges and opportunities for Human-Computer

Interaction in relation to cross-surface interaction in the wild based on the bring-your-own-device

(BYOD) practice. We brought together researchers and practitioners working on technical

infrastructures for cross-surface computing, studies of cross-surface computing in particular domains as

well as interaction challenges for introducing cross-surface computing in the wild, all with a particular

focus on BYOD. Examples of application domains are: cultural institutions, work places, public libraries,

schools and education. Please find more details about the workshop, in the submitted proposal [1]. The

workshop was held in conjunction with the 2016 ACM Conference on Human Factors in Computing

Systems (CHI), that took place from May 7 to 12 in San Jose, USA.

[1] Steven Houben, Nicolai Marquardt, Jo Vermeulen, Johannes Schöning, Clemens Klokmose, Harald

Reiterer, Henrik Korsgaard, and Mario Schreiner. 2016. Cross-Surface: Challenges and Opportunities for

'bring your own device' in the wild. In Proceedings of the 2016 CHI Conference Extended Abstracts on

Human Factors in Computing Systems (CHI EA '16). ACM, New York, NY, USA, 3366-3372.

DOI: http://dx.doi.org/10.1145/2851581.2856490

Editors

Dr. Steven Houben – University College London

Dr. Nicolai Marquardt – University College London

Dr. Jo Vermeulen – University of Calgary

Prof. Johannes Schöning – Hasselt University – tUL –iMinds

Prof. Clemens Klokmose – Aarhus University

Prof. Harald Reiterer – University of Konstanz

Henrik Korsgaard – Aarhus University

Mario Schreiner – University of Konstanz

Program

09:00 Introduction to workshop by the organizers

09:15 Keynote by Professor Susanne Bødker

10:00 Paper Presentations

10:30 Coffee break

11:00 Case studies and brainstorm

13:00 Lunch

14:00 Present ideas + map out design space

16:00 Coffee break

16:30 Group reflections and panel

17:30 Closing

Proceedings of Cross-Surface 2016 3

http://dx.doi.org/10.1145/2851581.2856490

Keynote

Title: “Holding artifacts in common”

This talk will address multiplicity and artifacts: multi-artifact practices, multi-

practice artifacts, multi-user artifacts, and multi-artifact users. I will use both

empirical examples and theoretical concepts to further discuss how human

users hold artifacts in common, and how this holding in common develops

over time

Biography:

Susanne Bødker is professor of Human Computer Interaction at the Computer

Science Department, University of Aarhus. Her research areas include

participatory design, computer-supported cooperative work and

human-computer interaction. Her PhD thesis, Through the Interface—a Human Activity Approach to User

Interface Design was an early attempt to present activity theoretical HCI to an international audience.

Much of her research since can be seen as consolidation and expansion of this theoretical frame.

Proceedings of Cross-Surface 2016 4

List of accepted papers

1. Towards Cross-device Harmony

Timothy Neate a, Matt Jones a and Michael Evans b
a Swansea University
b BBC Research

2. Enhancing Context-Aware Computing through Environmental Awareness

Mario Schreiner and Harald Reiterer

University of Konstanz

3. XDBrowser: Challenges in Engineering a Next-Generation, Cross-Device Web Browser

Michael Nebeling and Anind Dey

Carnegie Mellon University

4. Human-oriented Infrastructures for Multi-surface Environments

Marc-Emmanuel Perrin, James R. Eagan and Michel Beaudouin-Lafon

LTCI, Telecom Paristech & CNRS, Inria Université Paris Saclay

5. Advances and Challenges in Ad-hoc Mobile Tracking for Seamless Interaction across Commodity

Devices

Haojian Jin a and Christian Holz b
a Yahoo Labs
b Microsoft Research

6. The Challenges of Using an Existing Cross-Device Interaction Prototype for Supporting Actual

Curation Practices

Frederik Brudy a, Nicolai Marquardt a, Yvonne Rogers a, Abigail Sellen b and Kenton O’hara b
a University College London
b Microsoft Research

7. The benefits of ‘In The Wild’ studies for successful introduction of ‘Bring Your Own Device’

policies in the industry

Jens Ziegler, Sebastian Heinze and Leon Urbas

Technische Universität Dresden

8. Towards Context-Aware Cross-Device User Interfaces in the Wild

Fabio Paternò, Giuseppe Ghiani, Marco Manca

CNR-ISTI, HIIS Laboratory

9. Prototyping “In The Wild” Interaction Scenarios With RE/Tk

Aneesh P. Tarun a, Andrea Bellucci b and Ali Mazalek a
a Synaesthetic Media Lab, Ryerson University
b Universidad Carlos III de Madrid

Proceedings of Cross-Surface 2016 5

http://cross-surface.com/papers/Cross-Surface_2016_paper_1.pdf
http://cross-surface.com/papers/Cross-Surface_2016_paper_2.pdf
http://cross-surface.com/papers/Cross-Surface_2016_paper_3.pdf
http://cross-surface.com/papers/Cross-Surface_2016_paper_4.pdf
http://cross-surface.com/papers/Cross-Surface_2016_paper_5.pdf
http://cross-surface.com/papers/Cross-Surface_2016_paper_5.pdf
http://cross-surface.com/papers/Cross-Surface_2016_paper_6.pdf
http://cross-surface.com/papers/Cross-Surface_2016_paper_6.pdf
http://cross-surface.com/papers/Cross-Surface_2016_paper_7.pdf
http://cross-surface.com/papers/Cross-Surface_2016_paper_7.pdf
http://cross-surface.com/papers/Cross-Surface_2016_paper_8.pdf
http://cross-surface.com/papers/Cross-Surface_2016_paper_9.pdf

10. Extending a Learning Platform with Cross-Device Functionality

Maria Husmann, Nicola Marcacci Rossi and Moira Norrie

ETH Zurich

11. Enabling multi-device interaction on the go in the MAGI project

Kenny T.W. Choo, Richard C. Davis and Quentin Roy

Singapore Management University

12. TomoSense: Towards Multi-Device Spatial Awareness Based on Independent Plane-Surface

Sensing

Przemysław Kucharski a, Andrzej Romanowski a, Krzysztof Grudzień a and Paweł Woźniak b
a Lodz University of Technology, Institute of Applied Computer Science
b t2i Interaction Laboratory, Chalmers University of Technology

13. “Bring-your-own-app?!” – Why apps hinder us from achieving true cross-device BYOD interaction

Hans-Christian Jetter

FH Oberösterreich, Campus Hagenberg

14. Composition and mediation in cross-surface interaction

Henrik Korsgaard and Clemens Nylandsted Klokmose

Aarhus University

15. Towards Cross-Surface Content Sharing Between Mobile Devices and Large Displays in the Wild

Wolfgang Büschel, Ricardo Langner, Ulrich von Zadow, Tom Horak and Raimund Dachselt

Technische Universität Dresden

Proceedings of Cross-Surface 2016 6

http://cross-surface.com/papers/Cross-Surface_2016_paper_10.pdf
http://cross-surface.com/papers/Cross-Surface_2016_paper_11.pdf
http://cross-surface.com/papers/Cross-Surface_2016_paper_12.pdf
http://cross-surface.com/papers/Cross-Surface_2016_paper_12.pdf
http://cross-surface.com/papers/Cross-Surface_2016_paper_14.pdf
http://cross-surface.com/papers/Cross-Surface_2016_paper_15.pdf
http://cross-surface.com/papers/Cross-Surface_2016_paper_16.pdf

Figure 1: A dual-screen use
case – in such scenarios, the
users switch their attention
between the motion rich TV and
the second screen companion
content (in this example on the
tablet). Though both displays
can be considered the primary
focus, research shows that
generally the more motion rich
TV content becomes the
‘primary’ display. Here the user
is holding up the tablet so that
the displays meet. However,
the device is typically rested on
a user’s lap (discussed in Figure
2) on the next page.

Towards Cross-device Harmony

Timothy Neate
FIT Lab
Swansea University
Swansea, SA2 8PP UK
tdjneate@gmail.com

Matt Jones
FIT Lab
Swansea University
Swansea, SA2 8PP UK
mattjonez@gmail.com

Michael Evans
BBC R&D
Salford, M50 2LH UK
michael.evans@rd.bbc.co.uk

Copyright is held by the author/owner(s). Presented at the Cross-Surface
’16 workshop, in conjunction with ACM CHI’16. May 7, San Jose, USA.

Abstract
In modern home entertainment, our personal devices
regularly supplement some ‘primary’ screen. Such
layouts of screens in the living room afford enhanced
autonomous browsing, collocated interactions, and
give broadcasters the opportunity to enhance TV
through multi-device experiences. TV/personal de-
vice scenarios are becoming one of the first ubiqui-
tous cross-device situations, and therefore stand as
a potential exemplar of the use case. Our research
looks at the potential attention bottlenecks in such
scenarios, and works towards improving such experi-
ences through informed design of attention.

Author Keywords
Dual-screen; companion content; television; atten-
tion; user experience; media; displays; media

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g.,
HCI)]: Miscellaneous

Introduction
The infrastructure for exciting, multi-sensory, cross-
device experiences lies in our hands, and adorns our
walls – by bringing along our handheld devices, we
open up a new world of personalised second screen

2016-1 7

content. The inherent portability, connectability, and
sheer computing power of such devices make them
prime candidates to supplement larger displays (e.g.
Smart TVs) with complementary multimodal stim-
uli and additional interaction possibilities. Much re-
search has documented how we may appropriate
existing technologies to engage in complementary
multi-device consumption of media. Therefore, many
broadcasters and application developers have began
leveraging such research to design between-device
media as the next step from beyond traditional linear
broadcast.

Figure 2: In companion
content scenarios users tend to
switch attention, as opposed to
divide. Typically, users rest the
device on their lap, in their
peripheral – creating a visual
congruence between the foci.
This means they must
constantly check the device for
new content when focusing on
the TV, and monitor the
auditory stream of the TV for
points that pique their interest.

There are, however, some confounds when it comes
to such scenarios – as we divide our attention be-
tween devices we create a disjunct between displays.
In this workshop paper we reflect on the TV for HCI
communities’ reflections on attention across devices
with an aim to further consider how this applies to
cross-device interactions generally.

Context & Brief Background
We increasingly watch TV accompanied by a second
screen – we Google tangential information in pro-
grammes, social network, or simply browse the web.
In 2012, Google suggested that 77% of us second-
screened regularly [2] (a statistic later revised up to
87% by Accenture [3]). Predominantly, this growing
practice is done on smartphones, tablets, and lap-
tops.

Clearly, then, this use case (Figures 1 and 2) is ubiq-
uitous and (unsurprisingly) broadcasters now wish
to lever this enthusiasm for dual-screens to enhance
UX. To support dual-screen experiences content providers
have began developing companion applications –

material developed for second-screen handheld de-
vices that run alongside a TV programme, providing
relevant facts, quizzes, and social media content.
With the increasing proliferation of internet-driven
media and object based broadcasting (see [6]), this
area of multi-device media is quickly accelerating
and therefore people are considering its fundamental
design.

There are many recent commercial examples of pro-
grammes which utilise a second device with support-
ing material (e.g. [4]). In addition to this, much lit-
erature in the HCI for TV community explores this
scenario from an academic standpoint, to support
content creators. Further, for such cases, some work
(e.g. Brown et al. [1]) has investigated how atten-
tion switches for dual-screen companion content.

Currently dual-screen experiences require users to
manage their own attention across displays – they
are often overloaded with information to the point
where they cannot engage with content as its de-
signers envisioned. Moreover, the visual disjunct be-
tween the foci (see Figure 2) can mean users fixating
on one display. This, coupled with the inherent cost
of display switching [8], negatively impacts on UX.

Due to the lack of thorough investigation on this
topic, the dual-screen experience is fundamentally
undesigned. Therefore, our research looks at how
we may better design cross-device media to encom-
pass attention, and design towards experiences in
which the displays are complementary, and harmo-
nious. To this end we have been building on the lit-
erature by conducting preliminary interviews, design-
ing interventions, and conducting systematic studies
with users. We, by working with our industry part-

2016-1 8

a)
TV Complexity:

1

2

3

C
om

pl
ex

ity
Le

ve
l

03:40 03:50 04:00 04:10 04:20 04:30 04:40 04:50 05:00 05:10 05:20

T2 T3T1 T4 T5

b)

T1

03:40 03:50 04:00 04:10 04:20 04:30 04:40 04:50 05:00 05:10 03:40 03:50 04:00 04:10 04:20 04:30 04:40 04:50 05:00 05:10 05:20

C
om

pl
ex

ity
Le

ve
l

1

2

3

T2 T3 T4 T5

Time (mm:ss) Time (mm:ss)Time (mm:ss)

Tablet Complexity:
c)

T2 T3T1 T4 T5

Figure 3: Content curation process: a) video is broken down into 20 second time slices; b) complexity of TV content is
determined; c) complexity of tablet content is determined by inverting the TV complexity value. Figure from [5]

ners (the BBC), are refining our idea of what creates
a positive multi-device media experience through
proper cross-device attention management.

Work so Far
To establish the current experience of the dual-screen
use case we conducted interviews with participants
about their usage habits. In general we found early
on that there are some clear attention bottlenecks.
For example, when users view content on their phones
(be it social media or related web content) they, gen-
erally, to some degree need to make some sacrifice –
to try to ‘block out’ one device, in favour of another.
Though we can monitor content in our peripheral, in
either the audio of visual domain, it requires extrane-
ous effort.

To explore this more systematically we conducted a
lab study in which participants watched TV accom-
panied by companion content – related textual and
graphical information (e.g. Figure 4). The indepen-
dent variables were the companion device’s textual
and graphical complexity. In general, we saw in-
creased visual attention and increased effort required

as the complexity was increased, more so for textual
information. We then associated this with our quali-
tative data from the participants to learn better what
TV content requires more effort as the second screen
complexity is increased.

Using our qualitative data we established a set of ob-
servable and codeable behaviours in the presence
of varying complexity, and from this developed sys-
tems in which the complexity on a tablet computer
adapted (we term this curated) based on the com-
plexity of the TV (see Figure 3). We then compared
this to a baseline and an adaptable (by the user)
case and found that such methods complement more
‘lean back’ companion experiences. In addition, we
found a degree of variability in the participants who
enjoyed the adaptable UI. Some, who were more en-
gaged with the second screen material actively in-
creased the complexity of the content. Whereas oth-
ers, who wanted to engage with the companion con-
tent less, turned down the complexity so that they
could gain a better gist of the materials. These stud-
ies culminated in the work presented in [5].

2016-1 9

In our work, we have also considered how we may
move a participants gaze between displays. For ex-
ample, in [7] we looked at a variety of methods to
notify users we looked at how we may mediate at-
tention between the foci. For example, we found that
if we wish to command attention shifts quickly and
effectively we should use peripheral stimuli (on the
tablet) of either audio or visual medium. And that if
we wish to permit some degree of autonomy to the
users calls to action on the TV work effectively (Fig-
ure 5). Further, we found that in contexts with up-
dating information that users strongly preferred their
attention to be mediated to some extent, to avoid
over/under-attendance of a device.

Figure 4: Example of a simple
piece of trivia typical of
companion content. The users
are free to swipe through such
trivia or view as a slide show.
This was used in the mediating
attention experiment, and in
the work of Brown et al. [1].

Figure 5: Example on an
on-TV notification. Such calls
to action are often found in
current interactive TV, for
example encouraging users to
follow a hashtag, or press the
(BBC) red button for more
information.

In summary, we have so far looked at key areas of
concern in the dual-device media scenario, and have
investigated solutions to alleviate. In the future, we
hope to reflect on how we may glean insight from the
increasingly ubiquitous use case that is multi-device
TV, towards considering how we may better design
complementary UI for general (non-media) cross-
device scenarios.

References
[1] Andy Brown, Michael Evans, Caroline Jay, Max-

ine Glancy, Rhianne Jones, and Simon Harper.
2014. HCI over Multiple Screens. In CHI ’14 Ex-
tended Abstracts on Human Factors in Comput-
ing Systems (CHI EA ’14). ACM, New York, NY,
USA, 665–674. DOI:http://dx.doi.org/10.1145/
2559206.2578869

[2] Google. 2012. The New Multi-screen
World:Understanding Cross-platorm Consumer
Behavior. Google. http://goo.gl/xdbOe1

[3] Gavin Mann, Francesco Venturini, Robin Mur-
doch, Bikash Mishra, Gemma Moorby, and
Bouchra Carlier. 2015. Digital Video and the
Connected Consumer. Technical Report. Accen-
ture.

[4] NBCUniversal. 2014. Heroes Reborn. Online.
(2014). Retrieved 14/09/15 from http://goo.gl/
yl93Qb.

[5] Timothy Neate, Michael Evans, and Matt Jones.
2016. Designing Visual Complexity for Dual-
screen Media. In (to appear) proc. CHI 2016.
ACM. DOI:http://dx.doi.org/10.1145/2858036.
2858112

[6] Timothy Neate, Matt Jones, and Michael Evans.
2014. Future Media: The Role of HCI in Broad-
cast. Seventh York Doctoral Symposium on
Computer Science & Electronics (2014), 75.

[7] Timothy Neate, Matt Jones, and Michael Evans.
2015. Mediating Attention for Second Screen
Companion Content. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). ACM, New York,
NY, USA, 3103–3106. DOI:http://dx.doi.org/10.
1145/2702123.2702278

[8] Umar Rashid, Miguel A. Nacenta, and Aaron
Quigley. 2012. The Cost of Display Switch-
ing: A Comparison of Mobile, Large Display
and Hybrid UI Configurations. In Proceedings
of the International Working Conference on Ad-
vanced Visual Interfaces (AVI ’12). ACM, New
York, NY, USA, 99–106. DOI:http://dx.doi.org/10.
1145/2254556.2254577

2016-1 10

http://dx.doi.org/10.1145/2559206.2578869
http://dx.doi.org/10.1145/2559206.2578869
http://goo.gl/xdbOe1
http://goo.gl/yl93Qb
http://goo.gl/yl93Qb
http://dx.doi.org/10.1145/2858036.2858112
http://dx.doi.org/10.1145/2858036.2858112
http://dx.doi.org/10.1145/2702123.2702278
http://dx.doi.org/10.1145/2702123.2702278
http://dx.doi.org/10.1145/2254556.2254577
http://dx.doi.org/10.1145/2254556.2254577

Enhancing Context-Aware Computing
through Environmental Awareness

Mario Schreiner
University of Konstanz
Konstanz, Germany
mario.schreiner@uni.kn

Harald Reiterer
University of Konstanz
Konstanz, Germany
harald.reiterer@uni.kn

Copyright is held by the author/owner(s).
Presented at the Cross-Surface ’16 workshop, in conjunction with ACM CHI’16.
May 7, San Jose, USA.

Abstract
To counteract the rising complexity of mobile systems,
context-aware computing is important to determine user
intent and adapt devices accordingly. This position paper
proposes to improve context detection by harnessing the
fact that most modern devices have become detectable,
networked beacons, allowing other devices to pick up their
virtual presences and use these presences as indicators
for the current physical environment. This paper proposes
to improve context detection by a) analysing surrounding
devices and b) communicating with nearby devices to ex-
change environmental status information. The paper de-
scribes the approach - both conceptually as well as tech-
nically - and describes possible use cases and limitations.
We believe that further research in this direction can im-
prove context detection in the future dramatically.

Author Keywords
context-aware computing; environment; context; bluetooth

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g., HCI)]:
Miscellaneous

Introduction
Modern devices, and in particular mobile devices, have
rapidly gotten more powerful over the last couple of years.

2016-2 11

With this, they gained new features but also became much
more complex to use. For mobile interaction designers, this
introduces new challenges: Users tend to use mobile de-
vices to achieve a single task in a short time[2] with their
cognitive resources being very limited[3]. But with com-
plexity, the time to solve a task increases as well. As a
prominent way to tackle this issue, research has looked into
context-aware computing[1]. Context is a proxy for human
intent[5] and as such helps to adapt applications to better
aid the user. But detecting context is no trivial task: The
components that make up “context” are manifold, ranging
from location and time over lighting, temperature and noise
to people and objects that surround us[1].

Current devices use a limited set of sensor hardware - such
as GPS for location or accelerometer to detect motion - in
combination with machine learning algorithms to determine
context. While useful, this kind of context detection is very
limited and insufficient to represent the complexity of peo-
ple’s life. Additional information about the surrounding could
help devices to improve their context-aware behaviour. This
position paper will focus on the possibilities of detecting
the user’s physical environment. We propose the use of
short-range wireless technologies (i.e. Bluetooth Low En-
ergy) to scan the user’s current surrounding. By learning
about repeating occurrences of combinations of devices
(i.e. by using machine learning algorithms), and combining
these occurrences with other sensor data (such as GPS,
contact list data or the active application), it is our believe
that context detection could be largely improved. The basic
approach is not novel in itself - for example, ContextPhone
has described the use of “physical environment, including
surrounding Bluetooth devices”[4] as a possible sensor. We
think, though, that this kind of sensing has tremendous po-
tential to improve context-aware computing and is not suffi-
ciently explored yet, in particular in light of recent advances

in technology. Therefore, this paper will describe an ap-
proach of a) context sensing using surrounding devices and
b) retrieving extended environmental information through
communication with nearby devices. We will further detail
different use cases where this detection can improve appli-
cation behaviour and describe the limitations and technical
difficulties in making this approach a reality.

Context through Surrounding Devices
With the advance of Weiser’s vision of ubiquitous comput-
ing and the emergence of the Internet of Things, almost any
modern device communicates with the outside world. Wi-Fi,
Bluetooth, and NFC have become prominent communica-
tion channels and are found in smartphones, tablets, and
computers, but also watches, light bulbs, fridges, TVs, and
many more devices. It is likely this trend will continue in the
future to incorporate even more types of devices. We be-
lieve this fact can be harnessed by scanning and learning
about the surrounding of a device to derive context informa-
tion.

For example, consider workplace detection using location.
While suited for regular work at a single workplace, such a
detection will fail for a travelling salesman or for extraordi-
nary events, such as external meetings or a dinner. Using
surrounding devices, the detection of the work context be-
comes much more adaptable. During work-related events
the user is surrounded by a similar circle of devices: The
personal devices of co-workers. Based on this, work events
can then be correctly classified. By querying additional
sensors, such as time and location, the context can be fur-
ther narrowed down: For example, at a restaurant in the
evening, the work event becomes a dinner with colleagues.
Using this knowledge, devices can adapt, e.g. by turning off
non-crucial notifications and giving quick access to culinary
information such as wine ratings.

2016-2 12

In contrast, consider being at the same restaurant at the
same time but being surrounded by close friends: Here,
all notifications would be enabled, taken photos could be
automatically shared, and, when leaving, the location of
bars with long opening hours can be suggested.

Environmental detection can also provide valuable meta-
data for artefacts. While scribbling down digital notes during
a meeting, the artefact can be automatically tagged, e.g.
with the project name. When taking a photo, face detec-
tion can be improved based on the people present and the
photo can further be tagged with the people not seen on
the photo. Advanced activity tracking, such as determining
how long the user spent on his work computer or how often
he went up to get coffee, can provide valuable insights for a
healthier lifestyle.

Detecting surrounding devices can also provide an indica-
tor for the current level of publicity. When interacting with
a large display, the number and type of nearby people can
influence the displayed information: With no one nearby,
personal information such as the next appointment can be
disclosed. At a public place with lots of people nearby, only
limited information, such as the time to the next appoint-
ment, but no details, are shown.

It is our believe that an environment-based approach to
context detection will lead to more adaptable and robust re-
sults and performs better at translating to actual user intent.

Enriching Environmental Information
So far, the focus has been on the presence or absence of
surrounding devices to determine context. Using modern
communication technologies, environmental information
can be enriched by allowing devices to retrieve additional
information from their surrounding. This information can
vary: Most importantly, the type of nearby devices can be

retrieved. Devices can also allow to retrieve their current
state, for example the currently running movie on a TV or
the measured temperature on a thermostat. This enables
an even deeper integration with the environment. This kind
of exchange can be performed through the same ad hoc
communication channels as the detection of devices, such
as Bluetooth or NFC.

Such advanced environmental information further enhance
a device’s ability to adapt. For example, retrieving the cur-
rently running movie from a TV allows for second-screen in-
formation on the smartphone, such as the actors in the cur-
rent scene. And knowing the exact type of training tool the
user is currently working out at enables advanced fitness
tracking through accelerometer and heart rate sensors.

We think that a standardised exchange of local environmen-
tal information combined with the refined context detection
described previously can enable entirely novel ways of how
our devices sense their surrounding and adapt to it.

Technological Approach
Most of today’s off-the-shelf consumer devices feature the
hardware required for environmental detection. Most promi-
nently, Bluetooth Low Energy is built into almost any mod-
ern device. Even home automation devices (such as light
bulbs) are often Bluetooth-enabled. Additionally, technolo-
gies such as NFC have become more commonly available
and could enable cheaper sensing of devices in the future.

Detection of surrounding devices can be done with simple
Bluetooth scans. Paired with additional sensors (such as
GPS), using information from the user’s contacts list, and
combined with fuzzy machine learning algorithms, a robust
detection of context can become possible. For simplicity, for
abstraction and to protect user information such a detec-
tion should be implemented on an OS-level, handing only

2016-2 13

high-level context information to applications. Detailed in-
formation, such as the exact devices and people in a user’s
surrounding, should not be handed to applications.

Exchanging environmental information can be done us-
ing the same technologies. Developing a common proto-
col amongst all the different devices in our environment is
required in order to achieve a seamless communication
between these devices. This is difficult, in particular con-
sidering the large variety of possible devices. A high-level
protocol that allows devices to register predefined device
types and capabilities, similar to how most home automa-
tion protocols work, could tackle this issue, but also restricts
flexibility. Applications could register for the desired device
types and properties to receive updates about them from
the OS. Mixing such a static protocol, implemented on an
OS-level, with the ability to exchange a limited amount of
custom data, implemented at application level, could enable
a trade-off between abstraction and flexibility. For example,
this would allow TVs to advertise themselves as a screen
device, but also broadcast the current movie for applica-
tions interested in this information. Nonetheless, the com-
munication between all different types of devices remains
the largest issue in this approach, and an issue in cross-
device interaction and ubiquitous computing in general.

Limitations
In a real-world implementation, mapping of virtual device
presences to people, which is required for some scenar-
ios, can be difficult. For example, Bluetooth Low Energy
alternates the MAC address of a device regularly to make it
untraceable. And even with traceable devices, matching de-
vices to contact list entries can still be a difficult task. Also,
such a mapping can be considered a security risk and must
be implemented with care to ensure user privacy. The ex-
cessive data exchange between devices could furthermore

exceed the bandwidth possibilities of Bluetooth and a large
amount of signals could lead to interference. Future tech-
nologies might be able to solve such technical issues.

Furthermore, context remains only a proxy for human in-
tent, and environmental detection does neither guarantee
that the context is correctly determined nor that the context
is correctly translated into intent. Certain scenarios will re-
main difficult to detect. This, of course, is a general issue
with context detection and can only be improved by further
research in this direction, development of better sensors
and improvement of algorithms.

REFERENCES
1. Anind K. Dey, Gregory D. Abowd, and Daniel Salber.

2001. A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-aware
Applications. Hum.-Comput. Interact. 16, 2 (Dec.
2001), 97–166.

2. Hossein Falaki, Ratul Mahajan, Srikanth Kandula,
Dimitrios Lymberopoulos, Ramesh Govindan, and
Deborah Estrin. 2010. Diversity in Smartphone Usage
(MobiSys ’10). 179–194.

3. Antti Oulasvirta, Sakari Tamminen, Virpi Roto, and
Jaana Kuorelahti. 2005. Interaction in 4-second Bursts:
The Fragmented Nature of Attentional Resources in
Mobile HCI (CHI ’05). 919–928.

4. Mika Raento, Antti Oulasvirta, Renaud Petit, and
Hannu Toivonen. 2005. ContextPhone: A Prototyping
Platform for Context-Aware Mobile Applications. IEEE
Pervasive Computing 4, 2 (2005), 51–59.

5. B. Schilit, N. Adams, and R. Want. 1994.
Context-Aware Computing Applications (WMCSA ’94).
85–90.

2016-2 14

XDBrowser: Challenges in Designing a
Cross-Device Web Browser

Michael Nebeling
Anind K. Dey
Human-Computer Interaction Institute
Carnegie Mellon University
{ mnebelin, anind }@cs.cmu.edu

Copyright is held by the author/owner(s).
Presented at the Cross-Surface ’16 workshop, in conjunction with ACM CHI’16.
May 7, San Jose, CA, USA.

Abstract
Recent research has focused on web developer toolkits for
distributed multi-device user interfaces. We investigate a
new solution, XDBrowser, where the web browser itself is
aware of and able to use multiple devices in parallel. This
paper discusses how XDBrowser’s interaction and imple-
mentation techniques help overcome many challenges of
BYOD-based interaction given its increasing ability to adapt
existing web interfaces and browsers for cross-device use.

Author Keywords
multibrowsing; semi-automatic distribution; hybrid browser

Introduction
State-of-the-art web browsers have added support for keep-
ing the browser history, bookmarks and settings in sync so
that users can use multiple personal devices for browsing
the web. This partly addresses the need for more seamless
multi-device interaction identified in earlier studies on infor-
mation work and web use [3, 9, 10, 14]. More recent stud-
ies [11, 15] find an increased need to better support parallel
device usage so that users can flexibly distribute tasks be-
tween devices, taking into account both device capabilities
and user preferences. However, there is no native browser
support for using multiple devices in parallel. Instead, spe-
cial cross-device development toolkits and modifications to
existing web interface code are required [4, 7, 12, 17].

2016-3 15

As part of the XDBrowser project, we are investigating how
existing web browsers can be extended to support rich in-
teractions and parallelism in cross-device use. A first pro-
totype of XDBrowser [11] implemented new end-user cus-
tomization tools for re-authoring existing web pages so that
they can be distributed and synchronized between mul-
tiple devices. This prototype was then used to conduct a
study on user-defined cross-device web page designs for a
given set of five popular web applications. The study gen-
erated 144 cross-device designs that can be distilled down
to seven core design patterns. While the first version of XD-
Browser proved very useful for that study, we are currently
working on a new version with two major improvements.

First, the existence of patterns suggests that part of the
manual re-authoring process could be automated. Provid-
ing automated support for adaptation could be beneficial
to users since users could browse new pages they have
not visited before, without having to first customize them
for cross-device use, and could instead choose from avail-
able patterns and switch the design depending on the task.
The primary challenge then becomes to detect the desired
pattern from only minimal user interaction and distribute
existing web pages without prior modification by developers.

Second, while the chosen architecture was sufficient to en-
able our end-user customization study, there are techni-
cal limitations that we are currently addressing. We dis-
cuss the benefits and limitations of our browser-in-browser
implementation technique which, rather than building on
common browser extensions and plug-ins, overloads the
browser with a full-screen browser interface that hides the
host browser. It is compatible with a wide variety of devices
and existing web browsers even if they do not support ex-
tensions, but still lacks some advantages of browser exten-
sions that we aim to overcome with a new hybrid approach.

Semi-Automatic Distribution Techniques
Our end-user customization study using XDBrowser pro-
duced 144 desirable cross-device designs leading to seven
distinct patterns. The full description of the study and re-
sults can be found in [11]. To illustrate the extensions we
are designing for XDBrowser, let us focus on two patterns.

(a) Remote control of mail reading pane on the tablet from the phone

(b) (1a) select inbox on tablet;
(1b) push inbox from tablet to
phone; (1c) inbox on phone

(c) (2a) select mail on tablet;
(2b) push mail to tablet;
(2c) mail on tablet

Figure 1: Six-step end-user customization in the first version of
XDBrowser. Pattern-based semi-automatic distribution achieves
the same result simply by double-tapping the inbox page element.

Consider the mail application in Figure 1 with the inbox
and the reading pane distributed for remote-control from
the phone. To distribute the elements in this way, the first
version of XDBrowser required users to perform a series

2016-3 16

of manual selections and operations to push selected el-
ements between the devices. The goal of our new tech-
niques is to reduce this effort to a single interaction. The
main inspiration for our approach comes from modern
browser support for double-tap to zoom on mobile devices
to view selected portions of the page in more detail. Our
idea is to allow users to double-tap the content they want
zoomed and make use of connected devices to automati-
cally distribute the page elements pushed out of the browser
viewport when zooming the content on the current device.

Figure 2: Classification of DOM nodes for mail application

Figure 2 shows a breakdown of the main page elements
relevant for two of the patterns we want to be able to acti-
vate, remote-control and overview+detail (Figure 3).

(a) Remote-control

(b) Overview+detail

Figure 3: Patterns for using one
device to control the other or for
overview and the other for detail

(a) Remote-control

(b) Overview+detail

Figure 4: Segmentation and
triggered patterns (star marks
element invoked by double-tap)

Since selecting a message in the inbox controls which mes-
sage is shown in the reading pane, the remote-control pat-
tern should become active when the user double-taps the
Inbox element on the phone. As a result, the Inbox element
should be kept on the phone and the other elements moved

to the tablet (Figure 4(a)). Looking at how the Inbox ele-
ment is constructed by nesting different types of HTML
DOM nodes, from the node that received the double-tap
event, we would need to traverse the DOM tree upwards
until we find the node wrapping the Inbox element, i.e., the
DIV with id “inbox” (Figure 2). This node is characterized
by having an id attribute and containing a set of BUTTON
and LI nodes with onclick event handlers. Once we have
found this node, we can extract it and hide all other ele-
ments on the current device. On connected devices, we
hide this node and show all other elements instead.

If the user double-taps the Message element, overview+detail
should become active. As a result, the reading pane should
be zoomed on the current device so that it fills the browser
viewport (Figure 4(b)). In this case, the Message element
is constructed from several nested DIV nodes, all of which
again have an id attribute. Zooming any of them leads to
the same result as zooming the “message” DIV directly.

Common web page segmentation techniques split the page
into smaller blocks of content elements based on text and
structure analysis, DOM hierarchy and layout informa-
tion [1, 2, 6, 16]. These elements can then be extracted
as a group. However, they typically require full analysis of
the page content to do so, which can be computationally ex-
pensive, especially on less powerful devices. Based on in-
sights from our study such as above, we are developing an
interaction-based approach that does not require full seg-
mentation and only involves relevant parts of the DOM tree.
It constructs the DOM path to the invoked element, per-
forms a classification into three types of elements—control,
input, or other—by traversing the DOM hierarchy upwards,
and activates the pattern depending on the type of element
found by extracting relevant nodes and showing them on
one device and hiding them on connected devices.

2016-3 17

In our first evaluations with a set of 50 top-ranked sites by
Alexa from 10 different genres, our simple classification
proved sufficient to support semi-automatic distribution.

Hybrid Approach to Cross-Device Browsing
We developed two implementations of XDBrowser using
different architectures. First, we developed an extension
of the popular Chrome web browser, making it possible to
run on both Desktop and Android devices, including tablets
and smartphones. Note that on mobile devices we built on
the Crosswalk web runtime1 to embed the latest Chrome
and add support for extensions which are not supported in
Chrome for Android. The architecture is shown in Figure 5.
XDBrowser connects multiple browser windows, either run-
ning on different devices or as multiple Chrome instances
on the same device. The implementation is divided into a
client-side background script executed once per browser
window—it is used to activate patterns and maintain a
WebSocket connection between multiple browser windows
through the server; a content script executed for every page
loaded into a tab—it is used to inject our DOM distribution
and view state synchronization methods; and a Node.js
server using Socket.IO for WebSocket communication. The
Chrome API is used for DOM manipulation, Hammer.js for
touch events, and Zoom.js to magnify web page elements
that were extracted using our classification.

Figure 5: XDBrowser as a Chrome
extension using a Node.js-based
client-server architecture with
WebSocket communication

Figure 6: Hybrid approach
resorting to browser-in-browser
and using Node.js or Peer.js for
client-server or peer-to-peer
communication

Our second implementation is “a browser within a browser”.
The host browser, however, is not visible to the user since
XDBrowser runs in fullscreen. This implementation has
the advantage that iOS mobile devices and even Android
Wear smartwatches on which Chrome is not available can
be supported. Here, we use WIB2 as the host browser in-
stead. The client side of our second implementation uses

1https://crosswalk-project.org
2https://play.google.com/store/apps/details?id=com.appfour.wearbrowser

responsive web design based on HTML5, CSS3 and jQuery
to adapt to a wide range of devices including smartwatches
and phones, tablets, desktops/laptops, and tabletops. Using
only native web technologies allows it, in principle, to run on
any web-enabled device with modern browser support. The
server side is the same as the first implementation.

The two implementations have their pros and cons. The first
is compatible with devices running Chrome and basically
any web site, but requires installation of a browser plugin or
special client. The second supports an even larger set of
devices and any browser, but embeds web sites via iframes.
Many top sites forbid iframe embedding and browsers pre-
vent cross-site scripting, but a proxy server fixes this [5].
For sites that maintain a session, the user needs to login
on each device, but a remote-control architecture [13] or
shared virtual browser such as PhantomJS resolves this [8].

We are working on a hybrid approach that combines the
best of these techniques (Figure 6). Using the common
server side and parts of the Chrome API as the common in-
terface, XDBrowser switches to the browser-in-browser ap-
proach if the host browser is not Chrome or the XDBrowser
extension not installed. Note that the server can be embed-
ded within the browser. We have also experimented with
Peer.js rather than Node.js for peer-to-peer communication
via WebRTC, which avoids the server after connection bro-
kering and is especially useful for watch-based scenarios.

Acknowledgments
Michael Nebeling started this research with support from
ETH Zurich. It was continued at Carnegie Mellon University
with two mobility grants from the Swiss National Science
Foundation, P300P2_154571 and P300P2_164646.

2016-3 18

References
[1] Orkut Buyukkokten, Hector Garcia-Molina, Andreas

Paepcke, and Terry Winograd. 2000. Power Browser:
Efficient Web Browsing for PDAs. In Proc. CHI.

[2] Yu Chen, Wei-Ying Ma, and HongJiang Zhang. 2003.
Detecting Web Page Structure for Adaptive Viewing on
Small Form Factor Devices. In Proc. WWW.

[3] David Dearman and Jeffrey S. Pierce. 2008. It’s on my
other computer!: computing with multiple devices. In
Proc. CHI.

[4] Luca Frosini and Fabio Paternò. 2014. User inter-
face distribution in multi-device and multi-user en-
vironments with dynamically migrating engines. In
Proc. EICS.

[5] Giuseppe Ghiani, Fabio Paternò, and Carmen San-
toro. 2012. Push and Pull of Web User Interfaces in
Multi-Device Environments. In Proc. AVI.

[6] Gen Hattori, Keiichiro Hoashi, Kazunori Mat-
sumoto, and Fumiaki Sugaya. 2007. Robust Web
Page Segmentation for Mobile Terminal Using
Content-Distances and Page Layout Information. In
Proc. WWW.

[7] Tommi Heikkinen, Jorge Goncalves, Vassilis Kostakos,
Ivan Elhart, and Timo Ojala. 2014. Tandem Browsing
Toolkit: Distributed Multi-Display Interfaces with Web
Technologies. In Proc. PerDis.

[8] Maria Husmann, Michael Nebeling, Stefano Pongelli,
and Moira C. Norrie. 2014. MultiMasher: Providing
Architectural Support and Visual Tools for Multi-Device
Mashups. In Proc. WISE.

[9] Shaun K. Kane, Amy K. Karlson, Brian Meyers, Paul
Johns, Andy Jacobs, and Greg Smith. 2009. Exploring
Cross-Device Web Use on PCs and Mobile Devices. In
Proc. INTERACT.

[10] Amy K. Karlson, Shamsi T. Iqbal, Brian Meyers, Gon-
zalo Ramos, Kathy Lee, and John C. Tang. 2010. Mo-
bile Taskflow in Context: A Screenshot Study of Smart-
phone Usage. In Proc. CHI.

[11] Michael Nebeling and Anind K. Dey. 2016. XD-
Browser: User-Defined Cross-Device Web Page De-
signs. In Proc. CHI.

[12] Michael Nebeling, Theano Mintsi, Maria Husmann,
and Moira C. Norrie. 2014. Interactive Development of
Cross-Device User Interfaces. In Proc. CHI.

[13] Jeffrey Nichols, Zhigang Hua, and John Barton. 2008.
Highlight: A System for Creating and Deploying Mobile
Web Applications. In Proc. UIST.

[14] Antti Oulasvirta and Lauri Sumari. 2007. Mobile Kits
and Laptop Trays: Managing Multiple Devices in Mo-
bile Information Work. In Proc. CHI.

[15] Stephanie Santosa and Daniel Wigdor. 2013. A
Field Study of Multi-Device Workflows in Distributed
Workspaces. In Proc. UbiComp.

[16] Evan Schrier, Mira Dontcheva, Charles E. Jacobs,
Geraldine Wade, and David Salesin. 2008. Adaptive
Layout for Dynamically Aggregated Documents. In
Proc. IUI.

[17] Jishuo Yang and Daniel Wigdor. 2014. Panelrama:
Enabling Easy Specification of Cross-Device Web Ap-
plications. In Proc. CHI.

2016-3 19

Human-oriented Infrastructures for
Multi-surface Environments

Marc-Emmanuel Perrin
LTCI
Télécom ParisTech & CNRS
Université Paris-Saclay
75013 Paris, France
meperrin@telecom-paristech.fr

James R. Eagan
LTCI
Télécom ParisTech & CNRS
Université Paris-Saclay
75013 Paris, France
james.eagan@telecom-paristech.fr

Michel Beaudouin-Lafon
LRI
Univ. Paris-Sud, CNRS, Inria
Université Paris-Saclay
91405 Orsay Cedex, France
mbl@lri.fr

Copyright is held by the author/owner(s).
Presented at the Cross-Surface ’16 workshop, in conjunction with ACM
CHI’16. May 7, San Jose, USA.

Abstract
From offices to public spaces, dynamic multi-surface
environments that can leverage the devices that users
carry with them are becoming more common. However
these environments are often implicit and therefore hard
to discover, as are the multi-device interactions that they
support. This position paper outlines the challenges that
designers of multi-surface environments face to improve
service discoverability, to support interactions that
leverage users’ devices, and to provide software tools to
design and develop cross-devices applications.

Author Keywords
multi-surface interaction, wall-sized displays,
infrastructures, distributed architectures

Introduction
Recent technological advances have rendered connected,
personal devices much more ubiquitous. It is common for
users to carry some combination of smartphones, tablets,
laptops, and smart jewelry such as watches, bracelets, and
rings. Similarly, physical infrastructures such as interactive
wall-sized displays and tabletops, as well as systems that
track the locations of users and devices, are becoming
more prevalent. Advanced users, such as scientists and
data analysts, increasingly incorporate such environments
into their work. In the workplace, smart meeting rooms

1
2016-4 20

are becoming more common. Even in everyday life, such
interactive environments are finding their way into
shopping malls and airports.

Each of these multi-surface environments, however, affords
different interaction styles with different kinds of devices.
Users might be able to extend the existing environment to
include their own devices and data, or extend their own
devices to appropriate the physical infrastructure.
Discovering whether such capabilities are available and
how to actually perform such operations remain unsolved
problems: there are no well-established conceptual models
for such distributed interfaces, and therefore users cannot
integrate them into their own mental models.

Moreover, building such multi-surface applications, with
interactions well-suited to users’ needs, requires mastering
not only the details of the application domain, but also
the intricacies of low-level technologies. While it is
possible to create cross-device applications with existing
models, they are still too complex to build and often too
brittle. To create multi-surface applications, developers
need new abstractions for discoverability, management of
shared data models, network communication, and
adaptability to heterogeneous devices. Interaction
designers, on the other hand, need more expressive models
based on post-WIMP conceptual frameworks, such as
instrumental interaction [1].

Figure 1: Multi-surface
interaction in the WILD
Room [2].

Multi-surface environments
The diversity of a users’ devices and contexts of use
results in a variety of multi-surface environments. We
identify three broad categories of multi-surface
environments: dedicated platforms, smart meeting rooms
and public spaces.

Our work so far has focused on dedicated multi-surface
environments in which interaction, processing and
rendering may take place on different devices. Such
distributed environments take the form of a fixed,
dedicated infrastructure such as the WILD room [2] which
combines wall-sized displays, motion capture systems, and
data and computation clusters with heterogeneous
portable devices that users may bring with them (Fig. 1).
Since each platform may have specific capabilities, e.g. 3D
display or multitouch wall-sized display, not available on
other platforms, a design challenge is to create software
that takes advantage of the specific capabilities of the
platform yet can be ported to other environments.

Less extreme multi-surface environments, such as “smart”
meeting rooms, may also create user-centered spaces that
leverage cross-device interactions enabled by, e.g., Apple
Handoff, Hamilton & Wigdor’s Conductor [3], or
Webstrates [4]. Unlike dedicated platforms, these
environments are more standardized. Most work in this
field has focused on interaction involving smartphones,
tablets, tabletops and wall-sized displays. However, as
wearable devices become more powerful and affordable,
users will also want those devices to support new
interaction capabilities in such environments.

Finally, multi-surface environments may be experienced in
everyday life. In contexts such as shopping malls, airports
and train stations, interactive ads and information displays
are becoming more common. A user may search for a
particular shop at a mall kiosk or consult an interactive
subway map in a station. Since these environments are
public, users may have a variety of kinds of devices.
Interaction must therefore be reduced to the lowest
common denominator to accomodate as many users as
possible.

2
2016-4 21

User perspective
We are interested primarily in multi-surface environments
in which users can dynamically combine interaction
between a fixed infrastructure and their own devices. For
example, a user may extend the capabilities of her devices
to take advantage of the local infrastructure or to enrich
the local infrastructure with her own data or device
capabilities. In either case, the user must first discover
and pair the available devices and services before she can
appropriate the new interaction space created by the
combination of her own devices and the environment.
Thus, the discovery and pairing processes must have low
viscosity. Currently, if a user wishes to, e.g., interact with
a subway map from his phone, he could easily spend more
time connecting the devices together than actually
interacting with the map.

Once the user’s devices are connected, they create an
implicit multi-surface environment that provides
interaction capabilities and possibly access to data. To
exploit these capabilities, the user must be aware of their
existence and understand what interactions are possible
and what their effects are. This requires proper
feedforward and feedback to make interaction more
discoverable.

For example, consider a simple task, such as editing a
document on a shared display with other people in the
room: how would the user discover that his device can be
used to share the document with the display and notify
other users that they can interact with it concurrently?
What should the interaction look like to achieve that
particular task? For now, the commonly used interaction
models do not encompass such unified, seamless
cross-device interactions. This results in ad-hoc solutions,
mixing different interaction metaphors.

Technological perspective
Multi-surface interaction typically involves several devices
in the interaction loop, requiring mechanisms to maintain
and synchronize a consistent state across the devices as
well as manage events coming from multiple devices.
However, since current laptops, tablets, and smartphones
were designed for standalone use, their operating systems
and user interface toolkits do not provide adequate
support for multi-surface environments.

The dynamicity of such environments, where devices can
join and leave at any time, adds to the challenge. New
software architectures and programming models are clearly
needed to support these highly-distributed, dynamic and
uncertain environments in order to let software developers
build cross-surface applications that provide expressive
and consistent interactions from the user’s perspective.
Conductor [3] is an example of a step in the right
direction.

Our recent work on Webstrates [4] explores an alternative
approach. Webstrates turn the web into shared, dynamic
media: the pages served by a Webstrates server are
automatically synchronized across the clients viewing
them when any client makes a change. Pages can
transclude the content of other pages [5], creating a host
of possibilities to display and manipulate content. For
example, an editor is a webstrate that transcludes a set of
editing instruments (each is a webstrate) as well as a
content page (a webstrate too). The instruments contain
code that can edit the shared content. Users can configure
and personalize their environment, as well as create and
exchange content (including editors and instruments).

By using the web as infrastructure, any web-capable
device can access Webstrates and users are immediately
familiar with the basic interaction model. We have

3
2016-4 22

created a number of scenarios that involve multiple
interactive surfaces [4], such as a slide presentation with
audience participation and session-chair control (Fig. 2).
However, more work is needed to better support
interactions that involve multiple devices. We also want
to extend Webstrates to devices from the
internet-of-things that do not support web protocols.

Figure 2: A slideshow controlled
with Webstrates [4]. Top to
bottom: presenter view, audience
view, moderator view, session
chair view.

Three Challenges
We see three primary challenges faced by designers of
cross-device applications:

Discoverability How can a user easily discover that
pairing one of his devices with the environment might
bring new interactions capabilities? Typical approaches
include directing the user to a captive web portal, but this
requires explicit user actions and several steps. For simple
actions such as querying a display for a subway route and
downloading it to their smartphone, the cost of discovery
and pairing must be minimal or users will simply not use
these features.

Interaction How can a user interact with multiple
surfaces? Creating interactions that span several devices
in a distributed environment is complex, even for simple
ones, due to the dynamism of the infrastructure and the
need to coordinate and synchronize multiple devices.
From the users’ perspective, it is critical to create a
consistent conceptual model so that users can concentrate
on the task at hand rather than struggle to understand
what interactions are possible and how to perform them.

Software What architectures and tools should we provide
to developers so they can build such applications more
easily? WIMP and Post-WIMP toolkits and interface
builders help developers create widgets and assemble
them into functional applications with relative ease.

Similar tools should be developed to design cross-device
applications for multi-surface environments, as well as for
managing the arrival and departure of devices in the
environment.

Conclusion
This position paper has identified three categories of
multi-surface environments with different levels of
capabilities, and outlined the interaction and technological
challenges of multi-surface interaction. We have briefly
described our work on Webstrates, and highlighted three
challenges for the creation of multi-surface environments.

Acknowledgements
This work was financed in part by the Digitéo project
MultiVis and the French ÉQUIPEX DigiScope.

References
[1] M. Beaudouin-Lafon. Instrumental interaction: an

interaction model for designing post-wimp user
interfaces. In Proc. CHI ’00, 446–453. ACM, 2000.

[2] M. Beaudouin-Lafon, S. Huot, M. Nancel, W. Mackay,
E. Pietriga, R. Primet, J. Wagner, O. Chapuis,
C. Pillias, J. R. Eagan, T. Gjerlufsen, and
C. Klokmose. Multisurface interaction in the WILD
room. IEEE Computer, 45(4):48 –56, April 2012.

[3] P. Hamilton and D. J. Wigdor. Conductor: Enabling
and understanding cross-device interaction. In Proc.
CHI ’14, 2773–2782. ACM, 2014.

[4] C. N. Klokmose, J. R. Eagan, S. Baader, W. Mackay,
and M. Beaudouin-Lafon. Webstrates: Shareable
dynamic media. In Proc. UIST ’15, 280–290. ACM,
2015.

[5] T. H. Nelson. The heart of connection: Hypermedia
unified by transclusion. CACM, 38(8):31–33, 1995.

4
2016-4 23

Advances and Challenges in Ad-hoc
Mobile Spatial Tracking for Seamless
Interaction across Commodity Devices

Abstract
In this workshop paper, we assess the progress and
lessons learned in developing ad-hoc cross-device
tracking for mobile spatial interaction and point out the
challenges existing systems still face. We identify the
next steps that are necessary to bring truly fluent
cross-device interaction to commodity devices. We fin-
ish with a discussion of the emerging opportunities in
today’s and future mobile devices as well as infrastruc-
ture systems that will facilitate accurate ad-hoc track-
ing on commodity devices.

Author Keywords
Ad-hoc mobile tracking, commodity devices, BLE.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g.,
HCI): Miscellaneous;

Introduction
To enable users to interact seamlessly across devices,
involved devices need to be aware of surrounding de-
vices. Tracking surrounding devices thereby needs to
be ad-hoc, such that users can continue an activity on
one mobile device seamlessly on another. A big chal-
lenge of such tracking is that users interact with devic-
es in their natural space, yet current devices lack a no-

Copyright is held by the author/owner(s).
Presented at the Cross-Surface ’16 workshop, in conjunction with
ACM CHI’16.
May 7, San Jose, USA.

Haojian Jin
Yahoo Labs
Sunnyvale, CA
haojian@yahoo-inc.com

Christian Holz
Microsoft Research
Redmond, WA
c.h-oliz@mic.ro-sioft.co.m

2016-5 24

http://www.christianholz.net
http://www.christianholz.net

tion of this ‘natural’ physical space. To support seam-
less interaction, devices thus need to understand this
3D space, which is particularly important when multiple
users and devices are involved.

Unfortunately, current commodity mobile devices de-
tect only the presence of surrounding devices to enable
cross-device interaction (e.g., iOS 8 Continuity, Android
Wear notifications), typically by analyzing the BLE sig-
nal strength to infer the proximity of other devices. This
works particularly well if devices are held close.

However, when interacting across several present de-
vices, apps often have to resort to showing a list of
devices from which a user must pick. Ideally, though,
users would interact naturally—much like they interact
with physical objects in their environment.

Recent research projects have made progress in bring-
ing ad-hoc tracking to mobile devices. They often inte-
grate one or more signal types to enable UI apps to
detect the 3D location of surrounding devices. In this
workshop paper, we first review the progress in mobile
tracking and assess assumptions and shortcomings. We
then outline the challenges and directions for future
mobile commodity tracking systems.

Advances in ad-hoc tracking
Since most interaction across devices takes place on
mobile devices, tracking systems need to work ad-hoc.
This insight has brought researchers’ attention to the
built-in sensors in today’s commodity devices.

Camera-based tracking on mobile devices
Much related work has used the video feed from the
camera for ad-hoc tracking. For example, TouchProjec-
tor observes the screen contents of other stationary

devices’ screens to infer their relative positions [1], but
requires a constant visual connection to other screens.
Orienteer requires both mobile devices to observe a
shared view for registration, such as users’ shoes [4].

While the camera is a strong sensor for vision-based
tracking, existing vision technologies are mostly devel-
oped for stationary rather than mobile cameras. The
mobile nature and suboptimal camera position for mo-
bile vision requires different solutions. Moreover, finger
occlusion and table placement will further limit the ro-
bustness of ad-hoc camera tracking.

Inertial Motion Units (IMU) for mobile tracking
IMU sensors are the most responsive built-in sensors,
which make them suitable for gesture recognition [9]
and rough layout inference [6]. However, most mobile
devices are not equipped with high-quality IMUs, caus-
ing sensor drift and rendering dead reckoning unusable
for ad-hoc 3D tracking. To avoid drift, Tracko [9] inte-
grates temporary dead reckoning and local coordinate
transformation to prevent errors from sensor drift.

Audio processing for ad-hoc mobile tracking
Recent commodity mobile processors can process audio
in real-time. BeepBeep [14] is one of the first projects
that uses this to determine round-trip distances be-
tween devices. Tracko [9] establishes 3D tracking
based on multiple audio units, producing high accuracy
3D tracking across devices, but is subject to noisy envi-
ronments and restricted to limited interaction ranges.

Mobile radio to enable device tracking
Radio sensors (e.g., Wifi, GSM, BLE) are common on on
today’s mobile devices. Many systems use the signal
strength as an indicator to estimate the distance to
remote devices. But since these radio sensors are not

2016-5 25

designed for ranging purpose, predictions are inac-
curate up to several meters (e.g., Tracko [8]). Howev-
er, using better radio sensors could substantially in-
crease the accuracy, such as QSRCT radio nodes [12].

Towards truly ad-hoc tracking in the wild
While researchers have examined ad-hoc tracking for a
long time, it is the new technologies and advances in
commodity hardware that bring about opportunities
that let us think about mobile tracking in new ways—
ways that were not possible previously.

Higher-quality built-in sensors
Future devices will pack higher-quality sensors, such as
multiple speakers for communication. The popularity of
mobile music has brought stereo speakers to many re-
cent phones; the latest iPad Pro even has four speak-
ers. Ad-hoc mobile tracking will benefit from these de-
velopments, such as enabling watches or other small
devices with only a microphone to be tracked in 3D.

New sensors and low-cost hardware accessories
One potential way to improve commodity ad-hoc sens-
ing is by integrating additional novel sensors into com-
modity devices—sensors that are expensive now, but
will become low-cost through mass production. For ex-
ample, Google’s Tango understands its environment by
using special-purpose depth cameras in a tablet.

Cameras on current mobile devices are under-utilized
for tracking due to their position and limited field-of-
view, which limits the tracking area. One step forward
is SurroundSee [16], which is a mobile omni-directional
camera that enables peripheral vision around the de-
vice to augment daily mobile tasks. We expect that
more low-cost hardware, such as camera filters and
phone cases [2] will improve tracking significantly.

Internet of Things and Wearables
A plethora of small devices is currently emerging, each
dedicated to accomplishing a small task. While such
Internet-of-Things devices typically connect using Blue-
tooth low energy, they often require knowledge of
where they have been deployed. Wearables face a simi-
lar challenge: activity trackers would substantially ben-
efit from an spatial awareness of where the user choos-
es to wear or carry them. For example, WristQue [13]
adjusts the local heating and cooling system depending
on its (static) location inside a building. We think that
emerging systems for ad-hoc tracking, such as Tracko
[9], will bring rich capabilities to smart devices that
adapt to changed locations in smart environments..

Ubiquitous infrastructure
The recent development of indoor positioning systems
makes tracking systems in the infrastructure ubiqui-
tous, which also benefits ad-hoc tracking on commodity
devices. WiFi-SLAM [5] determines the physical location
of a mobile device based on wireless signal strengths
from access points in the environment. Chung et al. [3]
and Epsilon [11] explore the space of magnetic filed
positioning and light-based positioning. Tracking infra-
structure also helps further advancing the relative posi-
tioning on current systems to absolute positioning.

Convenient cross-device user authentication
Identification tokens, such as smartphones or weara-
bles increasingly aid users in authentication with local
and remote systems. Ad-hoc spatial device tracking will
allow current implementations to increase their security
by seamlessly ensuring that such identification tokens
are close-by [7] and have the potential to fundamental-
ly change scenarios in which multiple users interact

2016-5 26

with another device simultaneously, tracking and cor-
rectly associating all input with a particular user [8].

Development tools
The development in ad-hoc cross-devices is more com-
plex than single device interactions as the developers
need to debug on multiple devices at the same time.
The efforts to develop ad-hoc cross-device interaction
increase exponentially as the number of involved devic-
es increases. We are looking forward to more software
development tools like HuddleLamp [15].

Error-prone correction user interface
Tracking accuracy may be not perfect all the time.
Thus, the ideal user interface should be able to handle
errors implicitly. For example, Corona [10] uses implicit
behavior to correct predictions. Depending on the accu-
racy of the tracking systems, there should be adaptive
interfaces for different contexts. Balancing the tracking
accuracy and the interactions it can enable can be a
promising future research direction.

Conclusion
The recent technology innovations on hardware and
software make ad-hoc tracking possible on mobile de-
vices. Developments in this area are still early stage
yet promising and indicate that they will impact users’
future interactions profoundly. We analyzed the chal-
lenges of existing approaches and offered potential
paths that we think will allow current systems to make
big leaps forward. We believe that in 10 years with
next-generation sensors and processors, ad-hoc track-
ing will be fully mobile and part of commodity devices
and operating systems. Future systems will seamlessly
integrate 3D ad-hoc tracking much like GPS today.

References
1. Boring, S. et al. Touch projector: mobile interaction

through video. Proc. CHI '10, 2287–2296.
2. Butler, A. et al. SideSight: multi-"touch" interaction

around small devices. Proc. UIST '08, 201–204.
3. Chung, J. et al. Indoor location sensing using geo-

magnetism. Proc. MobiSys '11.
4. Dearman, D. et al. Determining the orientation of proximate

mobile devices using their back facing camera. CHI '12.
5. Ferris, B. et al. WiFi-SLAM Using Gaussian Process

Latent Variable Models. Proc. IJCAI '07.
6. Goel, M. et al. SurfaceLink: using inertial and acoustic sen-

sing to enable multi-device interaction on a surface. CHI '14.
7. Holz, C., Bentley, F. On-Demand Biometrics: Fast

Cross-Device Authentication. Proc. CHI '16.
8. Holz, C., Knaust, M. Biometric Touch Sensing: Seamlessly aug-

menting each touch with continuous authentication. UIST '15.
9. Jin, H. et al. Tracko: Ad-hoc Mobile 3D Tracking Using

Bluetooth Low Energy and Inaudible Signals for Cross-
Device Interaction. UIST '15.

10. Jin, H. et al. Corona: Positioning Adjacent Device with Asym-
metric Bluetooth Low Energy RSSI Distributions. UIST '15.

11. Li, L. et al. Epsilon: A visible light based positioning
system. Proc. NSDI 14, 331-343.

12. Marquardt, N. et al. Crossdevice interaction via micro-
mobility and f-formations. Proc. UIST '12.

13. Mayton, B.D. et al. WristQue: A personal sensor
wristband. Proc. BSN '13, 1–6.

14. Peng, C. et al. BeepBeep: a high accuracy acoustic ranging
system using cots mobile devices. SenSys '07.

15. Rädle et al. HuddleLamp: Spatially-Aware Mobile Displays
for Ad-hoc Around-the-Table Collaboration. ITS '14.

16. Yang, X.D. et al. Surround-see: enabling peripheral
vision on smartphones during active use. UIST '13.

2016-5 27

http://www.christianholz.net/tracko_mobile_3d_tracking.html
http://www.christianholz.net/biometric_touch_sensing.html
http://www.christianholz.net/on-demand_biometrics.html

The Challenges of Using an Existing
Cross-Device Interaction Prototype for
Supporting Actual Curation Practices

Abstract

Volunteer-driven organisations curating historic

documents, such as societies and charities, often work

within a bring-your-own-device (BYOD) practice and

their meetings are in varying situations. A recurring

challenge is finding lightweight ways to enable them to

share and collectively work with documents using their

own devices while in situ. We are working on building

novel interaction techniques and applications

(prototyped with a custom developer toolkit) for

supporting the curation of digital collections – for

example, historic documents. We discuss the pros and

cons of using an existing prototype system for this

purpose and points to consider when taking a prototype

from the lab into the wild.

Author Keywords

Cross-device interactions; in-the-wild; bring-your-own-

device; using existing frameworks.

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g.,

HCI): Miscellaneous.

Introduction

Within volunteer driven organisation, such as historic

societies and charities, bring-your-own-device (BYOD)

is a common practice. Working collaboratively in a

group can help to reveal more connections between

various resources during co-located meetings, and

allows to bring together people with expertise from

different backgrounds. However, collecting, analysing,

Copyright is held by the author/owner(s).

Presented at the Cross-Surface ’16 workshop, in conjunction with ACM

CHI’16. May 7, San Jose, USA.

Frederik Brudy1

f.brudy@cs.ucl.ac.uk

Nicolai Marquardt1

n.marquardt@ucl.ac.uk

Yvonne Rogers1

y.rogers@ucl.ac.uk

1University College London

UCL Interaction Centre

Gower Street London, UK

Abigail Sellen2

asellen@microsoft.com

Kenton O’Hara2

keohar@microsoft.com

2Microsoft Research

Station Road

Cambridge, UK

2016-6 28

mailto:f.brudy@cs.ucl.ac.uk
mailto:n.marquardt@ucl.ac.uk
mailto:y.rogers@ucl.ac.uk
mailto:asellen@microsoft.com
mailto:keohar@microsoft.com

creatively reworking, or sharing digital content as a

group across a diverse ecology of devices is difficult:

most devices work in isolation, not well supporting any

collaborative collection, organization, or sharing

activities. In recent years, researchers have produced

several different frameworks for spatial tracking of

people and devices, as well as supporting cross-device

interactions (e.g. [4,5,7]). These frameworks were

proposed for rapid development of (research)

prototypes and were often mainly used to demonstrate

a proof-of-concept in the lab. However, when taking

such a tool out of the lab, in order to build a system to

deploy in the wild, there are several challenges which

need to be addressed. In particular rigidity is one of

them: even prototype systems need to be more robust

in-the-wild than when tested in controlled situations.

Examples are changing environments (such as

changing lighting conditions, or cluttered areas), people

using applications in (slightly) different ways than what

they were intended for, or users using a system for

entirely different activities.

In our research we are interested in how co-located

curation activities can be supported through cross-

device interaction techniques. We are building a

specialised developer toolkit, supporting in particular

novel cross-device interactions within BYOD practices,

collaborative content curation, and blending digital and

physical artefacts.

CollectionsExplorer for collaborative

curation activities

In order to support these small group collaborations we

are developing CollectionsExplorer, a set of hardware

and software tools that enable content curation [8]

tasks to be facilitated when working with multiple tablet

devices. However, rather than start from scratch we

chose to build CollectionsExplorer using an existing

platform that had been used for demo purposes

beforehand. CollectionsExplorer was built on top of

HuddleLamp [7], which is a technology developed to

spatially track devices, providing a way of combining

them into a larger surface. HuddleLamp uses a hybrid

approach of a depth-sensing and an RGB-camera to

identify and track tablets and phones on a table. We

deployed CollectionsExplorer during informal pilot

studies and as part of a workshop to various user

groups. We observed how participants approached the

system, adapting it to their needs – and adapting their

own behaviour in order to avoid the pitfalls of the

system.

CollectionsExplorer was built to enable photographic

collections to be shared across multiple devices,

allowing users to explore individual pictures as well as

creating new collections out of existing ones. A user

can browse collections of photos, zoom in, rotate, and

move and flick individual pictures between multiple

devices (Figure 2 top). Figure 2 shows how a user

explores multiple picture collections on an iPad. Each

collection is organized in stacks of images (Figure 2

middle), which can then be spatially arranged on a

digital canvas shared by all connected devices (Figure 2

bottom). In the future, CollectionsExplorer will be

extended to support other key curation activities (e.g.,

duplicating current states to take home, or different

ways of presenting results) and additional interaction

techniques supporting these tasks.

For the spatial tracking of the devices we are using an

existing system [7], which requires the tablets to lay

flat on a table. When the camera’s field of view is clear

Figure 2: The general flow of

items in CollectionsExplorer

(top): photos can be moved

across devices: all tablets

share a digital canvas. Middle

and bottom: All photos (in this

case mainly photos of street

signs) are placed on a virtual

canvas that can be explored

by moving the iPads on the

table. Items can be moved,

rotated, scaled and flicked

between tablets.

2016-6 29

and not the lighting conditions are controlled, the

tracking is stable and precise. However, as soon as

people try to use the system outside of a controlled lab

situation, using it in an everyday task or as part of their

daily routine, new problems arise, e.g. tracking gets

lost because of occlusion, lighting conditions change, or

people adapt tools in ways that works best for them,

not how the developer might have anticipated.

Thorough testing is needed, in order to get the

technical issues solved and to get the interaction

techniques clear enough so that they do not break

outside controlled situations.

For example in our case we have observed that when

presented with CollectionsExplorer, people’s first

reaction was to pick up one of the tablets to have a

closer look. However, since the camera-based tracking

only works when the tablets are placed on a table, the

system fails. Another issue arose, when people pointed

to a specific photo, or reached for it to increase its size

or to rotate it. With their arms reaching into the field of

view of the camera, overhead tracking does not work

properly. Both of this (not being able to pick up tablets

and frequently lost tracking through occlusion)

distracted participants from their main task. Instead of

focusing on their primary task their main focus became

how to avoid the system to fail, the technology itself

got in the users’ way. As a result, participants of the

study refrained from further touching the tablets and

relied on pointing to the tablets from afar, keeping a

safe distance so that their arms did not occlude the

camera. Some users reported to start thinking about

the technical setup more than about their primary

curation task.

Open questions for the workshop

When taking a new tool from the lab into the wild there

are several challenges which need to be addressed. In

the following they are split up into technical and social

challenges.

Technical challenges

Setup and prerequisites. How can we enable cross-

device interactions without the need for special devices

or complicated setup mechanisms? In particular, for

BYOD and walk-up-and-use situations the setup needs

to be easy, quick, and allow people with varying

technical knowledge to integrate their own and other

devices. How should devices be best connected to a

system? How should availability and execution of cross-

device interactions be best communicated to a user?

Ubiquity and precision of spatial tracking. When

employing spatial tracking, how can this tracking and

the required devices be integrated in the surrounding?

A precise spatial tracking often comes at a cost, e.g.

the need for specialised hardware, markers, long setup

procedures, etc. If less precise, these requirements

could be reduced. However, this varies with the

intended use case. We would like to see a discussion

about the cost of precise spatial tracking vs. its benefit.

Rigidity for in-the-wild deployments. How does a

research prototype need to be changed in order to be

taken from the lab into the wild? For in-the-wild

purposes they need to be robust, being able to be used

in different scenarios than what they were intended for.

Mixed data and environment. To account for the rich

nature of documents and the mixed settings of various

tasks, a system should account for both, digital and

non-digital content and allow to work in environments

with cluttered work areas and noisy data. Deployments

in the wild might happen in cluttered areas, much

2016-6 30

unlike a controlled lab study, making possible issues

unpredictable.

Social challenges

Communicating availability and ability. How are

availability and interactions communicated to people in

a walk-up-and-use situation? For example display

blindness [6] and the honeypot effect [2] have been

observed with public displays and could serve as a

starting point for how those could be considered when

designing cross-device interaction techniques.

Privacy and personal space. Going from the lab into

the wild requires not only technical adjustments, but

also careful considerations of other factors, e.g. when

employing public displays, issues such as privacy [3],

or personal spaces [1] and territories [9] need to be

taken into account.

Control and feedback. Different social expectations

and cultural backgrounds are further factors to be

considered. For example, how much control should a

person have over the tracking within a system and how

much should the control be hidden and stay in the

background?

Acknowledgments

This work is supported by Microsoft Research through

its PhD Scholarship Programme.

References

[1] Altman, I. The environment and social behavior:

privacy, personal space, territory, and crowding.

1975.

[2] Brignull, H. and Rogers, Y. Enticing people to

interact with large public displays in public spaces.

Proceedings of INTERACT, (2003).

[3] Brudy, F., Ledo, D., Greenberg, S., and Butz, A. Is

Anyone Looking? Mitigating Shoulder Surfing on

Public Displays through Awareness and Protection.

ACM Press (2014), 1–6.

[4] Houben, S. and Marquardt, N. WatchConnect: A

Toolkit for Prototyping Smartwatch-Centric Cross-

Device Applications. ACM Press (2015), 1247–

1256.

[5] Marquardt, N., Diaz-Marino, R., Boring, S., and

Greenberg, S. The proximity toolkit: prototyping

proxemic interactions in ubiquitous computing

ecologies. Proceedings of the 24th annual ACM

symposium on User interface software and

technology, (2011), 315–326.

[6] Müller, J., Wilmsmann, D., Exeler, J., et al. Display

blindness: The effect of expectations on attention

towards digital signage. In Pervasive Computing.

Springer, 2009, 1–8.

[7] Rädle, R., Jetter, H.-C., Marquardt, N., Reiterer,

H., and Rogers, Y. HuddleLamp: Spatially-Aware

Mobile Displays for Ad-hoc Around-the-Table

Collaboration. Proceedings of the Ninth ACM

International Conference on Interactive Tabletops

and Surfaces (2014), 45–54.

[8] Rotman, D., Procita, K., Hansen, D., Sims Parr, C.,

and Preece, J. Supporting content curation

communities: The case of the Encyclopedia of Life.

Journal of the American Society for Information

Science and Technology 63, 6 (2012), 1092–1107.

[9] Scott, S.D., Carpendale, M.S.T., and Inkpen, K.M.

Territoriality in collaborative tabletop workspaces.

Proceedings of the 2004 ACM conference on

Computer supported cooperative work, ACM

(2004), 294–303.

2016-6 31

The benefits of ‘In The Wild’ studies for
successful introduction of ‘Bring Your
Own Device’ policies in the industry

Abstract

Bring Your Own Device (BYOD) policies are becoming

more and more popular in large corporations - in busi-

ness, but also in industry. The possible benefits are

reduced investment costs and improved productivity,

flexibility and satisfaction of the users. However, BYOD

policies raise new challenges for industry corporations

in terms of device integration and evaluation strategies

for the resulting IT ecosystem. In this contribution, we

will briefly introduce those challenges. We will give

generic recommendations on how to create (industrial)

BYOD-enabled applications and systems. Finally, we will

present some of our research results and our research

agenda for BYOD policies in Industry.

Author Keywords

Cross-device interaction; Bring Your Own Device; Eval-

uation in the wild; Multi-device interactions; Distributed

user interfaces, Wearable, Mobile

ACM Classification Keywords

H.5.2. Information interfaces and presentation: User

Interfaces: Graphical user interfaces (GUI); Evalua-

tion/methodology

Copyright is held by the author/owner(s).

Presented at the Cross-Surface ’16 workshop, in conjunction with ACM

CHI’16.

May 7, San Jose, USA.

Jens Ziegler

Sebastian Heinze

Leon Urbas

Technische Universität Dresden

01062 Dresden, Germany

jens.ziegler@tu-dresden.de

sebastian.heinze1@tu-dresden.de

leon.urbas@tu-dresden.de

2016-7 32

Bring Your Own Device (BYOD) - What does

it mean (for industry)?

Bring Your Own Device (BYOD) is an increasingly popu-

lar business policy which enables employees to use

technology which was first deployed in the consumer

market and which is owned by the employees them-

selves [1]. This allows the company to reduce invest-

ment and maintenance expenses for the devices and

leads to increased employee satisfaction. One major

concern, however is the increased number of potential

security risks. Insecure connections, lost or stolen de-

vices, malware and personal privacy issues of the de-

vice owner are major challenges of the BYOD approach

[4]. These issues are subject to research and develop-

ment driven by leading software companies, however.

A second major concern is the lack of appropriate

means to verify BYOD IT-ecosystems in industry-grade

usability evaluations. The fragmentation of the system,

the very short device and platform lifecycles and the

quick evolution of interaction paradigms require an

explicit design for evolution. Conventional lab and field

usability testing faces practical limits when it comes to

continuous evaluation on multiple user-owned devices

with multiple operating systems that follow different

interaction paradigms [2]. Alternative approaches like

remote usability testing still perform significantly below

lab tests [1]. Yet, many questions of evaluating the

usability of BYOD IT-ecosystems in the industry remain

unsolved. In the process industries, where our research

is settled, even further requirements may arise [6].

How to create (industrial) BYOD applications

and systems?

According to our research experiences over the past

years, we follow three basic principles in designing

successful mobile and BYOD IT-ecosystems for industry

corporations. Firstly, we largely follow the design phi-

losophy and guidelines that come with the platform of

the users-owned devices. This may require some re-

strictions of the accepted operating systems, vendors,

versions or models of hardware and software (Choose

Your Own Device policy). Following the update cycles

determined by the platform vendors is crucial in order

to not lag behind the state of the art. This is difficult

because it sometimes means to redesign an application

although the functionality is still sufficient for the task.

However, the more the design of an application be-

comes outdated the more the user’s perception of non-

functional quality attributes will deteriorate.

Secondly, we largely rely on the device and deployment

ecosystem provided by the platform vendor. Most ven-

dors offer specific solutions for industry users. One may

adapt, enhance or even replicate the ecosystem if nec-

essary, but this should be done transparently to the

users. Complex corporate tasks often call for more

sophisticated means for deployment and administration

of the IT-ecosystem than non-professional consumers.

Finally, we try to continuously evaluate BYOD-enabled

applications and systems in real settings with real users

imposing as few artificial limitations as possible. Eco-

logical validity is crucial for usability / user experience

evaluations when it comes to BYOD scenarios. In The

Wild studies might meet the requirements of usability

testing of BYOD IT-ecosystems. Study designs with

mainly observational character or very limited targeted

variation of independent variables or control of con-

founding factors, however, tend to be insufficient for

industry-grade usability evaluations. Same holds for

low-effort remote usability testing methods proposed in

the literature.

Figure 1: Mobile application to

support industrial maintenance

tasks on a ruggedized COTS

smartphone.

Figure 2: Ubiquitous task support

using multiple event-driven An-

droid Wear apps on a COTS

smartwatch.

2016-7 33

Research Results and a Research Agenda for

BYOD in Industry

Following the first principle, we largely rely on the

Google Android ecosystem. We developed several mo-

bile applications for common tasks in the process in-

dustry [4, 7, 9] (Figure 1) and extended them with

sophisticated smartwatch support [10] (Figure 2). We

also incorporated the Google Cardboard VR environ-

ment to virtually explore production sites (Figure 5).

Largely relying on the design guidelines of the men-

tioned platforms we created cross-device applications

that are easy to use for employees which are familiar

with the Android ecosystem and that are easy to main-

tain for the app developers.

A main objective of a corporate application is to imple-

ment a certain, well defined business process or work-

ing procedure. Our App Orchestration Framework [7]

provides a powerful engine to arrange sets of multiple

apps (so-called app ensembles) based on BPMN models

of the business processes and workflows (so-called app

orchestration). Following the second principle, this

framework is based on Google Android, thus the apps

may be deployed via the off-the-shelf available Google

Play for Work infrastructure. In addition, a Jenkins au-

tomation server has been extended to automatically

create app ensembles for the user-owned device and to

organize the deployment, either directly from the Jen-

kins server or from the Google Play for Work infrastruc-

ture. Currently, this infrastructure supports Google

Android and Android Wear applications in order to cre-

ate convenient cross-device interaction. In the near

future, we plan to include Google Cardboard applica-

tions as well. This deployment infrastructure also pro-

vides comprehensive support for different input and

output devices (so-called wearable distributed user

interfaces) [8]. Using this infrastructure, multiple app

ensembles can be created for the same task, where

each version is optimized for a specific interaction tech-

nique (e.g. single-hand game controllers, keypads,

gesture or speech input). Thus, users can choose the

app ensemble that is best suited for their current task

(Figure 4). This flexible multi-device orchestration al-

lows for cross-device interaction under the highly ad-

verse and variable working contexts of use where touch

interaction is unsuitable.

In order to bring research one step further, we are

developing evaluation strategies that allow for the sub-

tle, yet controlled variation of independent variables

and a sufficient characterization and treatment of the

participants. The downside of ecologically valid settings

is the evaluator’s limited control over confounding envi-

ronmental and situational factors. Following the third

principle, one focus of our research is to develop con-

trol strategies and measures that reduce or govern

confounding effects both in In The Field and In The Wild

experiments.

In The Wild studies are limited in the possibilities to

equip the evaluation environment with measuring in-

struments and in the ability to actively involve users in

the evaluation of the system (e.g. by means of a ques-

tionnaire). For this reason, we aim at developing a

device-centric measurement methodology including

cloud-based logging (user input, system reaction),

camera and audio data (e.g. for gaze and emotion

analysis), bio-signals (coming from smart wearables),

context information such as illumination, noise, tem-

perature or weather data from the device nearby-

devices in the IT ecosystem (e.g. smart home sensors)

or other sources of relevant information.

Figure 3: Unity-driven stereo-

scopic 3D VR application of a

production site. The prototype

supports interactive highlighting

of assets and provides relevant

asset data on-the-fly.

Figure 4: Wearable distributed

user interfaces enable users to

operate their mobile systems in

settings where touch operation is

unsuitable. They are also used to

operate wearable systems such

as VR systems.

2016-7 34

Conclusion – Where are we now?

It is easier than ever to create complex cross-device

interactions with commercial-off-the-shelf (COTS)

products. There are device and service ecosystems

spanning across a wide range of interaction devices,

and which are widely used by millions of users every

day. BYOD policies allow corporations to gain ad-

vantage from these ecosystems. We have developed

appropriate deployment infrastructures over the past

years and will continue this work by integrating novel

COTS platforms such as AR/VR-systems, wearable sys-

tems and very large displays (e.g. power walls).

BYOD-enabled IT-ecosystems should continuously be

evaluated In The Wild. In order to improve the perfor-

mance of such studies, subtle means for targeted varia-

tion and elementary control of the most relevant varia-

bles as well as a user-independent, device-centric

measurement methodology need to be developed fur-

ther. Such means can be partly adopted from the area

of In the Field research, but novel strategies and tech-

niques need to be developed in order to take the spe-

cific characteristics of In The Wild studies into account.

We are using a realistic industrial environment to im-

prove and test our device-centric measurement meth-

odology and evaluation strategy (Figure 5). This ap-

proach proved to be a good compromise between the

rigidity of lab usability testing and the ecological validi-

ty of field testing, especially in domains such as the

process industry, where real environments are adverse

and dangerous. For large-scale summative usability

testing, however, we will take our tool set and method-

ology and to go Into The Wild.

References
1. Bruun, A. et al. (2009). Let your users do the

testing: a comparison of three remote
asynchronous usability testing methods. In: CHI
2009: 1619-1628. ACM.

2. Connelly, K. et al. (2008). Evaluating pervasive and
ubiquitous systems. In: Pervasive Computing 7(3):
85-88. IEEE.

3. Forrester Research (2012). Key Strategies To
Capture And Measure The Value Of
Consumerization Of IT. Forrester Consulting.

4. Münch, T. et al. (2014). Collaboration and Interop-
erability within a Virtual Enterprise Applied in a Mo-
bile Maintenance Scenario. In: Charalabidis, Y. et
al. (Eds.). Revolutionizing Enterprise Interoperabil-
ity through Scientific Foundations. IGI.

5. Shumate, T.; Ketel, M. (2014). Bring Your Own

Device: Benefits, Risks and Control Techniques. In:
Proc. IEEE SOUTHEASTCON 2014: 1-6. IEEE.

6. Urbas, L. (2012). Process Control Systems
Engineering. Deutscher Industrieverlag GmbH.

7. Ziegler, J. et al. (2012). Beyond app-chaining:
Mobile app orchestration for efficient model driven
software generation. In: Proc. IEEE ETFA 2012: 1-
8. IEEE.

8. Ziegler, J.; Urbas, L. (2013). Enhancing Mobile
Interactions with Distributed Wearable User Inter-
faces. In: Proc. IADIS IHCI 2013: 288-292. IADIS
Press.

9. Ziegler, J. et al. (2014). App-based System Diag-
nosis using Mobile Information Systems. In: Proc.
IEEE ETFA 2014: 1-8. IEEE.

10. Ziegler, J.; Heinze, S.; Urbas, L. (2015). The po-

tential of smartwatches to support mobile industrial
maintenance tasks. In: Proc. IEEE ETFA 2015: 1-7.
IEEE. DOI: 10.1109/ETFA.2015.7301479

Figure 5: Experimental facility in

an industrial scale used to devel-

op evaluation strategies and to

do usability testing of mobile and

wearable applications for the

process industry.

2016-7 35

Towards Context-Aware Cross-Device
User Interfaces in the Wild

Abstract
In recent years a number of frameworks for easing
design and development of cross-device user interfaces
have been put forward, mainly in research contexts. In
general, they provide support for connection
management, data synchronization, and user interface
distribution. However, the applications that can be
obtained can be accessed from a wide variety of
contexts of use that vary in terms of available devices
and connectivity, surrounding environment, user
preferences and abilities, and social relationships. Thus,

one of the main limitations in the adoption of such
applications in the wild is the difficulty to customize
them for different needs in such diverse contexts. This
position paper indicates and discusses the issues that
should be addressed for this purpose and intrdouces
possible approaches to solve them.

Author Keywords
Cross-device user interfaces, Context of use, End-user
development.

ACM Classification Keywords
H.5.2 [Information interfaces and presentation (e.g.,
HCI)]: User Interfaces - Input devices and strategies.

Introduction
The increasing availability of various types of devices in
our daily life is often a missed opportunity since current
applications are limited in supporting seamless task
performance across them. Users often perceive device
fragmentation around them rather than an ecosystem
of devices that supports their activities. In order to
address such issues a number of frameworks,
platforms, and authoring environments have been
proposed, mainly in research environment. The goal is
to facilitate design and development of multi-device
user interfaces. We can distinguish various types of
multi-device user interfaces depending on the features
that they support: migratory user interfaces are able to

Copyright is held by the author/owner(s).

Presented at the Cross-Surface ’16 workshop, in conjunction
with ACM CHI’16.

May 7, San Jose, USA.

Fabio Paternò, Giuseppe Ghiani, Marco Manca
CNR-ISTI, HIIS Laboratory
Via Moruzzi 1, 56124 Pisa, Italy
fabio.paterno@isti.cnr.it

2016-8 36

dynamically migrate from one device to another in
order to follow users’ movements while preserving their
state; distributed user interfaces allow users to interact
with an application through multiple devices at the
same time; cross-device user interfaces are distributed
user interfaces, with the additional capability to
synchronise their state, so that the interactions through
some element in one device update the state of the
corresponding elements (if any) in another device.
Such categories are not mutually exclusive, so for
example it is possible to have user interfaces that are
both migratory and cross-device.

Cross-device Frameworks and Authoring
Environments
In recent years some frameworks that provide useful
support for developing cross-device user interfaces
have been proposed. The proximity toolkit [5] simplifies
the exploration of interaction techniques by supplying
fine-grained proxemics information between people,
portable devices, large interactive surfaces, and other
non-digital objects in a room-sized environment. We
have designed a framework supporting user interface
distribution in multi-device and multi-user
environments with dynamically migrating engines has
been proposed [2]. It does not require a fixed server to
manage the distribution. The elements of the UI can be
distributed by specifying specific device(s), group(s) of
devices, specific user(s), and groups of users according
to roles. Panelrama [7] is a solution able to categorize
device characteristics and dynamically change UI
allocation to best-fit devices. For this purpose, this
framework lets developers to specify the suitability of
panels to different types of devices. The increasing use
of wearables in the context of cross-device user
interfaces has been addressed by Weave [1], a

framework for developers to create cross-device
wearable interaction by scripting. It provides a set of
JavaScript- based APIs to easily distribute UI output
and combine sensing events and user input across
mobile and wearable devices. Other cross-device
frameworks involving smartwatches have been
proposed (e.g. [4]). In addition to frameworks, also
some authoring environment to ease the development
of cross-device user interfaces has been proposed. An
example is XDStudio [6], which supports two
complementary authoring modes: simulated and on-
device. In the former mode, authoring is carried out on
a single device in which the user interfaces distributed
are simulated. In the latter mode, design and
development actually takes place on the target devices
themselves. However, this type of authoring
environment does not provide support for specifying
context-dependent behavior. This aspect has been
addressed by our context-aware authoring environment
[3], which supports development of user interfaces able
to adapt to the various types of contextual events (that
can be related to users, devices, environments, and
social relationships), with the possibility of distributing
the user interface elements across multiple devices.
The context-dependent behavior is modelled through
trigger / action rules (an example tool for editing them
is in Fig.1), and can even be applied to extend the
capabilities of Web applications that were not originally
designed to be context-aware.

An Architecture for Context-aware Cross-
device User Interfaces
In order to correctly execute the applications according
to the adaptation rules specified it is necessary to have
a specific architectural support at run-time. The main
goals of such support are to manage and apply the user

Figure 1 Tool for editing trigger
action rules

2016-8 37

interface adaptation or distribution rules, and detect
the events that trigger their performance. Such run-
time support exploits the functionalities of three
components: the context manager, the adaptation
engine, and the distribution manager. The context
manager is composed of a context server and a set of
external modules delegated to monitor relevant
parameters of the context of use (e.g. environmental
noise, device coordinates, user physical activity).

The purpose of the context manager is to detect
contextual events and inform the adaptation engine,
which stores and manages the contextual rules, and
requests changes in the cross-device user interface
according to the triggered rules. The distribution
manager handles user interfaces distributed across
multiple devices in order to allow dynamic migration of
components and keep their state synchronized. Figure

2 shows how such components interact with each
other. The adaptation engine subscribes to the context
model manager in order to be informed of the
occurrence of the events relevant for the rules
associated with the active applications. When one or
more of such events occur, the adaptation engine sends
the actions to the applications in order to perform the
corresponding changes. Such update commands are
interpreted by the scripts included in the application by
the authoring environment. They can modify properties
of user interface elements or content, activate functions
or navigation, and change the distribution of some user
interface parts across devices. In the latter case the
adaptation engine can directly send the corresponding
command to the distribution manager, which notifies
the involved devices. Such distribution manager
contains the current distribution profile, which indicates
how the various parts of the user interface are
currently distributed across the devices that have
subscribed to the environment. A distribution command
mainly determines whether a user interface element or
the elements included in a container should be visible
or not on one specific device or a group of devices that
have the same role or on all devices of a given
platform.

Issues for Deployment in the Wild
The approach to context-aware cross-device user
interfaces is general and can be deployed for a wide
variety of applications (for example smart retail,
museums, smart cities, e-learning, ...). For this
purpose various aspects should be considered.

Interoperability.

We need the possibility to operate on various types of
devices (smartwatches, smartphones, tablets,

Figure 2 Architecture for Context-aware Cross-device User Interfaces.

2016-8 38

desktops, public displays, ..) from various vendors.
Only Web applications can be accessed through almost
all of them with limited effort. However, the run-time
supporting the cross-device user interfaces should be
able to work even when network connections to remote
external Web servers is not possible (a possible solution
is described in [2]). This means that the underlying
architecture should be able to create peer-to-peer
organization amongst the involved devices.

End-user development

In the end only the users know the best way to
configure their cross-device user interfaces in their
specific contexts of use, thus we need to provide them
with authoring environments and customization tools
that allow them to directly specify the contextual rules
even if they do not know how the underlying
technology works. For this purpose the use of subset of
natural language to indicate the desired behaviour with
familiar, domain-dependent terms can be effective.

Flexibility

The control on the cross device user interface by
developers and users should be able to address various
granularity levels when allocating or dynamically
changing which user interface parts should be in each
device. We can identify four possible granularity levels:
some distribution changes can involve the entire user
interface, others can only involve groups of elements,
or be limited to single user interface elements (e.g. a
list or a text input), or even parts of single elements
(e.g. their prompt or feedback).

Modalities

Some approaches only consider graphical cross-device
user interfaces but natural interaction can be achieved
if the associated environments are also able to support

other various modalities that users can exploit
depending on the context (vocal, gestural, graphical,
…) in an integrated manner.

Mixed-initiative Triggers

The changes in the configuration of the cross-device
user interface can be made on explicit request through
customization tools or triggered automatically by the
context-dependent rules. In the latter case it is still
important to make users aware when the changes
occur, with also the possibility to reject them if they are
not deemed useful at a given time.

References
1. Chi, P. and Li, Y. 2015. Weave: Scripting Cross-

Device Wearable Interaction. CHI 2015, ACM
2. Frosini, L. and Paternò, F. 2014. User Interface

Distribution in Multi-Device and Multi-User
Environments with Dynamically Migrating Engines.
Proceedings of EICS 2014, ACM, pp. 55-64.

3. Ghiani G. Manca M. Paternò F., Authoring Context-
dependent Cross-device User Interfaces based on
Trigger/Action Rules, In MUM2015, pp. 313-322.

4. Houben, S., and Marquardt, N. 2015.
WatchConnect: A Toolkit for Prototyping
Smartwatch-Centric Cross-Device Applications.
Proceedings of CHI 2015, ACM, pp. 1247-1256.

5. Marquardt, et al.. 2011. The proximity toolkit:
prototyping proxemic interactions in ubiquitous
computing ecologies. UIST 2011, pp. 315-326.

6. Nebeling, M., Mintsi, T., Husmann, M., Norrie, M. C.
2014. Interactive development of cross-device user
interfaces. In CHI 2014, ACM, pp. 2793-2802.

7. Yang, J. and Wigdor, D. 2014. Panelrama: enabling
easy specification of cross-device web applications.
In Proceedings of CHI 2014, ACM, pp. 2783-2792.

2016-8 39

Prototyping "In The Wild" Interaction
Scenarios With RE/Tk

Abstract
Building interactive environments that blend digital
information into the physical world is hindered by the
complexity of setting up the technological medium. We
developed the Responsive Ecologies Toolkit (RE/Tk) to
provide researchers and developers with a toolkit that
would cut down the low-level technical demands thus
making it easier to prototype applications for
heterogeneous networked devices. This position paper
argues for a better conceptual model to support design
of interaction experiences "in the wild". It also proposes
extensions to the RE/Tk to support design iterations
where the potential interaction devices and their
capabilities are not known.

Author Keywords
Toolkit; Prototyping; Cross-Device Interfaces;
Interactive Environments.

ACM Classification Keywords
H.5.2. Information Interfaces. User Interfaces – input
devices and strategies, prototyping.

Introduction
A growing body of research in cross-device interfaces
has focused on providing interaction techniques for
sharing information across devices [1], as well as
mapping gestures across devices [3]. Much of the effort

Copyright is held by the author/owner(s).
Presented at the Cross-Surface ’16 workshop, in conjunction with ACM
CHI’16.
May 7, San Jose, USA.

Aneesh P. Tarun
Synaesthetic Media Lab
Ryerson University
Toronto, Ontario, Canada
aneesh@ryerson.ca

Andrea Bellucci
Universidad Carlos III de Madrid
Avenida de la Universidad, 30
28911, Leganés, Madrid, Spain
abellucc@inf.uc3m.es

Ali Mazalek
Synaesthetic Media Lab
Ryerson University
Toronto, Ontario, Canada
mazalek@ryerson.ca

2016-9 40

put into such research involves bootstrapping low-level
technical challenges such as programming for multiple
platforms, communication across devices, and
developing an ad-hoc framework for comprehending
the complexity of cross-device interfaces. This has led
researchers to revisit a more fundamental question in
cross-device interface research. What tools and
techniques are beneficial for simplifying the exploration
of cross-device interaction techniques?

There exist numerous software toolkits for the rapid
prototyping of spatially-aware interactions [5], tangible
and physical computing [2] [4] and cross-device
interactions [7][8][9]. However, there is limited
support for the design of complex interactive
environments involving heterogeneous off-the-shelf as
well as custom devices. Weave [8], for instance,
provides an authoring environment for cross-device
interactions which supports off-the-shelf wearable and
mobile devices. WatchCONNECT [8] explores sensor-
based interactions focusing on smartwatches.
Panelrama [7] aims at easing the development of
distributed user interfaces, thus it does not consider
smart objects without a display surface.

Our goal with RE/Tk is to provide support to quickly
build responsive and interactive environments, which
can include people personal devices, interactive
surfaces and custom-made tangible objects (e.g.,
arduino-based devices). In addition, we wish to provide
a fully customizable and extensible toolkit that supports
multiple aspects of developing cross-device
applications.

There are several reasons for this. Firstly, the
landscape of interaction devices and their capabilities is

ever-changing. The heterogeneity of the underlying
runtime environments and the communication protocols
of these devices makes it challenging to provide a
toolkit that stands the test of time. In addition, scaling
up or modifying existing toolkits to support cross-
device interface development does not address the
underlying fundamental issue: there is no conceptual
framework that allows designers to visualize and
discuss a complex interaction scenario at a higher level
of abstraction.

We designed the Responsive Ecologies Toolkit (RE/Tk),
building on the work of the ROSS Toolkit [6], for
prototyping applications that span across different (off-
the-shelf and custom) devices. The RE/Tk provides a
conceptual framework for designing multi-device
applications and toolkit for prototyping such
applications.

However, in its current state, the toolkit assumes that
the "players" in the interaction space i.e. the underlying
devices and sensors are known before hand and
conform to a fixed device hierarchy within the
interaction space. Below, we discuss the current state
of the RE/Tk and propose a conceptual framework and
new features to the toolkit that will enable prototyping
& development of "in the wild" interaction experiences
such as bring-your-own-device (BYOD) scenarios.

RE/Tk
RE/Tk provides a conceptual framework that allows the
developers to conceptualize and design interactive
environments as hierarchical nested structures. Every
object, screen, sensor in an interaction space is
mapped within a hierarchical structure. This hierarchical
tree (Figure 1) encapsulates relationships between

Figure 1: An example of the
nested hierarchical structure.

2016-9 41

various entities and determines how they interact: (a)
direct interaction and communication occurs between a
child node and its parent node, (b) interaction between
sibling nodes is mediated by their parent node, (c) the
tree structure is also used to determine the
communication path between two (directly unrelated)
nodes, and (d) the structure allows for easier
computation of spatial interactions between different
devices.

Figure 2: An example XML descriptor file for a scenario where
a wall display mirrors the interactions on a smartphone.

Designers and developers outline this structure in an
XML descriptor file (see Figure 2). This document is fed
to the toolkit which generates the application code and
manages the communication between different sensors
and devices.

All generated server and client components are in
JavaScript. The server application runs on Node.js (a
cross-platform runtime environment) while the client
applications run on the devices' browsers. As an
exception to the rule, we generate deployable code for
Arduino and other microcontrollers that do not support
a JavaScript runtime environment.

A Javascript API exposes the functionality of the toolkit
and provides an alternative way of developing or
iterating the generated interaction software for expert
developers.

In addition, to support “moving targets”, RE/Tk is
designed to be extensible. Designers and developers
can extend the XML structure as well as the JavaScript
API to suit custom workflows.

This approach simplifies the development, deployment
and management of applications onto a variety of
hardware and software platforms. Since the JavaScript
code is compiled at runtime, modifying a part of the
application code does not require recompilation for the
entire interactive environment. Code can also be locally
modified and inspected for debugging purposes. These
features encourage faster iteration of application
designs.

In addition, the toolkit provides different levels of
abstractions in terms of application behavior, GUI and
widgets, sensor mapping, spatial mapping and
communication.

Application Behavior Abstraction. XML-based
application authoring is the first level of abstraction
provided by the toolkit. All the features and functions of

2016-9 42

the API are abstracted and accessible as XML tags.
Large and complex XML files can also be split into
multiple XML files, each defining a different feature of
an application, i.e. one XML file for describing the
application functionality and another one for the UI.

GUI Abstraction and Widgets. An authored XML
description includes not only the device structure but
also the user interface design for all the devices. This
provides a unified way of designing UIs for different
types of screens. This also allows for easily porting
applications to native code when needed. In addition to
this, we have implemented a few generic widgets (e.g.
Maps widget) that can easily be included in any
application.

Sensor Mapping Abstraction. RE/Tk supports
straightforward mapping of sensor output data of one
device as an input to a function of another device or an
actuator in just a few lines. The underlying
implementation of listener events, data range mapping,
network routing etc. are abstracted from the
developers (they are still accessible to the developers
through the generated application code for
modifications). Custom data filters can also be easily
attached to a sensor output.

Spatial Mapping Abstraction. The hierarchical nested
structure of devices is leveraged to provide easy access
to spatial information of each device. Developers can
directly query position information of each device
relative to the interaction space or another device.
Converting spatial data from one coordinate system to
another is also supported by the built-in functions.

Communication Abstraction. RE/Tk uses and builds
upon TUIO to simplify cross-device communication.
Developers can extend the protocol for custom
scenarios. The hierarchical structure, used to
automatically setup the underlying communication
channels between devices, forms another level of
communication abstraction.

In addition to these abstractions, the modular nature of
the XML files (and the API in general) allows developers
to easily extend the features of RE/Tk.

Supporting interactions in the wild
An interaction environment with a fixed network of
devices poses sufficient challenges for a developer to
envision and deploy interactive experiences. However,
prior access to the network information, device
capabilities, and access control provides a handle to the
developer for managing the overall interaction
experience. RE/Tk leverages this information to simplify
authoring of interactive applications. "In the wild"
scenarios involve additional challenges that need to be
addressed while prototyping.

In this section we discuss some novel features for the
RE/Tk to support interactive BYOD scenarios. One
assumption we make about the BYOD scenarios is that
the developers of such scenarios have access to at least
one device within the interaction environment that will
be assigned the role of a server/arbiter. An example of
a typical BYOD scenario: an interactive surface
computer in a public space that allows walk-in users to
lay their smartphones on the surface and interact with
the displayed information on their smartphones as well
as the larger surface.

2016-9 43

Challenge 1: Since the interaction devices and their
capabilities are not know during the design process, the
toolkit has to provide a new framework and additional
tools to design adaptive experiences. We propose the
following two features to address this challenge.

Designing for device categories: We propose to
extend the hierarchical tree model to support for
hierarchies of generic device categories rather than
specific devices. This allows the developers to think
about and design experiences for groups of devices
while the underlying toolkit manages the
heterogeneous nature of such groups. Developers can
declare a category of devices (e.g., smartphones or
smartwatches) that interact within an interactive space
for a given scenario. In addition, the developers can set
the maximum number of devices supported within a
device category based on the context and limitations of
use. This information is used to deploy a generic
Javascript application for each declared device
category. We believe that this conceptual framework
breaks down the barrier for entry for authoring such
interaction scenarios.

Supporting adaptability of UI and interactions:
Breaking down of application features by device
categories may not be sufficiently granular for certain
interaction scenarios. In addition, this does not
guarantee that an application will run on all the walk-in
devices as envisioned by the developer. We propose
custom XML tags that allow for declaring multiple
versions of the user interface or UI elements and
interaction logic during the design phase. The
developers can include branching logic within these
tags that may include specific device properties (eg.
specific UI layouts are targeted for specific range of

screen sizes OR specific interaction scenarios run only if
an accelerometer is present) or specific user
permissions. These alternate versions of interface or
interaction logic are selected & deployed at runtime.
This is made possible by the automated API calls that
query a newly joined interaction device for its
capabilities. This approach allows the deployment of a
generic interaction scenario with high level of
adaptability at runtime. It also provides an easy
method for developers to support graceful degradation
of rich interactive experiences.

Challenge 2: BYOD scenarios may need to support
authentication and permission management for
different groups of users and different networks of
devices.

While a single communication network and a common
device permission may be sufficient for most BYOD
scenarios, certain scenarios may require developers to
support different permission levels for different user
groups as well as support devices that may be on
different networks altogether. We propose two
additional features to extend the toolkit's capabilities.

Multi-Step Device Handshake: Currently every client
application developed using the RE/Tk goes through a
single-step handshake procedure which queries the
device for its capabilities to automatically identify its
role within the interaction scenario. We introduce multi-
step device handshake procedure to include additional
initialization routines. Firstly, we extend the device
feature querying to be exhaustive that better supports
the adaptability of UI and interactions previously
discussed. In addition, we include an authentication
phase that allows a walk-in device to be authenticated

2016-9 44

as a valid interaction device and be assigned a specific
permission level. This may happen prior to the
application launch as well. Lastly, we include a third
step to the handshake procedure - user-side permission
management. In BYOD scenarios where a walk-user
can share information from her device within the
interaction space, this step gives her the control to
manage permissions for what gets shared. The user can
also control what features of her device can be used
within the interaction scenario.

Multi-step device-handshake procedures can be
customized via the XML files and extended to more
steps as required.

Device Authentication and Heterogeneous
Networks: There are two points of entry for a typical
BYOD scenario. A walk-in user can connect to a local
wireless network thereby gaining access to an
interaction experience through a web browser or a
native application. Alternatively, users can access a
specific URL on the world wide web that points to the
interactive application. Since users gain such
knowledge when they are in the proximity of the
physical interaction space, this is a sufficient level of
authentication for most BYOD scenarios.

For further permission management, web-based
applications generated by the RE/Tk can take
advantage of both the points of entry. Multiple access
points can be placed for multiple levels of
authentication to the same interactive experience. A
simpler approach is to provide a unique passphrase
that walk-in users can enter during the initial
application launch. The passphrase, combined with the
branching interaction logic previously mentioned,

provides sufficient granularity for multiple levels of
access control. The web-based nature of application
and access control ensures that devices in different
networks can be managed easily through a single
interface as long as the underlying application is
deployed onto the world wide web. In situations where
devices are connected via Bluetooth, USB or other
forms of communication, the RE/Tk provides custom
modules to connect with different communication
protocols. All of the different devices and protocols
communicate with a server-side routing logic that is
abstracted by the API. This ensures that the developer
can ensure homogeneity of communication and
interaction among heterogeneous mix of devices and
networks with minimal effort.

Workshop Goals
Our proposed changes to the RE/Tk and the underlying
conceptual framework enables us to provide a powerful
prototyping tool that simplifies the design of interaction
scenarios where target devices are not known. We hope
to engage the community in a discussion of further
opportunities and challenges for tools that support
interactions "in the wild". In addition, we wish to
contribute to the efforts of standardizing protocols,
platforms, and tools for building cross-device
interfaces.

Acknowledgements
This work has been supported by the Canada Research
Chairs program and the 2015 UC3M postdoctoral
mobility scholarship.

References
1. Xiang ‘Anthony’ Chen, Tovi Grossman, Daniel

Wigdor, & George Fitzmaurice. 2014. Duet:

2016-9 45

exploring joint interactions on a smart phone and a
smart watch. In Proc. CHI'14, 159-168.

2. Saul Greenberg and Chester Fitchett. 2001.
Phidgets: easy development of physical interfaces
through physical widgets. In Proc. UIST’01.

3. Peter Hamilton and Daniel J. Wigdor. 2014.
Conductor: enabling and understanding cross-
device interaction. In Proc. CHI '14, 2773-2782.

4. Scott R. Klemmer and James A. Landay. 2009.
Toolkit Support for Integrating Physical and Digital
Interactions. Human-Computer Interaction 24(3),
315–366.

5. Nicolai Marquardt, Robert Diaz-Marino, Sebastian
Boring, and Saul Greenberg. 2011. The Proximity
Toolkit: Prototyping Proxemic Interactions in
Ubiquitous Computing Ecologies. In Proc. CHI’11,
315–324.

6. Aneesh P. Tarun, Ahmed S. Arif, Andrea Bellucci, &
Ali Mazalek. 2015. Responsive Objects, Surfaces
and Spaces (ROSS): Framework for Simplifying
Cross-Device Communication. In TEI'15 Workshop
on Interactive Infrastructures – Towards a
Language for Distributed Interfaces.

7. Jishuo Yang and Daniel J. Wigdor. 2014.
Panelrama: enabling easy specification of cross-
device web applications. In Proceedings of the
SIGCHI Conference on Human Factors in
Computing Systems(CHI '14). ACM, New York, NY,
USA, 2783-2792.

8. Pei-Yu (Peggy) Chi and Yang Li. 2015. Weave:
Scripting Cross-Device Wearable Interaction.
In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems (CHI
'15). ACM, New York, NY, USA, 3923-3932.

9. Steven Houben and Nicolai Marquardt. 2015.
WatchConnect: A Toolkit for Prototyping
Smartwatch-Centric Cross-Device Applications.
In Proceedings of the 33rd Annual ACM Conference

on Human Factors in Computing Systems (CHI
'15). ACM, New York, NY, USA, 1247-1256.

2016-9 46

Extending a Learning Platform with
Cross-Device Functionality

Maria Husmann
Department of Computer
Science
ETH Zurich
husmann@inf.ethz.ch

Nicola Marcacci Rossi
Department of Computer
Science
ETH Zurich
nicolamr@student.ethz.ch

Moira C. Norrie
Department of Computer
Science
ETH Zurich
norrie@inf.ethz.ch

Copyright is held by the author/owner(s).
Presented at the Cross-Surface ’16 workshop, in conjunction with ACM CHI’16.
May 7, San Jose, USA.

Abstract
We report on our experience of adding cross-device func-
tionality to a learning platform with a substantial user base.
The extension allows students to display an exercise sheet
on one device (typically a notebook) and use a paired hand-
held device to submit photographed solutions to the exer-
cise. We outline the design and implementation of the fea-
ture and discuss lessons learned in the process of working
outside of a controlled lab environment.

Author Keywords
cross-device; in-the-wild; education.

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g., HCI)]:
Miscellaneous

Introduction
Today’s device ecologies offer exciting opportunities for in-
teractions between multiple devices [3]. Tools and frame-
works facilitate the design [4, 2] and implementation [5,
6, 1] of cross-device applications. Nevertheless, we have
encountered few such applications in the wild. Two no-
table exceptions have been extensions to Google Maps1

and YouTube2. Both of these are small extensions to appli-

1https://support.google.com/maps/answer/6081481
2https://support.google.com/chromecast/answer/2995235

2016-10 47

https://support.google.com/maps/answer/6081481
https://support.google.com/chromecast/answer/2995235

cations with a huge user base. Building up a user base is
challenging for any application. Having access to an exist-
ing base is thus an interesting opportunity to explore cross-
device designs in the wild, but comes with the challenge of
having to integrate with an existing system.

We had the opportunity to extend a web-based education
platform called Taskbase3 with cross-device functional-
ity. Taskbase manages collections of theory and exercise
materials and allows exercises to be grouped into exer-
cise sheets and published to a class of students. Students
can give feedback on the exercises and rate their difficulty.
Taskbase is currently in use at several schools and univer-
sities in Switzerland, including ETH Zurich with over 3500
users in the mathematics department and the University
of St. Gallen with over a 1000 users. ETH Zurich has its
own installation4 and this was used in the work described
here. The platform was developed by the startup company
edTechLab in cooperation with the mathematics depart-
ment of ETH. The authors of this paper were not involved
with development prior to the cross-device project that we
describe in this paper. However, one of the authors is ac-
quainted with the CEO of edTechLab and the company ex-
pressed interest in exploring cross-device functionality in
Taskbase.

Figure 1: The student scans a QR
code on their notebook.

Cross-Device Extension
We started by analysing how Taskbase is used and where
there is potential added value with a cross-device exten-
sion. We then designed a cross-device feature and, after
consulting with edTechLab, implemented it in Taskbase.

3http://www.edtechlab.ch/taskbase
4https://e-lectures.ethz.ch/

Figure 2: For each exercise, a QR code is displayed that takes
the student to the exercise submission site when scanned with a
phone.

Analysis
While the exercise sheets can be printed, instructors ob-
served that students often use their devices (notebooks or
tablets) to access them during exercise sessions. This was
confirmed when we analysed access patterns to the sys-
tem. We also noted that many students used more than
one device to access the platform. Within one week, we
observed roughly 2700 users accessing the platform with
two different devices, while fewer than 400 users only used
a single device. Fewer than 100 users accessed Taskbase
with three or more devices.

In our own teaching (independent of Taskbase), we are in-
creasingly experiencing students submitting either scanned
or photographed versions of their handwritten assignments
via email. The teaching assistant then prints the submis-
sions, marks them on paper, and returns them in the next
exercise session.

Design
Based on our analysis, we decided to design a feature that
allows students to submit their handwritten solutions to ex-
ercises using the camera of their phones or tablets. An ex-
ercise sheet may consist of multiple exercises and a stu-

2016-10 48

http://www.edtechlab.ch/taskbase
https://e-lectures.ethz.ch/

dent can submit a solution for each exercise. The interface
offers options to directly upload a file from the current de-
vice (typically a notebook or a desktop computer) or to use
another device for uploading. If the latter option is chosen,
the system displays a QR code (Fig. 2). When the code is
scanned with a phone or tablet (Fig. 1), it opens a URL that
points to the same exercise as that currently opened on the
first device (Fig. 3) and the student is automatically logged
in. Now they can simply photograph their solution (Fig. 5)
and it will be associated with the exercise and uploaded to
Taskbase. The responsible teaching assistant can access
all submissions from their students and provide feedback
as annotations on the pictures (Fig. 4) which can then be
viewed by the student.

Figure 3: After scanning the QR
code, the student is taken to the
corresponding exercise on their
phone.

Implementation
As Taskbase is already in use, it was a clear goal not to dis-
rupt users in any way and to keep the implementation as
lightweight as possible, while integrating with the current ar-
chitecture based on Java on the backend and AngularJS on
the frontend. As current cross-device frameworks are still
experimental, it was deemed too large a risk to integrate
one of them and the changes were kept to a bare minimum.
Consequently, no direct communication between the de-
vices was implemented. Consequently, when a students
scans their submission with their mobile phone, they need
to manually refresh the notebook to see their submission.
While we would have preferred synchronisation between
the two devices, we had to compromise for the sake of com-
plying with the current architecture which does not support
any push messages from the server.

Deployment
As the electronic hand-in is only useful if assistants are will-
ing to accept submissions made through the system, the
feature was disabled by default and had to be enabled per

Figure 4: The UI for evaluating submitted exercises. Teachers or
assistants can add comments and give feedback.

course. Taskbase then sent an email to professors inform-
ing them of the change and asking for volunteers to opt
in. Unfortunately, there were few responses and the ones
that we got were negative. The feature was rolled out in the
second half of the semester and professors were reluctant
to change the process half-way in. One professor worried
that the feature would decrease personal interaction be-
tween assistants and students and feared dehumanisation
of the process. We therefore decided to do a pilot test of the
feature in one of the author’s classes which had not been
using Taskbase previously. The platform was introduced
and the feature was demonstrated in class. Students were
encouraged to use it, but were still allowed to hand in their
solutions in person or by email. In total 44 students were
enrolled in that class and roughly 30 students typically at-
tended the exercise sessions. Handing in assignments was
voluntary (a master solution was provided) and generally
done by 6 to 10 students to get feedback. After the intro-
duction of the cross-device feature, two students submitted

2016-10 49

their solution via their phone. 6 students used the new UI
to upload a file from their notebook. No more assignments
were submitted in person or by email. One student reported
a problem with his installed QR code scanner that could not
display the Taskbase website correctly. The rather low num-
ber of photographed submissions can be partly explained
by the nature of the exercise which was better suited to be-
ing solved on a computer as well as the fact that it was the
last exercise of the semester where the number of submis-
sions of non-mandatory assignments typically drops.

Figure 5: The student takes a
picture of their solution and
uploads it to the system.

Lessons Learned
While we had experience in developing cross-device appli-
cations, we typically work in a controlled environment where
we can choose the architectures, technologies and devices
and have full control over the applications that we build.
Users are introduced to our applications in user studies or
demonstrations where we, again, control many parameters.
Working with Taskbase forced us to give up some of that
control, confronted us with real users and stakeholders, and
taught us the following lessons.

Focus on the user, not the devices. While our main inter-
est was in integrating the phone, a significant amount of
time was spent on the UI for giving feedback to the assign-
ments. Had we skipped that part, students would have had
no reason to use the system to hand in their solutions. It
was important to develop a whole use-case, rather than just
focusing on the cross-device part. All in all, a small fraction
of time was spent on actual cross-device development.

Stakeholders are not necessarily excited about making
something cross-device. Mainly students and teaching as-
sistants benefited from our changes and the Taskbase team
was very supportive. Professors however were more scep-
tical but important decision makers. Getting them on board

will be critical for the success of the cross-device feature.

Cross-device frameworks may introduce a big change to
the existing architecture. Cross-device frameworks typically
introduce additional servers or services and protocols (for
example WebSockets). Furthermore, companies may shy
away from using frameworks that have not been proven to
be production ready. In our case, the risk and effort was
considered too high for a simple feature and, despite our
experience with our own framework5, we decided not to use
it.

Don’t make any assumptions about software and hardware.
Provide alternatives to support a wide range of platforms
and devices. We integrated a web-based QR scanner that
could be accessed from a short URL for those users who
had none installed. Our system required no installation
on any device, thus maintaining a low barrier to entry. We
did not force users to use their phones for submissions but
rather supported file uploads from any device.

Carefully plan the introduction to the users. In our case, the
timing of the introduction towards the end of the semester
was not ideal. However, we were constrained by the timing
of the student project and could not wait until the beginning
of the next semester. Also, consider how users can learn
to use cross-device features. The demonstration in class
proved to be a good solution, however, it does not scale
very well to a large user base.

Acknowledgements
We would like to thank edTechLab for giving us the oppor-
tunity to work with them and all their support. This project
was supported by grant No. 150189 of the Swiss National
Science Foundation (SNF).

5https://github.com/mhusm/XD-MVC

2016-10 50

REFERENCES
1. Sriram Karthik Badam and Niklas Elmqvist. 2014.

PolyChrome: A Cross-Device Framework for
Collaborative Web Visualization. In Proc. ITS. DOI:
http://dx.doi.org/10.1145/2669485.2669518

2. Steven Houben and Nicolai Marquardt. 2015.
WatchConnect: A Toolkit for Prototyping
Smartwatch-Centric Cross-Device Applications. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI ’15). ACM,
New York, NY, USA, 1247–1256.
http://doi.acm.org/10.1145/2702123.2702215

3. Nicolai Marquardt, Robert Diaz-Marino, Sebastian
Boring, and Saul Greenberg. 2011. The Proximity
Toolkit: Prototyping Proxemic Interactions in Ubiquitous
Computing Ecologies. In Proceedings of the 24th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’11). ACM, New York, NY, USA,
315–326.
http://doi.acm.org/10.1145/2047196.2047238

4. Michael Nebeling, Theano Mintsi, Maria Husmann, and
Moira C. Norrie. 2014. Interactive Development of
Cross-Device User Interfaces. In Proceedings of the
32Nd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’14). ACM, New York, NY,
USA, 2793–2802.
http://doi.acm.org/10.1145/2556288.2556980

5. Mario Schreiner, Roman Rädle, Hans-Christian Jetter,
and Harald Reiterer. 2015. Connichiwa: A Framework
for Cross-Device Web Applications. In Proc. CHI EA.
DOI:http://dx.doi.org/10.1145/2702613.2732909

6. Jishuo Yang and Daniel Wigdor. 2014. Panelrama:
Enabling Easy Specification of Cross-Device Web
Applications. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’14).
ACM, New York, NY, USA, 2783–2792.
http://doi.acm.org/10.1145/2556288.2557199

2016-10 51

http://dx.doi.org/10.1145/2669485.2669518
http://doi.acm.org/10.1145/2702123.2702215
http://doi.acm.org/10.1145/2047196.2047238
http://doi.acm.org/10.1145/2556288.2556980
http://dx.doi.org/10.1145/2702613.2732909
http://doi.acm.org/10.1145/2556288.2557199

Enabling multi-device interaction on
the go in the MAGI project

Abstract
We discuss the MAGI project’s vision for multi-device
interaction and how we plan to support application
developers. Key aspects of our vision are the presence
of multi-device gestures and adaptation to changing
physical contexts and device contexts. Our gesture
recognition architecture reduces power consumption
and recognition latency through a pipelined HMM
approach with early discard of processing samples of
unlikely candidates. To help developers build
applications that adapt to changing contexts, we
propose the use of Midgets (MAGI widgets); context-
dependent interaction components that span across
devices. Application designers choose the device
configurations that an application will support, assign
them to physical contexts, and lay out Midgets
manually. The MAGI system chooses the best
configuration based on users’ current activity and the
input/output channels available.

Author Keywords
Wearable devices; Multi-device interaction; Distributed
User-Interface; Gesture; Gesture recognition; Power
consumption; Distributed recognition.

ACM Classification Keywords
H.5.2 [Information interfaces and presentation]: User
Interfaces – Input Devices and Strategies.

Copyright is held by the author/owner(s).
Presented at the Cross-Surface ’16 workshop, in conjunction with ACM
CHI’16.
May 7 , San Jose, USA.

Kenny T.W. Choo
School of Information Systems
Singapore Management University
80 Stamford Road
Singapore 178902
kenny.choo.2012@smu.edu.sg

Richard C. Davis
School of Information Systems
Singapore Management University
80 Stamford Road
Singapore 178902
rcdavis@smu.edu.sg

Quentin Roy
School of Information Systems
Singapore Management University
80 Stamford Road
Singapore 178902
quentin@quentinroy.fr

2016-11 52

Introduction
Wearable devices such as smart watches are gaining
widespread interest from consumers. While wearables
provide easy access to content outputs such as
notifications, emails or text messages, each device has
limited input and output capabilities. We envision a
personal multi-device ecosystem where applications
span across all of a user’s devices; ranging from smart
watches, smart glasses, smart bands to smart phones.
Inputs and outputs are distributed automatically,
depending on what devices are available and the
automatically detected context of use (e.g. walking, sitting
or cycling).

This paper briefly outlines our vision, called MAGI
(Multi-device Adaptive Gestures & Interfaces) [3]. We aim
to enable developers with an Android framework that
provides high-performance, multi-device gesture
recognition and primitives for interface adaptation.
Here, we illustrate this vision with two scenarios. We
then show how we are addressing the challenges of
multi-device gesture recognition with a novel pipelined
HMM approach with early discard of unlikely candidates.
Finally, we describe our vision for Midgets (MAGI
Widgets), which are context dependent hierarchical
interaction components that span across devices.

Multi-Device Scenarios
Consider the following scenarios, which show the types
of applications that we intend MAGI to support.

Scenario 1: Steering in a driving game.
While riding on a train, Alice is playing a driving game on
her virtual reality display, smart watch and smart phone.
With her watch on one hand, and phone in the other, she
turns an imaginary steering wheel. She uses the

touchscreen buttons on the phone to accelerate or brake.
Her phone vibrates, indicating an incoming call, and Alice
raises her phone to her ear. When she does this, the
game pauses, and Alice takes her call.

Scenario 2: News feed consultation.
(a) Clara is sitting at a café, browsing the titles of her
news feed on her phone. As she scrolls through the list of
articles, her augmented reality (AR) glasses preview the
first lines of the topmost article at the periphery her
vision. A search field allows her to look for specific content
(see Figure 1). (b) Later, Clara gets up and starts walking
to the metro station, holding her smartphone at her side,
without looking at it. The list of articles moves to her
glasses where she can see it, and she scrolls the list by
swiping on her phone (see Figure 2). (c) When Clara
boards the crowded metro train, she puts her phone in
her pocket to keep it safe. Still browsing articles on her
glasses, she now begins scrolling by swiping on her watch
(see Figure 3).

These scenarios illustrate two key challenges. The first
scenario uses a continuous, multi-device gesture that is
particularly sensitive to latency. Recognizing such
gestures will place high processing demands on wearable
devices, which increases power consumption. The second
scenario shows a user’s changing context. The application
must adapt by choosing optimal input and output channel.
MAGI will address these challenges.

Gesture Recognition Challenges
Each device employed in the personal space will have to
deal with two problems (1) recognition latency, and
(2) energy consumption. By nature of their size, the
computational capabilities and energy resources of mobile
devices are limited. Most previous works adopt a

Figure 1: Midgets running on each
device in scenario 2 part (a): seated
with the phone out.

Figure 2: Midgets in scenario 2 part
(b): walking with phone in hand.

Figure 3: Midgets in scenario 2 part
(c): sitting without phone.

2016-11 53

centralized approach [1,4]. Sensor inputs (e.g.
accelerometer and gyroscope data) are all streamed to
a single device that handles the recognition process.
This approach has two disadvantages. The first is
continuous sensor data transmission, which consumes
excessive energy in both the sender and the receiver.
The second is poor scaling. As the number of devices in
the ecosystem increases, a centralized recognizer on a
mobile device can rapidly be overwhelmed. We propose
to tackle these demands through collaborative and
adaptive systems and algorithms.

Previously, we developed an on-device, early-filtering
Hidden Markov Model-based (HMM) gesture recognizer
that improves the speed and reduces the latency (and
hence energy efficiency) of two-handed gesture
recognition (see Figure 4) [3]. Gesture recognition is
distributed as much as possible to reduce network usage.
The method attempts to recognize gestures early. If an
entire gesture is recognized with high likelihood by an
HMM, then a prefix (an initial part) of the gesture should
also have high likelihood. Our approach thus permits early
discard, avoiding processing samples whose prefix
indicate that it is unlikely to be a gesture. Also, our
method is heavily pipelined, reducing the latency of
gesture detection by performing Viterbi decoding
concurrently with the generation of subsequent gesture
samples. Since our method performs gesture recognition
on-device, we significantly reduce the throughput which
otherwise would comprise sending multiple raw sensor
feeds into a central device and having that perform all the
work. In the tests reported previously, our system
recognized gestures with 89.86% accuracy in
approximately 0.2ms [3].

In the future, we plan to let devices assist each other in
recognition process by notifying them when it is safe to
halt an HMM for a candidate gesture. An advantage of
performing gesture recognition on-device is that with
independent recognition streams and continuous gesture
fusion, any one of the streams may provide enough
information about the activity such as to trigger early
termination of some gesture candidates for processing or
terminating recognition altogether on any of the other
devices. For example, while executing a steering gesture
in a driving game (see Scenario 1), the movement of one
hand (equipped with a smart watch) out of the norm for
steering gestures, may indicate termination of processing
on the smart watch on the other hand, which can indicate
to the system that the game should be paused.

Context Adaptation Challenges
Previous researchers have studied automatic layout of
distributed applications depending on device context (e.g.
Panelrama [4]). Such approaches can lead to
unpredictable behavior. We prefer to give designers more
precise control over the input and output channels that
their application will use, while still allowing easy
coordination of components and adaptation to context.
This led us to develop the concept of Midgets, which are
context dependent interaction components that span
across devices. Midgets are shared across devices in an
application, but they can have different behavior
depending both on a user’s device context and physical
context (recognized automatically, as in [2]).

Consider the application from Scenario 2 in three
contexts. At first (Figure 1), a phone and a pair of glasses
are used in conjunction. The Midgets of the application are
spread across the two devices. When the user starts
walking and stops looking at her phone, the phone screen

Figure 4. The MAGI architecture supports
distributed gestural interfaces that are able
to automatically adapt themselves to
different contexts of use.

2016-11 54

switches to input only and the glasses hold all visual
information (Figure 2). Showing all Midgets at once on the
glass may not be a good design choice as it is likely to
occlude a large portion of the user’s vision. Thus, in this
context, a designer may prefer to give access to only one
Midget at a time. Finally, when the phone is put away
(Figure 3) input switches from the phone to another
device.

Our vision gives designers more control, because
designers will specify all the device configurations allowed
by an application and will have an opportunity to design
each one separately. The designer will also specify the
context when each configuration is preferred. Scenario 2,
for example, uses three configurations. When sitting with
the phone and glass available, configuration (a) in Figure
1 is preferred. When walking with phone in hand,
configuration (b) in Figure 2 is preferred. When sitting
with phone unavailable, configuration (c) in Figure 3 is
preferred. MAGI will determine the user’s context and
choose the best configuration, allowing the user to
override when context recognition errors occur.

Inspired by Panelrama’s method of automatically
arranging output layouts [4], we are also considering
adding an automatic layout engine so that a designer can
set some Midgets to automatically re-arrange themselves
without additional intervention.

Conclusion
We presented our vision of a multi-device ecosystem
used on the go. We addressed system-related issues
with a new distributed recognition approach, presented
the architecture of our multi-device framework and
discussed how it can be used by a designer to create

applications that automatically adapt their inputs and
outputs to their context of use.

This first work opens several challenges we are
interested to address in the future. What Midgets will a
designer need to create robust applications? How can
we manage multi-application contexts and the inputs
and outputs allocation between concurrent
applications? How can we support multi-user
applications and allow applications to span across
personal ecosystems?

Acknowledgements
This work was supported by Singapore Ministry of
Education Academic Research Fund Tier 2 under
research grant MOE2014-T2-1063. All findings and
recommendations are those of the authors and do not
necessarily reflect the views of the granting agency, or
Singapore Management University.

References
[1] Houben, S. and Marquardt, N. WatchConnect: A

Toolkit for Prototyping Smartwatch-Centric Cross-
Device Applications. Proc. of CHI’15, ACM (2015),
1247–1256.

[2] Lee, Y., Iyengar, S.S., Min, C., et al. MobiCon: A
Mobile Context-monitoring Platform. Commun.
ACM 55, 3 (2012), 54–65.

[3] Tran, V.H., Choo, K.T.W., Lee, Y., Davis, R.C., and
Misra, A. MAGI: Enabling Multi-Device Gestural
Applications. PerCom’16 Workshops, IEEE (2016).

[4] Yang, J. and Wigdor, D. Panelrama: Enabling Easy
Specification of Cross-device Web Applications.
Proc. CHI’14, ACM (2014), 2783–2792.

2016-11 55

TomoSense: Towards Multi-Device
Spatial Awareness Based on
Independent Plane Sensing

Przemysław Kucharski
Institute of Applied Computer
Science
Lodz University of Technology
Łódź, Poland

Andrzej Romanowski
Institute of Applied Computer
Science
Lodz University of Technology
Łódź, Poland
androm@iis.p.lodz.pl

Krzysztof Grudzień
Institute of Applied Computer
Science
Lodz University of Technology
Łódź, Poland

Paweł W. Woźniak
Institute for Visualisation and
Interactive Systems
University of Stuttgart
Stuttgart, Germany

Copyright is held by the author/owner(s).
Presented at the Cross-Surface ’16 workshop, in conjunction with ACM CHI ’16.
May 7, 2016, San Jose, USA.

Abstract
We present a plane surface non-invasive sensing system
for developing new cross-device interaction in the wild,
based on electrical capacitance tomography (ECT) mea-
surement setup. The core element of the system is a plane
capacitance sensor consisting of 32 electrodes built in un-
derneath the surface of an experimental tabletop assembly.
The interaction is enabled through physical objects inter-
fering with the electrostatic field in proximity of the surface.
This principle of operation is shown here for a set of mo-
bile devices in order to develop spatially-aware applications.
The system is independent in terms of sensing. It can de-
tect all solid objects in its proximity. Here, we present the
basic features of TomoTable and discuss future usage sce-
narios for the sensing system.

Author Keywords
position sensing; tomography; multi-device environments

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g. HCI)]:
Miscellaneous

Introduction
As recent research shows that many rationales for using
multi-device systems in the wild exist [6, 3], spatial aware-
ness emerges as one of the key enablers for rich multi-

2016-12 56

device interactions. Recent work on sensemaking [7] shows
specific scenarios for multi-device interactions emerging
while the range of possible areas where users already use
multiple devices simultaneously grows. Yet, the sensing
techniques allowing for easy access to such interactive
environments are still limited. Most research on enabling
spatial awareness involves either external sensors/cameras
(which suffer from line-of-sight and other issues e.g. [5]).
Consequently, most of solutions are explored only in the
laboratory conditions and provide limited possibilities for
in-the-wild studies. As an alternative solution, we propose
a TomoTable — an ECT-based prototype sensing system
that uses a plane capacitance sensor easy to be embed-
ded within an ordinary table. The sensor is accompanied by
process tomography measurement equipment and a dedi-
cated measurement protocol. TomoTable enables identify-
ing devices in the close proximity of the electrodes that are
hidden below the measurement plane (e.g. the surface of
a table) thus enabling ad-hoc interactions in different loca-
tions as proposed in [4]. This paper contains a short techni-
cal overview of the prototype concept as well as preliminary
results and a discussion on further studies.

TomoTable
TomoTable is a rectangular planar sensor that uses elec-
trical process tomography measurement. It consists of 32
electrodes arranged in 4 rows and 8 columns, all embedded
just below the surface of an ordinary table (Figure 1). The
sensor is intentionally made visible (showing the principle
of operation, it can be easily hidden below an opaque layer
during normal operation) underneath a transparent plastic
layer (3mm thick) of polycarbonate. It is worth noting that
the system can be a part of virtually any other surface as
well.

The table we currently use is 450mm x 610mm while each

Figure 1: TomoTable embedded in a table. A semitransparent
surface is used to show the sensors.

electrode is 95mm x 60mm. The gaps in between the elec-
trodes are 10mm. The bottom part of the sensor (10mm
below the table surface) was electrically screened in order
to improve the signal-to-noise ratio (SNR), thus improving
the sensing properties of the system in the space above the
sensor. Electrical capacitance tomography is based on the
principle of measuring the change of capacitance between
all the consecutive pairs of sensing electrodes irrespective
of their position or orientation by quickly switching the ex-
citation to successive electrodes while grounding the rest.
Experiments were conducted using 32-channel equipment
capable of real time on-the-fly monitoring of the measure-
ment space [1]. Next, we show 2D reconstructed images
(using a basic LBP algorithm to illustrate the working con-
cept of the system). The images, however are not needed
to design spatially-aware interactions, reveal potential of
the system and the image processing algorithm can simple
output the relative positions of the devices on the sensing
surface.

Preliminary results
Despite us using an early prototype with basic image pro-
cessing and a low sensing resolution, the size and orien-

2016-12 57

Figure 2: Two iPhone 6 units placed on TomoTable sensor (left
figure) and the resulting reconstructed image (right figure). The
color scale show measurement intensity that varies from empty
space (navy blue) to the fully occupied space above the sensor
(dark brown).

tation of the devices can be easily seen on the resulting
reconstructed image. We show two cases with different
orientation of the devices with respect to each other and
different alignments with respect to the orientation of the
electrodes (Figures 2 and 3, left) as well as the resulting re-
constructed images of the distribution of the objects on the
sensed surface (Figures 2 and 3, right).

There are observable differences in the produced images
depending on how the devices are positioned in relation to
the electrode array and other devices. This showcases the
potential of electrical capacitance tomography to provide
accurate sensing for multi-device systems. We demonstrate
that it is feasible to: (1) obtain the position of the device
(2) distinguish the size of the device (3) detect the rotation
angle and (4) sense several distinct devices.

Discussion and further work
Measurement records taken during experiments revealed
significant changes in sensed capacitance which are sev-
eral orders of magnitude higher than the sensing resolution
of the processing unit used. This leads to a conclusion that

Figure 3: An iPhone 6 and an iPad mini placed on TomoTable
sensor (left figure) and the resulting reconstructed image (right
figure). The spatial arrangement of the devices is misaligned with
TomoTable´s electrode array. Such a case is more likely in an
in-the-wild scenario.

simpler and cheaper embedded devices can be used to
provide accurate sensing for the table. Moreover, the sys-
tem design and operational foundations in terms of both
simplicity and the measurement protocol make the equip-
ment easily scalable. Future work will include refining the
measurement protocol coupled with dedicated contextual
data processing. With the help of inverse problem solving
techniques, we hope to achieve increased accuracy without
the need for extensive additional computation.

We hope that TomoTable will provide opportunities for in-
the-wild studies of multi-device systems. If our development
progresses as planned, we imagine that we will be able to
introduce multi-device setups to meeting places such as
pubs or cafés. Much like in the case of interactive table-
tops (e.g. [2]), we hope that observational studies of how
users interact with such systems over a long period of time
will yield new insights that will inspire new interaction tech-
niques.

2016-12 58

Conclusions
This paper gives an overview of the technical concept of
TomoTable - an ECT-based position sensing system for de-
veloping of interactive applications in multi-device environ-
ments. While spatial awareness may emerge as a key inter-
action paradigm for multi-device environments, a question
of a balance between the required sensing accuracy and
the complexity and ease of deployment remains open. Our
prototype offers limited spatial resolution compared to more
complex and expensive systems i.e. marker-based motion
tracking. However, further research on refining the design in
terms of different electrode arrangements coupled with ded-
icated measurement protocols as well as contextual data
processing algorithms shall provide sufficient accuracy. The
key advantage of TomoTable is that it has a large potential
for easy embedding in existing meeting environments. As it
can be easily made visible, we anticipate it will enable us to
run in-the-wild studies with multi-device systems.

References
[1] Paweł Fiderek, Tomasz Jaworski, Radosław Wajman,

and Jacek Kucharski. 2015. Fuzzy Clustering Of Raw
Three Dimensional Tomographic Data For Two-Phase
Flows Recognition. IAPGOS 5(4) (2015), 12–15. DOI:
http://dx.doi.org/10.5604/20830157.1176565

[2] Uta Hinrichs and Sheelagh Carpendale. 2011. Ges-
tures in the wild: studying multi-touch gesture se-
quences on interactive tabletop exhibits. In Proc. CHI
’11. ACM, 3023–3032. DOI:http://dx.doi.org/10.1145/
1978942.1979391

[3] Tero Jokela, Jarno Ojala, and Thomas Olsson. 2015.
A Diary Study on Combining Multiple Information De-
vices in Everyday Activities and Tasks. In Proceed-
ings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems (CHI ’15). ACM, 3903–
3912. DOI:http://dx.doi.org/10.1145/2702123.2702211

[4] Christian Müller-Tomfelde and Morten Fjeld. 2012.
Tabletops: Interactive Horizontal Displays for Ubiqui-
tous Computing. Computer 45, 2 (2012), 78–81. DOI:
http://dx.doi.org/10.1109/MC.2012.64

[5] Roman Rädle, Hans-Christian Jetter, Nicolai Mar-
quardt, Harald Reiterer, and Yvonne Rogers. 2014.
HuddleLamp: Spatially-Aware Mobile Displays for Ad-
hoc Around-the-Table Collaboration. In Proceedings of
the Ninth ACM International Conference on Interactive
Tabletops and Surfaces - ITS ’14. ACM Press, 45–54.
DOI:http://dx.doi.org/10.1145/2669485.2669500

[6] Stephanie Santosa and Daniel Wigdor. 2013. A
field study of multi-device workflows in distributed
workspaces. In Proceedings of the 2013 ACM inter-
national joint conference on Pervasive and ubiqui-
tous computing - UbiComp ’13. ACM Press, 63. DOI:
http://dx.doi.org/10.1145/2493432.2493476

[7] Paweł Wozniak, Nitesh Goyal, Przemysław Kucharski,
Lars Lischke, Sven Mayer, and Morten Fjeld. 2016.
RAMPARTS: Supporting Sensemaking with Spatially-
Aware Mobile Interactions. In Proceedings of the 2016
CHI Conference on Human Factors in Computing Sys-
tems (CHI ’16). ACM, New York, NY, USA, 2447–2460.
DOI:http://dx.doi.org/10.1145/2858036.2858491

2016-12 59

http://dx.doi.org/10.5604/20830157.1176565
http://dx.doi.org/10.1145/1978942.1979391
http://dx.doi.org/10.1145/1978942.1979391
http://dx.doi.org/10.1145/2702123.2702211
http://dx.doi.org/10.1109/MC.2012.64
http://dx.doi.org/10.1145/2669485.2669500
http://dx.doi.org/10.1145/2493432.2493476
http://dx.doi.org/10.1145/2858036.2858491

“Bring-your-own-app?!” – Why apps
hinder us from achieving true cross-
device BYOD interaction

Abstract

I believe that our community is widely ignoring a

fundamental challenge that stands between our

ambitious visions for cross-device interaction and what

we actually achieve when deploying our prototypes in

the real world. The problem is that we still “think” in

apps and design BYOD prototypes as apps for a few

selected tasks and for clearly defined combinations and

configurations of devices. We therefore support only a

tiny fraction of the wealth of possible BYOD usages,

device combinations, and collaboration styles. To build

and observe BYOD technologies that fundamentally

change how we interact with computing systems, we

have to move beyond the concept of single BYOD apps

and find ways to make our prototypes more adaptable

and interoperable so that they support unanticipated

and fundamentally new usage patterns in the wild.

Author Keywords

Cross-Device Interaction; Bring-your-own-device;

Adaptivity; Adaptability; Interoperability; Instrumental

Interaction; Object-Oriented User Interfaces;

Webstrates.

Copyright is held by the author/owner(s).

Presented at the Cross-Surface ’16 workshop, in conjunction with ACM

CHI’16.

May 7, San Jose, USA.

Hans-Christian Jetter

University of Applied Sciences

Upper Austria

Hagenberg, Austria

hans-christian.jetter@fh-

hagenberg.at

2016-13 60

Introduction

Most likely all participants of this workshop will agree

that cross-device interaction promises a fascinating

new way of using our increasingly diverse device

ecosystems for solving real-world problems. Many of us

share the vision of a world in which users can rapidly

shape “symphonies” [4] or “communities” [6] of

devices that feel like one seamless natural UI for cross-

device applications. We hope to achieve this not only

for single users but also for multiple users. As a result,

our community has started to explore bring-your-own-

device (BYOD) scenarios in which users join their

personal devices to create a shared community of

devices for collaboration (e.g. [14]).

Overall, HCI research has made great progress in this

field. I will illustrate this by shamelessly using two

examples from my own work: My work on ZOIL at the

University of Konstanz [7] explored how the mobile and

stationary devices inside a physical interactive space

(e.g. tabletops, data walls, tablets, PCs) could be

combined for multi-user sensemaking in a shared visual

workspace. In subsequent work at UCL, we worked

together to create a more lightweight and portable

cross-device technology. The result was HuddleLamp

[14] that enables users to combine off-the-shelf mobile

devices for spontaneous collaboration simply by putting

them under a desk lamp.

Lessons from ZOIL and HuddleLamp

Naturally both results are not perfect. For example,

applications built with ZOIL are not easy to deploy in

the wild because they can be installed only on Windows

devices and need network connections that are often

blocked by firewalls in real-world settings. As a result,

we decided that HuddleLamp applications should

become HTML5 browser applications to overcome the

problem of incompatible devices or operating systems

and eliminating the need for local installation or

configuration of apps. Moreover, all communication

should happen using web sockets, so that firewalls

become much less problematic. This strategy proved to

be very successful.

ZOIL also does not support BYOD scenarios: There is

no possibility to easily detect the presence of a new

device and automatically connect it without manually

configuring network addresses and ports. In

HuddleLamp this is much easier by simply opening a

web page (e.g. by scanning a QR code) that will briefly

flash a marker on the screen to identify the device and

establish a connection without any manual setup.

A further problem is that ZOIL does not track spatial

positions of devices, so that interactions or object

transfers between devices require choosing device IDs

from lists or placing objects in shared locations in a

visual workspace. This feels much less fluid and more

difficult than with other cross-device systems that

extensively make use of inter-device spatial relations or

proxemics [3]. I repeatedly discussed this important

role of physical space and gestures for cross-device

interaction in my work. Two examples are a workshop

paper [9] at CHI 2014 and a resulting full paper at CHI

2015 [15]. As a consequence, already the very first

ideas for HuddleLamp were centered around spatially-

aware interactions [6,8]. However, all these

interactions can only be detected inside the field of

view of HuddleLamp’s camera system. This is why Jin

et al.’s recent work for sensing device locations without

external hardware or device modifications is a very

important step forward [10].

2016-13 61

The really hard problems with BYOD apps

I believe that all above lessons and challenges have

something in common: They will be solved within a few

years. It is fair to assume that we will soon be able to

detect, identify, and connect multiple devices of

different types and sizes and to track their positions

and the gestures between them. We also already know

a lot about how to design such gestures, so what is the

real challenge for BYOD in the wild?

In my opinion, there is a widely underrated challenge

that stands between our ambitious visions for cross-

device interaction and what we currently achieve when

deploying our prototypes in the real-world. I believe

that this challenge is only seldomly addressed in

research yet, because it sits between the traditional

research topics of HCI (e.g., gesture design, user

studies, new sensors & algorithms) and software

engineering (e.g., software architectures, distributed

systems, standards for interoperability). Furthermore, it

focuses on a concept that we are so familiar with that

we find it “natural” and hardly recognize it as a

deliberate design choice that has been made for us

decades ago and that we need to challenge: the

concept of packaging and distributing computing

functionality as applications or apps.

Why are apps problematic for cross-device interaction

and BYOD? First of all, they exacerbate the problem of

adaptability. Monolithic walled apps are inherently bad

at adapting to sudden changes in context, e.g. in the

number and kind of present devices. As I discuss in [4],

such changes will happen permanently and it is

impossible to enumerate the set of contextual states

that may exist. Therefore the traditional idea of

designing an app for a clearly defined number and

combination of devices and trying to predict all possible

states cannot keep up with the complexity of real-world

users and usage. If “bring-your-own-device” (BYOD)

should not mean “bring-your-own-device (as long as

your task is T, you are using app A, your device is a

phone running operating system X and browser Y, has

a screen size of S, and there are only between N and M

other devices involved)” we must find more flexible and

adaptable ways of providing functionality such as

commands, objects, or instruments.

Second, there is the problem of missing interoperability

between apps: Even apps that serve a very similar

purpose, (e.g. different apps for taking notes with a

stylus, different apps for visualizing data in bar charts)

cannot talk to each other in BYOD settings. In the best

case, they share a file format, so that data can be

exchanged between them via cloud services by

manually storing and opening files on different devices.

But this is far from the seamless real-time collaboration

across devices that we intend to realize. We must find

alternatives that enables user to flexibly connect or

combine functionality across devices, even in ways that

were not anticipated by the developers but successfully

emerge from usage in the wild.

If we keep on thinking about BYOD in terms of a single

app with companion devices that can only be used

according to the plan of the app’s designer, we only

scratch the surface of what could be achieved. But

introducing new ideas how multiple devices could

provide, share, distribute, and combines functionality

and content across different devices in unanticipated

ways could truly revolutionize the way how we interact

with computing.

2016-13 62

Alternatives to apps

The good news is that there are some alternatives out

there. Researchers & practitioners have proposed a

number of approaches for replacing the application-

centric model with alternatives that are more flexible

and arguably closer to the way we work and think in

the real word, e.g. the object-oriented user interfaces

(OOUIs) of the early 1990s [2], the instrumental

interaction of the early 2000s [1], and its more recent

incarnations as VIGO [11] or Webstrates [12].

Therefore I believe that we should use the current shift

from the single-device to the multi-device era as an

opportunity to critically reflect about the role that

monolithic apps or applications should have in future

and if alternatives such as objects, instruments, or

webstrates would not meet the requirements of true

BYOD and cross-device computing much more.

References
1. Beaudouin-Lafon, M. 2000. Instrumental

interaction: an interaction model for designing
post-WIMP user interfaces. In Proc CHI '00. 446-
453.

2. Collins, D. 1995. Designing Object-Oriented User
Interfaces. Benjamin/Cummings.

3. Greenberg, S., Marquardt, N., Ballendat, T., Diaz-
Marino, R. and Wang, M. 2011. Proxemic
interactions: the new ubicomp? interactions. 18, 1
(Jan. 2011), 42-50.

4. Hamilton, P. and Wigdor, D.J. 2014. Conductor:
enabling and understanding cross-device
interaction. In Proc. CHI ’14, 2773–2782.

5. Jetter, H.-C., Zöllner, M., Gerken, J. and Reiterer,
H. 2012. Design and Implementation of Post-WIMP
Distributed User Interfaces with ZOIL. International

Journal of Human-Computer Interaction. 28, 11
(2012), 737–747.

6. Jetter, H.-C. and Reiterer, H. 2013. Self-Organizing
User Interfaces: Envisioning the Future of Ubicomp
UIs. Workshop “Blended Interaction” (CHI ’13).

7. Jetter, H.-C. 2013. Design and Implementation of

Post-WIMP Interactive Spaces with the ZOIL
Paradigm. PhD Thesis, University of Konstanz.

8. Jetter, H.-C. 2013. Visual and Functional
Adaptation in Ad-hoc Communities of Devices.
Workshop on Visual Adaptation of Interfaces (In
conjunction with ITS ’13).

9. Jetter, H.-C. 2014. A Cognitive Perspective on
Gestures, Manipulations, and Space in Future Multi-
Device Interaction. Workshop “Gesture-based
Interaction Design” (In conjunction with CHI ’14).

10. Jin, H., Holz, C. and Hornbæk, K. 2015. Tracko:
Ad-hoc Mobile 3D Tracking Using Bluetooth Low

Energy and Inaudible Signals for Cross-Device
Interaction. In Proc UIST '15. 147-156.

11. Klokmose, C. N. and Beaudouin-Lafon, M. 2009.
VIGO: instrumental interaction in multi-surface
environments. In Proc CHI '09, 869-878.

12. Klokmose, C. N., Eagan, J. R., Baader, S., Mackay,
W., Beaudouin-Lafon, M. 2015. Webstrates:
Shareable Dynamic Media. In Proc UIST '15. 280-
290.

13. Marquardt, N., Hinckley, K. and Greenberg, S.
2012. Cross-device interaction via micro-mobility
and f-formations. In Proc UIST ’12.

14. Rädle, R., Jetter, H.-C., Marquardt, N., Reiterer, H.
and Rogers, Y. 2014. HuddleLamp: Spatially-Aware
Mobile Displays for Ad-hoc Around-the-Table
Collaboration. In Proc. ITS ’14, 45–54.

15. Rädle, R., Jetter, H.-C., Schreiner, M., Lu, Z.,
Reiterer, H. and Rogers, Y. 2015. Spatially-aware
or spatially-agnostic? Elicitation and Evaluation of
User-Defined Cross-Device Interactions. In Proc.
CHI ’15, 3913-3922.

2016-13 63

Composition and mediation in
cross-surface interaction

Henrik Korsgaard
Aarhus Univeristy
8200 Aarhus N, Denmark
korsgaard@cs.au.dk

Clemens Nylandsted
Klokmose
Aarhus University
8200 aarhus N, Denmark
clemens@cs.au.dk

Copyright is held by the author/owner(s). Presented at the Cross-Surface ’16
workshop, in conjunction with ACM CHI’16. May 7, San Jose, USA.

Abstract
In this position paper we propose two perspectives on inter-
action in cross-surface systems: compositon and mediation.
We advocate for a focused effort to expand our theoretical
and analytical vocabulary when it comes to cross-surface
interaction.

Author Keywords
Cross-surface interaction; device ecologies; analytical tools

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g., HCI)]:
Miscellaneous

Introduction
Over the years we have build, deployed and studied a num-
ber of multi-device and cross-surface systems ’in the wild’.
We have seen how the roles of devices and surface, whether
large or small, can differ quite significantly given the use
case and application: A personal device may e.g. provide
a private interface for interacting with shared surfaces (as
in our own Local Area Artworks [2]) or become part of a
shared distributed interface (as in HuddleLamp [6]). Our
vocabulary for talking about human-computer interaction
beyond one user—one device is still limited, and we be-
lieve it is important to continuously refine and expand this
vocabulary. In this position paper we propose two analyti-

2016-14 64

cal perspectives on interaction with cross-surface systems:
composition and mediation.

We build upon a growing body of work on taxonomies and
theoretical frameworks for post-desktop, multi-device and
cross-surface interaction. Notably Terrenghi et al. [9] ex-
amine multi-display ecosystems with the intent of under-
standing the relationship between scale (form-factor), social
interaction and the interaction methods that couple devices
and displays and make interaction possible. Müller et al. [4]
have developed a taxonomy capitulating how people per-
ceive public displays, interaction modalities and supported
interaction. Sørensen et al. [8] present the 4C framework
for (collaborative) interaction in digital ecosystems. The 4C
framework derives principles of interaction design in digital
ecosystems from a 2x2 matrix of ’many users’ vs. ’many ar-
tifacts’ and ’sequential’ vs. ’simultaneous interaction’. The
themes of the quadrants are communality (many sequential
users), collaboration (many simultaneous users), continu-
ity (many sequential devices) and complementarity (many
simultaneous devices).

Theoretical premise
This work is part of our ongoing efforts in trying to grasp
and theorise on the relationship between human activities
and the role artifacts play. This work is strongly positioned
within an activity theoretical understanding of activities, me-
diation and cultural-historical analysis of artifacts as crys-
tallised knowledge. The core tenet of activity theory is that
artifacts mediate human activity and that in order to under-
stand artifacts we take the activity they are part of as the
minimum meaningful unit of analysis. If a given artifact, de-
vice, software application, service etc., is used in an activity,
we take that it has a meaningful instrumental role in the
context of the activity, as it mediates intentional action and
help users to realise specific goals.

With the proliferation of personal and ubiquitous computing,
the artifacts available and their capabilities have changed
significantly. In previous empirical work we have described
these systems as artifact ecologies and made tentative
distinctions related to some of their characteristics. The
concept of artifact ecologies is socio-technical and encom-
passes both the actual technologies and how they are ap-
propriated and used in meaningful activities. In the em-
pirical and theoretical work, we have primarily focused on
social aspects, e.g. the dynamics of personal artifact ecolo-
gies [1] and how a community appropriate and use multiple
artifacts as part of their activities [3]. Individuals have a rich
personal ecology of devices, although not always an active
part of the activity at hand. Throughout an activity, a person
only uses a subset of their ecology depending on the activ-
ity. We posit that the active artifacts are selected through
an (unconscious) assessment between what is to be ac-
complished in a given activity and the potential artifacts
knowingly available to the person – in the situation and in
their knowledge of the artifacts capabilities. Here we distin-
guish between the potential and actual artifacts available to
and used in a given activity. The potential is the “pool” from
which an individual or group selects the actual artifacts to
be used within the activity at hand (see also [7] on constel-
lations of artifacts and group negotiation), and the actual
artifacts are those that are part of the specific activity.

Perspectives on cross-surface systems
In the following we outline two perspectives on cross-device
systems and artifact ecologies.

Composition. The composition is the actual artifacts in use
as part of an activity. It may span multiple personal and
shared devices which may or may not share resources or
technical coupling. The composition might involve dedi-
cated devices developed specifically for the particular activ-

2016-14 65

ity or may be more or less impromptu use and coordination
across heterogeneous devices – personal and shared. The
composition of cross-device system changes as the activ-
ity changes and the individual devices might change role
in the activity. The changes can either be adding, remov-
ing or substituting a device. Here we distinguish between a
horizontal and a vertical change in the composition. When
horizontal changes occur the base functionality of the multi-
device system and its role in the activity does not change.
Participants may add another device with identical capabil-
ities of an existing, e.g. adding a larger display or another
tablet that can interact with a specific component. A ver-
tical change is when functionality is added or removed to
the activity and system, e.g. adding a sketchpad or digi-
tizer to a system that allow participants to embed sketches
within a document. Understanding how the composition
changes and what parts of the potential ecology (personal
and shared devices) are active and the role they play are
extremely important in supporting individual and collabora-
tive activities and the various transitions that occur.

Mediation. Cross-surface systems mediate activities of peo-
ple with certain goals and motives. We characterize the
relationship between people to be either: individual, social
or collaborative. Individual interaction with a cross-surface
system is e.g. to distribute a web page across multiple per-
sonal devices [5]. Social interaction is where the interaction
is influenced by the actions of others, but not directly af-
fected. E.g. when posting images from personal devices to
a public display. Finally collaborative interaction is when
there is a common goal and interactions are directly af-
fected by other users, e.g. collaborative editing of text on
a shared display [2].

The way goals are realized mediated by the system we
call the instrumentality of the interaction. Interaction can

be consumption of digital content through reading, watch-
ing or listening; communication with other users through
a digital medium either synchronously or asynchronously;
production and manipulation of any kind of digital con-
tent, whether text, images videos etc.; control of the state
of a system, whether digital (e.g. playback of a video) or
physical (e.g. controlling the lighting of a room); search
and retrieval of digital content; and finally configuration of
a digital workspace (e.g. personalization or window place-
ment). Each of the aspects of instrumentality can naturally
not happen in isolation: search requires consumption, con-
sumption requires control etc.

Some discussion
Returning to the 4C framework [8], here the focus is al-
most exclusively on collaborative control and consumption
in their Netflix example; a screen is used for watching a
movie and smartphone apps are used to control what is be-
ing watched. The composition of the example used in the
4C paper is simple and the capabilities/role of the artifacts
are closely tied to the instrumentality of the system. In this
case adding or removing a control device would be a hor-
izontal change, whereas adding a device that allowed to
review and discuss the movie would be a vertical addition
to the composition. Note that this might already be possible
within the system, but has to be actually used as part of the
activity to be a part of the composition.

A recent study shows that while it is commonly assumed
that the larger the surface the better for collaborative sense
making, this may not be true for cross-surface situations
where sense-making and search and retrieval are dis-
tributed across personal and shared surfaces [10]. This
means that mediation and composition influence the affor-
dances of interactive surfaces, which emphasises the need
for being able to articulate them.

2016-14 66

Not all combinations of mediation and composition are
common-place today. Collaborative, cross-surface produc-
tion and manipulation of digital content is rarely seen. This
may point to a deeper challenge, namely that our tools for
production and our understanding of those tools are deeply
rooted in traditional personal computing.

Going forwards
Our own everyday confusion in articulating and working
with cross-surface/multi-device perspectives on computing
are motivating us to develop a conceptual framework that
allow us to analyse and design novel systems within this
space. This position paper attempt to do just that anchored
in familiar theoretical territory. By basing our tentative vo-
cabulary in activity theory we want to emphasise activities,
and not individual use, as a primary focus. This is also an
attempt to identify what’s next in computing and in particu-
lar, how to address some of the fundamental (design) flaws
of personal computing and move forward.

REFERENCES
1. Bødker, S., and Klokmose, C. N. Dynamics in artifact

ecologies. In Proceedings of the 7th Nordic Conference
on Human-Computer Interaction: Making Sense
Through Design, ACM (2012), 448–457.

2. Bødker, S., Klokmose, C. N., Korn, M., and Polli, A. M.
Participatory it in semi-public spaces. In Proc. of the
8th Nordic Conference on Human-Computer
Interaction, ACM (2014), 765–774.

3. Bødker, S., and Korsgaard, Henrik, a. S.-S. J. ‘a farmer,
a place and at least 20 members’: The development of
artifact ecologies in volunteer-based communities. In
[Forthcoming] Proceedings of the 19th ACM
Conference on Computer Supported Cooperative Work
& Social Computing, CSCW ’16 (2016).

4. Müller, J., Alt, F., Michelis, D., and Schmidt, A.
Requirements and design space for interactive public
displays. In Proceedings of the international conference
on Multimedia, ACM (2010), 1285–1294.

5. Nebeling, M., and Dey, A. K. Xdbrowser: User-defined
cross-device web page designs. In Proc. CHI 2016,
ACM (2016).

6. Rädle, R., Jetter, H.-C., Marquardt, N., Reiterer, H., and
Rogers, Y. Huddlelamp: Spatially-aware mobile
displays for ad-hoc around-the-table collaboration. In
Proc. of the Ninth ACM International Conference on
Interactive Tabletops and Surfaces, ACM (2014),
45–54.

7. Rossitto, C., Bogdan, C., and Severinson-Eklundh, K.
Understanding constellations of technologies in use in
a collaborative nomadic setting. Computer Supported
Cooperative Work (CSCW) 23, 2 (2014), 137–161.

8. Sørensen, H., Raptis, D., Kjeldskov, J., and Skov, M. B.
The 4c framework: Principles of interaction in digital
ecosystems. In Proceedings of the 2014 ACM
International Joint Conference on Pervasive and
Ubiquitous Computing, UbiComp ’14, ACM (New York,
NY, USA, 2014), 87–97.

9. Terrenghi, L., Quigley, A., and Dix, A. A taxonomy for
and analysis of multi-person-display ecosystems.
Personal and Ubiquitous Computing 13, 8 (2009),
583–598.

10. Zagermann, J., Pfeil, U., Radle, R., Jetter, H.-C.,
Klokmose, C., and Reiterer, H. When tablets meet
tabletops: The effect of tabletop size on
around-the-table collaboration with personal tablets. In
Proc. CHI 2016, ACM (2016).

2016-14 67

Towards Cross-Surface Content
Sharing Between Mobile Devices and
Large Displays in the Wild

Wolfgang Büschel
Interactive Media Lab
Technische Universität Dresden
bueschel@acm.org

Tom Horak
Interactive Media Lab
Technische Universität Dresden
horakt@acm.org

Ricardo Langner
Interactive Media Lab
Technische Universität Dresden
langner@acm.org

Raimund Dachselt
Interactive Media Lab
Technische Universität Dresden
dachselt@acm.org

Ulrich von Zadow
Interactive Media Lab
Technische Universität Dresden
uzadow@acm.org

Copyright is held by the author/owner(s).
Presented at the Cross-Surface ’16 workshop, in conjunction with ACM CHI’16.
May 7, San Jose, USA.

Abstract
Large vertical displays are increasingly widespread, and
content sharing between them and personal mobile devices
is central to many usage scenarios. Research has already
led to manifold interaction techniques. In most cases how-
ever, they do not lend themselves for realistic, in-the-wild
usage. In this paper we present our research towards bridg-
ing the gap to real world usage. We address the issues of
awareness & connectivity as well as privacy, which we be-
lieve to be two important aspects of BYOD (bring your own
device) content sharing between public displays and mobile
devices.

Author Keywords
Cross-device interaction; data transfer; privacy; large dis-
plays; mobile phones; proxemic interaction

ACM Classification Keywords
H.5.2. [Information Interfaces and Presentation: User Inter-
faces]: Input devices and strategies, Interaction styles

Introduction & Background
Hardware advances are making very large vertical displays
more common in a variety of scenarios, e.g., as public dis-
plays. At the same time, personal devices such as mobile
phones have become ubiquitous over the last years, as they
allow people to conveniently manage their digital identi-

2016-15 68

ties and content. In combination these two device classes
provide the advantages of both settings: among others, per-
sonalized interaction, private data storage, and on-demand
data sharing. While these issues have been studied ex-
tensively in the past, there is a lack of work specifically ad-
dressing scenarios where users bring their own devices
to share data with large public or semi-public displays out-
side of typical lab settings. In our research we address two
aspects that are often still problematic in real world usage
scenarios: (i) awareness & connectivity and (ii) privacy.
In the following we will give a brief overview of the related
work before exploring these two aspects in more detail.

Figure 1: Tango tablet used in
combination with a wall-sized
display. The position is tracked
using the internal sensors only.

For a general introduction to interaction with wall-sized dis-
plays, we refer to the overview by Müller et al. on public
displays [7]. Additionally, Marquardt et al.’s work on Gradual
Engagement [6] provides a design framework for integrating
the relative positions of the devices involved in cross-device
interaction. A related notion is Greenberg et al.’s Proxemic
Interaction (e.g., [4]), in which interactions are based on
spatial relationships between people and devices.

Much of the work on cross-device data transfer considers
single-item transfer in close proximity. Rekimoto’s Pick-and-
Drop [8] is early work on cross-device data transfer using
a pen as interaction device. More recently, Schmidt et al.’s
PhoneTouch associates touches on a large display with
a mobile phone by correlating the phone’s motion sensor
signals, covering both the technology [9] and numerous
interaction techniques [10]. In SleeD [14], von Zadow et
al. use an arm-worn device; transfer involves touching the
large display with the hand the device is strapped on. Alt
et al. [1] compare content creation for and exchange with
public displays using multiple modalities, while Seifert et
al. [12] introduce a number of interaction techniques that
allow privately selecting the data to share before perform-

ing the actual transfer. In PointerPhone [11], Seifert et al.
investigate the interactions possible when remote pointing
is combined with interactions on the phone. Dachselt and
Buchholz’s Throw and Tilt [3] utilizes expressive gestures
for data transfer, while Hassan et al.’s Chucking [5] is inter-
esting because it also supports positioning of items on the
large screen.

Awareness & Connectivity
A particular challenge for in-the-wild interaction between
mobiles and public displays is the issue of awareness &
connectivity. In this context, both technology and user in-
terface have to be considered, which involves providing
standardized protocols (location and services) as well as ui
components and interactions.

Concerning the user interface, awareness is the knowledge
of the user that there is a public display, that it supports in-
teraction, and that it is ready to accept user input. Known
approaches such as Marquardt et al.’s Gradual Engage-
ment Pattern [6] can support this. We believe that in the fu-
ture a background service on the mobile device could con-
tinuously check for available connections in the environment
and give appropriate feedback, e.g., status bar messages
or vibration to get the user’s attention.

Technologically, awareness means that both the mobile can
react to public displays, as described above, and the large
display can react to the mobile device. However, there are
different levels of sensing to this. In fact, they form a whole
spectrum between only knowing that a device is in the vicin-
ity and full six DoF tracking. These technical capabilities
influence the availability of the following interaction styles:

• In the case where no additional tracking data is avail-
able, the mobile device can only be used similar to
a TV remote. Data transfer by techniques such as

2016-15 69

swiping is possible but lacks positional information.
Alternatively, drag gestures on the phone can (rela-
tively) control the movement of a pointer on the large
display.

• If the large display allows sensing of contact posi-
tions (e.g. it is touch capable or via marker tracking
of the phone), precise transfer to the touch position
becomes possible when in touching distance (e.g.,
[9, 14]).

• Relative motion tracking of the mobile device, e.g.,
using the internal IMU, enables device gestures such
as throwing [3].

• Finally, with full 6 DoF tracking available, pointing is
available and allows for precisely targeted transfer of
digital objects.

Figure 2: Top: The preview image
on the public display is blurred to
preserve privacy. Bottom: Blurring
can be distance aware. When the
user stands near the large display
and shoulder surfing is harder, less
blurring is applied.

Figure 3: By default, only the
position of pictures on a map is
shown. Only when directly pointing
at them, their preview is revealed.

Up to now, tracking of mobile devices in front of large ver-
tical displays usually involves instrumentation of the room
and in many cases also the device, using marker based
tracking systems or depth cameras (e.g., [13]). Lately, de-
vices such as Google’s Tango1 allow non-instrumented,
visual motion tracking. We tested Tango in a typical inter-
action scenario in front of a wall-sized interactive display
(Figure 1) and found the tracking precision sufficient for
most application cases. Drift, however, can be a problem,
especially when the display content changes rapidly.

For meaningful interaction between the devices, not only
files transfer has to be considered but also specific, intuitive
user interfaces. General file transfer applications, e.g., a file
browser, would be applicable to a wide range of situations.
However, we believe that carefully crafted interfaces that
take the context (display type, application scenario, ...) into

1https://www.google.com/atap/project-tango/

consideration could provide a richer experience. Addition-
ally, such interfaces could also integrate not only content
sharing but other uses for mobile devices, such as personal
tangible magic lenses, as well. Therefore, in our investiga-
tions we explore a streaming-based thin-client architecture.
The application running on the large display streams user
interfaces to the mobile device and collects user input. Our
current prototype renders the UI into an h.264 video stream
using the Python-based libavg2 framework. The stream
is then decoded and displayed on the mobile device by a
small, native application. User input, i.e., touch and motion
data, is streamed back via OSC protocol. This allows appli-
cations that use a simple and thin client to provide arbitrary,
application-specific user interfaces. Depending on the pre-
cise details of the usage scenario (e.g., number of clients),
we think that this solution could serve as a basis for various
settings, because the bandwidth of available network con-
nections increases continuously and todays mobile devices
are equipped with efficient decoders.

Privacy
Privacy is a general concern in many multi-user application
scenarios. In particular, we believe that this is a major factor
to be considered in content sharing applications between
public and private devices. There has already been work
regarding the presentation of private data on public dis-
plays and specific interactions, such as on limiting shoulder
surfing [2] and password input [9], respectively. Given that
users often store very personal pictures on their phones,
they might be hesitant to let others see them unfiltered. To
counteract privacy concerns in such cases, we currently ex-
plore three different interface strategies: (i) limit what data
is displayed at all, (ii) hide information through blurring and
other image-based methods, and (iii) show abstract repre-
sentations of data items, e.g., by only showing metadata.

2http://libavg.de/

2016-15 70

In our investigations, we use a simple two-step process for
data sharing activities: First, instead of sharing and display-
ing all documents at once, the user manually selects them
on his or her device, thus filtering them on a smaller, more
private display, similarly to [12]. Secondly, when transferring
to the public display, we show a heavily blurred version of
the content (Figure 2). This allows the user, who knows his
or her photos, to cancel the transfer if an undesired picture
is shown, while hiding details from the public. For use cases
such as geotagged photos on a map, we transfer metadata
of items first, allowing the large display to show preview cir-
cles at corresponding positions. The photos themselves are
not revealed until the pointing cursor is over their position,
preserving privacy (Figure 3).

Besides the issue of uploading content, downloading from
the public display can also lead to privacy concerns: Imag-
ine a public information terminal in a medical center with
info flyers on different medical issues or a digital notice
board with anonymized publicly available exam results.
These are situations in which a user might not want others
to see which digital objects he or she copies to their per-
sonal device. To this end, we propose the concept of blind
pointing: During pointing/selection, no visual representa-
tion of a selection cursor is shown on the public display.
Instead, the user only gets vibrotactile feedback. We be-
lieve that proprioception could allow users to reliably select
items on a large display solely supported by such unspecific
feedback in combination with small, inconspicuous pointing
gestures.

Conclusion
In this position paper, we outlined our on-going explorations
on content sharing between large displays and mobile de-
vices, focusing on the two important aspects awareness
& connectivity as well as privacy. In the context of BYOD

and to consider different device platforms, maximize com-
patibility, and ease the process of device connections, we
explore the usage of non-instrumented devices (i.e., without
additional markers) such as Tango and deploy a streaming-
solution in which the display application sends the user in-
terface (output) and collects user input. Furthermore, we
developed early concepts and prototype implementations
addressing the issue of privacy, such as abstracting visual
user feedback on large displays or using blind pointing.

We believe that, together with various other investigations
in this field, our research helps the community to determine
underlying principles and enable the development of seam-
less content sharing between large displays and personal
mobile devices in the wild.

References
[1] Florian Alt, Alireza Sahami Shirazi, Thomas Kub-

itza, and Albrecht Schmidt. 2013. Interaction Tech-
niques for Creating and Exchanging Content with Pub-
lic Displays. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems (CHI
’13). ACM, New York, NY, USA, 1709–1718. DOI:
http://dx.doi.org/10.1145/2470654.2466226

[2] Frederik Brudy, David Ledo, Saul Greenberg, and
Andreas Butz. 2014. Is Anyone Looking? Mitigating
Shoulder Surfing on Public Displays Through Aware-
ness and Protection. In Proceedings of The Interna-
tional Symposium on Pervasive Displays (PerDis ’14).
ACM, New York, NY, USA, Article 1, 6 pages. DOI:
http://dx.doi.org/10.1145/2611009.2611028

[3] Raimund Dachselt and Robert Buchholz. 2008. Throw
and Tilt – Seamless Interaction across Devices Using
Mobile Phone Gestures. In Proc. Workshop MEIS ’08.
German Informatics Society (GI), 272–278.

[4] Saul Greenberg, Nicolai Marquardt, Till Ballendat, Rob

2016-15 71

http://dx.doi.org/10.1145/2470654.2466226
http://dx.doi.org/10.1145/2611009.2611028

Diaz-Marino, and Miaosen Wang. 2011. Proxemic in-
teractions: the new ubicomp? Interactions 18, 1 (Jan.
2011), 42–50. DOI:http://dx.doi.org/10.1145/1897239.
1897250

[5] Nabeel Hassan, Md. Mahfuzur Rahman, Pourang
Irani, and Peter Graham. 2009. Chucking: A One-
Handed Document Sharing Technique. In Proceed-
ings of the 12th IFIP TC 13 International Conference
on Human-Computer Interaction (INTERACT ’09).
Springer-Verlag, Berlin, Heidelberg, 264–278. DOI:
http://dx.doi.org/10.1007/978-3-642-03658-3_33

[6] Nicolai Marquardt, Till Ballendat, Sebastian Boring,
Saul Greenberg, and Ken Hinckley. 2012. Grad-
ual Engagement: Facilitating Information Exchange
Between Digital Devices As a Function of Proxim-
ity. In Proceedings of the 2012 ACM International
Conference on Interactive Tabletops and Surfaces
(ITS ’12). ACM, New York, NY, USA, 31–40. DOI:
http://dx.doi.org/10.1145/2396636.2396642

[7] Jörg Müller, Florian Alt, Daniel Michelis, and Albrecht
Schmidt. 2010. Requirements and Design Space
for Interactive Public Displays. In Proceedings of
the International Conference on Multimedia (MM
’10). ACM, New York, NY, USA, 1285–1294. DOI:
http://dx.doi.org/10.1145/1873951.1874203

[8] Jun Rekimoto. 1997. Pick-and-drop: A Direct Ma-
nipulation Technique for Multiple Computer Environ-
ments. In Proceedings of the 10th Annual ACM Sym-
posium on User Interface Software and Technology
(UIST ’97). ACM, New York, NY, USA, 31–39. DOI:
http://dx.doi.org/10.1145/263407.263505

[9] Dominik Schmidt, Fadi Chehimi, Enrico Rukzio,
and Hans Gellersen. 2010. PhoneTouch: A Tech-
nique for Direct Phone Interaction on Surfaces.
In Proceedings of the 23Nd Annual ACM Sympo-
sium on User Interface Software and Technology

(UIST ’10). ACM, New York, NY, USA, 13–16. DOI:
http://dx.doi.org/10.1145/1866029.1866034

[10] Dominik Schmidt, Julian Seifert, Enrico Rukzio, and
Hans Gellersen. 2012. A Cross-device Interaction
Style for Mobiles and Surfaces. In Proceedings of the
Designing Interactive Systems Conference (DIS ’12).
ACM, New York, NY, USA, 318–327. DOI:http://dx.doi.
org/10.1145/2317956.2318005

[11] Julian Seifert, Andreas Bayer, and Enrico Rukzio.
2013. PointerPhone: Using Mobile Phones for Direct
Pointing Interactions with Remote Displays. In Human-
Computer Interaction – INTERACT 2013, Paula Kotzé,
Gary Marsden, Gitte Lindgaard, Janet Wesson, and
Marco Winckler (Eds.). Lecture Notes in Computer
Science, Vol. 8119. Springer Berlin Heidelberg, 18–35.
DOI:http://dx.doi.org/10.1007/978-3-642-40477-1_2

[12] Julian Seifert, David Dobbelstein, Dominik Schmidt,
Paul Holleis, and Enrico Rukzio. 2014. From the pri-
vate into the public: privacy-respecting mobile interac-
tion techniques for sharing data on surfaces. Personal
and Ubiquitous Computing 18, 4 (2014), 1013–1026.
DOI:http://dx.doi.org/10.1007/s00779-013-0667-x

[13] Martin Spindler, Wolfgang Büschel, Charlotte Winkler,
and Raimund Dachselt. 2014. Tangible Displays for the
Masses: Spatial Interaction with Handheld Displays by
Using Consumer Depth Cameras. Personal Ubiquitous
Comput. 18, 5 (June 2014), 1213–1225. DOI:http:
//dx.doi.org/10.1007/s00779-013-0730-7

[14] Ulrich von Zadow, Wolfgang Büschel, Ricardo
Langner, and Raimund Dachselt. 2014. SleeD: Us-
ing a Sleeve Display to Interact with Touch-sensitive
Display Walls. In Proceedings of the Ninth ACM Inter-
national Conference on Interactive Tabletops and Sur-
faces (ITS ’14). ACM, New York, NY, USA, 129–138.
DOI:http://dx.doi.org/10.1145/2669485.2669507

2016-15 72

http://dx.doi.org/10.1145/1897239.1897250
http://dx.doi.org/10.1145/1897239.1897250
http://dx.doi.org/10.1007/978-3-642-03658-3_33
http://dx.doi.org/10.1145/2396636.2396642
http://dx.doi.org/10.1145/1873951.1874203
http://dx.doi.org/10.1145/263407.263505
http://dx.doi.org/10.1145/1866029.1866034
http://dx.doi.org/10.1145/2317956.2318005
http://dx.doi.org/10.1145/2317956.2318005
http://dx.doi.org/10.1007/978-3-642-40477-1_2
http://dx.doi.org/10.1007/s00779-013-0667-x
http://dx.doi.org/10.1007/s00779-013-0730-7
http://dx.doi.org/10.1007/s00779-013-0730-7
http://dx.doi.org/10.1145/2669485.2669507

	Introduction
	Context & Brief Background
	Work so Far
	References
	Introduction
	Context through Surrounding Devices
	Enriching Environmental Information
	Technological Approach
	Limitations
	REFERENCES
	Introduction
	Semi-Automatic Distribution Techniques
	Hybrid Approach to Cross-Device Browsing
	Acknowledgments
	References
	Introduction
	Multi-surface environments
	User perspective
	Technological perspective
	Three Challenges
	Conclusion
	Acknowledgements
	References
	Introduction
	Cross-Device Extension
	Analysis
	Design
	Implementation

	Deployment
	Lessons Learned
	Acknowledgements
	REFERENCES
	Introduction
	TomoTable
	Preliminary results
	Discussion and further work
	Conclusions
	References
	Introduction
	Theoretical premise
	Perspectives on cross-surface systems
	Some discussion
	Going forwards
	REFERENCES
	Introduction & Background
	Awareness & Connectivity
	Privacy
	Conclusion
	References

